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Abstract

Dimensionality reduction via linear sketching is a powerful and widely used tech-
nique, but it is known to be vulnerable to adversarial inputs. We study the black-box
adversarial setting, where a fixed, hidden sketching matrix A ∈ Rk×n maps high-
dimensional vectors v ∈ Rn to lower-dimensional sketches Av ∈ Rk, and an
adversary can query the system to obtain approximate ℓ2-norm estimates that are
computed from the sketch.
We present a universal, nonadaptive attack that, using Õ(k2) queries, either causes
a failure in norm estimation or constructs an adversarial input on which the opti-
mal estimator for the query distribution (used by the attack) fails. The attack is
completely agnostic to the sketching matrix and to the estimator—it applies to
any linear sketch and any query responder, including those that are randomized,
adaptive, or tailored to the query distribution.
Our lower bound construction tightly matches the known upper bounds of Ω̃(k2),
achieved by specialized estimators for Johnson–Lindenstrauss transforms and
AMS sketches. Beyond sketching, our results uncover structural parallels to
adversarial attacks in image classification, highlighting fundamental vulnerabilities
of compressed representations.

1 Introduction

Dimensionality reduction is a fundamental technique in data analysis, algorithm design, and machine
learning. A common paradigm is to apply a sketching map, a compressive transformation C : Rn →
Rk, which maps a high-dimensional input vector to a lower-dimensional representation. The map is
typically sampled from a known distribution (e.g., The Johnson–Lindenstrauss (JL) transform [29] )
or learned during training, and is designed to support estimation of specific properties of the input v,
such as norms, inner products, or distances, using only the sketch C(v).

Once constructed, the sketching map C typically remains fixed across all inputs. This is true when
compression layers are part of a trained model, and it is necessary in algorithmic contexts that
require composability—the ability to sketch distributed datasets independently and combine the
results—without revisiting the original data. A fixed sketching map also supports downstream tasks
that operate directly in sketch space.

However, this compression introduces an intrinsic vulnerability: small input perturbations can produce
large changes in the sketch, even when the true property (such as the norm) is nearly unchanged. For
linear sketching maps A ∈ Rk×n, this vulnerability arises from structural facts such as the existence
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of nontrivial null-space vectors and directions along which small-norm perturbations yield large
distortions.

Such adversarial inputs can be constructed easily in the white-box setting, where the sketching map
C is known. In this work, we focus on the black-box attack model, which captures realistic situations
where the adversary does not see the sketching map directly but can access it interactively via a
responder using queries of the following form:

(i) The adversary chooses a query vector v ∈ Rn.
(ii) The system receives v and computes a sketch C(v).

(iii) The responder selects a map ψ of sketches to distributions, receives the sketch C(v) from
system and returns a (possibly randomized) value s ∼ ψ(C(v)) to the adversary.

The goal of the adversary, in general terms, is to compromise the sketching map by causing a failure:
If responses are correct, construct an adversarial input. We measure the efficiency of such attacks by
the number of queries they require, as a function of the sketch size k.

We distinguish between two settings. In the nonadaptive case, all queries (including the final
candidate) are chosen without regard to responses from earlier queries. The adversary performs a
blind search, and success depends on the density of adversarial directions in the input space. In
contrast, in the adaptive setting, each query can depend on prior responses, allowing the adversary to
extract information about the sketching map and potentially converge to an adversarial input more
efficiently.

The black-box model in the adaptive setting is well studied across multiple areas, including statistical
queries [19, 28, 31, 25, 17, 6], sketching and streaming algorithms [33, 26, 9, 27, 40, 5, 8, 13, 15, 1,
22, 16], dynamic graph algorithms [36, 2, 20, 24, 39, 7], and machine learning [37, 21, 4, 34, 32, 35].

In this study, we aim to better understand this vulnerability for the task of ℓ2-norm estimation and
to gain more general insights through this lens. Specifically, we consider linear transformations
specified by a sketching matrix A ∈ Rk×n which maps v ∈ Rn to a sketch Av ∈ Rk.

Two classic methods for this task are the Johnson–Lindenstrauss (JL) transform [29] and the AMS
sketch [3], They define distributions over sketching matrices that approximately preserve Euclidean
norms (and therefore support sketch-based approximation of distances). The provided guarantees
are probabilistic: for any input vector, with high probability over the random choice of the sketching
matrix A ∈ Rk×n, the scaled norm of the sketch ∥Av∥2 closely approximates ∥v∥2 (within relative
error ϵ with probability 1− δ when k = O(ϵ−2 log(1/δ)).

However, as said, in practice, the sketching matrix is typically fixed over all input vectors, and
importantly, no fixed matrix can preserve approximate norms for all inputs: every sketching matrix
inevitably has inputs on which it fails. In the nonadaptive setting, the guarantees of JL and AMS
apply via a union bound: with high probability (at least 1 − δ) over the sampling of matrices, the
fixed sampled sketching matrix supports up to δeO(kϵ2) approximate norm queries, in the sense that
with probability 1− δ, they are all accurate to within relative error ϵ. Therefore, finding a bad input
requires a number of queries that is exponential in k.

The adaptive setting was studied in multiple works. In terms of positive results, it is known that JL
and AMS sketches can effectively trade off baseline (non-adaptive) accuracy and robustness within a
fixed sketch size budget of k. By using carefully designed “robust” estimators [27, 10], the sketch can
support for a fixed ϵ, a number of adaptive queries that is quadratic in k. The idea, based on [18, 6],
is to protect information on the sketching matrix by adding noise to the returned “best possible”
estimate (or by subsampling a part of the sketch for each response).

As for negative results, Hardt and Woodruff [26] constructed an attack of size polynomial in k that for
any sketching matrix constructs a distribution over inputs under which any estimator would fail. The
idea in the attack is to identify vectors that lie close to the null space of A and hence are transparent
to the sketch. Cherapanamjeri and Nelson [12], Ben-Eliezer et al. [9] presented an attack of size
linear in k on the JL and AMS sketches with the standard estimator (which returns a scaled norm
of the sketch). The product of these attack is a vector on which the standard estimator fails. Cohen
et al. [15] constructed an attack of quadratic size on the AMS sketch that is universal (applies against
any query responder), that constructs a vector on which the standard estimator fails. These negative
results vary by (i) the scope of the sketching matrices compromised (general or JL/AMS), (ii) the
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power of the query responder (strategic and adaptive or the standard estimator), and (iii) the product
of the attack (a distribution that fails any query responder or a single vector with an out-of-distribution
sketch that fails the “optimal” estimator).

An intriguing gap remains, however, between the established quadratic guarantee for the number of
adaptive queries with correct responses and the super-quadratic sizes of the known attacks for general
sketching matrices.

1.1 Overview of contributions

Our primary contribution in this work, is a construction of an attack of quadratic size in k that applies
against any sketching matrix A ∈ Rk×n and with any query responder for ℓ2 norm estimation. The
attack produces a vector with an out-of-distribution sketch:

Theorem 1.1 (Attack Properties). There exist a universal constant C > 0, and families of distribu-
tions Fn over Rn, such that the following holds.

