ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/383516194
Advancing Airfoil Design: A Physics-Inspired Neural Network Model

Conference Paper - August 2024

DOI: 10.1115/GT2024-122682

CITATIONS READS
0 35

7 authors, including:
Khalil Al Handawi
Université de Montréal
17 PUBLICATIONS 118 CITATIONS

SEE PROFILE

All content following this page was uploaded by Khalil Al Handawi on 17 September 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/383516194_Advancing_Airfoil_Design_A_Physics-Inspired_Neural_Network_Model?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/383516194_Advancing_Airfoil_Design_A_Physics-Inspired_Neural_Network_Model?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil-Al-Handawi?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil-Al-Handawi?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Montreal?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil-Al-Handawi?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil-Al-Handawi?enrichId=rgreq-a469b4b5d25b8d831013d22574a92f19-XXX&enrichSource=Y292ZXJQYWdlOzM4MzUxNjE5NDtBUzoxMTQzMTI4MTI3ODM2NTcwMkAxNzI2NTg4Njc1Njc5&el=1_x_10&_esc=publicationCoverPdf

Proceedings of Proceedings of ASME Turbo Expo 2024 &

Turbomachinery Technical Conference and Exposition

. GT2024
June 24-28, 2024, London, United Kingdom

GT2024-122682

ADVANCING AIRFOIL DESIGN: A PHYSICS-INSPIRED NEURAL NETWORK MODEL

Mathieu Salz
Mechanical Engineering
McGill University
Montréal, Canada
mathieu.salz@mail.mcgill.ca

Khalil Al Handawi*
Optimization Specialist
Siemens Energy Canada
Montréal, Canada
khalil.al-handawi@siemens-energy.com

Bill Maier
Siemens Energy USA
Olean, United States
wmaier@siemens-energy.com

Can Unlusoy
Mechanical Integrity Specialist
Siemens Energy Canada
Montréal, Canada
can.unlusoy@siemens-energy.com

Tittu Varghese Mathew
Probabilistic Modelling Specialist
Siemens Energy Canada
Oakville, Canada
tittu.varghese-mathew@siemens-energy.com

Ravichandra Srinivasan
Siemens Energy USA
Redmond, United States
ravichandra.srinivasan@siemens-energy.com

Michael Kokkolaras
Mechanical Engineering
McGill University
Montréal, Canada
michael.kokkolaras@mcgill.ca

ABSTRACT

Turbomachines are an integral part of the energy and indus-
trial landscapes, and improvements to their efficiency benefit the
environment, profitability of operation, and in turn, society at
large. Therefore, the application of advanced methods for rapid
design and development of high-performance turbomachinery
components is of significant interest. In the past decade, the use
of optimization methods has made inroads in improving turbo-
machinery aerodynamics. Recent advances in machine learning

*Address all correspondence to this author.

(ML) methods have the potential to augment design systems by
providing the ability to explore larger design spaces and generate
high-quality initial designs. Physics Informed Neural Networks
(PINNSs), based on the Navier-Stokes equations, are used to in-
corporate physical laws into the design process. This approach
leverages the power of deep learning while ensuring that the de-
signs conform to fundamental principles of fluid dynamics. The
use of Physics Informed Neural Networks (PINNs) not only ac-
celerates the design process by reducing the need for extensive
simulations but also improves the accuracy of the designs by en-

Copyright © 2024 by ASME

suring physical consistency as opposed to designs made using
Generative Artificial Intelligence (Al) models. However, com-
bining PINNs with Generative Al for airfoil optimization could
provide a fruitful avenue in improving compressor blade designs.
Keywords: Physics informed neural networks (PINNs),
Computational fluid dynamics (CFD), Blading design

1 Introduction

Blades are among the devices employed in turbomachines to
manipulate the aerodynamic properties of working fluids, and are
commonly defined by airfoil cross-sections. Airfoils in blades
are typically designed to induce predetermined amounts of flow
turning informed by target distributions of flow and loading pa-
rameters across the fluid passage. While the target flow angles
and flow incidence models allow constraining the initial and final
slopes of the airfoil camber lines, designers still have freedom in
defining the blade-to-blade passage geometry, by manipulating
the suction side (SS) and pressure side (PS) contours of the air-
foil, as well as the spacing of airfoils. The free design variables
may be optimized for a variety of objectives informed by design
priorities, such as maximum efficiency, robustness to incidence,
minimum material use; or to match prescribed profiles of aerody-
namic quantities across the airfoils. Although design rules, crite-
ria and conventions that exist within industrial organizations and
in the literature may bound the design space, a true blank-sheet
design of an airfoil necessitates the exploration of a large design
space. In traditional iterative workflows, capturing fine levels of
variation between designs across ranges of flow inlet and outlet
angles requires large numbers of samples, which are then eval-
uated using flow solvers. Depending on the desired fidelity of
analysis, evaluation of designs may be resource-intensive. In in-
dustrial settings with frequent design work on custom products,
conducting a new search for each design prompt adds further to
the resource use, and generates a large amount of data that is not
utilized more than once with traditional iterative methods such
as optimization.
Generative Al models can be employed to explore a vast de-
sign space efficiently. These models learn from existing designs
and generate new design configurations based on desired perfor-
mance characteristics. The generative models can explore com-
plex design spaces, with the potential to improve performance
over existing designs. However, as these models are fully data-
driven, they can fail to fully capture the physics of the problem
and thus produce sub-optimal designs. First, this paper seeks
to reduce the computational expense associated with commer-
cial Computational Fluid Dynamics (CFD) solvers by training a
parametric PINN to be used as a surrogate model, in order to
rapidly characterize the performance of airfoils. Secondly, we
will propose a methodology for combining the use of Generative
Al models for the generation of feasible candidate airfoil design
with the use of PINNs as low-cost flow solvers to find optimal

2 BACKGROUND

designs as means of efficiently exploring the large design space.

