
Latency NMS Attacks:
Is It Real Life or Is It Just Fantasy?

Jean-Philippe Monteuuis Cong Chen Jonathan Petit
Qualcomm Technologies, Inc.

{jmonteuu, congchen, petit}@qti.qualcomm.com

Abstract

“Caught in a landslide, no escape from reality" summarizes the state of the research
in AI offense: an attack might work on paper but does not necessarily in practice.
In the last 5 years, we have seen the rise of latency attacks against computer vision
systems. Most of them targeted 2D object detection, especially its Non-Max-
Suppression (NMS) block, via adversarial images. However, we uncovered that,
when tested in realistic deployment settings, the NMS latency attacks, accepted
to top conferences, have very limited negative effects. In this paper, we define an
evaluation framework (EVADE) to assess the practicality of attacks, and apply it to
state-of-the-art NMS latency attacks. Attacks were tested on different hardware
platforms, and different model formats and quantization. Results show that these
attacks are not able to generate the claimed latency increase, nor transfer to other
models (from the same family or not). Moreover, the latency increases remain
within the latency requirements of downstream tasks in our evaluation, suggesting
limited practical impact under these conditions. We also tested three defenses,
which were successful in mitigating the NMS latency attacks. Therefore, in their
current form, NMS latency attacks are just fantasy.

1 Introduction

Perception systems use camera inputs to perform tasks such as object detection, object classification,
or segmentation. They rely on the performance of machine learning models to offer proper services.
Especially, the latency of perception output plays an important role in delivering satisfactory user
experience or safety-critical functions.

The maximum latency for real-time object detection models depends on the target application. For
example, for autonomous driving, the maximum latency is typically around 100 ms to ensure safety
and responsiveness (Lin et al., 2018).For surveillance systems, a latency of up to 200 ms is acceptable,
as these systems often prioritize accuracy over immediate response (Hussain, 2024). In industrial
robotics, latencies of up to 100 ms are often acceptable, but for more precise tasks, lower latencies
around 10-20 ms are preferred (Vijayakumar and Vairavasundaram, 2024).

Most of the object detection models use Non-Max Suppression (NMS) to process all the candidate
bounding boxes and output the most probable ones. It has been demonstrated that an attacker could
craft perturbations to create many high-probability bounding boxes that would not be filtered by the
NMS, and hence, increase the latency Wang et al. (2021).

However, as we are going to demonstrate in this paper, the prior art omitted many important aspects
of deployed ML models that seriously question the relevance of current NMS latency attacks. More
precisely, we tackle the following research questions.

• RQ1: How does the hardware affect the Attack Success Rate (ASR) of latency attacks
against NMS?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



AI Hardware

Object Detection 
Models

Evaluate and 
Validate
Adversarial 
Digital
Examples

EVADE

EVADE
EVADE

Figure 1: Overview of our evaluation framework (EVADE) to assess practicality of attacks. An input
image is adversarially perturbed (to aim at increasing latency here). EVADE tests different defenses,
model formats, checks impact on performance (e.g., accuracy, number of bounding boxes) to assess
the attack risk level.

• RQ2: How does neural network architecture affect the ASR of NMS latency attacks?

• RQ3: How does the size of the model affect the ASR of NMS latency attacks?

• RQ4: When deployed, the models are compiled to a target format (e.g., QNN, ONNX,
TensorRT). Does the model format affect the ASR of NMS latency attacks?

• RQ5: Models deployed on device are quantized to optimize their performance (e.g., memory
and latency). How does quantization affect the effectiveness of NMS latency attacks?

• RQ6: How does “Domain Shift" affect the ASR of universal NMS latency attacks?

• RQ7: How applicable are existing defenses (e.g., adversarial training, compression, purifi-
cation) against NMS latency attacks?

To answer these research questions and assess the practicality of NMS latency attacks, we designed a
framework to Evaluate and Validate Adversarial Digital Examples (EVADE)–see Figure 1. Then,
we devised experiments (see Section 4) that demonstrated the lack of effectiveness, transferability,
and robustness of state-of-the-art NMS latency attacks. Especially, NMS latency attacks did not
succeed when NMS runs on GPU (which is commonly the case), and NMS latency attacks were
not transferable across different models (size, or version from the same family), nor able to bypass
existing defenses.

