
Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

Ryuichi Kanoh 1 2 Mahito Sugiyama 1 2

Abstract

Axis-aligned rules are known to induce an im-
portant inductive bias in machine learning mod-
els such as typical hard decision tree ensembles.
However, theoretical understanding of the learn-
ing behavior is largely unrevealed due to the dis-
crete nature of rules. To address this issue, we im-
pose the axis-aligned constraint on differentiable
decision trees, or soft trees, which relax the split-
ting process of decision trees and are trained using
the gradient method. The differentiable property
enables us to derive their Neural Tangent Kernel
(NTK) that can analytically describe the training
behavior. Two cases are realized: imposing the
axis-aligned constraint throughout the entire train-
ing process, or only at the initial state. Moreover,
we extend the NTK framework to handle various
tree architectures simultaneously, and prove that
any axis-aligned non-oblivious tree ensemble can
be transformed into an axis-aligned oblivious tree
ensemble with the same limiting NTK. By ex-
cluding non-oblivious trees from the search space,
the cost of trial-and-error procedures required for
model selection can be massively reduced.

1. Introduction
A soft tree is a differentiable model that continuously relaxes
the splitting process in a decision tree and is trained using
the gradient method. There are various reasons why formu-
lating trees in a differentiable manner is beneficial. Soft tree
ensemble models are recognized for their high empirical
performance (Kontschieder et al., 2015; Popov et al., 2020;
Hazimeh et al., 2020). In addition, unlike hard decision
trees, soft tree models can be updated sequentially (Ke et al.,
2019) and trained in conjunction with pre-training (Arik &
Pfister, 2021), resulting in desirable traits for continuous

1National Institute of Informatics 2The Graduate University
for Advanced Studies, SOKENDAI. Correspondence to: Ryuichi
Kanoh <kanoh@nii.ac.jp>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

service deployment in real-world settings. In this study, we
consider ensemble learning using soft trees as weak learners.

In general, since all input features are taken into account
in each splitting process of soft trees, splitting boundaries
are oblique. The axis-aligned splitting is considered to be
an important inductive bias in typical hard decision trees.
Although a number of machine learning models have been
proposed that are aware of axis-aligned partitioning (Chang
et al., 2022; Humbird et al., 2019), it has not been theoret-
ically clear what properties emerge when the axis-aligned
constraints are imposed.

Recently, there has been progress in the theoretical analysis
of soft tree ensembles (Kanoh & Sugiyama, 2022; 2023)
using the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
The NTK framework provides analytical descriptions of
ensemble learning with infinitely many soft trees. However,
the current analysis is limited to soft trees with oblique
splitting and cannot directly incorporate the axis-aligned
constraint. In this paper, we extend the NTK concept to the
axis-aligned soft tree ensembles to uncover the theoretical
properties of the axis-aligned constraint.

2. Preliminary
2.1. Soft Tree Ensembles

We formulate regression using soft decision trees based on
Kontschieder et al. (2015). Let x ∈ RF×N be input data
consisting of N samples with F features. Assume that there
are M soft decision trees and each tree has N splitting
nodes and L leaf nodes. We denote parameters of an m-
th soft decision tree, where m ∈ [M] = {1, . . . ,M}, as
wm ∈ RF×N and bm ∈ R1×N for splitting nodes and
πm ∈ R1×L for leaf nodes.

Unlike typical hard decision trees, the leaf nodes ℓ ∈ [L] =
{1, . . . ,L} in soft decision trees hold values µm,ℓ(xi,wm)
that represent the probability of the input data reach-
ing that leaf: µm,ℓ(xi,wm, bm) =

∏N
n=1 σ(w

⊤
m,nxi +

βbm,n)
1ℓ↙n(1− σ(w⊤

m,nxi + βbm,n))
1n↘ℓ , where w =

(w1, . . . ,wm), b = (b1, . . . , bm), and π = (π1, . . . ,πm)
correspond to feature selection, splitting threshold, and pre-
diction value of the leaf, respectively, in a typical decision
tree, and 1ℓ↙n(1n↘ℓ) is a binary function that returns 1 if
the ℓ-th leaf is on the left (right) side of node n, and 0 other-

1

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

wise. Parameters w, b, and π are randomly initialized using
independent and identically distributed normal distributions
with mean 0 and variance 1, and updated using gradient
descent. The factor β ∈ R+ is a parameter that allows us to
tune the influence of the bias on the training.