For every sketching matrix A ∈ Rk×n with n = Ω(k2), any query responder, and deviation γ ≥ 1
and accuracy α ∈ (0, 1) parameters, with probability at least 0.9 over the choice of a distribution
D ∼ F , after r = Cγ2α−2k2 log2 k i.i.d. queries v ∼ D, one of the following outcomes occurs:

(i) At least δ(α) > 01 fraction of the responses have relative error greater than α, or

(ii) We construct a query vector on which the optimal estimator (with respect to A and D)
returns a value that deviates from the true norm by at least a multiplicative factor of γ.

Our attack deploys a simple and natural query distribution that combines a weighted sparse signal
with additive dense noise:

v = weh + u,

where eh is the standard basis vector corresponding to index h ∈ [n], and u is Gaussian noise
supported on a set M ⊂ [n] \ {h} of size m > k2.

Importantly, sparse queries alone are insufficient for attack: under the mild assumption that the
sketching matrix A has its columns in general position, the ℓ2 norm of any k-sparse vector can be
exactly recovered from its sketch (e.g., [11]). This implies that if the attack is restricted to sparse
inputs, the response leaks no information about the sketching matrix and full robustness is preserved.

To sample from our query distribution, we first choose the signal coordinate h ∼ [n] uniformly at
random, and then independently sample a noise support M ⊂ [n] \ {h} of size m = Ω(k2).

The goal of the query responder is to estimate the ℓ2 norm of v from its sketch Av, with relative
error at most α. Our attack remains effective even against the simpler norm gap task: return −1 if
∥v∥2 ≤ 1 and return 1 if ∥v∥2 ≥ 1 + α, with either output permitted when ∥v∥2 ∈ (1, 1 + α).

Note that the norm gap task reveals strictly less information than norm estimation: a norm estimate
with relative error Θ(α) trivially yields a correct solution to the norm gap task with parameter Θ(α),
but not vice versa.

Our attack is described in Algorithm 1. Query vectors (v(t))t∈[r] are constructed by sampling a signal
value w(t) ∼ W , where W is a probability distribution over R, and Gaussian noise u(t) to form
v(t) = w(t)eh + u(t). The adversary collects the responses s(t) for the sketch Av(t). We establish
that if the responses are correct for the norm gap (except for a small fraction of queries) then the
normalized signed sum of the noise vectors

∑
t s

(t)u(t) is adversarial.

Universality and Limitations Our attack is universal in that it applies with any query responder.
The analysis allows the responder to be strategic and adaptive, with full knowledge of the query
distribution D and the internal state of the attacker. Notably, the attack is single batch – it uses
adaptivity in the minimal possible way: all queries are generated independently and only the final
adversarial vector is constructed adaptively from the responses.2

1A constant that depends on α
2Single batch attacks were constructed in prior works for JL, Count-Sketch, AMS, and Cardinality

sketches [12–14, 1].
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A limitation of our result is that the attack guarantees failure only for the optimal estimator tailored
to D and A, rather than for every possible query responder. The stronger goal—constructing a
distribution over inputs that defeats all responders with high probability—remains open.

Despite this, we believe our result is both theoretically meaningful and practically relevant. Theoreti-
cally, we obtain a tight quadratic bound in the batch-query model, whereas known attacks with the
stronger guarantee require significantly more queries (a higher degree polynomial in k). Moreover,
any attack achieving the stronger guarantee would require at least Ω̃(k) adaptive batches, and thus
cannot be realized within our single-batch setting. In this sense, the adversarial vector we construct is
the strongest outcome achievable in our setting.

Our attack product is practically relevant because the optimization process in a model training
tends to converge to an (at least locally) optimal estimator for the training distribution. Therefore,
compromising the model means compromising this specific implemented estimator, coded in the
model parameter values, rather than any possible query responder.

Roadmap Our attack algorithm is described in Section 3 with the analysis presented in Section 4.
An empirical study of our attack on JL and AMS sketching matrices is included in Section 5. We
conclude in Section 6 with a discussion of open directions and implications to image classifiers.

2 Preliminaries

We denote vectors in boldface v, scalars v in non boldface, and inner product of two vectors by
⟨v,u⟩ =

∑
i viui. For a vector v ∈ Rn, we refer to i ∈ [n] as a key and to vi as the value of the ith

key. For M ⊂ [n] let vM be the projection of v on entries (vi)i∈M . To streamline the presentation,
we interchangeably use the same notation to refer to both a random variable and a distribution.

N (µ, σ2) is the normal distribution with mean 0 and variance σ2 with density function

φµ,σ2(x) :=
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

. (1)

Nℓ(0, σ
2) is the ℓ-dimensional Gaussian distribution with covariance matrix Iℓ (ℓ i.i.d. N (0, σ2)).

Its probability density function is

fσ(u) =
1

(σ
√
2π)ℓ

e−
∥u∥22
2σ2 . (2)

A linear sketching map is defined by a sketching matrix A ∈ Rk×n where k ≪ n. The input is
represented as a vector v ∈ Rn and the sketch of v is the product Av ∈ Rk.

3 Attack description

Definition 3.1 ((y, α)-Gap Problem). Given width parameter α > 0 and y ∈ R, a gap problem is, for
input x ∈ R to return −1 when x ≤ y and to return 1 when x ≥ y + α. The output may be arbitrary
in {−1, 1} if ∥v∥2 ∈ (y, y + α).

Observe that an additive approximation of α/2 or a multiplicative approximation of α/(2(y + α) for
x yields a correct solution to the (ℓ, α)-gap problem for x. Hence an attack that is effective with the
weaker norm gap responses is more powerful.

Our attack is described in Algorithm 1. The signal density and parameter settings are described in
Definition 3.3.

In each of r attack steps,

1. The adversary samples an independent query vector v := weh + cz by sampling Gaussian
noise with support M z ∼ Nn,M (0, σ2 = 1/m), sampling signal weight w ∼W .

2. The responder chooses an estimator map ψ : Rk → P({−1, 1}), obtains the sketch Av
from the system, and returns s ∼ ψ(Av) to the adversary.
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Algorithm 1: Universal Attack on Sketching Matrix A; ℓ2 norm gap
responder

Input: A ∈ Rk×n, accuracy parameter α, number of queries r, signal index h ∈ [n], support M ⊂ [n]
of size m = |M |, noise scale factor c

for t ∈ [r] do // Main loop

z
(t)
i ∼

{
0 if i /∈M
N (0, 1/m) if i ∈M

// sample noise vector

w(t) ∼W // Sample signal weight from W (Definition 3.3)

v(t) = w(t) · eh + cz(t) // Query vector

Responder chooses an estimator ψ(t) : Rk → P{−1, 1} // Map sketches to responses

s(t) ∼ ψ(t)(Av(t)) // Responder receives sketch, returns s(t) ∈ {−1, 1}

return z(adv) ←
∑

t∈[r] s
(t)z(t)

∥
∑

t∈[r] s
(t)z(t)∥2

// Adversarial noise

3. The adversary then adds sz to the accumulated output.

The product of the attack z(adv) is the normalized accumulated output.
Theorem 3.2 (Attack efficacy). Let A ∈ Rk×n be a sketching matrix. Consider applying Algo-
rithm 1 with a randomly selected h ∈ [n] and support M ⊂ [n] \ {h} of size m = Ω(k2) and
r = O(γ2α−2k2 log2 k) queries. Then with constant probability one of the following holds. Either
the error rate of responses s(t) for the (1, α)-gap problem on the input norm ∥v(t)∥2 (see Defini-
tion 3.1) exceeded some constant δ(α) > 0 or the vector z(adv) is a γ-adversarial noise vector (see
Definition 4.3) for A, signal h and noise support M .