The main contribution of this paper is a flow characteriza-
tion tool based on parametric PINNs for exploring compressor
blading design spaces.

Section 2 discusses literature relevant to airfoil generation
and machine learning-based physics modeling. This is followed
by details on the method development in Section 3. The compu-
tational results are presented in Section 4. The paper ends with a
discussion and conclusion in Sections 5 and 6, respectively.

2 Background
2.1 Machine Learning and CFD

The analysis and downstream engineering tasks of gener-
ated airfoil designs can be prohibitively expensive due to their
reliance on simulation models. In the paper, we focus on the
aerodynamic characterization of airfoils through the use of CFD.

Feedforward Neural Networks are theoretically proven to be
universal function approximators [1], which has motivated their
use in learning the function mapping of various Partial Differ-
ential Equations (PDEs) involved in solving the fluid flow prob-
lem. However, these networks need large quantities of data to
effectively capture the PDE, essentially performing curve-fitting,
and do not generalize to changes in the PDE parameters nor can
extrapolate in time and space. In order to learn PDEs with lit-
tle to no data, PINNs were introduced, which take in as input
space and time coordinates and output quantities of interest such
as velocity and pressure, by augmenting a purely data loss train-
ing paradigm with PDE-residual loss terms, as well as bound-
ary and initial conditions as the selected problem demands [2].
These PDE residual terms are calculated using the automatic-
differentiation capabilities of neural networks [3], producing nth
order and mixed partial derivatives of the inputs with respect to
the outputs of the network. Through the Navier-Stokes equa-
tions, PINNs have seen uses in fluid mechanics [4] for incom-
pressible, compressible, and turbulent flows [5]. This work has
been extended to the field of turbomachinery, with PINNs used
to predict flow around low-pressure turbine blades and in peri-
odic hills [6]. PINNs’s capacity for automatic differentiation has
also lead to their use in design optimization of airfoils [7], where
airfoils parametrized using PARSEC had their parameters opti-
mized to maximize their lift to drag ratio. We implement PINNs
using the NVIDIA Modulus framework [8] which uses a PyTorch
[9] backend.

2.2 Relevance of PINNs to Generative Al

Airfoil generative design relies on training a model using a
database of feasible airfoil candidates. Such databases are accu-
mulated through past engineering design iterations and experi-
ence and can be used to inform future designs. Generative mod-
els can capture input-output relations between random variables

and reuse data to produce samples with similar characteristics to
those in their training datasets.

Adapting them to engineering design applications, genera-
tive models may be trained to generate design representations
conditional on performance requirements, and retrained regu-
larly as design datasets grow, effectively embodying and reusing
existing knowledge to accelerate design processes. Large vol-
umes of data generated with traditional design methods can thus
be put to use in rapidly generating candidates for design prompts,
including those with performance requirements not included in
training datasets [10].

Generative processes may be complemented by analysis
tools incorporating rule-based knowledge, in the form of equa-
tions governing the performance of designs [11]. Such knowl-
edge could be informed by PINNS in the case of PDE-governed
models such as those presented in this paper.

3 Methodology
3.1 PINN Problem Set-Up

We want to solve the 2D incompressible viscous laminar
Navier-Stokes equations, with the PDE residuals for each equa-
tion defined as in Figure 2. We want to solve these equations over
the space defined by (—1,2) x (—1,1), with a parametrized air-
foil in the center of the domain as shown in Figure 3, walls above
and below the airfoil to constrain the flow going from the inlet
towards the outlet. An example airfoil profile with a turning an-
gle of —6 degrees is shown in Figure 1. For each airfoil, camber
lines were parameterized as cubic splines, with initial and final
slopes given by metal inlet/outlet angles, first control point at the
trailing edge being fixed, and second control point at the trail-
ing edge having a free y-coordinate. For each inlet/outlet angle
combination, y-coordinate of the TE control point was selected
as the mean value in the range of values that produce an inflec-
tion point-free camber line. For the thickness distribution about
the camber line, we used four control points: two placed at the
leading and trailing edges with thickness equal to the leading and
trailing edge radii of 0.005, and two at x coordinates of 0.1 and
0.9 with a thickness value of 0.01. This problem set-up is akin
to an airfoil in the test section of a wind tunnel. For the purposes
of this study, we consider airfoils that are parametrized only by
metal turning angle 6, with fixed axial chords of 1 unit length and
fixed thickness distributions, metal inlet angle and flow inlet an-
gles at 0°, and camber line endpoint y-coordinates as a function
of the turning angle, ycamper.end (6)-

Each turning angle yields a different airfoil, meaning dif-
ferent boundary conditions for the problem, and thus a differ-
ent unique solution. We can thus consider the problem domain
to be a 3D space with dimensions X, y, and 6 (the turning an-
gle) defined by (—1,2) x (—1,1) x (—1,—12). Hence, the PINN
is solving the Navier-Stokes equations parametrically over the
same spatial domain but with different values of turning angles

3 METHODOLOGY

(i.e. different airfoils).