The internal nodes operate using a decision function that
resembles the sigmoid. In this paper, we use the scaled
error function (Kanoh & Sugiyama, 2022; 2023): σ(c) =
1
2 erf(αc) +

1
2 = 1

2

(
2√
π

∫ αc

0
e−t2 dt

)
+ 1

2 for c ∈ R. As

the scaling factor α ∈ R+ (Frosst & Hinton, 2017) tends
towards infinity, sigmoid-like decision functions become
step functions that correspond to (hard) Boolean operation.

The function fm : RF × RF×N × R1×N × R1×L → R
that returns the prediction of the m-th tree is given by the
weighted sum of leaf-specific parameters πm,ℓ, weighted by
the probability that the input data xi reaches each leaf:

fm(xi,wm, bm,πm) =

L∑
ℓ=1

πm,ℓµm,ℓ(xi,wm, bm). (1)

Furthermore, the function f : RF × RM×F×N ×
RM×1×N × RM×1×L → R that returns the output of the
model using M trees is formulated as follows:

f(xi,w, b,π) =
1√
M

M∑
m=1

fm(xi,wm, bm,πm). (2)

2.2. Neural Tangent Kernels

We introduce the NTK based on the gradient flow using
training data x ∈ RF×N , the prediction target y ∈ RN ,
trainable parameters θτ ∈ RP at time τ , and an arbitrary
model function g(x,θτ) : RF×N × RP → RN . With the
learning rate η and the mean squared error loss function L,
the gradient flow equation is given as

∂θτ

∂τ
=−η

∂L(θτ)

∂θτ
=−η

∂g(x,θτ)

∂θτ
(g(x,θτ)− y)). (3)

Considering the formulation of the gradient flow in the
function space using Equation (3), we obtain

∂g(x,θτ)

∂τ
=

∂g(x,θτ)

∂θτ

⊤
∂θτ

∂τ

= −η
∂g(x,θτ)

∂θτ

⊤
∂g(x,θτ)

∂θτ︸ ︷︷ ︸
Neural Tangent Kernel

(g(x,θτ)− y)).

(4)

Here, a matrix called the NTK, which has a shape of RN×N ,
appears. In this paper, the (i, j)-th component of the matrix
at τ is denoted as Θ̂τ (xi,xj).

Initial model

Trained model

(a) (b) (c)

Figure 1. Schematics of training procedures. (a): AAA, Always
Axis-Aligned, during training, (b): AAI, Axis-Aligned at Initial-
ization, but not during training, (c): Oblique splitting conducted
by typical soft trees.

From Equation (4), if the NTK does not change during
training, the formulation of the gradient flow in the function
space becomes a simple ordinary differential equation, and it
becomes possible to analytically calculate how the model’s
output changes during training. When the NTK is positive
definite, it is known that the kernel does not change from its
initial value during the gradient descent with an infinitesimal
step size when considering an infinite number of soft binary
trees (Lee et al., 2019; Kanoh & Sugiyama, 2022; 2023)
under the formulation described in Section 2.1.

2.3. Setup on Axis-Aligned Splitting

Since wm,n is initialized randomly, the splitting is generally
oblique. In this study, we analyze the NTK when some
of the initial values of wm,n are set to be zero. With this
setting, the corresponding features are eliminated from con-
sideration of the splitting direction. This is technically not
straightforward, as Gaussian random initialization is gener-
ally assumed in the existing NTK approaches. In particular,
we consider the axis-aligned case where only one feature is
used for splitting. We conduct a theoretical analysis of two
cases: one where the parameters with zero initialization are
not updated during training, as illustrated in Figure 1(a), and
the other where they are updated, as shown in Figure 1(b).
These two cases are referred to as AAA (“A”lways “A”xis-
“A”ligned) and AAI (“A”xis-“A”ligned at “I”nitialization,
but not during training) in this paper.

