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ABSTRACT

Prompt tuning, in which a base pretrained model is adapted to each task via con-
ditioning on learned prompt vectors, has emerged as a promising approach for
efficiently adapting large language models to multiple downstream tasks. How-
ever, existing methods typically learn soft prompt vectors from scratch, and it
has not been clear how to exploit the rich cross-task knowledge with prompt vec-
tors in a multitask learning setting. We propose multitask prompt tuning (MPT),
which first learns a single transferable prompt by distilling knowledge from mul-
tiple task-specific source prompts. We then learn multiplicative low rank updates
to this shared prompt to efficiently adapt it to each downstream target task. Ex-
tensive experiments on 23 NLP datasets demonstrate that our proposed approach
outperforms the state-of-the-art methods, including the full finetuning baseline in
some cases, despite only tuning 0.035% as many task-specific parameters.1

1 INTRODUCTION

Finetuning pretrained language models (PLMs) has led to significant improvements across various
downstream NLP tasks (Devlin et al., 2019; Howard & Ruder, 2018; Raffel et al., 2020). However,
the conventional paradigm of full task-specific finetuning (FT) is difficult to scale to multiple tasks,
given that modern PLMs can have hundreds of millions (or even billions) of parameters. There thus
has been a growing interest in developing parameter-efficient methods for model tuning (Houlsby
et al., 2019; Lester et al., 2021; Ding et al., 2022), where the goal is to learn only a small number of
additional parameters per task while achieving performance comparable to full finetuning.
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Figure 1: A conceptual overview of our approach. In-
stead of retrieving or aggregating source prompts (top),
multitask prompt tuning (MPT, bottom) learns a single
transferable prompt. The transferable prompt is learned
via prompt decomposition and distillation.

Prompt tuning (PT), which prepends tun-
able continuous prompt vectors to the in-
put, has emerged as a promising approach
for parameter-efficient transfer learning with
PLMs (Liu et al., 2021a; Li & Liang, 2021;
Lester et al., 2021; Liu et al., 2022b; 2021b).
PT freezes the PLM parameters and only learns
a small set of task-specific prompt vectors.
However, despite their impressive performance,
there is still a large gap between prompt tuning
and full finetuning (Lester et al., 2021). Addi-
tionally, this approach is sensitive to initializa-
tion and often requires more training time than
finetuning (Su et al., 2022; Zhong et al., 2022).

Recent work has proposed to address these is-
sues by transferring prompt vectors from vari-
ous tasks (Su et al., 2022; Zhong et al., 2022).
These methods first train soft prompts on mul-
tiple source tasks and then use these pretrained
prompts to initialize the prompt for further fine-
tuning on a target task based on a (potentially learned) similarity measure (Vu et al., 2022; Asai et al.,
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1Project page: https://zhenwang9102.github.io/mpt.html

1

https://zhenwang9102.github.io/mpt.html


Published as a conference paper at ICLR 2023

104 105 106 107 108

# of Parameters

72.5

75.0

77.5

80.0

82.5

85.0

Av
g.

 G
LU

E

104 105 106 107 108

# of Parameters

60

65

70

75

Av
g.

 S
up

er
GL

UE

FT
Adapter
BitFit
PT
SPoT
ATTEMPT
ATTEMPT*
MPT
MPT*

Figure 2: Parameter efficiency on GLUE (left) and SuperGLUE (right). Our multitask prompt tuning (MPT)
approach, which transfers a single shared prompt learned from multiple source tasks using prompt decomposi-
tion and distillation, maintains high accuracy (y-axis) while finetuning only a small number of parameters per
task (x-axis). All results are based on T5-Base (Raffel et al., 2020). Baselines include: Adapters (Houlsby
et al., 2019), BitFit (Zaken et al., 2022), PT (Lester et al., 2021), SPoT (Vu et al., 2022), and ATTEMPT (Asai
et al., 2022). ∗Indicates multitask training on target tasks. Best viewed in color.

2022) (see Figure 1, top). In this paper, we extend this line of work and introduce multitask prompt
tuning (MPT), which uses multitask data to learn a single prompt that can be efficiently trans-
ferred to target tasks. While conceptually simple, learning a shared prompt space can be practically
challenging as it requires learning commonalities across different source tasks while minimizing in-
terference. Therefore, we decompose the soft prompt of each source task (which can be represented
as a prompt matrix) into a multiplication of a shared matrix and a low-rank task-specific matrix,
and find that this decomposition is more effective than simply sharing the prompt matrix across all
tasks. This decomposition is learned through knowledge distillation from soft prompts obtained
from regular prompt tuning. To transfer to new tasks, we perform low-rank multiplicative updates
to the shared prompt matrix. Figure 1 (bottom) illustrates our approach.