The boundary conditions employed are the same as those
used in [7]:

1. a parabolic inlet condition given by u = 1.2(y+1)(y — 1)
and v =0,

2. an outlet condition of p =0,

3. and a no-slip condition on the airfoil and top and bottom
walls u =v =0.

Each loss term is calculated over a batch of points (x,y, 6),
with its final value taken to be the mean squared error (MSE)
over this batch. The final total loss is a weighted aggregation of
each loss term.

Liotal = A1 LpPDE + A2 Lintet + A3 Louttet + A4 Lairfoil + AsLwar (1)

3.2 PINN Architecture

The PINN architecture is shown in Figure 2. The point co-
ordinates x and y are used as inputs, along with the turning angle
6. The input is then fed into a Fourier Projection Layer, with
frequencies fixed at initialization, followed by » fully connected
hidden layers of width m. After each hidden neuron, an activa-
tion function (AF) of tanh(x) is applied in order to provide non-
linearity to the network. We enhance the AFs by using adap-
tive AFs which should increase the rate of convergence of the
network [12]. Finally, the PINN outputs the flow variables u,
v, and p. Using automatic differentiation, the derivatives of the
flow variables with respect to x and y inputs can be calculated,
allowing the construction of the PDE residuals for continuity, x-
momentum, and y-momentum.

3.3 PINN Loss Optimization

In order to solve the Navier-Stokes equations, PINNs use
a weighted loss function in Equation (1) to optimize for differ-
ent objectives. The loss terms are those which characterize the
boundary conditions, the PDE residuals, and if included, the data
loss. The different loss sections defined over the (x,y) domain
are, shown in Figure 3, the inlet, the outlet, the top and bottom
walls, the interior, and the airfoil surface. The PDE residuals are
optimized only in the interior domain. For both training and vali-
dation, CFD simulations were conducted using Ansys Fluent for
three turning angles (—1,—6.26, —12 degrees). The CFD results
are used as data loss terms used in training as the MSE between
the PINN predictions and CFD results for u, v, p and their deriva-
tives with respect to x and y in the interior domain and on the
airfoil surface.

At each iteration, we choose a batch of points from each loss
section randomly, calculate the squared error for each i™ point,

3.3 PINN Loss Optimization

3 METHODOLOGY

Airfoil Profile for 6= —6

0.10
—— Airfoil Surface
—-=-- Camber Line
0.05 1 ® Control Point
> 0.001
—0.05 4
-0.10 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X
FIG. 1: Airfoil Profile for 6 = —6
Input Fourier Projection Hidden Output Automatic PDE Residuals
Layer Layer Layers Layer Differentiation
@ by b1z b3 "
. byy byy by3 ou ou 1dp %u 9%u
sin » ‘ " gt L (2R
: : : z Lvtom, u6x+vay+p6x v 62x+62y
bpy bnz bns
’ g 2 a a 10 a2 a2
I Lyom. =u_v+v_v+__p_v(Tv+Tv)
by1 by, bys Y ox dy pody 9%x 0%y
' ’ “lrx
b b b du v
cos 22’1 ZE'Z 25'3)é:l Lcontinuity = a + E
.bn,l bn,z bn,3

FIG. 2: PINN Architecture

and then take the mean over those points:

1 Npatch 2
Lz,domain = Z A (Ly) (Zi,predicted - Zi,actual) > 2
Nbatch i=0

where z = z(x,y, 0) is an arbitrary variable (e.g., u, v, and p) over
an arbitrary domain (e.g., inlet, outlet, interior, wall, and airfoil
domains). The weight function A (x,y) : R? — R applies a spa-
tial weighting on the predictions. For the PDE residuals, we use
the positive Signed Distance Function (SDF) with respect to the
airfoil to weigh the error as suggested by the NVIDIA Modulus
documentation [8]. Due to the dimensions of the domain, A (x,y)
is constrained between O and 1.4. This weighting should help
training by reducing the magnitude of the error near the airfoil,
where the gradients, and thus the PDE residuals, will be high. In
addition, we use A = 10 for L, jniet, as the flow will propagate
from the inlet towards the outlet through the optimization of the
Navier-Stokes equations. We define the loss terms for each loss

section as follows:

Lintet = Luintet + Lo inlet 3
Loutlet =L p,outlet 4)
Lwalts = Ly wall + Ly wall ()
Lairfoit = L airfoil + Lo, airfoil (6)

LPDE = fomomentum,in + Lyfmomentum,in + Lcontinuily,in (7)

where the domain specific losses £, jnter through Leontinvity,in are
given by Equation (2). The PDE loss in Equation (7) is defined
in the interior domain. The final total loss is the aggregated sum
of all the loss terms.