The features to be assigned to each node need to be pre-
determined before training. This is different from typical
decision trees, which search for features to be used for split-
ting in training. However, predetermining splitting features
is used in practice. For example, Extremely Randomized
Trees (Geurts et al., 2006) implemented in scikit-learn (Pe-
dregosa et al., 2011) employs such predetermination.

3. Theoretical Results
3.1. The NTK Induced by Axis-Aligned Soft Trees

For an input vector xi, let xi,s ∈ R be the sth component
of xi. For both AAA and AAI conditions, at initialization,

2

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

,
=

4.
0,

=

0.
1

AAA, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
AAA, Tree architecture=(B)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

,
=

4.
0,

=

0.
1

AAI, Tree architecture=(A)

Oblique

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
AAI, Tree architecture=(B)

Oblique

15 30 45 60 75
Rotation angle (degree)

Figure 2. The rotation angle dependency of Θ(xi,xj). Different
training procedures, AAA and AAI, are listed vertically, and two
settings of tree architectures are listed horizontally. Dotted lines
show the limiting NTK induced by typical oblique soft tree en-
sembles defined in (Kanoh & Sugiyama, 2022; 2023), which is
rotationally invariant.

we can obtain the NTK induced by axis-aligned soft tree
ensembles in a closed-form as the number of trees M → ∞.
Theorem 3.1. Assume all M trees have the same soft tree
architecture. Let {a1, · · · , aℓ, · · · , aL} denote the set of
decomposed paths of the trees from the root to the leaves,
and let h(aℓ) ⊂ N be the set of feature indices used in each
split of the input path aℓ. For any binary tree architectures,
as the number M of trees goes to infinity, the NTK for an
ensemble of axis-aligned soft trees converges in probability
to the deterministic kernel:

Θ(xi,xj) := lim
M→∞

Θ̂0(xi,xj)

=
L∑

ℓ=1

∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

︸ ︷︷ ︸

contribution from internal nodes

+

L∑
ℓ=1

∏
u∈h(aℓ)

T{i,j},u︸ ︷︷ ︸
contribution from leaves

, (5)

where Σ{i,j},s = xi,sxj,s + β2 if AAA is used,
or Σ{i,j},s = x⊤

i xj + β2 if AAI is used. By
denoting xi,sxj,s + β2 as A{i,j},s, T{i,j},s =

1
2π arcsin

(
α2A{i,j},s√

(α2A{i,i},s+0.5)(α2A{j,j},s+0.5)

)
+ 1

4 ,

Ṫ{i,j},s = α2

π
1√

(1+2α2A{i,i},s)(1+2α2A{j,j},s)−4α4A2
{i,j},s

.

The difference between AAA and AAI is whether partial
features of inputs are used or all features are used in Σ{i,j},s.

0 200 400 600 800 1000
 (iteration)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(x
i,w

,
)

AAA

0 200 400 600 800 1000
 (iteration)

1.5

1.0

0.5

0.0

0.5

1.0

1.5
AAI

Analytical M = 16 M = 4096

Figure 3. Output dynamics of test data points for axis-aligned soft
tree ensembles with two conditions. (Left): AAA, Always Axis-
Aligned, during training, (Right): AAI, Axis-Aligned at Initializa-
tion, but not during training. Each data point is represented by a
different line color. The left and right figures are created using
exactly the same training and test data.

In AAA, the impact of features that are not used for splitting
is completely ignored, while in AAI, the kernel is affected
by all features through the inner product of the inputs.

Figure 2 shows the visualization of Θ(xi,xj). We set
α = 4.0 and β = 0.1. We calculated the kernel val-
ues for two rotated vectors: xi = (cos(ω), sin(ω)), xj =
(cos(ω+ϕ), sin(ω+ϕ)) where ω ∈ [0, π/2], and ϕ ∈ [0, π].
The line colors show ω, and the x-axis shows ϕ. We use an
oblivious tree with depth 2, where we use the first feature at
both depths 1 and 2 for the architecture (A) (left column),
and we use the first feature at depth 1 and the second feature
at depth 2 for (B) (right column). We can see that the in-
variance with respect to rotational transformations for input
has disappeared. This is different from the NTK induced
by typical soft tree ensembles, shown by the dotted lines.
Moreover, when we compare left and right plots, we can
see that the kernel varies depending on the features used for
splitting.

