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Abstract

Extensive research has produced robust methods for unsupervised data visualization.
Yet supervised visualization—where expert labels guide representations—remains
underexplored, as most supervised approaches prioritize classification over vi-
sualization. Recently, RF-PHATE, a diffusion-based manifold learning method
leveraging random forests and information geometry, marked significant progress
in supervised visualization. However, its lack of an explicit mapping function
limits scalability and its application to unseen data, posing challenges for large
datasets and label-scarce scenarios. To overcome these limitations, we introduce
Random Forest Autoencoders (RF-AE), a neural network-based framework for
out-of-sample kernel extension that combines the flexibility of autoencoders with
the supervised learning strengths of random forests and the geometry captured by
RF-PHATE. RF-AE enables efficient out-of-sample supervised visualization and
outperforms existing methods, including RF-PHATE’s standard kernel extension,
in both accuracy and interpretability. Additionally, RF-AE is robust to the choice
of hyperparameters and generalizes to any kernel-based dimensionality reduction
method.

1 Introduction

Manifold learning-based visualization methods, such as t-SNE [1], UMAP [2], and PHATE [3], are
essential for exploring high-dimensional data by revealing patterns, clusters, and outliers through
low-dimensional embeddings. While these methods excel at uncovering dominant data structures,
they often fail to capture task-specific insights when auxiliary labels or metadata are available.
Supervised approaches like RF-PHATE [4] bridge this gap by integrating label information into the
kernel function through Random Forest-derived proximities [5], generating representations that align
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with domain-specific objectives without introducing the exaggerated separations or distortions seen
in class-conditional methods [6]. Specifically, RF-PHATE has provided critical insights in biology,
such as identifying multiple sclerosis subtypes, demonstrating antioxidant effects in lung cancer cells,
and aligning COVID-19 antibody profiles with patient outcomes [4].

However, most supervised and unsupervised manifold learning algorithms generate fixed coordinates
within a latent space but lack a mechanism to accommodate new observations. Therefore, to embed
previously unseen data, the algorithm must rerun with the new data as part of the training set. One
well-known solution to this lack of out-of-sample (OOS) support is the Nyström extension [7] and
its variants, such as linear reconstruction [8] or geometric harmonics [9]. While influential, these
approaches rely on linear kernel mappings and unconstrained least-squares minimization, making
them highly sensitive to the quality of the training set and often inadequate for preserving complex
manifold geometry in a way that generalizes effectively to new inputs [10, 11]. Recent neural network-
based approaches, such as parametric variants of UMAP [12] or Geometry-Regularized Autoencoders
(GRAE) [13, 14], offer promising alternatives for extending embeddings to OOS data points. Yet,
most of these methods focus either on unsupervised structure or on predictive performance, without
explicitly preserving label-informed geometry needed for interpretable supervised visualization.

In this study, we present Random Forest Autoencoders (RF-AE), an autoencoder (AE) architecture
that addresses the underexplored setting of supervised OOS visualization, while taking inspiration
from the principles of GRAE [14], which uses a manifold embedding to regularize the bottleneck
layer. Instead of reconstructing the original input vectors, RF-AE incorporates supervised information
by reconstructing Random Forest- Geometry- and Accuracy-Preserving (RF-GAP) proximities [5].
This framework induces an embedding function that simultaneously preserves local structure and
class separability, and generalizes naturally to new data without requiring labels at inference. Unlike
RF-PHATE [4], which provides supervised embeddings without a parametric mapping, RF-AE yields
a generalizable and interpretable embedding function. Compared to existing neural network-based
extensions, RF-AE incorporates a strong supervision signal tied to the relational structure between
points. To further improve scalability, we also propose a prototype selection strategy that reduces
memory and runtime demands during both training and inference.

Through extensive experiments, we show that RF-AE outperforms existing approaches in embedding
new data while preserving the local and global structure of the important features for the underlying
classification task. We also demonstrate that RF-AE’s performance is robust to a wide range of
hyperparameter configurations. RF-AE improves the adaptability and scalability of the manifold
learning process, allowing for seamless integration of new data points while maintaining the desirable
traits of established embedding methods.

2 Related work

2.1 Parametric embedding through multi-task autoencoders

Given a high-dimensional training dataset X = {xi ∈ RD | i = 1, . . . , N}—where X can represent
tabular data, images, or other modalities—a manifold learning algorithm can be extended to test data
by training a neural network, typically a multi-layer perceptron (MLP) to regress onto precomputed
non-parametric embeddings zGi , or by means of a cost function underlying the manifold learning
algorithm, as in parametric t-SNE [15] and parametric UMAP [12]. However, solely training an
MLP for this supervised task often leads to an under-constrained problem, resulting in solutions
that memorize the data but fail to capture meaningful patterns or generalize effectively [16, 17].
Beyond implicit regularization techniques such as early stopping [18], dropout [19], or layer-wise
pre-training [20], multi-task learning [21] has been shown to improve generalization. Early studies
demonstrated that jointly learning tasks reduces the number of required samples [22, 23], while later
work introduced trace-norm regularization on the weights of a linear, single hidden-layer neural
network for a set of tasks [24, 25]. Motivated by Le et al. [26], who empirically showed that training
neural networks to predict both target embeddings and inputs (reconstruction) improves generalization
compared to encoder-only architectures, we focus on multi-task learning-based regularization in the
context of regularized autoencoders.

AE networks are built of two parts: an encoder function f(xi) = zi ∈ Rd (d ≪ D), which
compresses the input data into a latent representation via a bottleneck layer [27], and a decoder
function g(zi) = x̂i, which maps the low-dimensional embedding back to the original input
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space. To ensure that (g ◦ f)(xi) = x̂i ≈ xi, AEs minimize the average reconstruction loss
L(f, g) = 1

N

∑N
i=1 Lrecon(xi, x̂i) where Lrecon(·, ·) is typically defined as the squared Euclidean

distance. AEs learn compact data representations that relate meaningfully to the input data. However,
standard AEs often fail to capture the intrinsic geometry of the data and do not produce interpretable
embeddings [14]. This led authors to borrow principles of manifold learning to add geometrically
motivated constraints to the latent space. Structural Deep Network Embedding (SDNE) [28] preserves
both first- and second-order graph neighborhoods for graph-structured data by combining adjacency
vector reconstruction with Laplacian Eigenmaps [29] regularization. Local and Global Graph Embed-
ding Autoencoders [30] enforce two constraints on the embedding layer: a local constraint to cluster
k-nearest neighbors and a global constraint to align data points with their class centers. VAE-SNE [31]
integrates parametric t-SNE with variational AEs, enhancing global structure preservation while
retaining t-SNE’s strength in preserving local structure. GRAE [14] explicitly impose geometric con-
sistency between the latent space and precomputed manifold embeddings. Other approaches focus on
regularizing the decoder. Inspired by Denoising Autoencoders [32], Generalized Autoencoders [33]
minimize the weighted mean squared error between the reconstruction x̂ and the k-nearest neighbors
of the input x, where weights reflect the predefined similarities between x and its neighbors. Centroid
Encoders (CE) [34] minimize within-class reconstruction variance to ensure that same-class samples
are mapped close to their respective centroids. Self-Supervised Network Projection (SSNP) [35]
incorporates neighborhood information by jointly optimizing reconstruction and classification at
the output layer, using existing labels or pseudo-labels generated through clustering. Neighborhood
Reconstructing Autoencoders [36] extend reconstruction tasks by incorporating the neighbors of x
alongside x itself, using a local quadratic approximation of the decoder at f(x) = z to better capture
the local geometry of the decoded manifold. Similarly, Geometric Autoencoders [37] introduce
a regularization term in the reconstruction loss, leveraging the generalized Jacobian determinant
computed at f(x) = z to mitigate local contractions and distortions in latent representations. Still,
most of these methods are unsupervised or apply supervision via class-conditional constraints, often
leading to disrupted inter-class relationships [6, 38].

2.2 Kernel methods for OOS extension

Let k(·, ·) be a data-dependent symmetric positive definite kernel function (x,x′) 7→ k(x,x′) ≥
0. For simplicity, we consider normalized kernel functions that satisfy the sum-to-one property∑N

i=1 k(x,xi) = 1. Kernel methods for OOS extensions seek an embedding function k 7→ f(k) =
z ∈ Rd where the input k = kx = [k(x,x1) · · · k(x,xN )] is an N -dimensional similarity vector
representing pairwise proximities between any instance x and all the points in the training set X .
Under the linear assumption f(k) = kW, where W ∈ RN×d is a projection matrix to be determined,
we directly define W in the context of a regression task [39, 40] by minimizing the least-squares
error

N∑
i=1

∥zGi − f(ki)∥22, (1)

which yields the explicit solution W = K−1Y, where K−1 refers to the pseudo-inverse of the train-
ing Gram matrix K = [k(xi,xj)]1≤i,j≤N , and Y =

[
zG1 · · · zGN

]T
contains the precomputed

training manifold embeddings. In particular, for manifold learning algorithms that directly assign the
low-dimensional coordinates from the eigenvectors of K, e.g., Laplacian Eigenmaps [29], we have the
well-known Nyström formula W = UΛ−1 [7, 41, 42], where Λ−1 = diag

(
λ−1
1 , . . . , λ−1

d

)
. Here, λi

are the d largest (or smallest, depending on the method) eigenvalues of K, and U is the matrix whose
columns are the corresponding eigenvectors. In Locally Linear Embedding [43] and PHATE [3], the
authors suggested a default OOS extension through linear reconstruction W =

[
zG1 · · · zGN

]T
.

In diffusion-based methods, this provides an alternative means to compress the diffusion process
through the training landmarks and has been shown to outperform a direct application of the Nyström
extension to diffusion maps [44].

Unlike parametric extensions discussed in Section 2.1, kernel extensions learn an explicit embedding
function using kernel representations rather than the original representations in the feature space.
While kernel methods are powerful for handling high-dimensional datasets, they require computing
pairwise kernels for all points in the training set, which can become computationally expensive for
large datasets. In such cases, feature mappings offer greater scalability. However, kernel extensions
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have been shown to outperform direct parametric methods in unsupervised OOS visualization and
classification tasks [40, 45]. Additionally, in supervised visualization, a carefully chosen kernel
mapping can effectively filter out irrelevant features, whereas feature mappings treat all features
equally, potentially increasing sensitivity to noisy datasets. In particular, reconstructing RF-based
proximities in an RF-PHATE-regularized AE produces OOS embeddings that better align with
the ground-truth RF-PHATE embedding computed on the full data [46]. We further validated in
Appendix B the ability of RF-GAP inputs to stabilize supervised manifold learning on a toy dataset
(Appendix C). Therefore, we align our OOS extension framework with kernel extensions rather than
direct parametric methods.

3 Methods

While traditional kernel extensions offer computational benefits over parametric methods, they are
limited to linear kernel mappings and are primarily designed for unsupervised data visualization or
classification using either unsupervised or class-conditional kernel functions [40, 45]. In this work,
we expand the search space of the standard least-squares minimization problem in Eq. 1 to include
general, potentially nonlinear kernel mapping functions f . We also propose a supervised kernel
mapping based on Random Forests, specifically tailored for supervised data visualization. Building
on the previous Section 2.1, we add a geometrically motivated regularizer to this regression task
within a multi-task autoencoder framework.

In this section, we elaborate on the methodology related to our RF-AE framework to extend any kernel-
based dimensionality reduction method with Random Forests and autoencoders for supervised data
visualization. Specifically, we explain how we combined RF-GAP proximities and the visualization
strengths of RF-PHATE with the flexibility of autoencoders to develop a new parametric supervised
embedding method, Random Forest Autoencoders (RF-AE). Additionally, we introduce structural
importance alignment as a metric for evaluating embedding models in supervised settings. Our code
is available at https://github.com/JakeSRhodesLab/RF-AE.