We define a vector as γ-adversarial if, under the query distribution specified by h and M , the optimal
estimator returns a value that deviates from the true norm by a multiplicative factor of at least γ.

3.1 Density and parameter setting

Definition 3.3 (Signal density and parameters). The distribution W we use for w is parametrized by
a < 1 < 1 + α < b and has density function:

C =
2

b− a+ α
, ν(w) =



0, w < a or w > b,

C
w − a

1− a
, a ≤ w ≤ 1,

C, 1 < w < 1 + α,

C
b− w

b− 1− α
, 1 + α ≤ w ≤ b.

We set the parameters as follows according to the gap α > 0 and the error rate δ > 0 allowed for the
responder. We use δ > 0 that satisfies δ/ log(1/δ) = O(α2) and c that is a small constant (that does
not depend on α and is selected according to other constants).

a = 1− 10α/c

b = 1 + α+ 10α/c

Observe from our settings that each of the intervals [a, 1] and [1+α, b] has at least a constant fraction
of the probability mass.

4 Analysis of the attack

This section presents the key components and outlines the proof of Theorem 3.2, with full details
deferred to the appendix.
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We introduce notation for the query and noise distributions. For indices M ⊂ [n], let Nn,M be the
distribution over u ∈ Rn in which u[n]\M = 0 and the coordinates indexed by M are sampled
from the m = |M |-dimensional Gaussian distribution uM ∼ N (0, 1

mIm). Note that Nn,M is the
distribution of noise vectors selected in Algorithm 1.

For h ∈ [n], M ⊂ [n] \ {h}, and noise scale c let

Fh,M,c[w] := weh + cNn,M (3)

be the distribution of vectors formed by adding a scaled noise vector sampled from Nn,M to a signal
weh, where eh ∈ Rn is the standard basis vector at index h. Fh,M,c[w] is the distribution of query
vectors selected in Algorithm 1 for signal value w.

Our analysis is in terms of signal estimation. In order to facilitate it, we establish that a correct norm
gap output yields a correct signal gap output with similar parameters:
Lemma 4.1 (Norm gap to signal gap). With the choice of parameters for our attack and m =
Ω((k + r) log((k + r)/δ)), with probability close to 1, a correct (1 − c2, 1.1α)-norm gap output
implies a correct (1, α)-signal gap output on all queries.

The proof is included in Appendix A. The norm gap in the statement of Theorem 3.2 is with
parameters (1, α). To reduce clutter, we treat it in the sequel as signal gap of (1, α).

4.1 Signal estimation and the optimal estimator

For a fixed sketching matrix A, h ∈ [n], and noise support M , we express the optimal estimator
on the signal w from a sketch Av when v ∼ Fh,M,c[w]. For this purpose we may assume that the
distributions (and A, h, and M ) are given to the responder. Note that if it holds that A•h = 0, then
the sketch carries no information on the signal w. When this is not the case, we can express the
optimal unbiased estimator. The proof is included in Appendix B.
Lemma 4.2 (Estimator for the Signal). Fix h ∈ [n], a noise support set M ⊂ [n] \ {h}, and a noise
scale factor c. Consider the distributions Fh,M,c[w] parametrized by w.

If the column A•h is nonzero, then there exists an unbiased, complete, and sufficient statistic Th,M :
Rk → R for the signal w based on the sketch Av.

Furthermore, the deviation of this estimator from its mean, defined as

∆h,M (cAu) := Th,M (Av)− w,

depends only on the sketch of the noise u ∼ Nn,M , and is distributed as a Gaussian random variable
N (0, c2σ2

T (h,M).

The estimator Th,M (Av) also minimizes the mean squared error (MSE) [30].

We define an adversarial noise vector to be one that causes a large deviation in this optimal estimator:

Definition 4.3 (γ adversarial noise). A unit vector u with support M is γ-adversarial for A, h, M if
|∆h,M (u)| > γ

Adversity of γ means that the value is γ/(cσT ) standard deviations off. We will see that the attack
size needed for certain adversity depends on σT .

4.2 Lower bounding the error

Since Th,M (Av) minimizes the MSE for estimating the signal w from the sketch, it implies a lower
bound on the error that applies for any query responder on the query distribution of Algorithm 1:
Corollary 4.4. The mean squared error (MSE) on any estimator, even one that is tailored to h, M ,
and c, on queries of the form v ∼ Fh,M,c[w] when w ∼W is Ω(c2σT (h,M)2).

We next establish that for any sketching matrix A ∈ Rk×n, a random choice of signal index h ∈ [n]
and noise support (of size M that is slightly superlinear in k), it is likely that either column h is all
zeros (and hence any estimator must fail with constant probability) or σ2

T (h,M) = Ω̃(1/k). The
proof is in Appendix C.
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Lemma 4.5 (Lower Bound on Error). Let A ∈ Rk×(m+1) be a matrix with m ≥ 20k log2 k.
Then, for at least 0.9 fraction of columns h ∈ [m + 1], it holds that either A•h is all zeros or

σ2
T (h,M = [m+ 1] \ {h}) = Ω

(
1

k log k

)
.

Recall that when the input vectors are k-sparse, exact recovery of the norm is possible, and hence
there is no estimation error. Therefore, there is potential vulnerability only when the sparsity of the
query vectors exceeds k and thus our slightly super linear sparsity is necessary.

As a corollary of Lemma 4.5, we obtain a lower bound on the relative error guarantees of any
estimator:
Corollary 4.6. Consider a fixed sketching matrix Let A ∈ Rk×n be a sketching matrix with n =
Ω(k log2 k). Consider the distribution of queries that samples h and M (of size m = Ω(k log2 k))
randomly from [n] and then sample a query from Fh,M,c[w] where w ∼W (and the density of W is
at least a constant in range of size > 100/

√
k). Then with at least constant probability, the MSE of

any sketch-based signal (and hence norm) estimator is Ω(1/(k log k).
Remark 4.7 (Error for JL matrices). Sampled matrices from the JL distributions meet this upper
bound: For fixed noise support M of size m > k log k, with high probability over the sampling of A,
for all h ∈ [n], σ2

T (h,M) = O(1/k) (the property needed for the sampled A is that the projected
rows AiM are close to orthogonal).

4.3 The gain lemma

We quantify the expected progress (towards an adversarial vector) in each step of the attack in terms of
σ2
T (h,M). What we show is that when the estimator has a low error rate, then queries for which the

noise component u has a higher deviation ∆h,M (Au) are more likely to have s(t) = 1. Specifically,
even though E[∆h,M (Au)] = 0 (as the deviation has distribution N (0, σ2

T )), the response s(t) is
correlated with it and we will show that E[∆h,M (s(t)Au)] ∝ σ2

T (h,M).
Definition 4.8 (Error rate of sketch-based signal gap estimator). An estimator ψ : Rk → P{−1, 1}
is a map from a sketch to a probability distribution on {−1, 1}. For a sketching map A ∈ Rk×n,
h,M, c and signal distribution W , the error rate of ψ for the α-signal gap problem (Definition 3.1) is
the probability over the query distribution of an incorrect (1, α)- signal gap response:

err(ψ) := E
w∼W,v∼Fh,M,c[w]

[Pr[ψ (Av) = 1] · 1{w ≤ 1}+ Pr[ψ (Av) = −1] · 1{w ≥ 1 + α}] .