For both AAA and AAI, as the number of trees increases,
the trajectory obtained analytically from the limiting kernel
and the trajectory during gradient descent training become
more identical, as shown in Figure 3. This demonstrates
the validity of using the NTK framework to analyze the
training behavior. For our experiment, we consider an en-
semble of oblivious trees with α = 4.0, β = 0.1, where the
first feature is used for splitting at depth 1 and the second
feature at depth 2. This model is trained using full-batch
gradient descent with a learning rate of 0.1, and the ini-
tial outputs are shifted to zero (Chizat et al., 2019). The
training and test datasets contain 10 randomly generated
F = 2 dimensional points each. The prediction targets
are also randomly generated. Based on Lee et al. (2019),
to derive analytical trajectories, we use the limiting kernel

3

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

Figure 4. Ensemble trees with different tree architectures. The
color of tree nodes indicates a feature used for splitting.

(Theorem 3.1), as f(v,θτ) = H(v,x)H(x,x)−1(I −
exp[−ηH(x,x)τ])y, where H(x,x′) ∈ RN×N ′

denote
the limiting NTK matrix for two input matrices, and I rep-
resent an identity matrix. The input vector v ∈ RF is
arbitrary, and the training dataset and targets are denoted by
x ∈ RF×N and y ∈ RN , respectively. The behavior of the
prediction trajectory changes depending on the configura-
tions (AAA or AAI), even when exactly the same training
and test data are used.

3.2. The NTK Induced by Ensembles of Various Trees

In the previous subsections, we have assumed that soft tree
ensembles are composed of weak learners with identical
structures, as shown in the upper side of Figure 4. However,
it can be more practical if the tree structure and features used
for splitting vary in an ensemble, as shown in the bottom
side of Figure 4. To address this issue, we theoretically
analyze ensembles with various tree architectures mixed
together. Assuming the existence of an infinite number of
trees in an ensemble, the NTK can be computed analytically
if the amount (ratio) of each structure in the ensemble is
known.

Proposition 3.2. Let a function p(xi,θτ) be the sum of
two model functions q(xi,θ

′
τ) and r(xi,θ

′′
τ), where θ′

τ ∈
RP ′

, θ′′
τ ∈ RP ′′

are trainable parameters, and θ is the
concatenation of trainable parameters θ′

τ and θ′′
τ . For any

input pair xi and xj , the NTK induced by p is equal to the
sum of the NTKs of q and r: Θ̂(p)

τ (xi,xj) = Θ̂
(q)
τ (xi,xj)+

Θ̂
(r)
τ (xi,xj).

For example, let q and r be functions that represent perfect
binary tree ensemble models with a depth of 1 and 2, respec-
tively. In this case, the NTK induced by trees with a depth
of 1 and 2 is the sum of the NTK induced by trees with a
depth of 1 and the NTK induced by trees with a depth of 2.

3.3. Insight

The oblivious tree architecture is a practical design where
the decision rules for tree splitting are shared across the
same depth. This approach reduces the number of required
splitting calculations from an exponential time complexity
of O(2D) to a linear time complexity of O(D), where D
represents the depth of the perfect binary tree. This property

Figure 5. Conversion to oblivious trees inducing exactly the same
NTK. The color of tree nodes indicates a feature used for splitting.

makes the oblivious tree structure a popular choice in open-
source libraries such as CatBoost (Prokhorenkova et al.,
2018) and NODE (Popov et al., 2020). Kanoh & Sugiyama
(2022; 2023) demonstrated that parameter sharing used in
oblivious trees does not affect the NTK of soft tree ensem-
bles. However, their analysis does not give any insight if
only specific features are used for each splitting node.