5
Ltotal = Z Ldomain,ia (®
i=1

i=

where Lgomain,i i given by Equations (3) through (7). However,
the different loss terms may have different orders of magnitude,
meaning that in an aggregated sum scheme some loss terms will
be preferentially optimized over others. In order to remedy this,
we use the loss scaling approach Relative Loss Balancing with

3.4 Evaluation Criterion

> 0.00

-0.25

=0.50

-0.75

-1.00

-1.0 -05 0.0 05 1.0 15 2.0
x
® Interior Walls ® Inlet ® Outlet ® Airfoil J

(a) Full Sample Space of Loss Sections for 6 = —12

1.00 *
0.75 1
0.50 1
0.25 1
Y 0.00 1
—0.257
~0.507
—0.757
—1.007

@ Interior Walls @® Inlet

® Outlet

@ Airfoil

(b) Batch Sample of Loss Sections over Angle Range
FIG. 3: Loss Sections

Random Lookback (ReLoBRal.o) to balance the loss term [13].
Finally, the total loss is backpropagated using the Adam opti-
mizer in order to update the weights of the network [14]. Over
the course of training, we use an exponential decay rate of 0.95
to slowly reduce the learning rate (LR), so that weight updates
become smaller.

3.4 Evaluation Criterion

A trained PINN model can be evaluated using several crite-
ria. First of all, the final aggregated loss can be used to compare
models to each other. However, a lower aggregated loss might
not necessarily mean a more physically accurate flow. In addi-

4 RESULTS

tion, using the CFD results, we calculate the MSE over all the
CFD points for the flow variables predicted by the PINN to pro-
vide the physical accuracy over the full flow domain. Finally,
for these same turning angles, we calculate the lift and drag over
the airfoils characterized and compare them to the lift and drag
calculated using the CFD results.

We calculate the shear stresses in the following manner:

Ju 2 Ju dv

T =20 — 3l <8x+8y> ®
Ju Jv

Ty = i <8y+8x> (10)

v 2 Ju Jv
T)yZZ[Jafy—g,u (ajc+a))) (11)
Tywall x = NxTxx + My Txy (12)
Twall,y = NxTxy + Ny Tyy, (13)

where n, and n, are the outward normals to the surface. We then
calculate the lift and drag:

Faxia1 = //A — PNy + Twall x dA (14)
Feertical = //A — PNy + Twally dA (15)
Lift = Fyertica1 €OS(0) — Fxjar sin() (16)
Drag = Fvertical sin((x) +Faxial COS(OC), (17)

where « is the angle of attack of the airfoil, as defined by the
angle of its chord with respect to the x-axis. Using these four
metrics, loss, MSE over flow, lift, and drag, we can compare
models with different hyperparameters. These hyperparameters
affect the architecture of the PINN (frequencies used in Fourier
Projection Layer, number of hidden layers, width of hidden lay-
ers), as well as the training regime (intial LR, loss weights, loss
balancing scheme).

4 Results

In order to find the PINN hyperparameters for best accuracy,
we try different sets of hyperparameters to modify the model
and its training regime. For the PINN architecture, we use a
Multi-Layer-Perceptron (MLP), a Fourier Network, and a Mod-
ified Fourier Network [8]. In addition, we vary the amount of
hidden layers between 4 and 5, as well as varying the width of
these hidden layers between 50 and 100 neurons. Finally, we
judge the effect of adding adaptive AFs to the convergence rate
and accuracy of the model. The training regime is modified by
varying the initial LR (5 x 1072, 1 x 1072), the point cloud den-

4.1 Effect of Training Hyperparameters

TABLE 1: Batch Sizes
Inlet Outlet Interior Airfoil Walls

1500 1000 10000 1500 1000

sity, the extent to which CFD data is used or not, and whether
SDF weighting is used or not.

We distinguish between a low, a very low, and a high point
cloud density, where the first is defined by the batch sizes as seen
in Table 1, the second by batch sizes twice as small, and the last
batch-sizes twice as large. We also distinguish between full, half,
and none for CFD use, where full means that CFD data is used
both in the interior domain and on the airfoil surface, half when
used only in interior domain, and none when no data is used at
all.

We will consider our base model, for the purposes of com-
parison, to be a Fourier Network with 5 hidden layers and 50
hidden neurons, which uses adaptive AFs, SDF weighting for the
interior residual points, a low point cloud density, an initial LR
of 1 x 1072, full validation, and the ReLoBRaLo loss balancing
scheme.

In Table 2, we show the performance of the baseline model
in terms of the loss and the percentage relative error for lift and
drag. We observe that the percentage relative error with respect
to the CFD of the PINN is lower for drag than it is for lift. We
will only compare models based on their final losses, and the
mean relative error over lift and drag. These quantities will be
relative to the baseline, with negative quantities indicating lower
error, and positive quantities higher error.