3.1 Extended RF-GAP kernel function

The RF-GAP proximity [5] between (possibly unseen) instance xi and training instance xj is

p(xi,xj) =
1

|Si|
∑
t∈Si

cj(t) · I (j ∈ Ji(t))

|Mi(t)|
,

where Si denotes the set of out-of-bag trees for observation xi, cj(t) is the number of in-bag
repetitions for observation xj in tree t, I(·) is the indicator function, Ji(t) is the set of in-bag
points residing in the terminal node of observation xi in tree t, and Mi(t) is the multiset of in-bag
observation indices, including repetitions, co-occurring in a terminal node with xi in tree t. Note that
this definition naturally extends to OOS observations xo /∈ X , which can be treated as out-of-bag for
all trees. However, this definition requires that self-similarity be zero, that is, p(xi,xi) = 0. This is
not suitable as a similarity measure in some applications. Due to the scale of the proximities—the
rows sum to one [5], so the proximity values are all near zero for larger datasets—, it is not practical
to re-assign self-similarities to one. Otherwise, self-similarity would carry equal weight to the
combined significance of all other similarities. Instead, we assign values by, in essence, passing
down an identical OOB point to all trees where the given observation is in-bag. That is, we define
self-similarity as

p(xi,xi) =
1∣∣S̄i

∣∣ ∑
t∈S̄i

ci(t)

|Mi(t)|
,

where
∣∣S̄i

∣∣ is the set of trees for which xi is in-bag. Under this formulation, p(xi,xi) is on a scale
more similar to other proximity values, and Proposition A.1 (Appendix A) guarantees that, on average,
p(xi,xi) > p(xi,xj). Now, we define the row-normalized RF-GAP similarity between a pair of
training instances xi and xj as

p̃(xi,xj) =
p(xi,xj)∑N
j=1 p(xi,xj)

(2)

We intentionally applied row-normalization to restore the sum-to-one property and refocus on the
underlying geometry rather than sample distribution.
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3.2 RF-AE architecture

Figure 1: RF-AE architecture with prototype selection and geometric regularization. First, the original
feature vectors xi are transformed into one-step transition probability vectors pi derived from RF-
GAP proximities (Section 3.1). They are further reduced into lower-dimensional vectors p∗

i that
represent transition probabilities to N∗ ≪ N selected prototypes (Section 3.3). Meanwhile, manifold
embeddings zGi are generated using RF-PHATE from the pi. Finally, p∗

i and zGi serve as input to
the network within the enclosing box, training an encoder f and a decoder g by simultaneously
minimizing the reconstruction loss Lrecon and the geometric loss Lgeo defined in Section 3.2.

To leverage the knowledge gained from an RF model, we modify the traditional AE architecture
to incorporate the RF’s learning. The forest-generated proximity measures [5], which indicate
similarities between data points relative to the supervised task, serve as a foundation for extending
the embedding while integrating the insights acquired through the RF’s learning process. In RF-AE,
the original input vectors xi ∈ RD used in the vanilla AE are now replaced with the row-normalized
RF-GAP proximity vector between training instance xi and all the other training instances, including
itself. That is, each input xi used for training is now represented as an N -dimensional vector pi

encoding local-to-global supervised neighbourhood information around xi, defined using Eq. 2:

pi = [p̃(xi,x1) · · · p̃(xi,xN )] ∈ [0, 1]N .

Since its elements sum to one, pi contains one-step transition probabilities from training observation
with index i to its supervised neighbors indexed j = 1, . . . , N derived from the RF-GAP proximities.
Thus, the encoder f(pi) = zi ∈ Rd and decoder g(zi) = p̂i of the unconstrained RF-AE network
are trained through stochastic gradient descent by minimizing the reconstruction loss L(f, g) =
1
N

∑N
i=1 Lrecon(pi, p̂i). Given a learned set of low-dimensional manifold embeddings G = {zGi ∈

Rd | i = 1, . . . , N} (e.g. obtained from RF-PHATE), we additionally force the RF-AE to learn a
latent representation zi similar to its precomputed counterpart zGi via an explicit geometric constraint
to the bottleneck layer, similar to GRAE [14]. This translates into an added term in the loss
formulation, which now takes the form:

L(f, g) =
1

N

N∑
i=1

[
λLrecon(pi, p̂i) + (1− λ)Lgeo(zi, z

G
i )

]
.

The parameter λ ∈ [0, 1] controls the degree to which the precomputed embedding is used in
encoding xi: λ = 1 is our vanilla RF-AE model without geometric regularization, while λ = 0
reproduces zGi as in the standard kernel mapping formulation. We use the standard Euclidean
distance for the geometric loss to align with the least-squares formulation in Eq. 1. While one
could define the reconstruction loss as the squared Euclidean distance between input vectors pi

and their reconstructions, this biases learning toward zero-valued entries, which dominate in large
datasets but carry little structural meaning. In contrast, nonzero entries reflect meaningful links in the
RF-GAP graph. Although re-weighting the loss to emphasize nonzeros is possible [28], it introduces
extra hyperparameters. Instead, we treat pi and its reconstruction p̂i = (g ◦ f)(pi) as probability
distributions and use the Jensen-Shannon Divergence (JSD) [47] as the reconstruction loss:

Lrecon(pi, p̂i) = JSD(pi ∥ p̂i), Lgeo(zi, z
G
i ) = ∥zi − zGi ∥22.
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The JSD promotes latent representations that reconstruct both local and global RF-GAP neighbor-
hoods [48]. In this work, we set the latent dimension d = 2 to emphasize on visual interpretability.
We use RF-PHATE as the geometric constraint due to its effectiveness in supervised data visualiza-
tion [4, 49], although any dimensionality reduction method can be extended this way. Moreover, as
RF-PHATE already encodes multiscale information, combining it with JSD reconstruction further
guides learning toward geometrically meaningful representations while supporting global consistency.
Refer to Fig. 1 for a comprehensive illustration of our RF-AE architecture.

3.3 Input dimensionality reduction with class-wise prototype selection

The input dimensionality of our RF-AE architecture scales with the training size N , which
may cause memory issues during GPU-optimized training when dealing with large training sets.
Thus we further reduce the input dimensionality of pi from N to N∗ ≪ N by selecting N∗

prototypes. The prototypes are selected using uniform class-wise k-medoids [50, 51] on the
induced RF-GAP training dissimilarities. First, we max-normalize the symmetrized RF-GAP
proximities p′(xi,xj) = [p(xi,xj) + p(xj ,xi)] /2 to form the symmetric dissimilarity matrix
[maxu,v {p′(xu,xv)} − p′(xi,xj)] ∈ [0, 1]N×N . Then, for a dataset with q classes, we find
k = N∗/q-medoids for each class using their corresponding RF-GAP dissimilarities as input
to FasterPAM [52, 53]. Let M = {m1, . . . ,mN∗} denote the resulting set of medoid indices. Then
instead of using RF-GAP transition probabilities from any point i to every training point j as before,
we form RF-GAP transition probabilities from any point i to each prototype j ∈ M as

p∗
i = [p̃∗(xi,xm1

) · · · p̃∗(xi,xmN∗ )] , p̃∗(xi,xj) =
p(xi,xj)∑

j∈M p(xi,xj)
.

Fig. 1 contextualizes this prototype selection mechanism within our RF-AE architecture. We also
note that using prototypes allows for faster OOS projections since we no longer need to compute
RF-GAP proximities to all training points.

3.4 Quantifying supervised OOS embedding fit

Beyond standard k-NN accuracy [12, 15, 34, 54, 55], which evaluates class separability in the
embedding space, it is equally important to assess how well the embedding preserves the structure of
informative features. Without this, class-conditional methods that artificially inflate separation may be
favored, even if they distort meaningful feature–label relationships. Conversely, purely unsupervised
criteria—such as neighbor preservation [12] or global distance correlation [56]—can undervalue
supervised models that discard irrelevant features aligned with the classification task.

Inspired by Rhodes et al. [4], we formalize structural importance alignment, which quantifies the
correlation between feature importances for classification and for structure preservation. Given a
training/test split X = Xtrain ∪Xtest with labels Y = Ytrain ∪ Ytest, and embeddings femb(X) =
femb(Xtrain) ∪ femb(Xtest) = Ztrain ∪ Ztest from a trained encoder femb, we define test–train
distance matrices in the original and embedded spaces as:

Dtest[i, j] = ∥xtest
i − xtrain

j ∥2, Demb
test [i, j] = ∥ztesti − ztrainj ∥2, Dtest,D

emb
test ∈ RNtest×Ntrain

+ .

Classification importances are computed using a user-defined classifier fcls : RD → Y trained on
Xtrain. Let accfcls(Xtest, Ytest) denote its accuracy on the test set. Then, the importance of feature i
is:

Ci = accfcls(Xtest, Ytest)− accfcls(X̃
(i)
test, Ytest),

where X̃(i)
test is the perturbed test set in which feature i and its correlated features are permuted across

samples (see Algorithm S1 in Appendix D).

Structural importances are computed using an unsupervised structure preservation score s(·, ·) that
quantifies how well an embedding preserves pairwise relationships from the original space. Higher
scores indicate better preservation of structure. We consider several commonly used definitions of s,
including local scores s ∈ {QNX,Trust} and global scores s ∈ {Spear,Pearson} [12, 56, 57, 58, 59].
Full definitions are provided in Appendix E.1.

Given a test set Dtest and its embedding Demb
test , the importance of feature i is then defined as:

Si = s(Dtest,D
emb
test )− s(D̃

(i)
test,D

emb
test ),
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where D̃
(i)
test is the perturbed distance matrix obtained by replacing feature i in Xtest with noise

(Algorithm S1), while holding Xtrain fixed. A larger drop in s indicates that the OOS embedding
relies more heavily on the structure induced by feature i.

To assess whether the embedding structure supports classification-relevant features, we compute
the alignment between structural importances S = {S1, . . . ,SD} and classification importances
C = {C1, . . . , CD} using the Kendall rank correlation coefficient τ(C,S) ∈ [−1, 1] [60]. Higher
values indicate that the embedding prioritizes features most relevant to the classification task. Fig. S2
(Appendix E.2) illustrates this Structural Importance Alignment (SIA) framework.

Note that SIA depends on both the choice of classifier fcls and structure score s. For fcls, we use
an ensemble with equal-weight majority voting across k-NN, SVM, and MLP classifiers to reduce
model-specific bias (see Appendix G for hyperparameters). Each dataset achieves at least 60%
accuracy (Appendix E.3). For s, we report four variants of SIA based on the chosen structure score,
capturing both local and global structure preservation.

4 Results

4.1 RF-AE balances structural importance alignment and class separability

We assessed the trade-off between SIA and k-NN classification accuracy achieved by RF-AE against
several baseline methods across 20 datasets spanning diverse domains. Each dataset contained a
minimum of 1,000 samples and at least 10 features. Training and OOS embeddings were generated
using an 80/20 stratified train/test split, except for Isolet, Landsat Satellite, Optical Digits, USPS,
HAR, OrganC MNIST and Blood MNIST, where predefined splits were used. We applied min-max
normalization to the input features prior to training and inference. Detailed descriptions of the
datasets are provided in Appendix F.

Table 1 shows average SIA and k-NN accuracy scores across 20 datasets and 10 repetitions. We report
separate local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores. Accuracy is averaged
over k = 5 to

√
Ntrain (in steps of 10) to better reflect global class separability and penalize class

fragmentation. We compared RF-AE with λ = 0.01 and N∗ = 0.1Ntrain to 13 baselines, including
the default RF-PHATE linear kernel extension [3] (Section 2.2), vanilla AE, principal component
analysis (PCA), supervised PCA, parametric t-SNE (P-TSNE [15, 61]), parametric UMAP (P-
UMAP [12, 61]), parametric supervised UMAP (P-SUMAP [12]), pairwise controlled manifold
approximation projection (PACMAP [55]), CE [34], CEBRA [62], SSNP [35] using ground-truth
labels, neighborhood component analysis (NCA [54]), and partial least squares discriminant analysis
(PLS-DA [63, 64]). All externally sourced methods were run using their default hyperparameter
settings, as specified in the original implementations. See Appendix G.1 for full experimental details.
The compute resources required for the experiments include a GPU with at least 40 GB of memory
and a CPU with 128 GB of RAM, further details are provided in Appendix G.2.