Extensive experiments on 23 NLP datasets across diverse tasks demonstrate the effectiveness of
our proposed approach over state-of-the-art prompt transfer methods. On the SuperGLUE bench-
mark (Wang et al., 2019), MPT with T5-Base (Raffel et al., 2020) yields a 16.3% improvement over
the vanilla prompt tuning baseline (PT, Lester et al., 2021), and also outperforms the most compet-
itive multitask prompt transfer baseline (ATTEMPT, Asai et al., 2022) despite tuning much fewer
task-specific prompt parameters (77.6K vs 232K). On some benchmarks, MPT exceeds the perfor-
mance of full finetuning while only requiring 0.035% tunable parameters per task (see Figure 2).
We also find that MPT is very effective for few-shot learning with 4-32 labels for each target task.

2 RELATED WORK

Parameter-efficient transfer learning. Parameter-efficient transfer learning for pretrained lan-
guage models is an active research area (Ding et al., 2022). Adapters (Houlsby et al., 2019; Ma-
habadi et al., 2021) and its variants (Hu et al., 2021; Karimi Mahabadi et al., 2021) insert trainable
layers, while BitFit (Zaken et al., 2022) only updates the bias parameters without changing any other
model parameters. Diff pruning (Guo et al., 2021) and FISH (Sung et al., 2021) learn sparse updates
to the original PLM. Another popular choice is prompt tuning (Lester et al., 2021) which only up-
dates soft prompt vectors prepended to the input. Prefix-tuning of optimizing continuous prompts
for natural language generation tasks is presented in Li & Liang (2021). UNIPELT learns to combine
different tuning methods via gating mechanism (Mao et al., 2022). HyperPrompt (He et al., 2022)
introduces task-conditioned hyperprompts that condition the model on task-specific information for
constructing prompts. LST (Sung et al.) aims to reduce the training memory of parameter-efficient
tuning by a ladder side network. Discrete (i.e., hard) prompts have also been shown to be effective
in many cases (Schick & Schütze, 2021a;b; Gao et al., 2021; Malkin et al., 2022). However, our ap-
proach is most related to the transferability of prompts (Wang et al., 2021; Vu et al., 2022; Su et al.,
2022), which focuses on boosting the performance of prompt tuning across many tasks. SPoT (Vu
et al., 2022) selects one prompt using a similarity measure, and ATTEMPT (Asai et al., 2022) adopts
an attention mechanism over the source prompts to initialize the prompt for a target task. Unlike ex-
isting works, our approach learns a single shared prompt by decomposing and distilling knowledge
from source prompts for efficient adaptation to a diverse set of target tasks.
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Multitask learning. Multitask learning, which focuses on simultaneously solving multiple related
tasks with a single model, has been studied from multiple perspectives (Zhang & Yang, 2021; Ruder,
2017). A common approach is to transfer a model that has been fine-tuned on multiple source tasks
to another target task (Vu et al., 2020; Raffel et al., 2020; Aghajanyan et al., 2021a; Zhong et al.,
2021; Clark et al., 2019b; Singh et al., 2022). A few recent works show zero-shot and few-shot
transfer capabilities of language models through massive multitask learning over a large number of
tasks (Sanh et al., 2022; Wang et al., 2022; Liu et al., 2022a; Wei et al., 2021). Designing specific
parameter-sharing strategies is also another recent trend in multitask learning (Ruder et al., 2019;
Sun et al., 2020; Misra et al., 2016). While our proposed approach is inspired by these methods, this
paper focuses on multitask prompt transfer for parameter-efficient adaptation of language models,
which still remains a challenging and largely understudied problem.

Knowledge distillation. Knowledge distillation has been used to improve performance and effi-
ciency across many tasks (Gou et al., 2021), including model compression (Hinton et al., 2015; Jiao
et al., 2020; Sanh et al., 2019), transfer learning (Furlanello et al., 2018; Xu et al., 2020), machine
translation (Zhou et al., 2019), question answering (Hu et al., 2018), and document retrieval (Shakeri
et al., 2019). Concurrently with our work, PANDA (Zhong et al., 2022) uses knowledge distillation
with a new metric to better predict prompt transferability across different combinations of source-
target tasks. PANDA focuses on transferring from one source task to another target task using a
similarity measure (similar to SPoT (Vu et al., 2022)), while our MPT approach leverages multitask
learning to better exploit cross-task knowledge for prompt transfer.

3 APPROACH

Given a set of source tasks S = {S1,S2, ...,Sκ} and target tasks T = {T1, T2, ..., Tτ}, our goal is
to learn a single soft prompt over S that can be adapted to each task Ti in a parameter-efficient way.
Simply training a single soft prompt on S and then finetuning on each Ti is sub-optimal as it can
fail to leverage commonalities across source tasks while minimizing interference at the same time.
To this end, multitask prompt tuning (MPT) aims to compress task-shared knowledge in S into a
single prompt matrix ϕS via knowledge distillation to improve performance on T while filtering
out task-specific information that is less useful for transfer learning.