Our contributions are as follows:

• The EVADE framework that supports evaluation of practicality of attacks. We applied
EVADE to latency NMS attacks.

• Generation of 114 adversarial datasets to support reproducibility and comparison of future
research.

• Comprehensive evaluation of 7 hardware platforms, 4 latency attacks on 15 models, and
against 3 defenses.

2 Related Work

2.1 Latency Attacks

There have been several papers on the topic of NMS latency attacks, which aim to increase the
processing time of the Non-Max-Suppression (NMS) 1algorithm by fulfilling two objectives. First,
maximize the number of bounding box proposals being processed by NMS, and second, minimize
the number of proposals being filtered during NMS. As a result, the high number of box proposals
increases the NMS processing time, and thus, results in a delay of the Object Detection pipeline.

1More details on NMS can be found in Appendix A.

2



Table 1: Our evaluation of NMS Attacks compared to SOTA
Evaluation Criteria D O PS BPS EVADE
Transferability of the attack across different Hardware ✗ 4 2 ✗ 7
Transferability of universal patch attack across datasets (Domain shift) NA NA ✗ ✗ ✓
Transferability across different export formats of a model ✗ ✗ ✗ ✗ ✓
Transferability across different models (sizes and architectures) 4 ✗ 3 ✗ 10
Transferability from a non-quantized model to quantized models ✗ ✗ ✗ ✗ ✓
Robustness against defenses ✗ ✗ ✗ ✗ ✓

Looking at the prior art 2, there are two categories of NMS latency attack: unique patch and universal
patch.

Unique patch attacks aim to craft a perturbation patch to be added "on the top of" a genuine image by
optimizing, through iteration, the perturbation for this single genuine image. Daedalus (D) Wang
et al. (2021) and Overload (O) Chen et al. (2024) are state-of-the-art unique patch NMS latency
attacks.

Universal patch attacks aim to craft a perturbation patch to be added “on the top of" a genuine
image by optimizing, iteratively, the perturbation across multiples images (dataset). From an attacker
perspective, the advantage of universal patch attacks is to use a single perturbation that works
for multiple images. Phantom Sponges (PS) Shapira et al. (2023) and Beyond Phantom Sponges
(BPS) Schoof et al. (2024) are state-of-the-art universal patch NMS latency attacks.

2.2 Evaluation of Adversarial Attacks

The evaluation of digital adversarial attacks is a well-explored topic. For instance, several works
have been released such as Adversarial Robustness Toolbox (ART) Nicolae et al. (2018) or Ro-
bustBench Croce et al. (2020). However, these works do not evaluate adversarial examples from
a feasibility perspective. Indeed, current evaluation frameworks are limited. For instance, it is
well-known that an attack optimized on a non-quantized model may not transfer to its quantized
counterpart Li et al. (2024); Shrestha and Großmann (2024). Such an aspect is mandatory to assess
the feasibility of the attack because models running on device are quantized. Therefore, it is important
to know if the attacker can use a surrogate non-quantized model to perform its attack or if the attacker
needs to optimize the attack on the quantized model. A follow-up feasibility aspect to consider is
the transferability of the attack on the same model but with different sizes. Concretely, it is common
practice to train model with different sizes (e.g., small, medium, large) Jocher et al. (2023). Therefore,
one may wonder if attacks transfer successfully to any model from the same family. In Table 1, we
summarize the evaluation criteria used in the four NMS latency attack papers. In comparison, our
framework (EVADE) offers a comprehensive evaluation of the practicality of the attacks.

3 Evaluation Framework: EVADE

To assess the feasibility and practicality of NMS latency attacks, we designed an evaluation method-
ology as shown in Figure 2. First, we describe the components that will be tested (hardware, model
family, model size, model format, model quantization, domain shift, defenses). Then, we describe
the datasets, attacks, and defenses specifically used for our NMS latency attack testing. Finally, we
explain the relevant metrics.

3.1 Components

Hardware: The Hardware component aims to solely evaluate the processing time of the NMS
component. Since NMS is the component targeted by the attack, its processing time is supposed
to increase greatly under attack compared to the genuine scenario (no attack). Knowing that the
processing time of NMS is hardware dependent, our evaluation considers a wide range of hardware
to cover all kind of use cases such as edge device, desktop, and cloud server. For instance, the attack
may not affect a model running on a cloud server because of its powerful hardware. However, an

2For the sake of reproducible and fair evaluation caused by re-implementation errors, we discard work
without publicly available code. However, those work are cited in Appendix C.