4.1 Effect of Training Hyperparameters

In Table 3, we compare the baseline model to models with
the same architecture, but with differences to the training hyper-
parameters in terms of loss balancing, loss weighting, LR, and
use of CFD results during training. We find that the exclusion of
CFD data decreases the performance of the PINN with respect to
the relative error of lift and drag. The error in lift decreases the
most from the inclusion of the CFD results in the interior region,
while drag improves the most from the inclusion of the CFD re-
sults on the surface of the airfoil. It is interesting to note however
that the no-validation model, despite having lower loss (-4.236),
has much higher error for drag and lift (91.602 and 30.034, re-
spectively) compared to the baseline (3.526 and 0.955, respec-
tively). This decrease is due to the exclusion of the data loss
terms in the total loss. The model with no SDF weighting has
much higher loss, but has lower error than the baseline. This in-
crease in total loss may be due to the fact that the SDF weighting
decreases the loss of the interior points near the airfoil, where
the loss will be highest due to the large gradients encountered
there. However, without SDF weighting, the optimizer focuses

4 RESULTS

1.00
1.2

0.75
1.0

0.50
0.25 0.8
> 0.00 0.6
-0.25 0.4

-0.50
0.2

-0.75
0.0

-1.00

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X
(a) PINN Results for u

1.00
1.2

0.75
1.0

0.50
0.25 0.8
> 0.00 0.6
-0.25 0.4

-0.501

0.2

-0.75
0.0

-1.00

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X
(b) CFD Results for u

FIG. 4: Results Comparison for 8 = —1

on points near the airfoil where the loss is high, which explains
the decrease in error in lift and drag. The exclusion of adaptive
AFs increases performance for all metrics. Sum-loss aggregation
decreases loss and error in drag but increases error in lift signifi-
cantly. Finally, increasing the LR increases the loss significantly,
slightly increases the error in drag, and significantly increases the
error in lift.

4.2 Effect of Architecture

In Table 4, we compare the effect of changing architecture of
the base model on the final performance of the PINN. We see that
the Modified Fourier Network performs the best in terms of low-
est loss and lowest relative error on lift. The MLP has the lowest
error for drag, but has the highest loss. In addition, increasing
the amount of frequencies in the Fourier network improves the
performance of the PINN across all metrics, though to a lesser

4.3 Effect of Size and Depth of Network

4 RESULTS

TABLE 2: Baseline Model Performance (% relative error)

Architecture Final Loss Lift Drag

Fourier

3.526 0.955

TABLE 3: Training Hyperparameters Relative to Baseline Model
Change Final Loss Lift Drag

No SDF +20.892 -1.905 -0.035
No Adaptive AFs -0.546 -0.378 -0.257

Higher LR +3.186 -0.774 +0.087
Sum Loss Agg. -1.426 +0.819 -0.577
Half Val. -4.107 -1.036 +26.948
No Val. -4.236 +91.602 +30.034

TABLE 4: Effect of Architecture on Performance Relative to
Baseline Model

Architecture Final Loss Lift Drag

Fourier with -0.342 -0.96 -0.242
extra frequencies

Modified Fourier -3.713 -1.905 -0.342

MLP +0.849 +2.344 -0.399

TABLE 5: Effect of Depth & Width on Performance Relative to
5L50 MF

Archit- Depth Width Loss Lift Drag

ecture (Neurons)
Fourier 4 50 +3.768 +0.846 +0.105
Fourier 4 100 +0.49 -0.55 -0.254
Mod. 4 100 -0.122 -0.731 -0.355
Fourier
Mod. 5 100 -0.463 -0.696 -0.321
Fourier

degree than the modified Fourier network. We will now employ
the modified Fourier model with 5 layers and 50 neurons, which
we will refer to as 5L.50 MF, as a new baseline with which to
compare other models since it is the best performing so far.

TABLE 6: Effect of Point Cloud Density on Performance Rela-
tive to 4100 MF

Architecture Final Loss Lift Drag
Mod. Fourier High 0.965 -0.121 +0.123
Mod. Fourier Very Low -0.218 +0.240 +0.180

Density

4.3 Effect of Size and Depth of Network

Additional layers and neurons increase the capacity of a
model, which in turn may decrease error. In Table 5, we com-
pare models with different widths and depths to the baseline. We
find that the only model which has lower capacity compared to
the baseline, the Fourier Network with 4 layers and 50 neurons,
has no improvements with respect to the baseline. Out of the
three models which improve (lower loss, relative error on drag
and lift) upon the Modified Fourier Network with 5 layers and
50 neurons, the Modified Fourier network with 4 layers and 100
neurons shows the most improvement in terms of lift and drag,
even though the Modified Fourier Network with 5 layers and 100
neurons has more capacity, and a lower loss. For the next set of
hyperparameters, we will use the Modified Fourier Network with
4 layers and 100 neurons as a baseline, which we will refere to
as 4L.100 MF.

4.4 Effect of Point Cloud Density

Increasing the point cloud density can decrease the error by
providing more accurate gradients when updating the weights
and better capturing important flow regions, however, this can
cause networks to fall into local minima. Decreasing the point
cloud density can also decrease error, by providing gradients
which are slightly noisy, which can avoid local minima to reach
global objective function minima. In addition, increasing the
point cloud density leads to additional computational expense
and memory usage, while the reverse is true for decreasing the
point cloud density. In Table 6, we see that decreasing the point
cloud density, while decreasing the final loss, also decrease the
performance compared to the baseline with respect to lift and
drag. When increasing the point cloud density, the final loss is
increased, with a boost in performance with regards to lift ac-
companied with a reduction in performance with regards to drag.