Prompt tuning. Given a pre-trained language model with parameters Θ and one target task T with
training data (X,Y ) = {xi,yi}Ni=1, the standard approach is to directly finetune all the parameters
by maximizing the conditional probability P (Y |X; Θ), which can be parameter-inefficient when
considering a group of target tasks T . An alternative that is more parameter-efficient is prompt tun-
ing (PT), which randomly initializes a small number of learnable prompt vectors (i.e., soft prompts)
to be prepended to the input embeddings of the PLM while freezing model parameters Θ (Lester
et al., 2021; Liu et al., 2022b). Formally, for a sequence of input tokens with token embeddings
as T = [t1, t2, ..., tn] ∈ Rn×d, PT prepends a learnable prompt matrix P ∈ Rl×d with the same
dimension as the token embedding d, where l is a hyperparameter. PT then optimizes the following
loss function with respect to P ,

LPLM = −
∑
i

logP (yi |xi ; Θ,P ), (1)

where the input to the language model is given by the concatenated matrix [P ;T ] ∈ R(l+n)×d.
While this approach has been successful for some tasks and models, researchers have observed
that vanilla PT can sometimes lead to lower performance (especially on smaller PLMs), slow con-
vergence, and high sensitivity to parameter initialization (Lester et al., 2021; Su et al., 2022; Zhong
et al., 2022). Recent works address these issues by first training prompts on multiple source tasks and
then using these prompts to initialize the prompts for a target task via some similarity measure (Asai
et al., 2022; Vu et al., 2022). We extend this line of work and propose a framework for transferring
multitask knowledge into a single soft prompt to enable more performant and parameter-efficient
transfer learning to downstream target tasks T .

3.1 MULTITASK PROMPT TUNING

Our proposed framework, dubbed MPT, consists of two stages: source training and target adapta-
tion. MPT first focuses on source training to generate a single soft prompt matrix to be reused in the
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second stage for target task adaptation. Specifically, prompt matrices for the source tasks are decom-
posed into a task-shared matrix and a low-rank task-specific matrix (prompt decomposition), where
the former is shared across all tasks. This decomposition into shared and task-specific components
is learned through knowledge distillation. Once learned, the shared prompt matrix is adapted to a
downstream target task via low-rank multiplicative updates.

⊗ ⊗
Shared prompt P*

Task-specific vectors

W1 W2

̂P1 ̂P2

MPT

u1

v1 v2

u2

Figure 3: An illustration on prompt decom-
position for two tasks. The shared matrix
P ⋆ is combined with task-specific vectors
uk,vk to obtain the task-specific prompt
matrices P̂k for k ∈ {1, 2}.

Prompt decomposition. The goal of prompt decom-
position is to enable efficient knowledge sharing across
source tasks S, while still allowing each task to main-
tain its own parameters to encode task-specific knowl-
edge. We decompose the soft prompt Pk for the k-th task
into two parts, as shown in Figure 3. Let P ∗ ∈ Rl×d

denote the shared prompt across all tasks, and further let
uk ∈ Rl,vk ∈ Rd be the task-specific vectors for each
task k. The task-specific vectors form a rank-one matrix
Wk = uk ⊗ vT

k , which has the same dimensions as the
shared prompt P ∗. The task prompt P̂ for k-th source
task is then parameterized as:

P̂k = P ∗ ◦Wk = P ∗ ◦ (uk ⊗ vT
k ), (2)

where ◦ denotes the Hadamard product between two ma-
trices. Our parameterization of prompt decomposition is
inspired by prior low-rank methods (Li et al., 2018; Agha-
janyan et al., 2021b; Wen et al., 2020), such that general
information across the set of source tasks S can be cap-
tured by “slow” weights P ∗ shared across tasks, while
the “fast” weights Wk could then encode task-specific
knowledge for Sk in a low-rank subspace.

Prompt distillation. Learning the prompt decomposition directly from the multitask datasets S
tended to make the shared component P ∗ overfit to larger tasks. We found knowledge distillation
from separately-trained source prompts to be an effective strategy for learning good decompos-
able prompts. Specifically, we first obtain a teacher prompt P (teacher)

k for the k-th source task
by conventional prompt tuning. We then randomly initialize a corresponding student prompt as
P̂k = P ∗ ◦ (uk ⊗vT

k ), where all student prompts share P ∗ and have their own task-specific vectors
as described above. We then use distillation to transfer cross-task knowledge into the shared prompt
matrix (Sanh et al., 2019). The first loss is to match the output probability distributions of students
and teachers by minimizing their KL-Divergence with respect to the shared prompt matrix P ∗ and
the task-specific parameters uk and vk,

LLogits =
∑
k∈|S|

∑
(xi,yi)∈Sk

KL
[
P
(
yi |xi ; Θ,P

(teacher)
k

)
∥ P

(
yi |xi ; Θ, P̂k

)]
. (3)

We use a temperature T to control the smoothness of the output distribution for both teacher and stu-
dent models as pj = 1

Z exp(zj/T ), where zi is the logit score for class j and Z is the normalization
factor. We also have an additional mean squared loss on teacher model hidden states,