Unsurprisingly, unsupervised methods generally rank lower than supervised approaches in terms
of k-NN classification accuracy. However, even among high-accuracy models such as RF-PHATE,
SSNP and P-SUMAP, we observe a notable drop in local and global SIA scores. This suggests an
overemphasis on class separability at the expense of preserving the underlying supervised structure.
On the other hand, unsupervised methods also struggle with SIA metrics, which is expected given
their objective to preserve unsupervised pairwise similarities that may be influenced by irrelevant or
noisy features. In contrast, RF-AE achieves the highest k-NN accuracy by a substantial margin, while
consistently ranking in the top two across both local and global SIA scores. This demonstrates RF-
AE’s ability to not only ensure class separation but also preserve meaningful supervised relationships,
effectively emphasizing the most relevant features for the classification task.

RF-AE maintains strong performance across all evaluation metrics when varying λ, as shown
in Table 2. Additional ablation studies (Appendix H.1) confirm that RF-AE’s performance is
robust to both λ and prototype count N∗. However, ablation experiments in Appendix H.2 with
alternative geometric regularizers show that these methods consistently underperform compared to
our proposed RF-PHATE. Still, RF-based variants such as RF-UMAP better align with the RF-GAP
reconstruction loss during training, making them interesting candidates for further exploration. Finally,
RF-AE’s superiority in SIA persists under varying classification importance strategies (Appendix H.3),
reflecting stronger alignment with the ground-truth feature importance hierarchy.
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Table 1: Local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores, along with test k-NN
accuracies for our RF-AE method and 13 baselines. Scores are shown as mean ± std across 20
datasets and 10 repetitions. Methods are sorted according to accuracy. Top three values per metric
are highlighted in blue, using underlined bold (first) and bold (second). In the case of ties, methods
are further ranked by their standard deviations. Supervised methods are marked by an asterisk.

LOCAL SIA GLOBAL SIA

QNX TRUST SPEAR PEARSON k-NN ACC

RF-AE* 0.809 ± 0.024 0.822 ± 0.022 0.782 ± 0.041 0.779 ± 0.042 0.861 ± 0.009
RF-PHATE* 0.798 ± 0.025 0.825 ± 0.023 0.748 ± 0.038 0.750 ± 0.040 0.816 ± 0.010
SSNP* 0.760 ± 0.047 0.772 ± 0.045 0.685 ± 0.089 0.694 ± 0.080 0.809 ± 0.030
P-SUMAP* 0.756 ± 0.028 0.768 ± 0.025 0.647 ± 0.048 0.647 ± 0.048 0.797 ± 0.011
CE* 0.795 ± 0.050 0.818 ± 0.051 0.765 ± 0.051 0.763 ± 0.054 0.797 ± 0.043
NCA* 0.808 ± 0.027 0.805 ± 0.025 0.771 ± 0.032 0.759 ± 0.033 0.760 ± 0.007
PACMAP 0.749 ± 0.026 0.758 ± 0.025 0.688 ± 0.029 0.688 ± 0.029 0.743 ± 0.011
P-TSNE 0.743 ± 0.028 0.747 ± 0.028 0.684 ± 0.036 0.666 ± 0.038 0.712 ± 0.012
AE 0.744 ± 0.027 0.751 ± 0.029 0.695 ± 0.044 0.655 ± 0.053 0.700 ± 0.018
P-UMAP 0.757 ± 0.027 0.744 ± 0.028 0.674 ± 0.035 0.657 ± 0.038 0.655 ± 0.022
SPCA* 0.767 ± 0.026 0.759 ± 0.030 0.741 ± 0.031 0.738 ± 0.032 0.624 ± 0.009
PLS-DA* 0.715 ± 0.026 0.708 ± 0.028 0.659 ± 0.027 0.639 ± 0.028 0.592 ± 0.009
CEBRA* 0.780 ± 0.045 0.775 ± 0.050 0.735 ± 0.062 0.728 ± 0.068 0.582 ± 0.040
PCA 0.745 ± 0.027 0.742 ± 0.026 0.733 ± 0.027 0.727 ± 0.028 0.563 ± 0.009

Table 2: Comparison of SIA scores and k-NN accuracy across different λ values for RF-AE. Each
score is compared with baseline models in Table 1, and highlighted only if it ranks among the top
three overall. Top three values per metric are highlighted in blue, using underlined bold (first) and
bold (second). RF-AE demonstrates strong robustness across a broad range of λ values.

LOCAL SIA GLOBAL SIA

λ QNX TRUST SPEAR PEARSON k-NN ACC

0 0.812 ± 0.025 0.822 ± 0.023 0.751 ± 0.038 0.752 ± 0.040 0.836 ± 0.011
0.001 0.809 ± 0.024 0.824 ± 0.024 0.763 ± 0.037 0.757 ± 0.039 0.859 ± 0.009
0.01 0.809 ± 0.024 0.822 ± 0.022 0.782 ± 0.041 0.779 ± 0.042 0.861 ± 0.009
0.1 0.808 ± 0.023 0.822 ± 0.021 0.782 ± 0.060 0.784 ± 0.054 0.864 ± 0.009
1 0.804 ± 0.023 0.820 ± 0.022 0.689 ± 0.102 0.686 ± 0.108 0.864 ± 0.009

4.2 Qualitative comparison through OOS visualizations

We qualitatively assessed the capability of four methods to embed OOS instances on Sign MNIST (A–
K) and OrganC MNIST dataset. Each model was trained on the training subset, and we subsequently
mapped the test set with the learned encoder. Fig. 2 depicts the resulting visualizations.

From the Sign MNIST (A–K) plot in Fig. 2a, RF-AE retains the overall shape of the RF-PHATE
embedding while providing finer within-class detail. In contrast, RF-PHATE’s default kernel ex-
tension compresses class clusters, making local relationships harder to discern. RF-AE expands
these clusters, revealing within-class patterns, such as the logical transition between variations in
shadowing and hand orientation to represent the letter “C” (top-right cluster). This detail is lost
in RF-PHATE’s default kernel extension, which over-relies on diffusion and smooths out subtle
differences. P-TSNE captures local structure but fragments same-class samples based on irrelevant
background variations—for example, grouping shadowed “G” and “H” instances together (bottom
cluster) while separating them from unshadowed counterparts (far-left cluster). RF-AE avoids this
issue, distinguishing within-class variations while preserving the class-specific clusters. P-SUMAP is
also sensitive to irrelevant features and tends to artificially cluster neighboring points of the same
class, leading to a sparse and fragmented embedding.

From the OrganC MNIST plot in Fig. 2b, RF-AE yields the most structured and interpretable
embedding, forming well-separated clusters while preserving anatomical proximity—e.g., between
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a.

b.

Figure 2: OOS visualization using four different dimensionality reduction methods. a. Sign MNIST
(A–K) dataset (Table S2): Training and test samples are shown with their original images, color-tinted
by label. Training samples appear with reduced opacity. RF-AE captures supervised relationships by
preserving class-specific variations, such as shadowing and hand orientation, while also highlighting
inter-class similarities and maintaining clear class separability. The default RF-PHATE’s kernel
extension compresses clusters excessively. Parametric t-SNE and parametric supervised UMAP
demonstrate sensitivity to irrelevant features. b. OrganC MNIST dataset: Test points are shown
as color-coded circles based on their labels. Training points are omitted for clarity. RF-AE clearly
separates similar organ types while preserving their anatomical proximity, capturing both class identity
and biological relevance. Other methods tend to merge these classes or distort their relationships,
failing to reflect fine-grained anatomical distinctions.

the left and right kidneys, or among the stomach, liver, and pancreas. RF-PHATE captures smooth
transitions but merges nearby classes like the left and right kidneys, reducing local separability.
P-TSNE shows significant class overlap due to the absence of supervision, with only four out of
eleven classes clearly separated. While P-SUMAP offers better class separability than P-TSNE, its
projections remain difficult to interpret, with elongated structures (e.g., aorta and inferior vena cava)
and compact, overlapping anatomical regions near the center that blur class boundaries.

This qualitative analysis of the Sign MNIST and OrganC MNIST dataset underscores the importance
of regularization and methodological choices in creating meaningful embeddings for supervised tasks.
RF-AE, guided by RF-PHATE regularization, effectively preserves both local and global structure,
outperforming existing methods in capturing informative patterns. Additional visualizations on audio
data and extended comparisons with the other models are provided in Appendices I.1 and I.2.

5 Discussion

The significance of supervised dimensionality reduction lies in its ability to reveal meaningful
relationships between features and labels. As shown by Rhodes et al. [4], RF-PHATE stands out
as a strong solution for supervised data visualization. However, it lacks an embedding function for
OOS extension. To address this limitation, we designed Random Forest Autoencoders (RF-AE),
an autoencoder-based architecture that reconstructs RF-GAP neighborhoods while preserving the
supervised geometry captured by precomputed RF-PHATE embeddings. Our experiments confirmed
the utility of this extension, demonstrating its ability to embed new data points while retaining the
intrinsic supervised manifold structure. We quantitatively showed that RF-AE with RF-PHATE
regularization outperforms baseline kernel extensions and other parametric embedding models in
generating OOS embeddings that preserve feature importances relevant to the classification task while
maintaining class separability. We further showed in Appendix H.1 that RF-AE’s performance is
robust to the geometric constraint λ and the number of selected prototypes N∗. Visually, we observed
that RF-AE regularized by RF-PHATE inherits the denoised local-to-global supervised structure of
RF-PHATE while increasing resolution for improved within-class visualization. This results in a
more effective tradeoff between preserving informative structure and achieving class separability than
baseline RF-PHATE kernel extensions. Other methods either over-emphasize class separability or
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fail to incorporate sufficient supervision, leading to noisier visualizations. Finally, RF-AE can project
unseen data without labels, support semi-supervised training (Appendix J), and handle any data
modality without additional preprocessing, making it well suited for semi-supervised tasks across
diverse applications.

While effective, RF-AE inherits scalability constraints from the computational cost of the full
RF-GAP proximity matrix during training (Appendix K). Our prototype selection strategy already
yields substantial speedups over RF-PHATE’s default kernel extension at inference, while upcoming
vectorized and parallelized RF-GAP computation (to be released soon on GitHub) will further
reduce this bottleneck. Future work includes investigating RF-AE’s efficiency in semi-supervised
hierarchical clustering and adaptive methods for prototype selection [51]. Building on our ablation
studies (Appendix H.2), researchers may also explore other RF-based geometric constraints.

Broader impacts

This paper advances guided data representation learning by integrating expert-derived annotations and
enabling out-of-sample extension, thus allowing generalization beyond the training set. Nonetheless,
we advise users to interpret supervised 2D visualizations with caution, as label assignments may
introduce biases. When labels reflect social or demographic factors, supervised methods are prone
to embedding structural biases since they explicitly aim to discriminate between classes. Bias can
also arise in highly imbalanced settings: the underlying Random Forest tends to favor majority
classes, which can cause minority classes to appear artificially closer to or farther from other groups,
as the features that characterize them may not be adequately captured in the RF-GAP proximities.
These concerns are not unique to RF-AE but extend to supervised methods in general. That said,
RF-AE helps mitigate such issues by avoiding the exaggerated separations often produced by purely
class-conditional approaches, making it a comparatively more reliable choice in practice.