In Figure 5, we demonstrate different loss traces over the
course of 70,000 iterations. We see that the total aggregated
loss, the flow variable losses, and the PDE residual losses all
diminish smoothly, while the gradient losses are subject to dras-

107 1 —— Aggregated
106 B
105 P
A 104 4
S
103 4
102 B
101 P
100 B
0 10000 20000 30000 40000 50000 60000 70000
Iterations
(a) Total Aggregated Loss
—— Continuity
10° A —— Y Momentum
—— X Momentum
104 4
1)
%]
o
-
102 4
100

0 10000 20000 30000 40000 50000 60000 70000
Iterations

(c) PDE Residual Losses

5 DISCUSSION

Loss

0 10000 20000 30000 40000 50000 60000 70000
Iterations

(b) Flow Variable Losses

Loss

0 10000 20000 30000 40000 50000 60000 70000
Iterations

(d) Gradient Losses

FIG. 5: Losses vs Iterations for Best Performing Model

tic increases and decreases. As well, we observe that the loss
for du/dy is significantly higher than the other gradients. These
peaks could be due to the fact that the gradient losses, even
though they are indirectly optimized through the PDE residual
losses, are only directly optimized through the CFD data loss
over the airfoil surface. The updates of the PINN parameters
may be too large over this small and sensitive region, causing
overcorrections in response to the loss.

5 Discussion
5.1 PINNs as Surrogate Models

We find the best performing model to be the modified
Fourier network, with 4 layers and 100 neurons, ReLoBRal.o
loss balancing, adaptive AFs, low point cloud density, an ini-
tial LR of 1 x 1072, and with SDF weighting. Figures 4 and 6
demonstrate visually the performance of the PINN in comparison
to CFD for a turning angle of 8 = —1° for the flow variable u, as
well as the absolute error for all the flow variables for a turning

angle of 8 = —6.26°. We see in Figure 6 that the highest abso-
lute error between the CFD and PINN occurs at the leading and
trailing edges of the airfoil for u, v, and p. For the prediction of
u, there is also an area of relatively significant error at the bound-
ary layer of the airfoil. During the training process, three CFD
simulations were used for data, with each taking 15.945 seconds
of wall-clock time to run on Ansys Fluent, whereas the PINN
took 5 hours, 33 minutes, and 31 seconds to train on a Tesla K80
GPU.

From these results, we find that PINNs can be used to solve
the Navier-Stokes equations for a parametrized airfoil. Relative
error for lift and drag could be decreased through further hy-
perparameter tuning. In addition, instead of sampling uniformly
over the x and y dimensions, points could be clustered near the
airfoil as that is where the highest relative losses for the flow vari-
ables are found in the interior domain, which in turn affect the
error for lift and drag. This point distribution could be done by
using a standard mesh such as OH-block structured to improve
resolution and better capture sensitive areas. In Section 4.1, we

5.2 Optimization using PINNs

> 0.00

0.0

(a) u

0.5
X

(b)v

5 DISCUSSION

0.025
0.020
0.015
0.010

0.005

1.0 15 2.0

-0.5

0.0 0.5 1.0 15 2.0

©p

FIG. 6: PINN Absolute Error of flow variables for 6 = —6.26

do not investigate how the effect of permutations of different hy-
perparameters, which could shed light on the interplay between
hyperparameters, nor do we run the trainings for each hyperpa-
rameter multiple times and average the results to account for the
randomness imbued in the PINN training process. In addition,
due to limited computational resources, we do not conduct a hy-
perparameter test for each new model architecture and size. In-
cluding more CFD results for other turning angles could also im-
prove performance. As seen in the results section, the different
PINN models need to be compared using not just the final loss,
but as well the relative error and the lift, as a lower final loss
may not necessarily indicate a better performing model overall.
Including the error for lift and drag into the total loss function
which is minimized could further improve results.

Several changes are needed in order to increase the gen-
eralizability of the PINN model outside of this limited set-up.
First, additional airfoil parameters could be included in order
to increase the amount of airfoils the PINN can be used on,
which would in turn increase the dimensionality of the prob-
lem. Furthermore, the inlet speed should be increased to much
higher values and the viscosity should be lowered to more closely
match real conditions inside compressors. However, these mod-
ifications will require the use of the compressible Navier-Stokes
equations, as well as the inclusion of an appropriate turbulence
model. The former will require the PINN to not only predict the
current flow variables used, but as well density or temperature,
which in turn requires the addition of the Energy equation for the
problem to be well posed.

5.2 Optimization using PINNs

PINNS are not only useful as surrogate models, but can also
be used in different ways for the optimization of airfoil designs.
Automatic differentation is already used for two very important
gradient calculations in PINNs: the gradients of the outputs with
respect to the inputs of the network in order to reconstitute the
Navier-Stokes equations, and the gradients of the loss with re-
spect to the parameters of the network in order to update the

parameters during training. In addition, in Sun et al., 2023, au-
tomatic differentiation is used by somewhat mixing these two
ideas: define a design objective function f (e.g lift-to-drag ra-
tio), constraints g (e.g., loss bucket and surge characteristics) and
then calculate the gradient of the objective and constraints with
respect to the design variables (V f(x) and Vg(x)) [7]. Now that
these gradients are available, they can be used in any gradient-
based optimization method in order to minimize or maximize
the design objective function by modifying the design parame-
ters. This optimization process starting from a single random (or
perhaps standard) design would be reflective of the Point-Based
Design (PBD) paradigm [15].