3



Inputs (section 4.2)

6 Datasets
4 Attacks 114 

Adversarial 
Datasets

15 Models
3 Defenses

EVADE 
(section 4.1)

Defenses

FormatQuantization 

Size 

Family

Domain Shift 

Hardware 

7 Hardware

Metrics
(section 4.3)

& 
Results
(section 5)

CBA

Figure 2: Proposed evaluation framework (EVADE) and corresponding sections where each phase
is discussed. Block A shows the inputs used to perform the component-level assessment. Numbers
represent what was used to assess NMS latency attacks. Block B lists the components evaluated.

edge device may be impacted by the attack because it may not have a powerful hardware to run the
model.

Model Family: This component aims to evaluate if an attack optimized for a specific version of the
model family (e.g., YOLOv8) can affect a different version of the model (e.g., YOLOv11). If an
attack, optimized for a given model version, works for all versions of YOLO, then the attacker does
not need to generate attack on each model version.

Model Size: This component aims to evaluate if an attack optimized for a specific size of the model
(e.g., nano) can affect a model with a different size (e.g., large). If an attack, optimized for a given
model size, works for any size of the targeted model, then the attacker does not need to generate
attack on each model size.

Model Format: This component aims to understand if an attack optimized for a model under a
specific framework (e.g., PyTorch) can affect a model exported to different framework (e.g., CoreML).
For instance, it is common to have the model specification, training, and evaluation being done under
PyTorch or TensorFlow. However, to deploy models on iPhone, they must be exported to a framework
different than PyTorch, namely CoreML. If an attack, optimized for a model under one framework,
works for any framework, then the attacker does not need to worry about model export.

Model Quantization: This component aims to understand if an attack optimized for a non-quantized
model works against a quantized version of this model. The motivation behind this evaluation is that
all latency attacks have been developed for non-quantized model. However, models are quantized to
reduce their size and improve their efficiency, particularly for deployment on resource-constrained
devices like mobile phones or edge devices. Moreover, quantization has demonstrated some negative
and positive effect on attack success rate Bernhard et al. (2019). Thus, one must test attacks against
quantized models to assess its practicality.

Domain Shift: This component aims to assess the universality of universal latency attacks. As a
reminder, universal attacks aim to create a unique patch that fools any images. For instance, an
attacker generates a universal patch optimized on an autonomous driving dataset and on an object
detection model. We test this patch by applying it on “unseen" images and check if the attack still
works.

Defenses: This component aims to understand if latency attacks are robust against existing defenses.
We recommend to focus on diversifying the categories of defenses for the evaluation instead of having
multiple defenses from the same category. Indeed, there is little to no interest to evaluate two defenses
that are fundamentally similar because if the attacks fails against one defense, then the attack will fail
against the second defense.

3.2 Inputs

To evaluate the feasibility of NMS attacks, EVADE requires a diversity of inputs such as genuine and
adversarial datasets, models, NMS attacks, different hardware, and defenses. The following sections
describe each input.

Datasets: For all our experiments, we use COCO 2017 validation as our baseline dataset. COCO is
the standard large-scale dataset for object detection with 5K images. One main reason for choosing
COCO 2017 validation as our baseline dataset is the heterogeneity of the images. In other words, the
images’ semantics are diverse and provide more entropy.

4



Adversarial Datasets: As done in the prior art Chen et al. (2024); Wang et al. (2021); Shumailov
et al. (2021); Schoof et al. (2024), the common practice to evaluate a latency attack is to generate an
adversarial dataset. The process of creating an adversarial dataset is to generate a unique perturbation
(optimized for a target AI model) for each image, repeated N times (where N is the requested
number of iterations for optimizing the perturbation). In a nutshell, each adversarial dataset contains
adversarial images optimized using a given latency NMS attack and a given targeted model. In this
paper, we generated 114 adversarial datasets to test attack effectiveness and transferability.

Models: To match the experiments from the state-of-the-art on NMS latency attacks, we use the
same family of model (YOLO). We test different versions (v3, v5, v8, v11, v12), sizes (nano, small,
medium, large, extra-large), export formats, and quantization schemes.