With Theorem 3.1 and Proposition 3.2, we show that we
can always convert axis-aligned non-oblivious tree ensem-
bles into axis-aligned oblivious tree ensembles that induce
exactly the same limiting NTK:

Proposition 3.3. Let D be the maximum depth of a single
tree. For any axis-aligned tree ensembles, a set of oblivious
trees that induce exactly the same limiting NTK can be
always constructed using 2D−1 copies of the same tree.

Figure 5 shows examples with D = 2 or 3. This insight
supports the validity of using oblivious trees when using
axis-aligned soft trees, as in Chang et al. (2022). Creating
copies multiplies the NTK values by a constant factor, but
theoretically, this does not have a significant impact. As
Equation (4) shows, even if two kernels differ only up to
a constant, adjusting the learning rate η can make their
training behavior exactly the same.

Although various trial-and-error processes are necessary for
model selection to determine features used at each node, this
finding can reduce the number of processes by excluding
non-oblivious trees from the search space.

4. Conclusion
In this paper, we have formulated the NTK induced by the
axis-aligned soft tree ensembles, and we have succeeded
in describing the analytical training trajectory. We have
theoretically analyzed two scenarios, one where the axis-
aligned constraint is applied throughout the training process,
and the other where the initial model is axis-aligned and
training proceeds without any constraints. We have also
presented a theoretical framework to deal with non-identical
tree structures simultaneously and used it to provide theo-
retical support for the validity of using oblivious trees.

4

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

References
Arik, S. and Pfister, T. TabNet: Attentive Interpretable

Tabular Learning. Proceedings of the AAAI Conference
on Artificial Intelligence, 2021.

Chang, C.-H., Caruana, R., and Goldenberg, A. NODE-
GAM: Neural generalized additive model for inter-
pretable deep learning. In International Conference on
Learning Representations, 2022.

Chizat, L., Oyallon, E., and Bach, F. On Lazy Training
in Differentiable Programming. In Advances in Neural
Information Processing Systems, 2019.

Frosst, N. and Hinton, G. E. Distilling a Neural Network
Into a Soft Decision Tree. CoRR, 2017.

Geurts, P., Ernst, D., and Wehenkel, L. Extremely Random-
ized Trees. Machine Learning, 2006.

Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., and
Mazumder, R. The Tree Ensemble Layer: Differentiabil-
ity meets Conditional Computation. In Proceedings of
the 37th International Conference on Machine Learning,
2020.

Humbird, K. D., Peterson, J. L., and Mcclarren, R. G. Deep
Neural Network Initialization With Decision Trees. IEEE
Transactions on Neural Networks and Learning Systems,
2019.

Jacot, A., Gabriel, F., and Hongler, C. Neural Tangent Ker-
nel: Convergence and Generalization in Neural Networks.
In Advances in Neural Information Processing Systems,
2018.

Kanoh, R. and Sugiyama, M. A Neural Tangent Kernel
Perspective of Infinite Tree Ensembles. In International
Conference on Learning Representations, 2022.

Kanoh, R. and Sugiyama, M. Analyzing Tree Architectures
in Ensembles via Neural Tangent Kernel. In International
Conference on Learning Representations, 2023.

Ke, G., Xu, Z., Zhang, J., Bian, J., and Liu, T.-Y. Deep-
GBM: A Deep Learning Framework Distilled by GBDT
for Online Prediction Tasks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019.

Kontschieder, P., Fiterau, M., Criminisi, A., and Bulò, S. R.
Deep Neural Decision Forests. In IEEE International
Conference on Computer Vision, 2015.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide Neural Networks
of Any Depth Evolve as Linear Models Under Gradient
Descent. In Advances in Neural Information Processing
Systems, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 2011.

Popov, S., Morozov, S., and Babenko, A. Neural Oblivious
Decision Ensembles for Deep Learning on Tabular Data.
In International Conference on Learning Representations,
2020.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. CatBoost: unbiased boosting with cat-
egorical features. In Advances in Neural Information
Processing Systems, 2018.

5

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

A. The NTK Induced by Typical Soft Trees
The NTK induced by a typical soft tree ensemble with infinitely many trees is known to be obtained in closed-form at
initialization.