Acknowledging these limitations, our method still offers valuable support to decision-makers by
providing interpretable visualizations while remaining scalable and applicable in (semi-)supervised
tasks. In particular, RF-AE can assist expert- or AI-based disease diagnosis by projecting incoming
patient instances into a 2D space, where they can be contextualized relative to existing embeddings.
Such visualizations allow practitioners to assess whether a prediction is consistent with established
structures or deviates from them, offering a practical indicator of prediction reliability. Overall,
RF-AE has potential societal impact in biomedical research, as well as broader applications for
data-driven insights in healthcare, finance, and multimedia.
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paper’s contributions and scope?
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Justification: Our abstract and introduction accurately reflect the main contributions and
scope of the paper. These claims are supported in the main text and appendix through
methodological descriptions and empirical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We explicitly discuss the limitations of our method in the discussion section
(Section 5).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [NA]
Justification: While the paper includes mathematical formulations of the proposed method
and evaluation metrics, it does not present formal theoretical results with assumptions or
proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details to reproduce the main experimental
results, including a description of the model architecture (Section 3.2), training procedures
(Section 4.1), dataset (Appendix F) and evaluation metrics (Section 3.4). Appendix G also
contains the full experimental settings to support reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release the full source code, preprocessing scripts, and instructions to
reproduce all main experimental results upon publication. An anonymized version of the
code and data access links are included in a single zip file to support reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all relevant experimental details, including data splits,
model architecture, training hyperparameters, optimization settings, and evaluation metrics.
These details are provided in the main text and further expanded in Appendix Section G.2 to
ensure full transparency and reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars for key experimental results, calculated across 10
runs with different random seeds over 20 different datasets, as described in Section 4.1 and
Appendix Section H. The error bars represent the standard deviation of the metrics and are
clearly indicated in the relevant tables.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the compute resources required to
reproduce the experiments, including hardware specifications and runtime estimates. These
details are documented in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research presented in the paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential positive and negative societal impacts in Ap-
pendix Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or datasets that pose a high risk of misuse
or dual use. The proposed method is intended for scientific research and does not generate
or process sensitive or potentially harmful content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: All external datasets (Appendix F) and models (Section 4.1 used in the paper
are properly cited with references to their original sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces new models, which are described in detail in Section 3
and appendix. We provide code on model architecture, training procedures, and usage
instructions to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper uses publicly available single-cell dataset that was collected and
shared by third parties. We do not conduct any new research involving human subjects or
crowdsourcing, and the data used is ethically sourced.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any direct research with human subjects or par-
ticipant interaction. All data used are publicly available and were collected under proper
ethical oversight by the original data providers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No large language models (LLMs) were used in the development of the core
methods presented in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Maximality of the RF-GAP self-similarity

Recall the RF-GAP proximity (Section 3.1) between observations xi and xj

p(xi,xj) =


1

|S̄i|
∑
t∈S̄i

ci(t)

|Mi(t)|
, j = i,

1

|Si|
∑
t∈Si

cj(t) I (j ∈ Ji(t))

|Mi(t)|
, j ̸= i,

where:

• Si is the set of trees in which xi is out-of-bag (OOB).
• S̄i is the set of trees in which xi is in-bag.
• ci(t) is the bootstrap multiplicity of xi in tree t.
• Ji(t) is the set of in-bag points that share the terminal node with xi in tree t.
• Mi(t) is the multiset of in-bag sample indices in that terminal node (counting multiplicities).

For any fixed tree t, we define the random quantities

• Bi(t) = I(xi is in-bag in tree t),

• Dij(t) = I(Bj(t) = 1 and xj shares xi’s leaf in tree t),

• ci(t) ∼ Binomial
(
N, 1

N

)
, i = 1, . . . , N,

Thus, considering all trees in the forest,

• T IB
i =

∑|T |
t=1 Bi(t),

• TOOB
i =

∑|T |
t=1 1−Bi(t),

and per-tree contributions to self- and cross-similarity are re-written as

αii(t) := Bi(t)
ci(t)

|Mi(t)|
, αij(t) := Dij(t)

cj(t)

|Mi(t)|
(i ̸= j).

Under the standard Random Forests assumptions, the following holds:

• Tree independence. Each tree is grown from an independent bootstrap sample and an
independent sequence of feature splits, ensuring i.i.d. per-tree contributions αii(t) and
αij(t).

• Bootstrap inclusion probability. An observation is in-bag in tree t with probability

p := P[Bi(t) = 1] = P[ci(t) ≥ 1] = 1− P[ci(t) = 0] = 1−
(
1− 1

N

)N

−→ 1− e−1 ≈ 0.632.

Hence,
Bi(t) ∼ Bernoulli(p)

T IB
i ∼ Binomial(|T |, p)

TOOB
i ∼ Binomial(|T |, 1− p)

• Co-occurrence probability. Even if xj is very similar to xi, the probability that they end up
together in the same leaf and xi was OOB is strictly less than 1:

qij := P [Dij(t) = 1 | Bi(t) = 0] < 1 (i ̸= j).

Proposition A.1. For every fixed i and any j ̸= i, in the limit as the number of trees |T | → ∞,

p(xi,xi) > p(xi,xj)
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Proof. RF-GAP similarities are re-written as random variables:

p(xi,xj) =


1

T IB
i

T∑
t=1

αii(t), if i = j,

1

TOOB
i

T∑
t=1

αij(t), otherwise.

By the Strong Law of Large Numbers and tree-independence, as |T | → ∞ we have almost surely

1

|T |

|T |∑
t=1

αii(t) −→ E[αii(t)] = E
[
Bi(t)

ci(t)
|Mi(t)|

]
= p E

[
ci(t)

|Mi(t)| | Bi(t) = 1
]

︸ ︷︷ ︸
=µ

= p µ,

1

|T |

|T |∑
t=1

αij(t) −→ E[αij(t)] = E
[
Dij(t)

cj(t)
|Mi(t)|

]
= (1− p) qij E

[
cj(t)

|Mi(t)|
∣∣ Dij(t) = 1, Bi(t) = 0

]
︸ ︷︷ ︸

≤µ

≤ (1− p) qij µ.

The inequality E
[

cj(t)
|Mi(t)|

∣∣∣Dij(t) = 1, Bi(t) = 0
]
≤ µ := E

[
ci(t)

|Mi(t)|

∣∣∣Bi(t) = 1
]

follows from the
fact that while cj(t) and ci(t) have identical marginal distributions, the conditional distribution of the
shared leaf size |Mi(t)| is stochastically larger under the event Dij(t) = 1, Bi(t) = 0 than under
Bi(t) = 1 alone. Indeed, conditioning on Dij(t) = 1 requires that the in-bag point xj and the
out-of-bag point xi fall in the same leaf, which favors larger leaves with broader decision rules. This
increases the expected denominator |Mi(t)| and thereby reduces the expected normalized multiplicity
cj(t)/|Mi(t)|. Moreover, almost surely,

T IB
i

|T |
−→ E [Bi(t)] = p,

TOOB
i

|T |
−→ E [1−Bi(t)] = 1− p

Thus,

p(xi,xi) =

1
|T |

∑|T |
t=1 αii(t)

T IB
i

|T |

−→ p µ

p
= µ,

p(xi,xj) =

1
|T |

∑|T |
t=1 αij(t)

TOOB
i

|T |

−→ E[αij(t)]

1− p
≤ (1− p) qij µ

1− p
= qij µ.

Since we assumed qij < 1, it follows that

µ > qij µ =⇒ lim
|T |→∞

p(xi,xi) > lim
|T |→∞

p(xi,xj).

Remark A.2. Finite-|T | concentration bounds (e.g. Hoeffding’s inequality [65]) imply the same
inequality holds with overwhelming probability.
Remark A.3. The assumption qij < 1 is not necessary for non-strict inequality.

B RF-GAP representations stabilize supervised manifold learning

We designed our RF-AE framework under the premise that encoders operating on (supervised) kernel
representations are better suited for supervised settings than those using raw input features. This
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assumption stems from the ability of well-chosen kernel functions to effectively filter out irrelevant
features, thereby enhancing the encoder’s robustness to highly noisy datasets. To empirically validate
this, we conducted a toy experiment using the artificial tree dataset described in Appendix C. To
simulate a noisy input space, we progressively augmented the dataset with additional features
sampled from a uniform distribution U(0, 1), corresponding to various signal-to-noise ratios (SNR)
∈ {∞, 1, 0.1, 0.01, 0.001}. We then randomly selected 80% of each augmented dataset to train both
models to regress onto the precomputed training RF-PHATE embeddings. The two MLP regressors
shared the exact same architecture and hyperparameters (Appendix G), differing only in their input
representations. We evaluated the trained models on the remaining 20% test split and visualized
their two-dimensional embeddings under different SNR conditions, along with the ground-truth tree
structure and median learning curves over 50 epochs across 10 repetitions, as shown in Fig. S1.

The training RF-PHATE embeddings accurately capture the underlying ground-truth structure, making
them a strong supervisory signal for manifold learning. Our RF-GAP-based encoder proves highly
robust to irrelevant features, producing well-structured embeddings even under severe noise conditions
(e.g., SNR = 0.001). It consistently converges faster and reaches a better local minimum without
overfitting, as evidenced by its test embeddings (middle row), which closely mirror the ground-truth
structure. In contrast, the feature-based MLP is much more sensitive to noise, with increasing training
loss and disordered embeddings in both training and test sets. Even under low-noise settings (SNR
= ∞ or 1), it fails to achieve comparable performance, highlighting the superior robustness and
generalization ability of our kernel-based encoder.

C Artificial tree construction

We constructed the artificial tree data used in Appendix B following the method described in the
original PHATE paper [3]. The first branch of the tree consists of 100 linearly spaced points spanning
four dimensions, with all other dimensions set to zero. The second branch starts at the endpoint of
the first branch, with its 100 points remaining constant in the first four dimensions while progressing
linearly in the next four dimensions, leaving all others at zero. Similarly, the third branch progresses
linearly in dimensions 9–12, with subsequent branches following the same pattern but differing in
length, resulting in 40 dimensions. Each branch endpoint and branching point includes an additional
40 points, and zero-mean Gaussian noise (standard deviation 7) is added to simulate gene expression
advancement along the branches. Before visualization, all features are normalized to the range [0, 1].

D Feature correlation-aware data perturbation

In this section, we detail the procedure for generating perturbed datasets using a correlation-aware
random sampling strategy [66]. Since ground-truth feature importance are rarely available, this
approach is employed to generate pseudo-ground-truth feature importances as part of our evaluation
scheme (Section 3.4). For each feature i, instead of permuting feature i’s column values—as in
the standard permutation approach—, we reassign them by randomly sampling values from the
feature space. Additionally, all other feature column values are randomly replaced with a probability
proportional to their absolute correlation with i. In other words, column values for features highly
correlated with i are also replaced by random sampling, while column values for features not
correlated with i remain unchanged. This prevents the determination of fallacious feature importances
where all correlated features are assigned zero importance. Refer to Algorithm S1 for a step-by-step
description of this feature-wise data perturbation procedure.

E Evaluation metric details for supervised OOS embedding

E.1 Structure preservation scores

Let Dtest,D
emb
test ∈ RNtest×Ntrain

+ denote the test–train distance matrices in the original and embedded
spaces, respectively. We define four structure preservation metrics s(Dtest,D

emb
test ), which are used

to compute multi-view structural alignment scores introduced in Section 3.4. We categorize these
metrics into local and global types and cite the reference works where they were previously used to
assess the quality of embedding methods.
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Algorithm S1: Feature-wise data perturbation with random sampling
Input: Input data X , feature correlation matrix C
Output: Perturbed datasets X̃ for each feature

1 Initialize list X̃ to store perturbed datasets;
2 Generate X̃ from X by randomly sampling column values without replacement;
3 foreach feature i do
4 Generate mask matrix M with elements M[i, j] ∈ {0, 1} sampled from Bernoulli(|C[i, j]|);
5 Build perturbed dataset: X̃i = M⊙ X̃ + (I −M)⊙X;
6 Store X̃[i] = X̃i;

7 return X̃

Local Structure Preservation Scores

• QNX (Quality of Neighborhood eXtrapolation) [12, 57]:

QNX(Dtest,D
emb
test ) :=

1

Ntest

Ntest∑
i=1

1

K

∑
j∈N emb

K (i)

I
(
j ∈ N true

K (i)
)
,

where N true
K (i) are the indices of the K smallest entries in row Dtest[i, :], and N emb

K (i) are
those in Demb

test [i, :].

• Trustworthiness [58]:

Trust(Dtest,D
emb
test ) := 1− 2

NtestK(2Ntrain − 3K − 1)

Ntest∑
i=1

∑
j∈Ui

(
rtrueij −K

)
,

where Ui = N emb
K (i) \ N true

K (i), and rtrueij is the rank of index j in row Dtest[i, :].

Global Structure Preservation Scores

• Spearman rank correlation [56]:

Spear(Dtest,D
emb
test ) := corrrank

(
vec(Dtest), vec(D

emb
test )

)
,

where vec(·) denotes vectorization and corrrank is the Spearman rank correlation [67].

• Pearson correlation [59]:

Pearson(Dtest,D
emb
test ) := corr

(
vec(Dtest), vec(D

emb
test )

)
,

using the Pearson linear correlation [68] between flattened test–train distance vectors.

For robustness, we averaged local metrics over different neighborhood sizes, ranging from K = 5 to
K =

√
Ntrain, in steps of 10.