If A•h = 0 then any estimator would have at least a constant error rate. Additionally, from standard
tail bounds, for error rate that is O(δ), it must hold that α > cΩ(

√
log(1/δ))σT and therefore

σT < α/(c
√

log(1/δ).

We therefore consider the case where A•h ̸= 0, and therefore unbiased Th,M exists and σ2
T (h,M) is

well defined, and assume that σT < α/(c
√
log(1/δ). We quantify the per-step expected gain (see

Appendix D for the proof):
Lemma 4.9 (Gain Lemma). If err[ψ] < δ and attack parameters are as in Definition 3.3, and
σT < α/(c

√
log(1/δ)) then

E
v
[ψ(Av)(Th,M (Av)− w)] = Ω(α−1c3σT (h,M)2)

4.4 Proof of Attack efficacy Theorem

Proof of Theorem 3.2. The proof idea is to bound the deviation and the norm of the sum∑
t∈[r] s

(t)z(t) and show that the deviation increases faster than the norm.

We first bound norm. We show that if the noise support is sufficiently wide with m > r2, then for any
choice of s(t), the norm of

∑
t∈[r] s

(t)z(t) can not be much higher than that of the sum
∑

t∈[r] z
(t)

of independent Gaussians: ∥∥∥∥∥∥
∑
t∈[r]

s(t)z(t)

∥∥∥∥∥∥
2

= O(
√
r) (4)
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This follows as an immediate corollary of Lemma E.1.

We now consider the deviation of the sum. From Lemma 4.9 we obtain that for each t,
Ev[s

(t)∆h,M (Az(t))] = Ω(α−1 σ2
T (h,M)).

From concentration of ∆h,M (Az(t))] (that are independent N (0, σ2
T )) we obtain that with high

probability
r∑

i=1

s(t)∆h,M (Az(t)) = Ω(r α−1 σ2
T (h,M)) . (5)

From Lemma 4.5, for any sketching matrix A ∈ Rk×n, when we sample h, and M ⊂ [n] of size
m = Ω(k log2 k), then with constant probability we have σ2

T (h,M) = Ω( 1
k log k )).

Combining with (5) we obtain that
r∑

i=1

s(t)∆h,M (Az(t)) = Ω

(
rα−1

k log k

)
. (6)

Combining (4) and (6) we obtain that with constant probability

∆h,M (Az(adv)) = Ω

(√
rα−1

k log k

)
.

For the deviation to exceed γ, solving for
√
rα−1

k log k > γ, we obtain r = O(γ2 α−2 k2 log2 k).

This concludes the proof.

5 Empirical study

We implemented Algorithm 1 and evaluated its effectiveness on two families of sketching matrices:
Gaussian Johnson–Lindenstrauss (JL) transforms [29] with A ∈ Rk×n with i.i.d. entries Aij ∼
N (0, 1/k) and AMS sketches [3] with A ∈ {±1}k×n consisting of i.i.d. Rademacher entries
(Aij = ±1 with equal probability). Our evaluation used different configurations of sketch dimension
k and ambient dimension n (effectively, the noise support). For each configuration we applied the
attack against the corresponding standard norm estimator and its robustified variant, and measured
how rapidly the adversarial bias grows.

Standard Estimators. For Gaussian JL matrices, the standard norm estimator is simply the sketch
norm, which coincides with the minimum-variance unbiased estimator for ∥v∥22 under Gaussian
projections:

∥̂v∥22 := ∥Av∥22.
For AMS sketches, we implemented the median-of-means (MoM) estimator. Specifically, we partition
the k rows of A into g = max{5, ⌊

√
k⌋} groups of equal size b = ⌈k/g⌉, compute the mean of y2i

within each group, and take the median of the g group means:

∥̂v∥22 := median
(1
b

∑
i∈G1

y2i ,
1

b

∑
i∈G2

y2i , . . . ,
1

b

∑
i∈Gg

y2i

)
.

Our final estimate is ∥̂v∥2 :=

√
∥̂v∥22.

Simplified attack We implemented a simplified attack that sufficed for the special case of JL/AMS
matrices (distribution that is invariant under column permutations) and query responders that are
not adaptive and not tailored to the input distribution). Our query vectors are sampled i.i.d. from
Fn,[n−1],1[w = 1] (see Eq. (3)), that is, use a a fixed signal value w = 1 and fixed h = n and M =

[n− 1]. Observe that for our query vectors, the norm ∥v∥2 is concentrated around
√
w2 + 1 =

√
2.
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Robust Estimators. The robust variants are parameterized by a noise scale σ and add Gaussian
noise to the squared-norm standard estimate before taking the square root:

ŝσ(v) :=

√
∥̂v∥22 +N (0, σ2).

In our attack implementation the responder outputs s = 1 when ŝσ ≥
√
w2 + 1 and s = −1

otherwise. 3

On freshly sampled (non-adaptive) inputs, the estimator has standard deviation 1/
√
k in the JL case,

whereas for the robustified estimator the standard deviation increases to
√

1
k + σ2. Therefore, the

non-adaptive accuracy decreases with the robustness noise σ.

Experiments For each (k, n) configuration of sketch size k and support size n, we performed rep =
20 trials. For each trial we sample a fresh sketching matrix A ∈ Rk×n. We sample query vectors as
described and apply estimators with different values of the robustness noise σ ∈ {0, 0.1, 0.2, 0.4} to
the same query vectors (observe that σ = 0 is the standard estimator). We study the effectiveness of
our attack by tracking the ratio ŝσ(z(adv))/∥z(adv)∥2, where ŝσ is the (respective) standard estimator
that is applied to the sketch and z(adv) is the adversarial vector.

Results Fig. 1 and Fig. 2 report, for different configurations with k ∈ {100, 250, 1000}, the ratio
ŝσ(z

(adv))/∥z(adv)∥2 (the y-axis) as a function of the number of attack queries (the x-axis).

We observe that the attack is effective even in configurations with small support size of n/k ∈ [2, 5].
The standard and lower-σ robust estimators are initially more accurate but also accumulate bias
faster and incur a much higher error as the attack progresses. A larger sketch size k results in higher
robustness (slower increase in the bias) for the same noise σ. The plots show a quadratic pattern
where the bias induced by the attack increases like square root of the number of queries. Results for
additional configurations for the same k are reported in Fig. 3. We observe that the effectiveness of
the attack tends to increase with a larger support size n.

Discussion. Our empirical results demonstrate that the attack is substantially more effective in
practice than our current analysis predicts. In particular, we observe strong empirical success even
when the noise support size is very small—on the order of O(k)—whereas our analysis requires
n = Ω(k2). The attack is also effective with relatively few queries, again beyond what is guaranteed
by our theoretical bounds.

Moreover, our analysis only establishes that the attack product compromises the optimal estimator for
the sketching matrix, which is a linear statistic of the sketch. For JL sketches, the standard estimator
is very close (up to row orthogonality) to this optimal estimator, so our theory is largely predictive. In
contrast, for AMS sketches we employ a median-of-means estimator, which is non-linear, yet the
attack empirically compromises it with comparable efficiency. This suggests that the vulnerability
extends beyond linear estimators and may be more fundamental than our current proofs capture.
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Figure 1: Attack on JL with (k, n) ∈ {(100, 500), (250, 1000), (1000, 5000)}. Standard and robust
estimators. Mean ratio of estimate to actual norm with 95% confidence intervals over 20 repetitions.