In order to produce an optimal design from within a vast de-
sign space and not just a local minima, the design space must be
properly explored. Thus, several initial guesses methodically dis-
persed throughout the domain (e.g Latin Hypercube Sampling)
need to be used as the starting points for several optimization
runs. However, this approach could be inefficient due to a large
amount of initial points needed to cover the design space, as
well as the difficulty in estimating the objective and constraint
functions and their gradients with respect to the design variables.
These difficulties could be mitigated by using a Generative Al
model to propose initial guesses.

As proposed by Unlusoy, 2023 [16], an airfoil design tool
for axial blades that outputs satisfactory designs can be created
by formulating a simplified and generalized version of the de-
sign problem, where, for the airfoil section of each radial span of
the blade, the design parameters that minimize frictional losses
and meet the flow inlet and exit angles are to be found. Con-
sidering design parameters x and performance metrics of total
pressure loss, and flow inlet and exit angles y as realizations of
random variables, we utilize conditional deep generative models,
such as conditional Generative Adversarial Networks (GANS),
Variational Autoencoders (VAEs) and Real-Valued Non-Volume
Preserving Transformations (RealNVPs), with high model com-
plexity to capture the conditional distribution of x with respect to
y using training data of (x,y) samples [17, 18, 19]. The modeled

distribution p(x|y) is then sampled from, i.e. “queried”, with
the target y of the design prompt to obtain many design options
that satisfy the initial design requirements (such as optimization
constraints).

Designs Considered

\4

Definition of Primary and Secondary Objectives
Sampling of Designs

Primary Culling

Parameter Optimization

Secondary Culling

()
£ Analysis
|_
Gen Al
) PINNS
Final
Selection CFD
|| Engineer
Refinement
\ 4

FIG. 7: Set-Based Concurrent Engineering (SBCE) Process Dia-
gram

By querying the Generative Al model with target variables,
we recover not just a single satisfactory sample, already likely
near to an optimal design, but a variety of satisfactory designs
which may each present their own advantages in terms of sec-
ondary design considerations. Thus, once a batch of airfoil de-
signs has been generated, the PINN in its ability as a surrogate
model can be used to either weed out unsatisfactory designs,
shortlist a certain amount of the best designs with regards to
the primary objective function, or select a subset wherein each
design satisfies the primary objective as well as a unique sec-
ondary objective. Furthermore, using automatic differentiation
and a gradient-based method, the remaining designs can be op-
timized as desired using the PINN. Finally, commercial CFD
solvers could be used for a more accurate and in-depth analy-
sis of the optimized designs in order to find the best one, which
should not need much more modification. Hence, using a Gen-
erative Al model to produce a set of initial samples for a PINNs
to cull and optimize could present benefits in terms of improved
performance, and a facilitated method for pivoting between de-
signs as secondary requirements are established or change. This

10

6 CONCLUSION

workflow is best suited for a Set-Based Concurrent Engineering
(SBCE) approach [20] which explores and iterates over several
designs as opposed to iterating over a single best-guess design
in PBD [15]. A Set-Based Concurrent Engineering (SBCE) pro-
cess, as illustrated in Figure 7 would scale up the cost of its com-
putational methods as it reduces the amount of candidate designs,
unintuitively allowing more time to be spent on considering var-
ious designs while decreasing the total design time.

6 Conclusion

We have succesfuly demonstrated the application of PINNs
to an airfoil parametrized by the turning angle. In addition, we
lay out how, with further improvements to the PINN and com-
plete parameterization of the airfoil, PINNs combined with Gen-
erative Al models can be used for the design and optimization of
compressor blades using an SBCE approach.

Acknowledgements

The authors of this paper acknowledge financial support
from Siemens Energy Canada Limited and the Mathematics of
Information Technology and Complex Systems (MITACS) Ref.
number IT36316.

References

[1] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5):359-366, 1989. ISSN 0893-
6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL https://www.
sciencedirect.com/science/article/pii/0893608089900208.

[2] Maziar Raissi, Paris G. Perdikaris, and George E. Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational Physics,
378:686-707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/science/article/pii/
50021999118307125.

[3] Atilim Gunes Baydin, Barak A. Pearlmutter, and Alexey Andreyevich Radul. Auto-
matic differentiation in machine learning: a survey. CoRR, abs/1502.05767, 2015.
URL http://arxiv.org/abs/1502.05767.

[4] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Kar-
niadakis. Physics-informed neural networks (pinns) for fluid mechanics: a re-
view. Acta Mechanica Sinica, 37(12):1727-1738, Dec 2021. ISSN 1614-
3116. doi: 10.1007/s10409-021-01148-1. URL https://doi.org/10.1007/
510409-021-01148-1.

[5] Shinjan Ghosh, Amit Chakraborty, Georgia Olympia Brikis, and Biswadip Dey. Rans-
pinn based simulation surrogates for predicting turbulent flows. arXiv preprint, 2023.

[6] Sean K. Hanrahan, Melissa Kozul, and Richard D. Sandberg. Predicting transitional
and turbulent flow around a turbine blade with a physics-informed neural network.
In Turbo Expo: Power for Land, Sea, and Air, volume 13C: Turbomachinery —
Deposition, Erosion, Fouling, and Icing; Design Methods and CFD Modeling for
Turbomachinery; Ducts, Noise, and Component Interactions, page V13CT32A010,
06 2023. doi: 10.1115/GT2023-101238. URL https://doi.org/10.1115/
GT2023-101238.