E.2 Illustration of our structural importance alignment framework

Fig. S2 illustrates our SIA framework for evaluating supervised OOS embedding quality using the
Sign MNIST (A–K) dataset (Table S2). While both RF-AE and P-TSNE produce locally plausible
embeddings, their ability to preserve class-relevant structure differs significantly. RF-AE emphasizes
informative regions—such as hand and finger contours—while mitigating background effects. In
contrast, P-TSNE attributes higher structural importance to background pixels, leading to poorer
alignment with classification-relevant features. This discrepancy is reflected in the final local SIA
scores: RF-AE achieves a much higher alignment (0.85) than P-TSNE (0.55), confirming that RF-AE
better preserves the semantic structure needed for accurate classification in OOS settings. These
findings support our qualitative observations from Section 4.2.
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E.3 Baseline classifiers’ hyperparameters and performance

Since ground-truth classification importances are rarely available, our SIA framework (Section 3.4)
uses a baseline classifier fcls to derive pseudo-ground-truth importances. To ensure these importances
are meaningful, fcls must achieve reasonably high test accuracy. Table S1 reports per-dataset
accuracies for both fcls = k-NN and an ensemble classifier fcls = k-NN + SVM + MLP combining
k-NN, SVM, and MLP predictions via equal-weight voting. We use k =

√
Ntrain for the k-

NN classifier. The SVM is implemented using scikit-learn’s LinearSVC [69] with default
hyperparameters. The MLP is a two-layer feedforward network with hidden dimensions h1 = ⌊ 2

3 ·D⌋
and h2 = ⌊ 1

3 ·D⌋, where D is the input dimensionality. Each hidden layer is followed by ReLU
activation, dropout (rate 0.2), and layer normalization. Weight normalization is applied to the first
two linear layers. The final layer is a standard linear projection without activation.

We find that the ensemble consistently improves upon standalone k-NN and achieves above 60% accu-
racy on all datasets, making it a suitable proxy for generating classification importances. Nonetheless,
k-NN alone performs reasonably well, falling below 60% accuracy on OrganC MNIST dataset. For a
detailed comparison of SIA scores using k-NN instead of the ensemble, see Section H.3.

Table S1: Average test classification accuracy (mean ± std) per dataset (see Appendix F), using a
single k-NN classifier (left column) and an ensemble of k-NN, linear SVM, and MLP classifiers (right
column). The ensemble generally outperforms the standalone k-NN, making it a robust reference for
generating classification feature importances.

DATASET k-NN k-NN + SVM + MLP

QSAR BIODEGRADATION 0.835 ± 0.032 0.854 ± 0.028
BLOOD MNIST 0.742 ± 0.000 0.761 ± 0.049
CARDIOTOCOGRAPHY 0.662 ± 0.026 0.681 ± 0.023
CHESS 0.914 ± 0.012 0.942 ± 0.012
DIABETIC RETINOPATHY DEBRECEN 0.657 ± 0.043 0.686 ± 0.031
FASHION MNIST (TEST) 0.777 ± 0.007 0.827 ± 0.007
GTZAN (3-SEC) 0.708 ± 0.006 0.678 ± 0.013
HAR (USING SMARTPHONES) 0.887 ± 0.000 0.917 ± 0.009
ISOLET 0.906 ± 0.000 0.931 ± 0.004
LANDSAT SATELLITE 0.858 ± 0.000 0.829 ± 0.010
MNIST (TEST) 0.894 ± 0.008 0.922 ± 0.006
OBESITY 0.625 ± 0.018 0.661 ± 0.026
OPTICAL BURST SWITCHING NETWORK 0.745 ± 0.028 0.743 ± 0.023
OPTICAL DIGITS 0.953 ± 0.000 0.948 ± 0.004
ORGANC MNIST 0.473 ± 0.000 0.627 ± 0.004
SIGN MNIST (A–K) 0.908 ± 0.007 0.940 ± 0.008
SPAMBASE 0.860 ± 0.008 0.875 ± 0.008
SPORTS ARTICLES 0.809 ± 0.019 0.818 ± 0.019
USPS 0.871 ± 0.000 0.891 ± 0.002
WAVEFORM 0.848 ± 0.012 0.860 ± 0.014

F Description of the datasets

Table S2 provides additional details on the datasets used for the quantitative and qualitative com-
parisons between RF-AE and other methods. Sign MNIST (A–K) [70], MNIST (test subset) [71],
Fashion MNIST (test subset) [72], GTZAN (3-second version) [73] and USPS [74] were obtained
from Kaggle. The Sign MNIST (A–K) dataset is a subset of the original, containing the first 10
letters (excluding J, which requires motion). Blood MNIST and OrganC MNIST (Med MNIST
family [75, 76]) were obtained from Zenodo. All other datasets are publicly available from the UCI
Machine Learning Repository.
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Table S2: Description of the 20 datasets used in our experiments, grouped by data modality.

DATASET SIZE TEST % DIMENSIONS CLASSES

TABULAR / CLINICAL
CARDIOTOCOGRAPHY 2126 0.20 21 10
DIABETIC RETINOPATHY DEBRECEN 1151 0.20 19 2
OBESITY 2111 0.20 16 7
QSAR BIODEGRADATION 1055 0.20 41 2

TEXT / NLP
SPAMBASE 4601 0.20 57 2
SPORTS ARTICLES 1000 0.20 59 2

SENSOR / TIME SERIES
HAR (USING SMARTPHONES) 10299 0.29 561 6
ISOLET 7797 0.20 617 26
WAVEFORM 5000 0.20 40 3
LANDSAT SATELLITE 6435 0.31 36 6

IMAGE (GENERAL)
OPTICAL DIGITS 5620 0.32 64 10
USPS 9298 0.22 256 10
MNIST (TEST) 10000 0.20 784 10
FASHION MNIST (TEST) 10000 0.20 784 10
SIGN MNIST (A–K) 14482 0.20 784 10

IMAGE (BIOMEDICAL)
BLOOD MNIST 15380 0.22 2352 8
ORGANC MNIST 21191 0.39 784 11

AUDIO
GTZAN (3-SEC) 9990 0.20 57 10

NETWORK / TRAFFIC
OPTICAL BURST SWITCHING NETWORK 1060 0.20 21 4

GAMES / LOGIC
CHESS 3196 0.20 36 2

G Experimental setting

G.1 Model implementations and hyperparameters

Unless otherwise specified, all methods were run with their default hyperparameters in our experi-
ments.

• RF-AE: Implemented in PyTorch. The encoder f consisted of three hidden layers with
sizes 800, 400, and 100. The bottleneck layer was set to dimension 2 for visualization. The
decoder g was symmetric with layers of sizes 100, 400, and 800, followed by an output
layer matching the input dimensionality. ELU activations were used throughout, except
for the bottleneck (identity) and output (softmax) layers. Training was performed using
the AdamW optimizer [77] with a learning rate of 10−3, batch size of 512, weight decay
of 10−5, and 200 epochs without early stopping. We set the default λ and N∗ to 0.01 and
0.1Ntrain, respectively.

• SSNP, CE, and vanilla AE: Implemented using the same architecture and activations as
RF-AE. For SSNP, we followed the authors’ recommendations: a sigmoid output activation
and a reconstruction-classification loss balance of 0.5. For CE and vanilla AE, the output
activation was the identity function.

• Parametric t-SNE and UMAP: Implemented following Damrich et al. [61], using the
InfoNCE loss [78]; available at https://github.com/sdamrich/cl-tsne-umap.

• Parametric supervised UMAP: Official implementation from https://github.com/
lmcinnes/umap.
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• PaCMAP: From https://github.com/YingfanWang/PaCMAP.

• CEBRA: From https://github.com/AdaptiveMotorControlLab/CEBRA. We used
200 training epochs and a batch size of 512, as recommended by the authors.

• SPCA: From https://github.com/bghojogh/Principal-Component-Analysis.

• PCA, NCA, and PLS-DA: Implemented using the scikit-learn library [69].

G.2 Compute resources

Experiments were conducted on a shared computing environment with access to both GPU and CPU
resources. For models requiring GPU acceleration, we used:

• 1 GPU with at least 40 GB of memory (e.g., NVIDIA A100 40GB, H100 80GB, or equiva-
lent),

• 1 CPU with 128 GB of RAM.

For models that do not require GPU acceleration, computations were performed using CPU only,
with a minimum of 128 GB of RAM.

We conducted experiments across 20 datasets for our RF-AE model and 13 baseline methods, using
multiple random seeds to report the mean and standard deviation of performance metrics. All
hyperparameters and configurations were managed using Hydra [79]. Code and configuration files
will be released to ensure full reproducibility.

The runtime for RF-AE training and the entire evaluation process for individual experiments, where
each experiment is defined as running one model on one dataset with a single random seed, ranged
from 1 to 6 hours depending on the dataset size.

H Ablation experiments

H.1 Impact of the reconstruction weight and prototype count

We performed ablation experiments on the two main RF-AE hyperparameters: the loss balanc-
ing parameter λ and the number of selected prototypes N∗. We report local/global SIA scores
and k-NN accuracies across combinations (λ,N∗) ∈ {1, 0.1, 0.01, 0.001, 0} × {pNtrain | p =
0.02, 0.05, 0.1, 0.2, 1} in Table S3. Surprisingly, reducing the number of selected prototypes leads to
overall improvements in both k-NN accuracy while preserving SIA. We hypothesize that this may
be attributed to the reduced input dimensionality of the RF-AE network, which effectively lowers
its complexity and introduces additional implicit regularization. Furthermore, selecting only the
most representative instances per class may help denoise the training process, thereby enhancing the
model’s ability to preserve class-relevant features in the embedding space.

For the loss balancing hyperparameter, setting λ = 1 (i.e., an unconstrained RF-AE) yields relatively
high accuracy but results in a substantial decline in supervised structure preservation. This is
expected, as unconstrained autoencoders have been shown to poorly capture the underlying data
geometry [14, 37]. On the other hand, λ = 0, which corresponds to the RF-PHATE kernel-based
MLP, leads to both lower accuracy and diminished global SIA, offering no improvement over the
standard RF-PHATE extension results reported in Table 1.

Across a broad range of hyperparameters—specifically, λ ∈ {0.1, 0.01, 0.001} and N∗ ∈ {pNtrain |
p = 0.02, 0.05, 0.1, 0.2, 1}—RF-AE consistently ranks among the top 3 methods across all metrics
in Table 1, highlighting its strong robustness to hyperparameter choices. We note that adding a small
geometric constraint to RF-AE improves global supervised structure while still preserving local
structure. This finding aligns with the observations of Graving et al. [31], who enhanced t-SNE’s
(unsupervised) global structure by combining it with a VAE.

Fig. S3 illustrates the impact of varying (λ,N∗) ∈ {1, 0.1, 0.01, 0.001, 0} × {pNtrain | p =
0.02, 0.05, 0.1, 0.2, 1} on Sign MNIST (A–K). A smaller number of selected prototypes N∗ led
to more clearly separated classes and denoised structure, in line with our quantitative findings. When
RF-AE is unconstrained (λ = 1, first column), the resulting embeddings appear more distorted and
less structured. This is consistent with recent findings showing that unregularized autoencoders
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Table S3: Local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores, and test k-NN
accuracy for RF-AE variants across values of λ and N∗ (in %Ntrain). Scores are shown as mean ±
std across 20 datasets and 10 repetitions. Each score is compared with baseline models in Table 1, and
highlighted only if it ranks among the top three overall. Top three values per metric are highlighted
in blue, using underlined bold (first) and bold (second). RF-AE demonstrates strong robustness for
λ ∈ {0.1, 0.01, 0.001} across varying prototype count, consistently ranking among the top 3 methods.
Fewer prototypes improve k-NN accuracy while preserving SIA, likely due to implicit regularization
and class-level denoising. Extreme λ values lead to degraded SIA (λ = 1) or both SIA and accuracy
(λ = 0).