3Our simplified attack would fail against a fully strategic responder that is tuned to the input distribution
and always returns the deterministic value

√
w2 + 1 =

√
2. Such a responder leaks no information about the

sketching matrix and is correct with high probability on all queries.
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Figure 2: Attack on AMS with (k, n) ∈ {(100, 500), (250, 1000), (1000, 2000)}. Standard and
robust estimators. Mean ratio of estimate to actual norm with 95% confidence intervals over 20
repetitions.
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Figure 3: Attack on JL with (k, n) ∈ {(250, 500), (250, 2000), (1000, 10000)}. Mean ratio of
estimate to actual norm with 95% confidence intervals over 20 repetitions.

6 Conclusion

Our results further suggest that vulnerability to black-box attacks is an inherent consequence of
dimensionality reduction. Nonetheless, it can be partly mitigated by sacrificing some non-adaptive
accuracy in exchange for increased robustness, underscoring a fundamental trade-off. We close with
several directions for further investigation.

Theory questions. We proved a tight, quadratic-size universal attack that succeeds against any
query responder, but our analysis only guarantees compromise of the optimal (linear) estimator for
the sketch and attack distribution. Empirically we observed that our attack compromised also the
non-linear median-of-means estimator for AMS. This suggests exploring broader applicability of
our attack. Another natural question is whether our technique can be extended to other norms, as in
Gribelyuk et al. [23]. A more ambitious goal is to construct a quadratic-size attack that generates a
single distribution capable of compromising every query responder. Such an attack would necessarily
require Ω̃(k) adaptive batches and could plausibly build on an enhanced version of our construction
that incorporates the discovered adversarial directions into the input distribution [16]. Another open
question concerns the required size of the noise support, which directly corresponds to the attacker’s
storage cost. Our current proof requires n = Ω(k2) because it relies on a general bound (Lemma E.1)
for arbitrary signed sums of Gaussian vectors. Empirically, however, we observe that our attack
remains effective with support as small as 2k, and we conjecture that Õ(k) support should suffice.

Connections to Image Classifiers. Our findings on the vulnerability of linear sketches may shed
light on the phenomenon of adversarial examples in image classification, which has been extensively
studied in prior work [37, 21, 4, 34, 32, 35]. Many of these attacks exhibit a striking structural
similarity to our setting: they construct adversarial examples by aggregating small, randomly oriented
perturbations that consistently push the system’s output in a particular direction. When normalized
and accumulated, these perturbations yield a large, adversarial deviation that fools the model. This
additive, alignment-based mechanism appears to be remarkably effective across domains.

Although image classifiers such as CNNs are highly nonlinear, they contain significant linear com-
ponents, particularly in early layers. This observation raises a natural question: could adversarial
susceptibility in image models arise, at least in part, from the same linearity-driven accumulation
of aligned noise? If so, it may be possible to improve robustness by introducing carefully designed
randomness—such as injecting noise that is unknown to the attacker into internal representations or
into the input.

10



Acknowledgments

Edith Cohen was partially supported by Israel Science Foundation (grant 1156/23). Uri Stemmer
was Partially supported by the Israel Science Foundation (grant 1419/24) and the Blavatnik Family
foundation.

References
[1] Sara Ahmadian and Edith Cohen. Unmasking vulnerabilities: Cardinality sketches under

adaptive inputs. In ICML, 2024. URL https://doi.org/10.48550/arXiv.2405.17780.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via lin-
ear measurements. In Proceedings of the 2012 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 459–467, 2012. doi: 10.1137/1.9781611973099.40. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.40.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58:137–147, 1999.

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adver-
sarial examples. In International conference on machine learning, pages 284–293. PMLR,
2018.

[5] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial
streaming via differential privacy and difference estimators. CoRR, abs/2107.14527, 2021.

[6] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer, and Jonathan R.
Ullman. Algorithmic stability for adaptive data analysis. SIAM J. Comput., 50(3), 2021. doi:
10.1137/16M1103646. URL https://doi.org/10.1137/16M1103646.

[7] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: Generic constructions and lower
bounds. CoRR, abs/2111.03980, 2021.

[8] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via dense-
sparse trade-offs. CoRR, abs/2109.03785, 2021.

[9] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. SIGMOD Rec., 50(1):6–13, 2021.

[10] Guy Blanc. Subsampling suffices for adaptive data analysis. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 999–1012. ACM, 2023. doi: 10.1145/
3564246.3585226. URL https://doi.org/10.1145/3564246.3585226.

[11] Emmanuel J. Candès and Terence Tao. Decoding by linear programming. IEEE Transactions
on Information Theory, 51(12):4203–4215, 2005.

[12] Yeshwanth Cherapanamjeri and Jelani Nelson. On adaptive distance estimation. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[13] Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Moshe Shechner, and Uri Stemmer. On the
robustness of countsketch to adaptive inputs. In ICML, volume 162 of Proceedings of Machine
Learning Research, pages 4112–4140. PMLR, 2022.

[14] Edith Cohen, Jelani Nelson, Tamas Sarlos, and Uri Stemmer. Tricking the hashing trick: A
tight lower bound on the robustness of countsketch to adaptive inputs. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):7235–7243, Jun. 2023. doi: 10.1609/aaai.v37i6.
25882. URL https://ojs.aaai.org/index.php/AAAI/article/view/25882.

11

https://doi.org/10.48550/arXiv.2405.17780
https://epubs.siam.org/doi/abs/10.1137/1.9781611973099.40
https://doi.org/10.1137/16M1103646
https://doi.org/10.1145/3564246.3585226
https://ojs.aaai.org/index.php/AAAI/article/view/25882


[15] Edith Cohen, Jelani Nelson, Tamas Sarlos, and Uri Stemmer. Tricking the hashing trick: A
tight lower bound on the robustness of countsketch to adaptive inputs. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(6):7235–7243, Jun. 2023. doi: 10.1609/aaai.v37i6.
25882. URL https://ojs.aaai.org/index.php/AAAI/article/view/25882.

[16] Edith Cohen, Jelani Nelson, Tamás Sarlós, Mihir Singhal, and Uri Stemmer. One Attack to
Rule Them All: Tight Quadratic Bounds for Adaptive Queries on Cardinality Sketches. arXiv
preprint arXiv:2411.06370, 2024.

[17] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon
Roth. Preserving statistical validity in adaptive data analysis. In STOC, pages 117–126. ACM,
2015.

[18] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Leon
Roth. Preserving statistical validity in adaptive data analysis. In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, page 117–126, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450335362. doi:
10.1145/2746539.2746580. URL https://doi.org/10.1145/2746539.2746580.

[19] David A. Freedman. A note on screening regression equations. The American Statistician, 37(2):
152–155, 1983. doi: 10.1080/00031305.1983.10482729. URL https://www.tandfonline.
com/doi/abs/10.1080/00031305.1983.10482729.

[20] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n) time.
In ICALP, volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[22] Elena Gribelyuk, Honghao Lin, David P. Woodruff, Huacheng Yu, and Samson Zhou. A
strong separation for adversarially robust ℓ0 estimation for linear sketches. In Proceedings
of the 65th Annual Symposium on Foundations of Computer Science (FOCS), 2024. URL
https://arxiv.org/pdf/2409.16153.