LHidden =
∑
k∈|S|

∑
(xi,yi)∈Sk

(Hk,i −H
(teacher)
k,i )2, (4)

where H
(teacher)
k,i and Hk,i denote the hidden states of teacher and student networks respectively,

which consist of a sequence of hidden vectors for i-th input. Such additional distillation loss from
intermediate states has been shown to improve results in distilling PLMs (Jiao et al., 2020; Shleifer
& Rush, 2020). The total loss function for training student source prompts for obtaining a single
shared prompt to be transferred to the target side is then,

LTotal = LPLM + λ(LLogits + LHidden), (5)

where LPLM =
∑

k∈|S| Lk
PLM represents the aggregated task losses for all source tasks, and λ is a

weight to balance the impact of distillation loss terms.
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3.2 SOURCE TRAINING AND TARGET ADAPTATION

Training the single source prompt to be transferred to target tasks requires two steps. First, the
teacher prompts for all source tasks are pretrained individually through vanilla prompt tuning. Then,
we perform multitask training on S = {S1, . . . ,Sκ} to jointly learn the single shared prompt via the
knowledge distillation loss function in Equation 5. We also adopt a simple stochastic task sampling
strategy, which dynamically changes the number of tasks per batch. For each batch of multitask
samples, we randomly select a number K from [2, κ] first, then randomly choose K tasks from S
and their corresponding samples to constitute mini-batches. Such dynamic task sampling strategies
are common in the PLM multitask learning literature (Raffel et al., 2020).

For target adaptation, we initialize the target prompt for target task Tt to be the Hadamard product of
the shared prompt matrix and the task-specific low-rank prompt matrix, i.e., P̂t = P ∗ ◦ (ut ⊗ v⊤

t )
and optimize with the regular task loss in Equation 1 with respect to P ∗,ut,vt, where we use
separate learning rates for P ∗ vs. ut,vt (see Appedix A). We remark that MPT can also be used for
multitask learning on a group of target tasks T = {T1, T2, ..., Tτ}, where P ∗ is shared across T .

Parameter-efficiency. Each task contains the shared prompt l × d that has the same dimensions as
a vanilla soft prompt and a smaller number of task-specific vectors (l + d). Thus, the total number
of tunable parameters for a single target task is (l × d) + (l + d). After training, this can further
be compressed into a single matrix of size l × d.2 For a group of target tasks, the total number of
tunable parameters is (l× d) + (l+ d)τ , where τ is the number of target tasks. We list and compare
different methods in terms of the number of trainable parameters in Table 1.

4 EXPERIMENTS

We conduct experiments across a comprehensive range of NLP datasets to show that MPT outper-
forms strong baselines in both full-dataset (Tables 1, 2) and few-shot (Tables 3, 4) adaptations, while
being more parameter-efficient compared to existing methods (Figure 2).

4.1 EXPERIMENTAL SETUP

Datasets and tasks. As in Asai et al. (2022) we evaluate MPT using 6 datasets with more than
100k annotations as source tasks: MNLI (Williams et al., 2017), QNLI (Demszky et al., 2018),
QQP (Wang et al., 2018), SST-2 (Socher et al., 2013), SQuAD (Rajpurkar et al., 2016), and
ReCoRD (Zhang et al., 2018). We use 23 datasets from four benchmarks as target tasks: Mul-
tiRC (Khashabi et al., 2018), BoolQ (Clark et al., 2019a), WiC (Pilehvar & Camacho-Collados,
2018), WSC (Levesque et al., 2012), and CB (De Marneffe et al., 2019) from SuperGLUE (Wang
et al., 2019); RTE (Giampiccolo et al., 2007), CoLA (Warstadt et al., 2019), STS-B (Cer et al., 2017),
MRPC (Dolan & Brockett, 2005), MNLI, QQP, QNLI and SST-2 from GLUE (Wang et al., 2018);
Natural Questions (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018), NewsQA (Trischler
et al., 2017) and SearchQA (Dunn et al., 2017) from MRQA (Fisch et al., 2019); WinoGrande (Sak-
aguchi et al., 2021), Yelp-2 (Zhang et al., 2015), SciTail (Khot et al., 2018) and PAWS-Wiki (Zhang
et al., 2019) from the “Others” benchmark in (Asai et al., 2022); and E2E (Novikova et al., 2017) and
WebNLG (Gardent et al., 2017) for experiments on adapting to natural language generation tasks.

Models. Following the standard approach in prompt tuning (Lester et al., 2021; Asai et al., 2022),
we mainly experiment using the publicly available pretrained T5-Base model with 220M parame-
ters (Raffel et al., 2020). We use 100 prompt vectors for all benchmarks (hence P̂k ∈ R100×d). In
our ablation study, we also consider T5-Small (60M) and T5-Large (770M) models.