LOCAL SIA GLOBAL SIA

QNX TRUST SPEAR PEARSON k-NN ACC

N∗ λ = 0

2% 0.811 ± 0.026 0.822 ± 0.023 0.752 ± 0.038 0.752 ± 0.040 0.839 ± 0.011
5% 0.811 ± 0.024 0.821 ± 0.022 0.752 ± 0.037 0.753 ± 0.040 0.838 ± 0.010
10% 0.812 ± 0.025 0.822 ± 0.023 0.751 ± 0.038 0.752 ± 0.040 0.836 ± 0.011
20% 0.815 ± 0.024 0.822 ± 0.022 0.751 ± 0.037 0.752 ± 0.040 0.833 ± 0.010
100% 0.810 ± 0.025 0.820 ± 0.022 0.750 ± 0.037 0.751 ± 0.040 0.829 ± 0.010

λ = 0.001

2% 0.810 ± 0.024 0.824 ± 0.023 0.771 ± 0.037 0.764 ± 0.040 0.857 ± 0.009
5% 0.808 ± 0.022 0.823 ± 0.022 0.768 ± 0.036 0.760 ± 0.040 0.859 ± 0.008
10% 0.809 ± 0.024 0.824 ± 0.024 0.763 ± 0.037 0.757 ± 0.039 0.859 ± 0.009
20% 0.812 ± 0.025 0.826 ± 0.023 0.762 ± 0.039 0.756 ± 0.042 0.855 ± 0.009
100% 0.806 ± 0.026 0.823 ± 0.024 0.756 ± 0.038 0.752 ± 0.041 0.837 ± 0.012

λ = 0.01

2% 0.808 ± 0.024 0.822 ± 0.022 0.783 ± 0.040 0.779 ± 0.042 0.859 ± 0.009
5% 0.807 ± 0.024 0.822 ± 0.021 0.782 ± 0.037 0.779 ± 0.040 0.863 ± 0.008
10% 0.809 ± 0.024 0.822 ± 0.022 0.782 ± 0.041 0.779 ± 0.042 0.861 ± 0.009
20% 0.809 ± 0.024 0.822 ± 0.023 0.778 ± 0.040 0.775 ± 0.040 0.860 ± 0.009
100% 0.801 ± 0.024 0.819 ± 0.023 0.773 ± 0.044 0.768 ± 0.046 0.843 ± 0.012

λ = 0.1

2% 0.808 ± 0.023 0.822 ± 0.023 0.777 ± 0.045 0.780 ± 0.043 0.862 ± 0.010
5% 0.807 ± 0.023 0.822 ± 0.021 0.778 ± 0.047 0.781 ± 0.047 0.865 ± 0.008
10% 0.808 ± 0.023 0.822 ± 0.021 0.782 ± 0.060 0.784 ± 0.054 0.864 ± 0.009
20% 0.807 ± 0.025 0.820 ± 0.022 0.780 ± 0.049 0.783 ± 0.049 0.861 ± 0.010
100% 0.802 ± 0.022 0.817 ± 0.024 0.780 ± 0.059 0.784 ± 0.059 0.843 ± 0.012

λ = 1

2% 0.808 ± 0.026 0.822 ± 0.023 0.681 ± 0.113 0.681 ± 0.120 0.865 ± 0.009
5% 0.806 ± 0.024 0.820 ± 0.023 0.673 ± 0.113 0.670 ± 0.109 0.867 ± 0.009
10% 0.804 ± 0.023 0.820 ± 0.022 0.689 ± 0.102 0.686 ± 0.108 0.864 ± 0.009
20% 0.804 ± 0.024 0.819 ± 0.023 0.697 ± 0.118 0.694 ± 0.115 0.860 ± 0.010
100% 0.799 ± 0.023 0.812 ± 0.024 0.717 ± 0.075 0.713 ± 0.075 0.808 ± 0.020

often fail to produce human-interpretable visualizations that preserve the intrinsic geometry of the
data [14, 37]. On the contrary, full geometric constraint (λ = 0, last column) simply replicates
the RF-PHATE embedding, without clear qualitative benefits compared to the default linear kernel
extension (Fig. 2). To effectively balance reconstruction and geometric losses, the optimal range
for λ lies approximately between 0.001—yielding branching structures akin to RF-PHATE but with
more pronounced separation—and 0.1, which produces more compact, globular embeddings with
enhanced class separability. A similar qualitative assessment can be made for OrganC MNIST in
Fig. S4.
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From these results, we draw two practical guidelines to help users select suitable hyperparameters for
their specific application:

• Loss balancing parameter λ: Values of λ in the range [0.001, 0.1] yield comparable
scores but differ in qualitative behavior. Lower values (e.g., λ ≈ 0.001) produce branching
structures similar to RF-PHATE, enhancing interpretability of inter-class transitions while
mitigating the over-compression artifacts seen in RF-PHATE. Higher values (e.g., λ ≈ 0.1)
shift the focus toward class separability and expanded within-class structure. We recommend
λ ≈ 0.001 for capturing smooth transitions or trajectories, and λ ≈ 0.1 for emphasizing
distinct class boundaries and detailed internal structure.

• Prototype selection N∗: Selecting as few as 2% of training points as prototypes is a
good starting point to preserve supervised structure while maximizing class separability.
If minimizing inference time is essential, users may further reduce the number of selected
prototypes to accelerate computation.

H.2 Compatibility with other geometric regularizers

Although our RF-PHATE regularizer is the core focus of our paper, we also investigate the per-
formance of RF-AE under alternative geometric constraints to guide users toward potential sub-
stitutes. Table S4 reports ablation results using RF-PHATE (ours), UMAP, SUMAP, and RF-
UMAP (i.e., UMAP applied to RF-GAP dissimilarities). We fixed the default hyperparameters
to (λ,N∗) = (0.01, 0.1Ntrain). Across 20 datasets, RF-AE with RF-PHATE consistently achieved
the best overall performance. RF-AE with RF-UMAP ranked second, followed by RF-AE with
SUMAP and UMAP constraints. On a per-dataset basis, RF-AE (RF-UMAP) was competitive
with RF-AE (RF-PHATE) on OrganC MNIST but performed substantially worse on Sign MNIST.
These results suggest that RF-AE is especially effective when paired with RF-based kernel meth-
ods—particularly RF-PHATE—which already capture the underlying RF geometry. In such cases, the
geometric and reconstruction objectives are well aligned, enabling more effective multi-task learning.

Figure S5 shows the OOS visualizations using these four regularizers. On Sign MNIST (Fig. S5a),
RF-AE with RF-UMAP still splits same-class clusters, similar to UMAP and SUMAP, though less
severely. RF-AE with UMAP or SUMAP attempts to merge same-class fragments, but misalignment
with RF-GAP geometry leads to higher class overlap than their parametric counterparts (Fig. S6). On
OrganC MNIST (Fig. S5b), which inherently contains less background noise than Sign MNIST, RF-
AE with RF-UMAP better highlights anatomical relationships compared to P-UMAP or P-SUMAP,
but still shows more noise and overlap than RF-PHATE. This supports the idea that RF-PHATE more
effectively captures denoised local and global supervised structure through diffusion, as demonstrated
empirically in prior work [4].

In summary, RF-PHATE is a strong default regularizer for RF-AE overall, though alternative RF-based
regularizers like RF-UMAP may offer valuable refinements in specific scenarios.

H.3 SIA performance comparison under different classification importance strategies

To show that RF-AE’s performance is not dependent on the choice classification importances Ci
(Section 3.4), we repeated the quantitative analysis from Section 4.1 using two alternative strategies:

• k-NN strategy: We replaced our baseline ensemble classifier with a standalone k-NN
model.

• Aggregate strategy: Instead of deriving feature importances from the ensemble’s accuracy
drop, we computed importances independently using each of the three classifiers—k-NN,
SVM, and MLP—resulting in the following sets:

Ck-NN = {Ck-NN
i | i = 1, . . . , D},

CSVM = {CSVM
i | i = 1, . . . , D},

CMLP = {CMLP
i | i = 1, . . . , D}.

We then averaged these to obtain an aggregated importance set:

Cagg =
1

3

(
Ck-NN + CSVM + CMLP) .
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Table S5 reports local and global SIA scores for RF-AE and 13 baseline methods using our proposed
ensemble classifier (Sections 3.4 and 4.1) as well as the two alternative importance strategies. Overall,
RF-AE consistently ranks among the top three methods across all metrics, regardless of the chosen
importance strategy. This suggests that RF-AE more effectively preserves the underlying important
structure, making it more likely to reflect meaningful feature hierarchies in its embeddings compared
to other baselines.

I Extended visualizations and quantitative comparisons

I.1 Visualizations on image data

We present OOS visualization plots and quantitative comparison (Table S6) for all models on Sign
MNIST (Fig. S6) and OrganC MNIST (Fig. S7) to support our analysis in Section 4.2.

Table S6 shows the local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores, along with
test k-NN accuracies for RF-AE and 13 baseline methods on the Sign MNIST and OrganC MNIST
datasets. Our RF-AE method consistently ranks among the top three across all scores on both datasets.

Fig. S6 presents visualizations of all models for the Sign MNIST (A–K) dataset. RF-AE effectively
inherits the global structure of the RF-PHATE embeddings while providing greater detail within
class clusters. In contrast, RF-PHATE tends to compress representations within each cluster, which
are associated with individual classes. Although OOS embeddings are mostly assigned to their
correct ground-truth labels, the local arrangement of these samples on the sub-manifold is not
easily visualized in RF-PHATE. RF-AE, however, expands the class clusters, revealing within-class
patterns that are obscured in the RF-PHATE plot. For example, the top-right cluster in the RF-
AE plot illustrates different ways to represent the letter “C”, showing a logical transition between
variations based on hand shadowing and orientation. Such nuanced differences are more challenging
to detect in RF-PHATE, which compresses these representations into an overly restrictive branch
structure. This limitation of RF-PHATE may stem from excessive reliance on the diffusion operator,
which overemphasizes global smoothing. Since RF-GAP already captures local-to-global supervised
neighborhoods effectively, the additional diffusion applied by RF-PHATE likely diminishes fine-
grained local details. Thus, we have demonstrated that RF-AE offers a superior balance for visualizing
the local-to-global supervised structure compared to the basic RF-PHATE kernel extension.

P-TSNE is effective at identifying clusters of similar samples but often splits points from the same
class into distinct, distant clusters. This appears to result from variations such as background
shadowing, which obstruct the important part of the image. Thus, “G” and “H” instances are closer
than expected due to similar shadowing. In contrast, RF-AE correctly assigns “G” and “H” instances to
their own clusters while dissociating between same-class points with different shadowing, effectively
reflecting within-class variations. This demonstrates that P-TSNE is overly sensitive to irrelevant
factors, such as background differences, which are unrelated to the underlying labels. Similarly,
P-UMAP, P-SUMAP and PACMAP exhibit this sensitivity but produces sparser representations.
Despite being a supervised method, P-SUMAP incorporates class labels in a way that artificially
clusters same-class points, potentially oversimplifying their intrinsic relationships. CEBRA yields a
circular pattern that offers limited utility for qualitative interpretation. CE and SSNP embeddings
are distorted. NCA retains decent local and global relationships, but within-class variations and
transitions between classes are visually less evident than in regularized RF-AE. Other methods
produced noisy embeddings.

For the OrganC MNIST dataset, all models are visualized in Fig. S7. As analyzed in Section 4.2,
RF-AE achieves notable improvements over competing methods by enabling finer distinctions
between organ types. This is particularly evident in its ability to differentiate the left and right kid-
neys—whereas other methods tend to merge these classes, RF-AE separates them while maintaining
their proximity in the embedding space. This reflects anatomical similarity without losing class
identity.

In comparison, RF-PHATE maintains the overall structure but merges certain classes (e.g., left/right
kidneys), thereby reducing fine-grained resolution. P-TSNE and P-UMAP recover local structure
but yield overlapping clusters due to the lack of supervision, resulting in cluttered embeddings that
hinder interpretation. P-SUMAP achieves better class separability than P-TSNE and P-UMAP, but
its projections remain difficult to interpret, with elongated structures (e.g., aorta and inferior vena

31



cava) and compact, overlapping anatomical regions near the center that obscure class boundaries.
NCA, PLS-DA, SPCA, and PCA produce noisy visualizations with weak separation of organ types,
reflecting limited class-specific representation. Outliers in the CE and SSNP plots suggest overfitting
to the training data. PACMAP exhibits broken structures, where organ clusters are artificially split
without clear biological meaning. CEBRA displays an artificial circular pattern, while the AE
produces distorted visualizations.