Attacks: Our focus is to evaluate latency NMS attacks. Therefore, in this paper, we evaluate the four
state-of-the-art NMS latency attacks, namely, Daedalus (D), Overload (OL), Phantom Sponge (PS),
and Beyond Phantom Sponge (BPS). We reused the settings defined in their respective paper3.

Defenses: To assess existing defenses against NMS latency attacks, we selected three categories of
defenses: an active defense, a passive defense, and a natural defense. An active defense is an extra
component added to the inference pipeline (e.g., a dedicated defensive AI model). A passive defense
is a defense that does not tamper with the image being processed during inference. An example
of passive defense can be a filtering technique such as limit the number of bounding boxes being
processed by NMS Chen et al. (2024). Lastly, a natural defense uses data processing schemes within
the inference pipeline that may affect the attack. For instance, data transformations such as image
compression or image resizing would fall under natural defenses.

3.3 Metrics

Number of bounding boxes: When it comes to evaluating NMS latency attacks, the evident metric
is the inference time. However, the inference time is influenced not only by the attack, but also by the
hardware used to run the model (CPU and GPU), the type of model being used for the experiment,
and quantization. Therefore, to independently evaluate each component discussed in Section 3.1
(except hardware), we set the number of bounding boxes after NMS as our core metric. Indeed, we
found out that the number of bounding boxes was reproducible when testing the same model on the
same dataset but with different hardware. Also, the number of bounding boxes is highly correlated to
the outcome of the attack.

Visualization of attack effectiveness: We wanted to provide a visual interpretation of the effect of
the attack. For each table, we follow a four color scale: green, yellow, orange, and red. Green and red
highlight the extreme cases such as when the attack failed or is able to attain the maximum NMS
detection. Yellow and orange reflect intermediate cases such as an abnormal number of bounding
boxes but the attack is not at its full potential. For most of the evaluations, we divided the maximum
number of bounding boxes allowed by the model (300 boxes) into 4 ranges such as green (0-75),
yellow (76-125), orange (126-225), red (226-300).

4 Evaluation

In this section, for each component, we first detail the experiment, and then discuss the results. We
remind the reader that the objective of the evaluation is to assess the attack practicality. Understanding
the reason behind the results is out of scope. In the following Tables, we abbreviated the attack names
when needed and as follows: G (Genuine), D (Daedalus), O (Overload), PS (Phantom Sponge), BPS
(Beyond Phantom Sponge). Each cell with a numerical value represents the round up average number
of bounding boxes for a targeted dataset.

4.1 Hardware (RQ1)

3Details about each attack and their parameters can be found in Appendix C.

5



0 5k 10k 15k 20k 25k 30k

0

500

1000

1500

2000

2500

3000
hw_type, hw_name

gpu, NVIDIA A100-SXM4-80GB
gpu, GRID A100D-10C
gpu, NVIDIA Jetson AGX ORIN 64GB
cpu, Intel(R) Xeon(R) Gold 6338N CPU @ 2.20GHz
cpu, Apple M1 Max
cpu, AMD EPYC 7742 64-Core Processor
cpu, ARM Cortex-A78AE v8 12-Core @2.2Ghz

n_boxes

tim
e_

N
M

S
_m

s

Figure 3: Inference time of NMS (ms) for different hardware platform in function of the number
of bounding boxes that went through the NMS process. Each data point uses 30k bounding boxes
proposals before NMS.

Table 2: Theoretical evaluation of attack success if NMS outputs 25k (yolov5) or 8k (yolov8)
bounding box proposals.

Hardware Attack Success (ms)
type name use case 100 500 1000 2000
GPU NVIDIA A100-SXM4-80 GB Server ✓ ✓

GRID A100D-10C Desktop ✓ ✓
NVIDIA Jetson AGX ORIN 64GB Edge-device ✓ ✓

CPU Intel Xeon Gold 6338N Desktop ✓ ✓ ✓ ✓
Apple M1 Max Laptop ✓ ✓ ✓
AMD EPYC 7742 Server ✓ ✓ ✓
ARM Cortex-A78AE Edge-device ✓ ✓ ✓ ✓ ✓

Experiment: Our focus is to understand how the number of bounding box affects the inference time
of NMS. To this end, we use the implementation of NMS from Ultralytics Jocher et al. (2023), which
is derived from the official PyTorch NMS implementation Paszke et al. (2019). 4

Results: Figure 3 shows the NMS inference time in function of the number of bounding box proposals.
We plot the results for the seven hardware configurations. We observe that the NMS attack is the most
successful when the NMS computation is performed on CPU with a NMS inference time reaching
more than 3 seconds in one instance. Now, if we want to translate Figure 3 into an analysis of the
feasibility of the attack, then Table 2 would be the closest answer.