Baselines. We compare MPT with the following baselines: (1) Full finetuning (FT), where all
the model parameters are tuned during adaptation on each downstream task. (2) Vanilla prompt
tuning (PT) (Lester et al., 2021), where target prompt vectors are initialized by randomly sam-
pled top vocabularies. (3) Existing prompt transfer methods, including SPoT (Vu et al., 2022) and
ATTEMPT (Asai et al., 2022), which initialize target prompts by retrieving or aggregating source
prompts. (4) Popular parameter-efficient methods including Adapters (Houlsby et al., 2019) and
BitFit (Zaken et al., 2022). On GLUE, we also compare with several state-of-the-art methods that

2However for comparison against prior work we show the number of tunable parameters, i.e., (l×d)+(l+d).
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Table 1: Results on GLUE and SuperGLUE. The metrics are Pearson correlation for STS-B, F1 for MultiRC
(Multi), and accuracy for other tasks as evaluation metrics. MPT results are averaged over three runs, and
subscripts denote standard deviation. The column “param/task” represents the number of trainable parameters
for each task in GLUE. (Top) Model adaptation to each target task with no parameter sharing on the target side
(so params/task for MPT is just (l× d) + (l+ d)). (Bottom) Model adaptation to a group of tasks (marked by
∗), where param/task for MPT * is (l × d)/τ + (l + d). See Section 3.2 for more details.

Method param/
task

GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multi BoolQ WiC WSC CB Avg.

Finetuning 220M 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapters 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7
BitFit 280K 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
PT 76.8K 81.3 89.7 92.8 90.9 89.5 68.1 54.7 10.6 72.2 58.7 61.7 48.9 51.9 67.9 57.8
SPoT 76.8K 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPT 232K 84.3 90.3 93.0 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPT 77.6K 85.90.07 90.30.00 93.10.07 93.80.09 90.40.05 89.10.23 79.41.22 62.40.94 85.60.33 74.80.07 79.60.43 69.00.25 67.30.00 79.82.91 74.10.73

Finetuning* 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 - - - - - -
Adapters* 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 - - - - - -
HyperFomer* 638K 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8 - - - - - -
HyperDecoder* 1.8M 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 - - - - - -
ATTEMPT* 96K 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.3 66.5 69.2 82.1 74.1
MPT* 10.5K 84.30.57 90.00.13 93.00.24 93.30.26 90.40.07 89.20.98 82.70.41 63.50.05 85.80.14 74.80.07 79.20.67 70.20.82 67.30.00 89.30.00 76.10.31

Table 2: Results on MRQA and Others. We use F1 for MRQA tasks and accuracy for others as the evaluation
metrics. MPT results are averaged over three runs and subscripts indicate standard deviation.

Method param/task MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

Finetuning 220M 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
Adapters 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
BitFit 280K 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
PT 76.8K 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1
SPoT 76.8K 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0
ATTEMPT 232K 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 77.6K 72.00.11 75.80.14 77.20.05 63.70.06 72.20.09 56.50.87 96.40.01 95.50.26 93.50.13 85.50.32

adapt a pretrained model to all the target tasks using multitask learning, such as HyperFomer (Ma-
habadi et al., 2021), HyperDecoder (Ivison & Peters, 2022), multitask variants of FT and Adapters.
We directly quote numbers reported in published papers when possible or use publicly available
source code (Karimi Mahabadi et al., 2021; Mahabadi et al., 2021; Asai et al., 2022) under the same
backbone and experimental settings for a fair comparison.

Implementation details. For source training, we train MPT on the mixture of source tasks for
5 epochs with the examples-proportional mixing strategy (Raffel et al., 2020) and stochastic task
sampling described in Section 3.2. For prompt distillation, we calculate the hidden state loss for
hidden states from both the encoder and decoder of T5. For target adaptation, we reuse the shared
prompt from MPT and take averaged source task-specific vectors to initialize the target task-specific
vector. We run all the experiments three times with different random seeds and report the mean and
standard deviations. In few-shot experiments, for each number of shots k, we randomly sample 10
times from the training set with different random seeds and report the mean performances. Note
that for few-shot learning, the source prompt learning still uses the full set of the source tasks. See
Appendix A for the full experimental setup including hyperparameters.

4.2 RESULTS AND ANALYSIS

Full-dataset adaptation. Tables 1 and 2 show the per-task performance of different methods
on all four benchmarks. As seen from Table 1 (top), MPT establishes new state-of-the-art re-
sults for parameter-efficient finetuning on both GLUE and SuperGLUE. When compared to vanilla
PT (Lester et al., 2021), MPT obtains a relative improvement of 13% on GLUE and 16% on Super-
GLUE with the same number of task-specific parameters, highlighting the benefits of transferring
knowledge from multiple source tasks. MPT also consistently outperforms other parameter-efficient
methods such as SPoT (Vu et al., 2022), ATTEMPT (Asai et al., 2022), and BitFit (Zaken et al.,
2022), despite updating far fewer parameters. Adapters is the most competitive in terms of aver-
age accuracy on both benchmarks, but MPT is far more parameter efficient and requires 4× fewer
task-specific parameters. More surprisingly, MPT outperforms the full finetuning baseline on both
benchmarks, despite tuning 0.035% as many task-specific parameters. See Figure 2 for the compar-
ison against different methods in terms of accuracy and parameter-efficiency.