Overall, RF-AE preserves the structural integrity of the data while substantially enhancing class
separability. These qualitative findings align with the quantitative results in Table S6, where RF-AE
outperforms competing methods in both k-NN accuracy and local-to-global SIA.

I.2 Visualizations on audio data

To further demonstrate the modality-agnostic performance of RF-AE, we present quantitative and
qualitative comparisons on GTZAN (3-sec) in Table S6 (bottom) and Fig. S8, respectively. Although
RF-AE shows slightly lower class separability than models such as CE and SSNP, these methods
suffer from strong structural distortions, reflected in their low Global SIA scores. In contrast, RF-AE
achieves robust supervised structure preservation across local and global scales while maintaining
competitive class separability.

Visually, the class relationships in RF-AE align well with our general understanding of genre
similarities and distinctions. For instance, classical, metal, reggae, and hip-hop appear as more
“extreme” genres, while disco, rock, country, and blues cluster near the center, reflecting their less
distinctive “sound color” and stronger similarities to one another. The proximity of classical and
jazz is intuitive, as both often rely on acoustic, traditional instruments. Similarly, metal and rock
appear close due to their common reliance on electric guitars and the overlap between subgenres like
heavy metal and hard rock. Note that the relatively small sample size and possible biases in label
assignment or class-wise sampling may still influence the results. This qualitative analysis is meant
to illustrate that RF-AE captures a meaningful and balanced structure in its embeddings, opening
the door to further exploration. Future work could examine within- and between-genre variations by
coloring points according to key acoustic features.

In contrast, RF-PHATE produces a similar global layout but smooths away important within-class
variations, oversimplifying the diversity within each genre. Although CE and SSNP achieve better
average class separation, they tend to represent classes as compact, globular clusters. This can be
misleading, as it may suggest that musical genres share similar internal structure. In addition, these
methods often introduce distortions, elongating some structures while compressing others near the
center, which hinders effective visual exploration. PACMAP, P-SUMAP, P-UMAP, and P-TSNE tend
to fragment into small clusters, even within genres, making it difficult to observe gradual transitions
within and across musical styles. CEBRA again produces its characteristic circular pattern, while the
remaining methods yield noisier and less interpretable visualizations.

J Semi-supervised training

While we did not experiment with partially labeled data, RF-AE can also be trained in a semi-
supervised setting. As described in Section 3.1, our extended RF-GAP definition supports computing
proximities between training and out-of-sample points. Thus, on the one hand, assuming NL labeled
points and NU unlabeled points, for a total training size of N = NL + NU , we treat unlabeled
training samples as “out-of-sample” and compute N proximity vectors of size NL, which are used
as input to train the RF-AE network. On the other hand, to generate RF-PHATE embeddings for
the full training set, we can rely on the Landmark PHATE algorithm proposed by Moon et al. [3].
First, we construct the RF-GAP kernel matrix of size NL × NL between labeled landmarks and
compute their embeddings with PHATE. Then, we project the NU remaining unlabeled points with
the linear landmark extension using their RF-GAP proximities to the labeled points (the landmarks),
as in Section 2.2. This provides all the key ingredients to train RF-AE by leveraging both labeled and
unlabeled data. We leave this extension for future work.
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K Runtime comparison

We report training and test runtimes for each model on Sign MNIST (A–K) and OrganC MNIST in
Fig. S9. To assess our scalability improvement from our prototype selection, we include results for
RF-AE with different prototype percentages, N∗ ∈ {0.1Ntrain, 0.02Ntrain}. We set the geometric
weight to its default value λ = 0.01. During training, RF-AE remains within the same order of
magnitude (OoM) as RF-PHATE, P-SUMAP, and NCA, while being one OoM slower than CE and
SSNP. At inference, RF-AE is roughly two OoM faster than RF-PHATE and one OoM slower than
P-SUMAP. Compared to RF-PHATE, these improvements at inference stem from prototype selection,
which avoids the costly computation of proximities to all training points. Combined with our ongoing
vectorized and parallelized RF-GAP computation, we expect this strategy to substantially narrow, if
not eliminate, the runtime gap with other supervised competitors such as P-SUMAP.
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Figure S1: Comparison between the standard feature-based MLP encoder and our proposed RF-GAP
kernel-based MLP encoder for regressing onto precomputed RF-PHATE embeddings. (a) Ground-
truth tree structure with branch labels (see Appendix C). (b) Log-scaled median training MSE with
25th and 75th enclosing percentiles over 50 epochs across 10 repetitions. (c) Training RF-PHATE
embeddings (top row), followed by training and test embeddings produced by the RF-GAP-based
encoder (middle row) and the feature-based encoder (bottom row) after 50 epochs from a single run.
The RF-PHATE embeddings closely match the ground-truth structure and provide a strong target
for supervised regression. Our kernel-based encoder remains effective even under high noise levels
(e.g., SNR = 0.001), converging more quickly and producing well-structured embeddings with better
generalization. In contrast, the feature-based MLP exhibits increasing training loss and disorganized
embeddings as noise increases, and often fails to recover meaningful structure even in low-noise
settings (SNR = ∞, 1), demonstrating the superior robustness of our kernel-based encoders.
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Figure S2: Illustration of the structural importance alignment (SIA) score defined in Section 3.4
for evaluating supervised out-of-sample (OOS) embedding fit. a. Random class samples from
the high-dimensional Sign MNIST (A–K) dataset. b. 2D embeddings of training and test (OOS)
points from RF-AE (left) and P-TSNE (right), based on a stratified 80/20 random split. Samples
are shown with their original images, color-tinted by label; training samples appear with reduced
opacity. c. Pixel-level classification importances from the ensemble baseline classifier (Section 3.4,
Appendix E.3), normalized to [0, 1]. d. Pixel-level local structure importances (s = Trust) from OOS
RF-AE (left) and P-TSNE (right), also normalized. e. Local SIA scores computed as the Kendall
τ correlation between (c) and (d): RF-AE achieves higher alignment (0.85) than P-TSNE (0.55),
suppressing background pixels and focusing on class-relevant regions.
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Figure S3: RF-AE test embeddings on Sign MNIST (A–K) for various (λ,N∗) configurations,
where λ decreases column-wise from 1 (unconstrained RF-AE) to 0 (RF-PHATE kernel-based MLP
extension), and N∗ increases row-wise from 2% to 100% of the training set size. Samples are shown
with their original images, color-tinted by label (see Fig. 2 for the legend).
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Figure S4: RF-AE test embeddings on OrganC MNIST for various (λ,N∗) configurations, where λ
decreases column-wise from 1 (unconstrained RF-AE) to 0 (RF-PHATE kernel-based MLP extension),
and N∗ increases row-wise from 2% to 100% of the training set size. Points are colored by their
ground-truth labels (see Fig. 2 for the legend).
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Table S4: Local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores, along with test k-NN
accuracies for our RF-AE method using four different geometric regularizers: RF-PHATE (ours),
RF-UMAP, UMAP and SUMAP. Scores are shown as mean ± std across 10 repetitions on Sign
MNIST (top), OrganC MNIST (middle), and over 20 datasets (bottom). Refer to Table S2 for a
summary of the 20 datasets. Each score is compared with baseline models in Tables 1 and S6, and
highlighted only if it ranks among the top three overall. Top three values per metric are highlighted in
blue, using underlined bold (first) and bold (second).

LOCAL SIA GLOBAL SIA

QNX TRUST SPEAR PEARSON k-NN ACC

GEO. REG. SIGN MNIST

RF-PHATE 0.819 ± 0.006 0.848 ± 0.006 0.700 ± 0.109 0.681 ± 0.135 0.988 ± 0.003
RF-UMAP 0.732 ± 0.008 0.717 ± 0.009 0.624 ± 0.043 0.600 ± 0.040 0.936 ± 0.016
UMAP 0.642 ± 0.012 0.544 ± 0.015 0.319 ± 0.048 0.235 ± 0.070 0.745 ± 0.021
SUMAP 0.668 ± 0.012 0.594 ± 0.015 0.461 ± 0.069 0.414 ± 0.097 0.863 ± 0.013

ORGANC MNIST

RF-PHATE 0.890 ± 0.007 0.929 ± 0.006 0.901 ± 0.013 0.898 ± 0.012 0.766 ± 0.004
RF-UMAP 0.889 ± 0.006 0.924 ± 0.005 0.936 ± 0.004 0.933 ± 0.005 0.701 ± 0.004
UMAP 0.883 ± 0.007 0.907 ± 0.006 0.871 ± 0.006 0.869 ± 0.006 0.576 ± 0.007
SUMAP 0.875 ± 0.008 0.909 ± 0.006 0.888 ± 0.009 0.875 ± 0.008 0.740 ± 0.013

20 DATASETS

RF-PHATE 0.809 ± 0.024 0.822 ± 0.022 0.782 ± 0.041 0.779 ± 0.042 0.861 ± 0.009
RF-UMAP 0.798 ± 0.024 0.806 ± 0.022 0.773 ± 0.031 0.768 ± 0.032 0.832 ± 0.012
UMAP 0.782 ± 0.025 0.762 ± 0.029 0.683 ± 0.036 0.674 ± 0.038 0.729 ± 0.024
SUMAP 0.791 ± 0.024 0.788 ± 0.024 0.669 ± 0.050 0.669 ± 0.048 0.817 ± 0.017

a.

b.

Figure S5: OOS visualization using RF-AE with four different geometric regularizers: RF-PHATE
(ours, far left), RF-UMAP (center left), UMAP (center right) and SUMAP (far right). We set the
geometric and reconstruction weights to their default values (λ,N∗) = (0.01, 0.1Ntrain). a. Sign
MNIST (A–K): Samples are shown with their original images, color-tinted by label. Training images
are shown with reduced opacity. RF-AE with RF-UMAP still fragments same-class points, reflecting
the same weaknesses as (un)supervised UMAP (Fig. S6). RF-AE with UMAP or SUMAP attempts
to merge same-class fragments but misalignment with RF-GAP geometry leads to greater class
overlap than their parametric baselines. b. OrganC MNIST: Test points are color-coded by label.
Training points are omitted for clarity. RF-AE with RF-UMAP performs better, producing a structure
closer to RF-AE with RF-PHATE. The reduced artifact level (e.g., less background noise) facilitates
clustering of same-class points. Still, RF-UMAP remains slightly noisier than RF-PHATE, with
higher class overlap, and RF-AE with UMAP or SUMAP shows no improvement over their parametric
counterparts in Fig. S7.
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Table S5: Local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores for RF-AE and 13
baseline methods, computed using three strategies: our default ensemble importances suggested
in Section 3.4 (top), k-NN-based classification importances (middle) and aggregated importances
averaged over k-NN, SVM, and MLP classifiers (bottom). Scores are reported as mean ± standard
deviation across 20 datasets and 10 repetitions. In general, RF-AE outperforms other models in
both local and global SIA, regardless of the importance strategy. Top three values per metric are
highlighted in blue, using underlined bold (first) and bold (second). Supervised methods are marked
by an asterisk.