[23] Elena Gribelyuk, Honghao Lin, David P. Woodruff, Huacheng Yu, and Samson Zhou. Lifting
linear sketches: Optimal bounds and adversarial robustness. In Proceedings of the 57th ACM
Symposium on Theory of Computing (STOC ’25), pages 395–406, 2025. doi: 10.1145/3717823.
3718227.

[24] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP in weighted
digraphs: Faster and against an adaptive adversary. In Proceedings of the Thirty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’20, page 2542–2561, USA, 2020.
Society for Industrial and Applied Mathematics.

[25] M. Hardt and J. Ullman. Preventing false discovery in interactive data analysis is hard. In
2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pages
454–463. IEEE Computer Society, 2014. doi: 10.1109/FOCS.2014.55. URL https://doi.
ieeecomputersociety.org/10.1109/FOCS.2014.55.

[26] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs? In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’13, page 121–130, New York, NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450320290. doi: 10.1145/2488608.2488624. URL https://doi.org/10.1145/
2488608.2488624.

[27] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversari-
ally robust streaming algorithms via differential privacy. In Annual Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2020.

[28] John P. A. Ioannidis. Why most published research findings are false. PLoS Med, (2):8, 2005.

[29] William B. Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

12

https://ojs.aaai.org/index.php/AAAI/article/view/25882
https://doi.org/10.1145/2746539.2746580
https://www.tandfonline.com/doi/abs/10.1080/00031305.1983.10482729
https://www.tandfonline.com/doi/abs/10.1080/00031305.1983.10482729
https://arxiv.org/pdf/2409.16153
https://doi.ieeecomputersociety.org/10.1109/FOCS.2014.55
https://doi.ieeecomputersociety.org/10.1109/FOCS.2014.55
https://doi.org/10.1145/2488608.2488624
https://doi.org/10.1145/2488608.2488624


[30] E.L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 2nd edition, 1998.

[31] Paul M. Lukacs, Kenneth P. Burnham, and David R. Anderson. Model selection bias and
Freedman’s paradox. Annals of the Institute of Statistical Mathematics, 62(1):117, 2009.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference
on Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1706.06083.
arXiv:1706.06083.

[33] Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. In Proceedings
of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, page 651–660,
New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605580470. doi:
10.1145/1374376.1374471. URL https://doi.org/10.1145/1374376.1374471.

[34] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017
ACM on Asia conference on computer and communications security, pages 506–519, 2017.

[35] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck,
and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
3a24b25a7b092a252166a1641ae953e7-Paper.pdf.

[36] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM, 28(1):1–4, jan
1981. ISSN 0004-5411. doi: 10.1145/322234.322235. URL https://doi.org/10.1145/
322234.322235.

[37] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[38] Roman Vershynin. High–Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, Cambridge, UK, 2018. ISBN 9781108415194. doi: 10.1017/9781108231596.

[39] David Wajc. Rounding Dynamic Matchings against an Adaptive Adversary. Association
for Computing Machinery, New York, NY, USA, 2020. URL https://doi.org/10.1145/
3357713.3384258.

[40] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In Proceedings of the 62nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS), 2021.

13

https://arxiv.org/abs/1706.06083
https://doi.org/10.1145/1374376.1374471
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/322234.322235
https://doi.org/10.1145/3357713.3384258
https://doi.org/10.1145/3357713.3384258


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims reflect the contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explain that what we are doing is what we can hope to do in a single-batch
attack.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Most of the proofs are in the supplementary but ideas and sketches are
contained in the main body.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We included very light weight experiments as a demonstration. This is a theory
paper. We disclose everything needed to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: There is no data and the code is very minimal and easy to redo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not do any model training. We only implemented a version of our
Algorithm 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We report results of few repetitions in our demonstration.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Experiments are simple and light weight
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe we did.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is a theory paper exposing some vulnerabilities in dimensionality reduc-
tion. There is no direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We only used standard python libraries.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or code. This is a theory paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLM beyond editing, formatting, and such.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Norm estimation to signal estimation

This section contains a restatement and proof of Lemma 4.1:
Lemma 4.1 (Norm gap to signal gap). With the choice of parameters for our attack and m =
Ω((k + r) log((k + r)/δ)), with probability close to 1, a correct (1 − c2, 1.1α)-norm gap output
implies a correct (1, α)-signal gap output on all queries.

Proof. The query vectors v = weh + cu sampled in Algorithm 1 are from distributions Fh,M,c[w],
for w ∈ [a, b]. The squared norm is ∥v∥22 = w2+ c2∥u∥22. We show that ∥u∥22 is tightly concentrated
around its expectation 1:
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Claim A.1 (Concentration of ∥u∥22).

Pr
[∣∣∥u∥22 − 1

∣∣ ≥ ϵ
]
≤ 2e−

m
2 (ϵ2/2)

Proof. The sum of the squares of m i.i.d. N (0, σ2) has distribution σ2χ2
m and expected value mσ2.

Applying tail bounds on χ2
m (Gaussian concentration of measure) we obtain that for ϵ ∈ (0, 1)

Pr

[∣∣∥u∥22 −mσ2
∣∣

mσ2
≥ ϵ

]
≤ 2e−

m
2 (ϵ2/2) .

Substituting σ2 = 1/m we obtain the claim.

It follows that if we choose m = Ω((k + r) log((k + r)/δ)) then with probability 1 − δ, on all
our queries, the squared norm of the noise is within ∥u∥22 ∈ (1 ± 1/(10

√
k). Therefore, a correct

(1, α)-gap output on the norm yields a correct (1, α2 + 2α)-gap on the squared norm ∥v∥22. This
gives an (1− c2(1 + 1/(10

√
k)), α2 + 2α− c2/(10

√
k)-gap output on the squared signal w2.

We now note that we can assume α > 1/
√
k because otherwise, any responder would be incorrect

with constant probability. Using our parameter setting of ℓ close to 1 and fixed c≪ 1 we obtain the
claim in the statement of the lemma.

B Estimator for the Signal

This section contains a restatement and proof of Lemma 4.2.
Lemma 4.2 (Estimator for the Signal). Fix h ∈ [n], a noise support set M ⊂ [n] \ {h}, and a noise
scale factor c. Consider the distributions Fh,M,c[w] parametrized by w.

If the column A•h is nonzero, then there exists an unbiased, complete, and sufficient statistic Th,M :
Rk → R for the signal w based on the sketch Av.

Furthermore, the deviation of this estimator from its mean, defined as

∆h,M (cAu) := Th,M (Av)− w,

depends only on the sketch of the noise u ∼ Nn,M , and is distributed as a Gaussian random variable
N (0, c2σ2

T (h,M).

Proof. If the column A•h is zero, then the sketch contains no information on the signal w and
unbiased estimation is not possible. Otherwise, our goal is to express the unbiased sufficient statistic
Th,M (Av) for the unknown scalar w.

Because row operations preserve the information in a sketch, there exists an invertible matrix
G ∈ Rk×k such that for A′ = GA,

• the transformed column h has value 1 in the first row and 0 elsewhere: A′
1h = 1 andA′

ih = 0
for i > 1; and

• every row A′
iM for i > 1 of the submatrix restricted to the noise coordinates, is either

orthogonal to the first row A′
1M or is the zero vector 0.

Since G is invertible, A′ is equivalent to the original sketching matrix A in that we can obtain the
sketch A′v from Av and vice versa.