Theorem A.1 ((Kanoh & Sugiyama, 2022; 2023)). Assume all M trees have the same soft tree architecture. Let Q : N →
N ∪ {0} be a function that takes the depth as input and returns the number of leaves connected to internal nodes at that
depth. For any given tree architecture, as the number of trees in an ensemble of soft trees approaches infinity, the NTK
converges in probability to a deterministic kernel:

ΘOblique(xi,xj) := lim
M→∞

Θ̂Oblique
0 (xi,xj)

=

D∑
d=1

Q(d)

 d Σ{i,j}T d−1
{i,j}Ṫ{i,j}︸ ︷︷ ︸

contribution from internal nodes

+ T d
{i,j}︸ ︷︷ ︸

contribution from leaves

 , (A.1)

where

Σ{i,j} = x⊤
i xj + β2, (A.2)

T{i,j} =
1

2π
arcsin

(
α2Σ{i,j}√

(α2Σ{i,i} + 0.5)(α2Σ{j,j} + 0.5)

)
+

1

4
, (A.3)

Ṫ{i,j} =
α2

π

1√(
1 + 2α2Σ{i,i}

)
(1 + 2α2Σ{j,j})−4α4Σ2

{i,j}

. (A.4)

This kernel has rotational invariance with respect to input data.

B. Proofs
B.1. Proof of Theorem 3.1

Proof. Based on the independence of parameters at each leaf and the symmetry of the decision function, Kanoh & Sugiyama
(2023) showed that the NTK induced by arbitrary soft tree ensembles can be decomposed into the sum of the NTKs induced
by the rule sets, which are constructed by paths from the tree root to leaves. This property of the independence of parameters
at each leaf and the symmetry of the decision function also holds in our formulation (Section 2.1). Therefore, we formulate
the NTK induced by rule sets and use it to derive the NTK induced by axis-aligned soft tree ensembles.

For simplicity, first we consider the case where β = 0. Let D be the depth of a rule set, which is a path from the root to
a leaf ℓ. We consider the contribution from internal nodes Θ(D,Rule,nodes) and the contribution from leaves Θ(D,Rule,leaves)

separately, such that

Θ(D,Rule) (xi,xj) = Θ(D,Rule,nodes) (xi,xj) + Θ(D,Rule,leaves) (xi,xj) . (B.1)

As for internal nodes, when we consider the axis-aligned case (Section 2.3), only a single parameter in wm,n is non-
zero. When calculating the NTK as shown in Equation (4), the parameter derivatives in terms of trainable parameters are
considered. In the cases of AAA and AAI, they are given as follows:

f (D,Rule) (xi,w,π)

∂wm,n,k
=

1√
M

xi,sn σ̇(wm,n,kxi,kn)f
(D−1,Rule)
m (xi,wm,−n,πm) , (AAA) (B.2)

f (D,Rule) (xi,w,π)

∂wm,n
=

1√
M

xiσ̇(wm,n,kxi,kn
)f (D−1,Rule)

m (xi,wm,−n,πm) , (AAI) (B.3)

where xi,kn
and wm,n,k are single features that are used in the n-th node and a single node parameter that corresponds to

xi,kn , respectively. wm,−n denotes the internal node parameter matrix except for the parameters of the node n. Since there
are D possible locations for n, we obtain

6

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

Θ(D,Rule,nodes) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

 , (B.4)

where

Em

[
f (D,Rule)
m (xi,wm,πm) f (D,Rule)

m (xj ,wm,πm)
]

= Em

σ(w⊤
m,1xi)σ(w

⊤
m,1xj)︸ ︷︷ ︸

→T{i,j},s1

σ(w⊤
m,2xi)σ(w

⊤
m,2xj)︸ ︷︷ ︸

→T{i,j},s2

· · ·σ(w⊤
m,Dxi)σ(w

⊤
m,Dxj)︸ ︷︷ ︸

→T{i,j},sD

π2
m,1︸︷︷︸
→1

=

∏
t∈h(aℓ)

T{i,j},t (B.5)

is used. Here, the symbol “→” denotes the expected value of the corresponding term will take.