LOCAL SIA GLOBAL SIA

QNX TRUST SPEAR PEARSON

ENSEMBLE IMPORTANCES

RF-AE* 0.809 ± 0.024 0.822 ± 0.022 0.782 ± 0.041 0.779 ± 0.042
RF-PHATE* 0.798 ± 0.025 0.825 ± 0.023 0.748 ± 0.038 0.750 ± 0.040
SSNP* 0.760 ± 0.047 0.772 ± 0.045 0.685 ± 0.089 0.694 ± 0.080
P-SUMAP* 0.756 ± 0.028 0.768 ± 0.025 0.647 ± 0.048 0.647 ± 0.048
CE* 0.795 ± 0.050 0.818 ± 0.051 0.765 ± 0.051 0.763 ± 0.054
NCA* 0.808 ± 0.027 0.805 ± 0.025 0.771 ± 0.032 0.759 ± 0.033
PACMAP 0.749 ± 0.026 0.758 ± 0.025 0.688 ± 0.029 0.688 ± 0.029
P-TSNE 0.743 ± 0.028 0.747 ± 0.028 0.684 ± 0.036 0.666 ± 0.038
AE 0.744 ± 0.027 0.751 ± 0.029 0.695 ± 0.044 0.655 ± 0.053
P-UMAP 0.757 ± 0.027 0.744 ± 0.028 0.674 ± 0.035 0.657 ± 0.038
SPCA* 0.767 ± 0.026 0.759 ± 0.030 0.741 ± 0.031 0.738 ± 0.032
PLS-DA* 0.715 ± 0.026 0.708 ± 0.028 0.659 ± 0.027 0.639 ± 0.028
CEBRA* 0.780 ± 0.045 0.775 ± 0.050 0.735 ± 0.062 0.728 ± 0.068
PCA 0.745 ± 0.027 0.742 ± 0.026 0.733 ± 0.027 0.727 ± 0.028

STANDALONE k-NN IMPORTANCES

RF-AE* 0.835 ± 0.021 0.832 ± 0.021 0.784 ± 0.036 0.788 ± 0.038
RF-PHATE* 0.834 ± 0.024 0.836 ± 0.023 0.750 ± 0.035 0.760 ± 0.040
SSNP* 0.780 ± 0.050 0.779 ± 0.046 0.681 ± 0.094 0.690 ± 0.084
P-SUMAP* 0.780 ± 0.026 0.788 ± 0.023 0.666 ± 0.049 0.666 ± 0.049
CE* 0.829 ± 0.050 0.821 ± 0.048 0.763 ± 0.051 0.760 ± 0.050
NCA* 0.826 ± 0.022 0.811 ± 0.025 0.774 ± 0.032 0.761 ± 0.031
PACMAP 0.771 ± 0.023 0.777 ± 0.022 0.708 ± 0.027 0.711 ± 0.028
P-TSNE 0.766 ± 0.025 0.767 ± 0.025 0.702 ± 0.030 0.683 ± 0.035
AE 0.762 ± 0.025 0.769 ± 0.025 0.709 ± 0.046 0.668 ± 0.054
P-UMAP 0.777 ± 0.027 0.762 ± 0.025 0.695 ± 0.030 0.676 ± 0.037
SPCA* 0.785 ± 0.024 0.777 ± 0.026 0.753 ± 0.026 0.749 ± 0.026
PLS-DA* 0.724 ± 0.022 0.714 ± 0.022 0.654 ± 0.023 0.634 ± 0.025
CEBRA* 0.806 ± 0.046 0.784 ± 0.049 0.736 ± 0.058 0.731 ± 0.065
PCA 0.755 ± 0.023 0.752 ± 0.022 0.741 ± 0.023 0.736 ± 0.024

AGGREGATED IMPORTANCES

RF-AE* 0.802 ± 0.045 0.812 ± 0.044 0.778 ± 0.056 0.778 ± 0.056
RF-PHATE* 0.793 ± 0.040 0.820 ± 0.043 0.747 ± 0.051 0.752 ± 0.052
SSNP* 0.764 ± 0.060 0.770 ± 0.056 0.685 ± 0.100 0.695 ± 0.092
P-SUMAP* 0.757 ± 0.046 0.767 ± 0.044 0.647 ± 0.065 0.646 ± 0.063
CE* 0.798 ± 0.062 0.819 ± 0.063 0.771 ± 0.068 0.772 ± 0.067
NCA* 0.812 ± 0.045 0.804 ± 0.046 0.774 ± 0.048 0.762 ± 0.049
PACMAP 0.749 ± 0.046 0.758 ± 0.044 0.688 ± 0.044 0.690 ± 0.046
P-TSNE 0.744 ± 0.044 0.747 ± 0.044 0.684 ± 0.048 0.667 ± 0.051
AE 0.745 ± 0.043 0.750 ± 0.045 0.695 ± 0.061 0.655 ± 0.066
P-UMAP 0.760 ± 0.047 0.744 ± 0.047 0.674 ± 0.048 0.657 ± 0.054
SPCA* 0.770 ± 0.042 0.761 ± 0.047 0.742 ± 0.045 0.739 ± 0.046
PLS-DA* 0.717 ± 0.043 0.710 ± 0.044 0.664 ± 0.039 0.643 ± 0.040
CEBRA* 0.782 ± 0.063 0.778 ± 0.068 0.739 ± 0.073 0.733 ± 0.079
PCA 0.746 ± 0.045 0.743 ± 0.044 0.734 ± 0.042 0.729 ± 0.043
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Table S6: Local (s = QNX,Trust) and global (s = Spear,Pearson) SIA scores, along with test k-NN
accuracies for our RF-AE method and 13 baselines. Scores are shown as mean ± std across 10
repetitions on Sign MNIST (top), OrganC MNIST (middle) and GTZAN (bottom) (see Table S2 for a
summary of the datasets). Top three values per metric are highlighted in blue, using underlined bold
(first) and bold (second). Supervised methods are marked by an asterisk.

LOCAL SIA GLOBAL SIA

QNX TRUST SPEAR PEARSON k-NN ACC

SIGN MNIST

RF-AE* 0.819 ± 0.006 0.848 ± 0.006 0.700 ± 0.109 0.681 ± 0.135 0.988 ± 0.003
RF-PHATE* 0.817 ± 0.009 0.854 ± 0.011 0.571 ± 0.099 0.434 ± 0.149 0.976 ± 0.004
SSNP* 0.139 ± 0.401 0.249 ± 0.381 0.174 ± 0.391 0.414 ± 0.219 0.189 ± 0.258
P-SUMAP* 0.700 ± 0.010 0.618 ± 0.009 0.449 ± 0.079 0.401 ± 0.103 0.967 ± 0.004
CE* 0.620 ± 0.408 0.627 ± 0.418 0.695 ± 0.135 0.646 ± 0.184 0.464 ± 0.179
NCA* 0.793 ± 0.013 0.873 ± 0.012 0.596 ± 0.088 0.523 ± 0.110 0.984 ± 0.002
PACMAP 0.718 ± 0.007 0.616 ± 0.008 0.402 ± 0.026 0.382 ± 0.029 0.930 ± 0.005
P-TSNE 0.689 ± 0.010 0.535 ± 0.021 0.304 ± 0.050 0.210 ± 0.084 0.806 ± 0.032
AE 0.668 ± 0.019 0.625 ± 0.046 0.403 ± 0.165 0.361 ± 0.181 0.524 ± 0.131
P-UMAP 0.665 ± 0.012 0.551 ± 0.011 0.304 ± 0.042 0.223 ± 0.064 0.787 ± 0.026
SPCA* 0.676 ± 0.005 0.598 ± 0.009 0.552 ± 0.011 0.519 ± 0.012 0.479 ± 0.009
PLS-DA* 0.740 ± 0.008 0.729 ± 0.009 0.737 ± 0.011 0.735 ± 0.012 0.357 ± 0.008
CEBRA* 0.742 ± 0.064 0.744 ± 0.132 0.586 ± 0.129 0.564 ± 0.149 0.430 ± 0.091
PCA 0.660 ± 0.011 0.588 ± 0.015 0.576 ± 0.013 0.589 ± 0.012 0.314 ± 0.006

ORGANC MNIST

RF-AE* 0.890 ± 0.007 0.929 ± 0.006 0.901 ± 0.013 0.898 ± 0.012 0.766 ± 0.004
RF-PHATE* 0.892 ± 0.007 0.912 ± 0.006 0.898 ± 0.009 0.896 ± 0.012 0.654 ± 0.008
SSNP* 0.871 ± 0.028 0.906 ± 0.019 0.773 ± 0.358 0.784 ± 0.096 0.636 ± 0.154
P-SUMAP* 0.873 ± 0.006 0.898 ± 0.006 0.886 ± 0.006 0.875 ± 0.006 0.618 ± 0.018
CE* 0.870 ± 0.022 0.887 ± 0.024 0.854 ± 0.076 0.846 ± 0.073 0.570 ± 0.193
NCA* 0.892 ± 0.006 0.896 ± 0.005 0.870 ± 0.005 0.868 ± 0.005 0.524 ± 0.000
PACMAP 0.881 ± 0.007 0.902 ± 0.006 0.893 ± 0.007 0.893 ± 0.006 0.632 ± 0.009
P-TSNE 0.867 ± 0.006 0.892 ± 0.005 0.874 ± 0.005 0.871 ± 0.005 0.474 ± 0.003
AE 0.875 ± 0.006 0.899 ± 0.005 0.873 ± 0.011 0.834 ± 0.022 0.563 ± 0.014
P-UMAP 0.881 ± 0.006 0.898 ± 0.004 0.870 ± 0.005 0.868 ± 0.005 0.475 ± 0.005
SPCA* 0.916 ± 0.005 0.926 ± 0.005 0.895 ± 0.005 0.886 ± 0.005 0.429 ± 0.000
PLS-DA* 0.866 ± 0.006 0.869 ± 0.005 0.860 ± 0.005 0.859 ± 0.005 0.358 ± 0.000
CEBRA* 0.858 ± 0.033 0.881 ± 0.032 0.872 ± 0.030 0.862 ± 0.027 0.358 ± 0.034
PCA 0.861 ± 0.005 0.879 ± 0.005 0.865 ± 0.005 0.861 ± 0.005 0.414 ± 0.000

GTZAN (3-SEC)

RF-AE* 0.956 ± 0.007 0.946 ± 0.005 0.935 ± 0.011 0.914 ± 0.008 0.688 ± 0.005
RF-PHATE* 0.954 ± 0.005 0.943 ± 0.008 0.912 ± 0.015 0.907 ± 0.014 0.568 ± 0.010
SSNP* 0.940 ± 0.006 0.931 ± 0.013 0.788 ± 0.056 0.778 ± 0.101 0.786 ± 0.005
CE* 0.951 ± 0.008 0.931 ± 0.016 0.807 ± 0.046 0.747 ± 0.049 0.713 ± 0.012
P-SUMAP* 0.934 ± 0.005 0.937 ± 0.005 0.648 ± 0.010 0.638 ± 0.022 0.696 ± 0.007
NCA* 0.949 ± 0.005 0.925 ± 0.007 0.788 ± 0.018 0.824 ± 0.022 0.518 ± 0.006
PACMAP 0.942 ± 0.007 0.946 ± 0.004 0.706 ± 0.014 0.692 ± 0.017 0.644 ± 0.009
P-TSNE 0.950 ± 0.005 0.941 ± 0.005 0.777 ± 0.017 0.787 ± 0.018 0.519 ± 0.007
AE 0.939 ± 0.009 0.939 ± 0.006 0.809 ± 0.035 0.847 ± 0.045 0.487 ± 0.009
P-UMAP 0.949 ± 0.007 0.937 ± 0.009 0.723 ± 0.012 0.704 ± 0.016 0.493 ± 0.040
SPCA* 0.948 ± 0.003 0.932 ± 0.008 0.894 ± 0.007 0.900 ± 0.008 0.417 ± 0.009
CEBRA 0.839 ± 0.058 0.841 ± 0.055 0.786 ± 0.042 0.779 ± 0.040 0.309 ± 0.020
PLS-DA* 0.848 ± 0.015 0.817 ± 0.016 0.764 ± 0.017 0.706 ± 0.015 0.398 ± 0.006
PCA 0.943 ± 0.006 0.926 ± 0.008 0.887 ± 0.009 0.889 ± 0.008 0.404 ± 0.005
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Figure S6: Visualization of the Sign MNIST (A–K) dataset (Table S2) using 14 dimensionality
reduction methods. Training and test samples are shown with their original images, color-tinted by
label; training samples appear with reduced opacity. See Appendix I.1 for a full qualitative analysis.
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Figure S7: Visualization of the OrganC MNIST dataset (Table S2) using 14 dimensionality reduction
methods. Test points are shown as color-coded circles based on their labels. Training points are
omitted for clarity. Refer to Appendix I.1 for a full qualitative analysis.
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Figure S8: Visualization of the GTZAN (3-sec) dataset (Table S2) using 14 dimensionality reduction
methods. Training and test points are shown as color-coded circles based on their labels. Training
samples appear with reduced opacity. Refer to Appendix I.2 for a full qualitative analysis.
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Figure S9: Average training (top) and test (bottom) computation times per model across 10 repetitions
on Sign MNIST (blue) and OrganC MNIST (green). Standard deviations are displayed as error bars.
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