We specify a sufficient statistics T in terms of A′v (so that Th,M (Av) ≡ T (GAv)). Consider
the distribution of the sketch y = A′v = GAv for v = weh + cu where u ∼ Nn,M . We have
y1 = w + c

∑
j∈M A′

ijuj , hence it has distribution

cN (w, σ2
T ) , where σ2

T := ∥A′
1M∥22σ2 =

1

m
∥A′

1M∥22 . (7)

From orthogonality of the rows A′
iM restricted to M , the random variables yi for i > 1 are indepen-

dent of A′
1•u and hence convey no information on w. The information on the signal w in the sketch,
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and the unbiased sufficient statistic is therefore y1 = (GAv)1, which has distribution (7) and is an
unbiased estimator of w.

To establish the claim for the additive error, note that
∆h,M (cAu) = Th,M (Av)− w = (GAv)1 − w = (cGAu)1 .

C Proof of Lower Bound on Error Lemma

This section contains a restatement and proof of Lemma 4.5.
Lemma 4.5 (Lower Bound on Error). Let A ∈ Rk×(m+1) be a matrix with m ≥ 20k log2 k.
Then, for at least 0.9 fraction of columns h ∈ [m + 1], it holds that either A•h is all zeros or

σ2
T (h,M = [m+ 1] \ {h}) = Ω

(
1

k log k

)
.

We will use the following technical claims
Definition C.1 (Fragile Columns). Let A ∈ Rk×m. For each column h ∈ [m], define

Kh = { i ∈ [k] : Aih ̸= 0}, bih =
∣∣{ j ∈ [m] : A2

ij ≥ A2
ih}
∣∣

the set Kh of active rows and the dominated number bih of each active row. Let i ∈ Kh

c
(h)
1 ≤ c

(h)
2 ≤ · · · ≤ c

(h)
|Kh|

be the nondecreasing rearrangement of {bih : i ∈ Kh}). We say that a column h is fragile, if:

∀ 1 ≤ i ≤ |Kh| : c
(h)
i ≥ im

10k log2 k
.

Note that zero columns are fragile by definition.
Claim C.2 (Most Columns are Fragile). If m > 2k log2 k then at least 0.9m of the columns are
fragile.

Proof. We look at ⌊log2 k⌋ ranges of bih values where R1 = [1, . . . , m
10k log2 k ) and Rt =

[2t−2, 2t) m
10k log2 k for t ≥ 2.

We say a column h is strong for range t if it has 2t−1 or more bih values in Rt. That is, |{i : bih ∈
Rt}| ≥ 2t−1. Clearly if a column h is not fragile then it must be strong for some range t, but the
converse may not hold.

We bound the number of distinct columns that are strong for at least one range t. This bounds the
total number of non-fragile columns.

Consider range t = 1. Each of the k rows contributes the columns of its m
10k log2 k ) largest entries. So

the total number of columns that can be strong for range t = 1 is at most m
10 log2 k ).

Now consider t > 1. Each row has at most 2t−1 m
10k log2 k distinct columns h with bih ∈ Rt. But for

a column to be strong for t it has to participate in 2t−1 such rows. So in total, the range contributes at
most m

10 log2 k ) strong columns.

Summing over all ranges, we obtain a bound of m/10 on the total number of columns that are strong
for at least one range. This also bounds the number of non-fragile columns. This concludes the
proof.

Claim C.3 (Nearly to fully orthogonal rows). Let v(1), . . . ,v(k) ∈ Rn for k ≥ 1 be linearly
independent and satisfy

⟨v(i),v(j)⟩ = 1 (i ̸= j), ∥v(i)∥2 > i(2 + ln k) (i = 1, . . . , k).

Then there are orthogonal u(1), . . . ,u(k) such that u(1) = v(1), and

∥u(i)∥22 > ∥v(i)∥22 − 1 ≥ i(1 + ln k) (i = 2, . . . , k)

u(i) is an affine combination of v(1), . . . ,v(i−1) (i = 2, . . . , k)
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Proof. We construct vectors u(2), . . . ,u(k) in order using the following operations:

ũ(i) = v(i) −
i−1∑
j=1

⟨v(i),u(j)⟩
∥u(j)∥2

u(j)

u(i) =
ũ(j)

1−
∑i−1

j=1
⟨v(i),u(j)⟩
∥u(j)∥2

.

We establish the claim by induction on i. The claim clearly holds for i = 1.

Assume it holds for i. Then u(i) =
∑i

j=1 γijv
(j), where

∑i
j=1 γij=1.

Therefore for all h > i,

⟨v(h),u(i)⟩ =
i∑

j=1

γij⟨v(h)v(j)⟩ =
i∑

j=1

γij = 1 .

Therefore

ũ(i+1) = v(i+1) −
i∑

j=1

1

∥u(j)∥2
u(j)

Using orthogonality of (u(j))j≤i we obtain:

∥ũ(i)∥22 = ∥v(i)∥22 −
i−1∑
j=1

1

∥u(j)∥22
≥ ∥v(i)∥22 −

i−1∑
j=1

1

i (1 + ln k)
≥ ∥v(i)∥22 − 1 .

(using an upper bound on the Harmonic sum).

The scaling of ũ(i) ensures that u(i) is an affine combination of v(i) and (u(j))j<i. Since by induction
each u(j) for j < i is an affine combination of (v(h))h≤j , combining we obtain that so is u(i).

The scale factor is si = 1−
∑i

j=1
1

j (1+ln k) ∈ (0, 1]. Therefore,

∥u(i)∥22 =
1

s2i
∥ũ(i)∥22 ≥ ∥ũ(i)∥22 ≥ ∥v(i)∥22 − 1 .

Proof of Lemma 4.5. We first give a characterization of σ2
T (h, [m+ 1] \ {h}) that we will use, and

follows from a similar argument to the proof of Lemma 4.2. Let G ∈ Rk×k be invertible so that the
column GA•h has only values in {0, 1} and the rows of the submatrix GA•,[m+1]\{h} with column
h removed are orthogonal. Then

1

σ2
T (h, [m+ 1] \ {h})

=
∑

i:GAih=1

m

∥GAi,[m+1]\{h}∥22
. (8)

We assume, without loss of generality, that the rows of A are either orthogonal or 0. From Claim C.2,
it follows that most columns of A are fragile.

We now fix a nonzero fragile column h. We scale the rows so that A•h are in {0, 1}. Note that the
fragility of columns is invariant to rescaling of rows. From fragility, and with the rescaling, the
squared norms of the rows in increasing order are at least im

10k log k .

We now consider the submatrix B = ALh,[m+1]\{h} ∈ Rk×m of A with column h removed and all
rows in which column h was not active are removed. Let the rows of B be v(i) and observe that from
orthogonality of the rows of A and from the fragility of h, the vectors satisfy the conditions in the
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statement of Claim C.3. Therefore by applying the claim we obtain a matrix B′ (with row vectors ui

that are orthogonal, are affine transformations of the rows of B, and that∑
i

1

∥B′
i•∥22

≤
∑
i

10k log k

im
= O(

k log k

m
) .

It follows that if we applied the same transformations with the column h, the column would be
invariant. The matrix A′ with column A with B′ substituting the matrix B could be obtained using
the same transformation. This matrix satisfies the conditions of the characterization and by applying
(8) we obtain σ2

T (h, [m+ 1] \ {h} = Ω( 1
k log k ) and this concludes the proof.