Answer to RQ1: NMS latency attacks cannot achieve the latency increase needed to affect applica-
tions when the NMS processing runs on GPU. The attack must generate more than 10k bounding
box proposals to start seeing a latency greater than 500 ms on CPU. However, models can cap the
maximum number of proposals to a lower number, making the attack unsuccessful.

4.2 Model Family Transferability (RQ2)

Experiment: We use COCO 2017 validation dataset, 4 attacks, and 5 model versions of YOLO (v3,
v5n, v8n, v11n, v12n). We generate 20 adversarial datasets (4 attacks × 5 models). In total, we run
100 experiments (20 adversarial datasets × 5 models).

Results: Table 3 shows the effect of each latency attack on different model version from the same
family (YOLO). Results show that the attacks do not transfer across model versions of YOLO. Each
attack only works when the source model and the target model are the same. From an attacker
perspective, it means she must craft adversarial examples for each model version.

4More details of bounding box generation algorithm can be found in Appendix D.

6



Table 3: Evaluation of each attack’s transferability across the YOLO model family. The adversarial
dataset is a perturbed COCO 2017 validation. Each cell with a numerical value represents the round
up average number of bounding boxes for a targeted dataset. Colors include green (0-75), yellow
(76-125), orange (126-225), red (226-300). G stands for Genuine. TLDR: NMS attacks do not
transfer across different version of the same model.

Targeted Datasets
Model G Daedalus Overload Phantom Sponge Beyond Phantom Sponge
Version v3n v5n v8n v11n v12n v3n v5n v8n v11n v12n v3n v5n v8n v11n v12n v3n v5n v8n v11n v12n

v3n 7 257 9 8 7 8 300 7 8 7 7 212 6 7 7 7 116 7 7 7 7
v5n 6 6 300 7 6 7 5 300 6 5 5 5 273 4 5 4 6 186 5 5 4
v8n 6 7 14 247 6 9 5 7 300 5 6 6 4 228 4 4 6 4 151 5 4

v11n 7 7 10 7 235 9 6 7 8 300 7 6 5 4 158 4 7 5 6 124 4
v12n 6 6 7 6 6 284 5 4 4 6 300 5 4 4 5 195 6 4 5 5 218

Table 4: Evaluation of each attack’s transferability across different model (YOLOv8) sizes. TLDR:
NMS attacks do not transfer across different size of the same model.

Targeted Datasets (COCO 2017 validation)
Model G Daedalus Overload Phantom Sponge Beyond Phantom Sponge
Size n s m l x n s m l x n s m l x n s m l x

n 6 233 7 7 7 6 300 5 5 6 5 224 5 5 6 6 152 5 6 6 6
s 4 8 214 8 8 8 9 300 8 7 7 6 192 7 7 7 7 183 7 7 7
m 6 8 12 206 9 12 9 18 300 16 11 7 8 222 8 8 8 9 192 8 8
l 7 8 11 49 249 70 9 13 73 300 44 7 8 9 219 8 8 8 12 172 8
x 5 8 10 72 112 276 9 14 103 126 300 8 9 11 9 212 8 8 14 10 116

Answer to RQ2: NMS latency attacks do not transfer between YOLO model versions. The attacker
must know the target model. The question remains if this result applies to another model families.

4.3 Model Size Transferability (RQ3)

Experiment: We follow the same experiment as in Section 4.2 but with five sizes of YOLOv8 (nano,
small, medium, large, XL).

Results: Table 4 shows that latency attacks do not transfer across different size of the model. Each
attack only works when the source model and the target model are the same. We observe mild
transferability of Daedalus and Overload from YOLOv8x to YOLOv8l, but insufficient to reach the
critical latency threshold (i.e., cells are orange or yellow). This means the attacker must know the
target model size.

Answer to RQ3: NMS latency attacks do not transfer to other sizes of the same YOLO model.