[7]1 Yubiao Sun, Ushnish Sengupta, and Matthew Juniper. Physics-informed deep
learning for simultaneous surrogate modeling and pde-constrained optimization of
an airfoil geometry. Computer Methods in Applied Mechanics and Engineering,
411:116042, 2023. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2023.
116042. URL https://www.sciencedirect.com/science/article/
pii/sS0045782523001664.

[8] Modulus - a neural network framework. URL https://developer.nvidia.
com/modulus.

[9] Pytorch documentation.
index.html.

URL https://pytorch.org/docs/stable/

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/1502.05767
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1115/GT2023-101238
https://doi.org/10.1115/GT2023-101238
https://www.sciencedirect.com/science/article/pii/S0045782523001664
https://www.sciencedirect.com/science/article/pii/S0045782523001664
https://developer.nvidia.com/modulus
https://developer.nvidia.com/modulus
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Lyle Regenwetter, Amin Heyrani Nobari, and Faez Ahmed. Deep Generative Models
in Engineering Design: A Review. 144(7), jul 2022. ISSN 10500472. doi: 10.1115/1.
4053859. URL https://dx.doi.org/10.1115/1.4053859.

Marcus Sandberg, Ilya Tyapin, Michael Kokkolaras, Ola Isakasson, Jan-Olov
Aidanpid, and Tobias Larsson. A Knowledge-based master-model approach with ap-
plication to rotating machinery design. Concurrent Engineering Research and Applica-
tions, 19(4):295-305, dec 2011. ISSN 1063293X. doi: 10.1177/1063293X11424511/
ASSET/IMAGES/LARGE/10.1177.1063293X11424511-FIG7.JPEG. URL https:
//Jjournals.sagepub.com/doi/10.1177/1063293X11424511.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive ac-
tivation functions accelerate convergence in deep and physics-informed neural net-
works. Journal of Computational Physics, 404:109136, March 2020. ISSN 0021-
9991. doi: 10.1016/j.jcp.2019.109136. URL http://dx.doi.org/10.1016/
§.9cp.2019.109136.

Rafael Bischof and Michael Kraus. Multi-objective loss balancing for physics-
informed deep learning. arXiv preprint, 2021. doi: 10.13140/RG.2.2.20057.24169.
URL http://rgdoi.net/10.13140/RG.2.2.20057.24169.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint, 2017.

Khalil ~Alhandawi, Petter Andersson, Massimo Panarotto, Ola Isaks-
son, and Michael Kokkolaras. Scalable Set-based Design Optimiza-
tion and Remanufacturing for Meeting Changing Requirements. Journal
of Mechanical Design, pages 1-20, jul 2020. ISSN 1050-0472. doi:
10.1115/1.4047908. URL https://asmedigitalcollection.asme.org/
mechanicaldesign/article/doi/10.1115/1.4047908/1085767/
Scalable-Setbased-Design-Optimization—-and.

Can Unlusoy. Data-driven inverse aerodynamic design of compressor blading. Mas-
ter’s thesis, Jun 2023. URL https://escholarship.mcgill.ca/concern/
theses/s4655n871.

Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv
preprint, 2014. doi: 10.48550/ARXIV.1411.1784. URL https://arxiv.org/
abs/1411.1784.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes, 2013. URL
https://arxiv.org/abs/1312.6114.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation Using
Real NVP. arXiv preprint, 2016. doi: 10.48550/ARXIV.1605.08803. URL https:
//arxiv.org/abs/1605.08803.

Durward Sobek II, Allen Ward, and Jeffrey Liker. Toyota’s principles of set-based
concurrent engineering. MIT sloan management review, 40(2):67-83, 1999. ISSN
0019848X.

11

6 CONCLUSION

https://dx.doi.org/10.1115/1.4053859
https://journals.sagepub.com/doi/10.1177/1063293X11424511
https://journals.sagepub.com/doi/10.1177/1063293X11424511
http://dx.doi.org/10.1016/j.jcp.2019.109136
http://dx.doi.org/10.1016/j.jcp.2019.109136
http://rgdoi.net/10.13140/RG.2.2.20057.24169
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4047908/1085767/Scalable-Setbased-Design-Optimization-and
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4047908/1085767/Scalable-Setbased-Design-Optimization-and
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4047908/1085767/Scalable-Setbased-Design-Optimization-and
https://escholarship.mcgill.ca/concern/theses/s4655n871
https://escholarship.mcgill.ca/concern/theses/s4655n871
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1605.08803
https://www.researchgate.net/publication/383516194

	Introduction
	Background
	Machine Learning and CFD
	Relevance of PINNs to Generative AI

	Methodology
	PINN Problem Set-Up
	PINN Architecture
	PINN Loss Optimization
	Evaluation Criterion

	Results
	Effect of Training Hyperparameters
	Effect of Architecture
	Effect of Size and Depth of Network
	Effect of Point Cloud Density

	Discussion
	PINNs as Surrogate Models
	Optimization using PINNs

	Conclusion