For leaves, Since

f (D,Rule) (xi,w,π)

∂πm,1
=

1

πm,1

√
M

f (D,Rule)
m (xi,wm,πm) , (B.6)

we have

Θ(D,Rule,leaves) (xi,xj) =
∏

u∈h(aℓ)

T{i,j},u. (B.7)

Combining Equation (B.5) and Equation (B.7), we obtain

Θ(D,Rule,nodes) (xi,xj) =
∑

s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t

+
∏

u∈h(aℓ)

T{i,j},u. (B.8)

When we sum up this NTK over multiple rule sets constructed by multiple leaves, it becomes the NTK of the axis-aligned
soft tree ensembles:

Θ(xi,xj) =

L∑
ℓ=1

 ∑
s∈h(aℓ)

Σ{i,j},sṪ{i,j},s
∏

t∈h(aℓ)\{s}

T{i,j},t +
∏

u∈h(aℓ)

T{i,j},u

 . (B.9)

Up until this point, we have been considering the case where β = 0. It is straightforward to take the case β ̸= 0 into account
because, in the case of soft tree ensemble, the bias term can be represented by using an extra feature that takes a constant
value β as input. This allows us to generally express the bias term by adding β2 to Σ{i,j},s.

B.2. Proof of Proposition 3.2

Proof. The NTK induced by this model can be decomposed into the sum of the NTKs of each tree architecture as follows:

Θ̂(p)
τ (xi,xj) =

〈
∂(q(xi,θ1) + r(xi,θ2))

∂θ
,
∂(q(xj ,θ1) + r(xj ,θ2))

∂θ

〉
=

〈
∂q(xi,θ1)

∂θ1
,
∂q(xj ,θ1)

∂θ1

〉
︸ ︷︷ ︸

Θ̂
(q)
τ (xi,xj)

+

〈
∂r(xi,θ2)

∂θ2
,
∂r(xj ,θ2)

∂θ2

〉
︸ ︷︷ ︸

Θ̂
(r)
τ (xi,xj)

. (B.10)

By repeatedly using this property, the proposition can treat any number of sub-models.

7

Investigating Axis-Aligned Differentiable Trees through Neural Tangent Kernels

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

,
=

4.
0,

=
0.

1

xi = (1, 0), Tree architecture=(A)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Tree architecture=(A)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

K
er

ne
l v

al
ue

,
=

4.
0,

=
0.

1

xi = (1, 0), Tree architecture=(B)

AAA: Always axis-aligned during training
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Inner product of the inputs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
xi = (1/ 2 , 1/ 2), Tree architecture=(B)

AAI: Axis-aligned at initialization, but not during training
M = 16
M = 64

M = 256
M = 1024

M = 4096
M =

Figure A.1. An empirical demonstration of convergence of Θ̂0(xi,xj) to the fixed limit Θ(xi,xj) as M increases. Two cases using
different features are listed vertically, and two settings of vectors for computing the kernel are listed horizontally. In the upper left figure,
the two cases overlap.

B.3. Proof of Proposition 3.3

Proof. The number of leaves of a perfect binary tree with the depth d is always 2d. Also, since we are considering binary
splitting at any node, the number of leaves at each node is 2. Therefore, if we multiply this by 2d−1, we get 2d leaves at the
same depth required for a perfect binary tree. Therefore, for the maximum depth D of a tree, by having 2D−1 copies of the
same tree, we can generate all oblivious trees corresponding to root-to-leaf paths.

C. Convergence of the Kernels
Figure A.1 shows the convergence of the kernels as the number M of trees increases. We set α = 4.0 and β = 0.1. The
kernels induced by finite trees M = {16, 64, 256, 1024, 4096} are computed numerically by re-initializing the parameters 10
times. We plot two cases: xi = (1, 0),xj = (cos(ω), sin(ω)) with ω ∈ [0, π], and xi = (1√

2
, 1√

2
),xj = (cos(ω), sin(ω))

with ω ∈ [π4 ,
5π
4]. This visualization confirms that as the number of trees increases, the kernel asymptotically approaches the

formula defined in Theorem 3.1.

Acknowledgement
This work was supported by JST, CREST Grant Number JPMJCR22D3, Japan, and JSPS KAKENHI Grant Number
JP21H03503.

8