Table 1 (bottom) shows the results when finetuning against a group of target tasks. ATTEMPT
and MPT are particularly performant in this setting, even when compared against state-of-the-art

6



Published as a conference paper at ICLR 2023

Table 3: Few-shot learning results with k = {4, 16, 32} on BoolQ, CB, and SciTail. FT: Finetuning, AD:
Adapters, PT: Prompt tuning, ST: SPoT, HF: HyperFormer, ATP: ATTEMPT. Numbers in brackets denote the
number of parameters tuned for each task. MPT is very competitive or even better than existing methods in the
majority of the cases while tuning much fewer task-specific parameters.

k-shot FT (220M) AD (1.9M) PT (76.8K) ST (76.8K) HF (638K) ATP (232K) MPT (77.6K)

BoolQ
4 50.5 53.4 61.6 50.5 48.0 61.8 62.2

16 56.5 51.4 61.9 50.6 50.2 60.0 63.3
32 58.4 54.5 61.7 61.2 58.3 65.3 68.9

CB
4 57.7 51.1 53.5 71.4 60.7 82.1 73.6

16 77.0 74.8 63.5 64.3 76.3 78.5 78.6
32 80.0 74.8 67.8 64.3 81.4 85.7 82.1

SciTail
4 79.6 79.5 57.7 69.6 82.0 80.2 80.2

16 80.0 83.2 60.8 71.9 86.5 79.5 87.3
32 81.9 85.0 60.2 71.9 85.8 80.2 86.3

Table 4: Few-shot learning results on GLUE and SuperGLUE for vanilla prompt tuning (PT) and MPT with 4,
16, and 32 training examples. MPT consistently outperforms PT, demonstrating the generalizability of MPT
prompts to new tasks with only a few training examples.

k-shot Method GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multi BoolQ WiC WSC CB Avg.

4 PT 40.1 63.2 40.4 53.0 88.8 68.1 56.3 27.4 54.7 61.8 61.6 51.2 60.4 53.5 57.7
MPT 59.4 82.0 86.2 56.5 89.1 68.1 62.6 34.8 67.3 62.2 62.2 52.9 67.3 73.6 63.6

16 PT 41.5 62.3 59.9 50.9 87.8 68.1 54.7 28.5 56.7 60.3 61.9 48.9 44.2 63.5 55.8
MPT 61.6 84.7 90.6 63.2 89.1 70.1 64.8 32.1 69.5 64.5 63.3 49.8 67.3 78.6 64.7

32 PT 37.0 62.3 56.7 50.9 87.5 68.1 54.7 23.2 55.1 59.2 61.7 52.6 67.3 67.8 61.7
MPT 63.6 88.5 91.0 75.9 89.7 74.5 59.7 30.8 71.7 63.3 68.9 53.9 67.3 82.1 67.1

multitask baselines such as HyperFormer (Mahabadi et al., 2021) and HyperDecoder (Ivison &
Peters, 2022), which train a single model on different target tasks. This reveals the potential of our
MPT to further leverage multitask knowledge on the target side, enabling even more parameter-
efficient adaptation of pretrained language models.

Table 2 shows the performance of different methods on the MRQA and Others benchmark. Our
approach significantly improves the average performance of PT by +2.8% on MRQA and +13.5%
on the Others benchmark, while adding only 0.01% more task-specific parameters. Similarly, MPT
obtains 85.5% average accuracy on WinoGrande, Yelp, SciTail, and PAWS, outperforming BitFit
(84.7%), which updates 10× more task-specific parameters. When we increase the prompt length
from 100 to 300, we also found an average improvement of 0.8% on MRQA and 0.6% on Others,
closing the gap between MPT and Adapters. While our improvements being highly parameter-
efficient are encouraging, the accuracy gap between MPT and the full finetuning is still significant
in MRQA, which indicates opportunities for future work in multitask prompt tuning.

Few-shot adaptation. Following prior works (Mahabadi et al., 2021; Asai et al., 2022), we first
conduct few-shot experiments on BoolQ, CB, and SciTail tasks to measure how the pretrained MPT
prompts can be generalized to new tasks with only a few training examples available (k = 4, 16, 32).
Table 3 shows the results of our approach and other baselines, which includes full finetuning,
Adapters, HyperFormer, PT, and SPoT. As can be seen from Table 3, vanilla PT struggles for few-
shot adaptation (esp., CB and SciTail), suggesting that randomly initialized prompts are hard to
generalize to new tasks with only a few labeled examples. SPoT improves the performance of PT on
CB and SciTail tasks, and MPT outperforms both PT and SPoT. We also observe that other methods
in Table 3 (Finetuning, Adapters, HyperFormer, and ATTEMPT) have trouble in the few-shot set-
ting. Moreover, Table 4 shows the few-shot learning performance comparison between PT and MPT
on all the GLUE and SuperGLUE tasks. As shown in Table 4, we can observe that not only MPT
outperforms the vanilla PT by a large margin in most of the datasets, but also MPT can perform
very well on many datasets to reach their full-dataset performance with 16 or 32 shots, such as QQP,
QNLI, STS-B, and WSC. These results clearly indicate that MPT can effectively use cross-task
knowledge in source tasks to target tasks where there are only a few labeled examples.