D Proof of the Gain Lemma

This section contains a restatement and proof of Lemma 4.9.

Because Th,M is a sufficient statistic for w, the distribution of the sketch Av, conditioned on
Th,M (Av) = (G(h,M)Av)1 = τ , does not depend on w. Let fτ : Rk be the density function of this
distribution.

We can thus express the expected value of ψ, conditioned on the value of the statistic Th,M (y) = τ ,
(as it does not depend on the signal value w):

Ψ(τ) :=

∫
Rk

ψ(y)fτ (y) dy . (9)

We express the error rate of ψ (see Definition 4.8) in terms of Ψ and σ2
T :

err(ψ) =
∫ 1

a

∫
R

Ψ(w + x) + 1

2
φ0,c2σ2

T
(x) dx ν(w) dw (10)

+

∫ b

1+α

∫
R

1−Ψ(w + x)

2
φ0,c2σ2

T
(x) dx ν(w) dw ,

where ν(w) be the density function of the distribution W on the signal w (see Definition 3.3) and
ϕ0,cσ2

T
is the distribution of the deviation (see Lemma 4.2).

Lemma 4.9 (Gain Lemma). If err[ψ] < δ and attack parameters are as in Definition 3.3, and
σT < α/(c

√
log(1/δ)) then

E
v
[ψ(Av)(Th,M (Av)− w)] = Ω(α−1c3σT (h,M)2)

Proof. We bound from below the expected value, over our query distribution, of

ψ(Av)(Th,M (Av)− w) = cψ(Av)∆h,M (Au).

We express the expected value of ψ over our query distribution, conditioned on the deviation
∆h,M (cAu) = x:

E [ψ(Av) | ∆h,M (cAu) = x] =
1

φ0,c2σ2
T
(x)

·
∫ b

a

Ψ(w + x)φ0,c2σ2
T
(x) ν(w) dw

=

∫ b

a

Ψ(w + x) ν(w) dw

=

∫ b+x

a+x

Ψ(w) ν(w − x) dw . (11)

We express the expected value of ψ(Av)∆h,M (cAu) over our query distribution.
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E
v
[ψ(Av)∆h,M (cAu)]

= E
x∼N (0,c2σ2

T )
x E

v
[ψ(Av) | ∆h,M (cAu) = x]

=

∫ ∞

−∞
xφ0,c2σ2

T
(x)

(∫ b+x

a+x

Ψ(w) ν(w − x) dw

)
dx ; using (11)

=

∫ ∞

0

xφ0,c2σ2
T
(x)

(∫ b+x

a+x

Ψ(w) ν(w − x) dw −
∫ b−x

a−x

Ψ(w) ν(w + x) dw

)
dx (12)

(using that φ is a symmetric function).

We separately bound the parts of the integral in (12) due to x ∈ [α,∞] and x ∈ [0, α].

We first consider x ∈ [α,∞]. Since ν is a density function and |Ψ| ≤ 1, the absolute value of the
difference expression is bounded by 2. Hence,

|(12) due to x ∈ [α,∞]| ≤ 2

∫ ∞

α

xφ0,c2σ2
T
(x) dx =

2√
2π

exp(−(α/(cσT ))
2/2) .

We now bound the contribution to (12) due to x ∈ [0, α]. We use the following:

Claim D.1. For x ∈ [0, α] and assuming err(ψ) ≤ 0.05 and our setting of a, b,∫ b+x

a+x

Ψ(w) ν(w − x) dw −
∫ b−x

a−x

Ψ(w) ν(w + x) dw = Ω(c α−1 x) . (13)

Proof. We break the range of integration into parts according to the density function ν (see Defini-
tion 3.3) and bound each part.

∫ b+x

a+x

Ψ(w) ν(w − x) dw −
∫ b−x

a−x

Ψ(w) ν(w + x) dw (14)

= −
∫ a+x

a−x

Ψ(w) ν(w + x) dw (15)

+

∫ 1−x

a+x

Ψ(w) (ν(w − x)− ν(w + x)) dw (16)

+

∫ 1+x

1−x

Ψ(w) (ν(w − x)− ν(w + x)) dw (17)

+

∫ 1+α−x

1+x

Ψ(w) (ν(w − x)− ν(w + x)) dw (18)

+

∫ 1+α+x

1+α−x

Ψ(w) (ν(w − x)− ν(w + x)) dw (19)

+

∫ b−x

1+α+x

Ψ(w) (ν(w − x)− ν(w + x)) dw (20)

+

∫ b+x

b−x

Ψ(w) ν(w − x) dw (21)
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We now bound each part. We use that C = Θ(c/α) and (1− a),b− (1 + α) = Θ(α/c).

|(15)| ≤ C
4x2

1− a
= O(c2 α−2 x2)

(16) =
∫ 1−x

a+x

Ψ(w) (−2x
C

1− a
) dw = −2x

C

1− a

∫ 1−x

a+x

Ψ(w) dw ≥ 0.1 c α−1 x

|(17)|, |(19)| ≤ 2Cx2 = O(cα−1x2)

(18) = 0

(20) = 2x
C

b− (1 + α)

∫ b−x

1+α+x

Ψ(w) dw ≥ 0.1x cα−1

|(21)| ≤ C
4x2

b− (1 + α)
= O(c2 α−2 x2)

Our bounds for (16) and (20) use that for Ψ with error at most δ < 0.05 and x ∈ [0, α], it holds (with
our choices for a, b) that

∫ 1−x

a+x
Ψ(w)dw < −0.1(1− a),

∫ b−x

1+α+x
Ψ(w)dw > 0.1(b− (1 + α)).

(12) due to x ∈ [0, α] =

∫ α

0

xφ0,c2σ2
T
(x) Ω(Cx)dx = Ω(c3α−1σ2

T ) . (22)

Combining (22) and (13) we establish the claim in the statement of the Lemma: (12) = Ω(α−1 c3σ2
T ).

E Signed sum of Gaussian vectors

Lemma E.1 (Upper bound for the signed sum of Gaussian vectors). Let X1, . . . , Xr
i.i.d.∼ Nm(0, 1)

in Rm. Define

M := max
s∈{±1}r

∥∥∥ r∑
i=1

siXi

∥∥∥
2
.

Then for every t > 0

Pr
[
M ≤ (

√
r +

√
m+ t)

√
r
]

≥ 1− 2e−t2/2.

In particular,
M ≤ 2r +

√
rm with probability 1− e−r/2.

Proof. Collect the random vectors into the Gaussian matrix X =
[
X1 . . . Xr

]
∈ Rm×r. For any

sign vector s ∈ {±1}r we have
r∑

i=1

siXi = Xs, hence
∥∥Xs

∥∥
2

≤ σmax(X) ∥s∥2 = σmax(X)
√
r,

where σmax(X) is the largest singular value of X . Since this holds for all s, we get

M ≤ σmax(X)
√
r . (23)

For an m× r matrix with i.i.d. N (0, 1) entries, applying the standard concentration bound (see, e.g.,
Theorem 4.4.5 in Vershynin [38]) we obtain

Pr
[
σmax(X) ≥

√
r +

√
m+ t

]
≤ 2e−t2/2 (t > 0).

Combining this bound with (23) yields the first stated probability bound. For the simplified bound,
we plug-in t =

√
r in the above.
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