Natural language generation tasks. We next conduct experiments to test whether prompt de-
composition learned from source NLU tasks can generalize to target NLG tasks. We transfer the
T5-Large prompt trained using 6 diverse source tasks to two NLG tasks: E2E (Novikova et al.,
2017) and WebNLG (Gardent et al., 2017). Table 5 shows that our proposed MPT significantly
outperforms standard PT (Lester et al., 2021) on both NLG tasks across all the metrics. Our BLEU
improvements over PT are 3.03% and 6.25% on E2E and WebNLG tasks respectively, showing the
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Table 5: Results on NLG tasks. The source prompt decomposition is learned against NLU tasks and adapted
to target NLG tasks. MPT consistently outperforms PT on both tasks.

E2E WebNLG
BLEU NIST METEOR Rouge-L CIDEr BLEU METEOR TER (↓)

PT 29.11 5.00 0.343 51.50 1.72 46.02 0.37 46.89
MPT 32.14 5.35 0.363 52.88 1.86 52.27 0.40 41.36
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Figure 4: (Left) Performance of various baselines as a function of model size (from T5-Small to T5-Large).
(Right) Correlation of prompt matrices on SuperGLUE tasks. Best viewed in color.

effectiveness of our approach on both NLU (e.g., classification, NLI, QA tasks) and NLG tasks. This
is an impressive result, particularly since the source tasks are all NLU tasks, i.e., MPT can transfer
knowledge from NLU tasks to NLG tasks.

Model scaling. We conduct scaling experiments to analyze how MPT performs with increasing
pretrained model sizes on three SuperGLUE tasks as in Asai et al. (2022). Figure 4 (left) shows
the performance of MPT as well as full finetuning (FT), Adapter, PT, and ATTEMPT with three
different T5 models (T5-Small, T5-Base, T5-Large). These results show that MPT is not only able
to achieve the best parameter efficiency, but also is effective across different model scales ranging
from 60M to 770M parameters.

Analyzing prompt matrices. We conduct qualitative analyses on prompts learned using MPT to
investigate whether cross-task knowledge is indeed encoded in the task-shared prompt, making it
easier for target tasks to effectively adapt and encode their own knowledge. Following Vu et al.
(2022), we use the prompt matrices to compute cosine similarities between all pairs of target tasks
after adaptation, where each task is represented by the composition of task-shared and task-specific
prompts (averaged to obtain a single vector). Figure 4 (right) shows the visualization of cosine
similarity matrices for SPoT and MPT on SuperGLUE tasks. We find that task embeddings can
effectively cluster similar tasks together (e.g., MultiRC is similar to BoolQ).

4.3 ABLATION STUDIES

Prompt decomposition and distillation. Table 6 presents the results on SuperGLUE where we fix
all the hyper-parameters across all settings and rerun MPT source training to get various ablated
versions of the transferred prompt.

Table 6: Ablation results on prompt decom-
position and distillation.

Decomposition Distillation SuperGLUE Avg.
✗ ✗ 69.5
✗ ✓ 70.6
✓ ✗ 73.0
✓ ✓ 74.1

To measure the effect of prompt decomposition, we re-
place the vanilla source prompt with our decomposable
prompt of task-shared and task-specific components and
train it without prompt distillation (third row in Table 6),
which gives us 3.5% average performance improvement
on SuperGLUE over the baseline (first row in Table 6).
This ablation clearly demonstrates the importance of the
prompt decomposition strategy in MPT and shows that the shared component can effectively capture
the rich cross-task knowledge that is beneficial for target downstream tasks.

To test the effect of prompt distillation, we train a vanilla prompt shared by all the source tasks with
the same training loss of MPT in Equation 5. The teacher models are kept the same for this ablation
and MPT. Compared with the simple baseline (first row in Table 6), adding prompt distillation
(second row) produces a 1.1% average performance improvement. Furthermore, we observe that
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Table 7: MPT performance on MRQA and Others with more source tasks.

MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

MPT (w/ 6 Source Tasks) 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5
MPT (w/ 12 Source Tasks) 72.1 76.4 77.9 64.0 72.6 56.6 96.8 95.9 92.9 85.6

prompt distillation combined with prompt decomposition yields the best average performance of
74.1% on the SuperGLUE benchmark. This confirms that distilling knowledge from separately-
trained source prompts is an effective strategy for learning good decomposable prompts.

Distillation objective. We further investigate the individual components of prompt distillation to
measure their influences on the final performance. We remove the loss of hidden states from Equa-
tion 5 and find that it produces an average performance of 73.7% on SuperGLUE, verifying the
effectiveness of regularizing hidden states in conjunction with logits to reach its full performance,
which is consistent with findings in Sanh et al. (2019). Finally, we consider a variant of distillation
loss to match the teacher and student prompts directly by adding an MSE loss to minimize the dis-
tance between the two prompts. Replacing our proposed distillation losses with this prompt distance
loss and jointly training it with prompt decomposition yield an average SuperGLUE performance of
73.6%, which performs worse than the distillation losses based on logits and hidden states.
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Figure 5: Performance on Super-
GLUE as a function of prompt
length for PT and MPT.

Prompt length. While our experiments use l = 100 prompt vec-
tors, we show in Figure 5 that using longer prompts obtains im-
provements up to l = 300, reaching 76.8% on SuperGLUE. How-
ever, further increasing the prompt length from 300 to 400 leads
to an absolute 1.8% drop in accuracy, possibly due to overfitting.

Target adaptation strategy. When transferring the shared
prompt from source to target tasks, we find that only updat-
ing task-shared component (i.e., removing task-specific vectors)
or only updating task-specific vectors (i.e., freezing task-shared
component) produces suboptimal results (62.5% and 71.3% on
SuperGLUE). This shows the importance of updating both com-
ponents (which have different learning rates) for target adaptation.

Stochastic task sampling. MPT uses a multitask training strat-
egy in Section 3.2, which stochastically samples a number of
tasks within each mini-batch. Ablating the stochastic task sam-
pling results in 73.7% on SuperGLUE (lower than the full perfor-
mance of 74.1%), which demonstrates the slight benefit of this simple multitask training strategy.

Number of source tasks for pretraining. For our main experiments, we selected 6 NLP tasks fol-
lowing Asai et al. (2022). To investigate the effect of more source tasks, we incorporated 6 additional
diverse source tasks on top of the original 6 tasks, including topic classification (AGNews (Zhang
et al., 2015)), multi-choice QA (CommmonsenseQA (Talmor et al., 2019), OpenBookQA (Mihaylov
et al., 2018), ARC (Clark et al., 2018)), adversarial NLI (ANLI (Nie et al., 2020)) and commonsense
reasoning (Winogrande (Sakaguchi et al., 2021)). Table 7 shows the results on MRQA and Others
benchmarks. MPT with 12 tasks is still quite effective for target adaptation on both benchmarks,
slightly outperforming MPT trained using 6 tasks. While it is unclear how much MPT would ben-
efit from even more source tasks, it would be interesting to see whether MPT trained on large-scale
benchmarks such as CrossFit (Ye et al., 2021)—which consist of 160 NLP tasks—can enable even
more parameter-efficient (and accurate) transfer learning.

5 CONCLUSION

We introduced and studied multitask prompt tuning (MPT), which learns a single transferable
prompt by decomposing and distilling knowledge from multiple source tasks and their task-specific
source prompts. MPT decomposes the task prompt as the Hadamard product of a shared prompt
matrix and a rank-one task-specific matrix. The shared component is then transferred and adapted
to target tasks for further tuning. Empirically we found this approach enables parameter-efficient
transfer learning to target downstream tasks across diverse NLP benchmarks, even outperforming
the full finetuning baseline in some cases, despite tuning much fewer task-specific parameters.
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A EXPERIMENTAL SETUP

For initial training of source prompts, we train MPT on the mixture of source tasks for 5 epochs
with the examples-proportional mixing strategy (Raffel et al., 2020) and stochastic task sampling.
For prompt distillation, we calculate the hidden state loss for hidden states from both the encoder
and decoder of T5. For target adaptation, we reuse the shared prompt from MPT and take averaged
source task-specific vectors to initialize the target task-specific vector. We train 20 epochs on small
datasets, 10 epochs on large (more than 10k examples) datasets, and 5 epochs on the MRQA datasets.
We run all the experiments three times with different random seeds and report the mean and standard
deviations. In few-shot experiments, for each number of shots k, we randomly sample 10 times from
the training set with different random seeds and report the mean performances. For the few-shot
setting, the source prompt learning still uses the full set of the source tasks.

During source training, we set the default learning rate as 0.3 for both task-shared and task-specific
components. However, during target adaptation, we use a strategy of two-speed learning rates for
those two components, as in Ponti et al. (2022). Specifically, we set the learning rate to 0.3 and 0.4
for the task-shared and task-specific components, respectively, during target task adaptation. Fol-
lowing Lester et al. (2021), we set the default number of tunable tokens per each prompt to 100 and
initialize the teacher and student prompts by randomly sampling tokens from T5’s vocabulary (Raf-
fel et al., 2020). We set the default batch size for T5-Base as 32 and for model scaling experiments,
the batch sizes for T5-Small and T5-Large are 100, and 12 respectively. The default input length
for most tasks are set to 256, except MultiRC and MRQA benchmarks have input length of 348
and 512. We set the distillation loss coefficient λ in Equation 5 to 0.9 and keep it fixed for all our
experiments.

For all datasets, we use the development set as the testing set if the original testing set is not publicly
available. If the training set is small, we split the original development set into the development
and testing set; otherwise, we separate a development set from the training set and use the original
development set for testing. We limit the number of training data for Yelp to 100k.
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