4.4 Model Export Transferability (RQ4)

Experiment: We use 5 datasets (one genuine and four adversarial), 3 export formats of the model
YOLOv8n (onnx, coreml, and openvino). CoreML is the model format used for running AI model on
Apple’s AI processor. OpenVINO is the model format optimized for Intel’s processor. ONNX is an
open-source format. We generate four adversarial datasets (4 attacks × 1 model) based on COCO
2017 validation. In total, we run an inference on the 4 adversarial datasets per model format.

Results: Table 6 shows that latency attacks transfer across export model formats. Each attack
generated on a PyTorch model format works equally well on the same model exported to ONNX,
CoreML, or OpenVINO format. From an attacker perspective, the attacker does not need to worry
about the model format.

Answer to RQ4: Model format does not affect the attack success. The model conversion (i.e.,
optimized operation, compilation) does not provide intrinsic robustness against NMS latency attacks.

4.5 Model Quantization Transferability (RQ5)

Experiment: We use 5 datasets (one genuine and four adversarial), 4 models based on YOLOv8n
(non-quantized PyTorch model, non-quantized OpenVINO model, quantized GPU model (TensorRT,
PTQ, INT8 activations), quantized CPU model (OpenVINO, PTQ, INT8). We generate four adversar-
ial datasets (4 attacks × 1 model) based on COCO 2017 validation. In total, we run an inference on
the 4 adversarial datasets per model.

7



Table 5: Evaluation of each attack’s transferability when tested on quantized models. TLDR:
Overload is the only attack that perfectly transfers when targeting a quantized version of the
source model.

Data type Device type G D O PS BPS
FP16 CPU (OpenVino) 6 233 300 224 152

GPU (TensorRT) 6 233 300 224 152
INT8 (PTQ) CPU (OpenVino) 6 230 300 216 143

GPU (TensorRT) 4 195 300 89 67

Table 8: Domain Shift evaluation of universal patch attacks (Phantom Sponge and Beyond Phantom
Sponge). TLDR: Universal Patch attacks do not work under domain shift.

Dataset (Target)
Genuine

Phantom Sponge Beyond Phantom Sponge

Name Split COCO BDD-100k nuImages COCO BDD-100k nuImages
val train val train val train val train val train val train

COCO val 4 224 7 5 5 5 5 152 7 6 6 5 5
train 6 6 193 3 13 3 3 4 163 3 8 3 3

BDD-100k val 7 16 6 300 26 14 5 11 9 288 20 9 6
train 6 10 5 36 300 6 4 9 7 9 296 6 5

nuImages val 5 8 5 9 4 300 7 4 4 4 5 300 5
train 5 4 2 4 3 9 300 4 4 4 3 7 300

Results: From Table 5, we can say that latency attacks transfer to quantized models5. Therefore,
an attacker can create perturbations on non-quantized models and expect similar ASR on quantized
models.

Answer to RQ5: NMS latency attacks transfer from non-quantized to quantized models (INT8
Post-Training Quantization).

Table 6: Evaluation of each attack’s transferabil-
ity across model formats. TLDR: NMS attacks
transfer across different model formats.

Role Fomat Name G D O PS BPS
Source pytorch 6 233 300 224 152
Target onnx 6 233 300 224 152
Target coreml 6 233 300 224 151
Target openvino 6 233 300 224 152

Table 7: Performances of each attack against three
different types of defense. TLDR: Each attack
becomes harmless when facing a defense.

Defense G D O PS BPS
None 6 233 300 224 152
PDM 5 5 5 5 5
JPEG 6 8 55 5 6

Maximum Detection (10) 5 7 8 6 6

4.6 Domain Shift Transferability (RQ6)

Experiment: we use two universal patch attacks (Phantom Sponge and Beyond Phantom Sponge).
For dataset, we use two automotive datasets BDD-100k and nuImages in addition to our core dataset
COCO 2017. For each dataset, both training and validation splits are used in the experiment. As for
adversarial datasets, we have 72 of them for this experiment. We generated 12 adversarial patches (2
attacks × 3 datasets × 2 splits) that are applied to a total of 6 genuine datasets (3 datasets × 2 splits).

Results: A seen in Table 8, both attacks do not transfer across dataset, and this, even within the same
domain (e.g., BDD-100k to nuImages). Therefore, if an attacker wanted to create an adversarial
patch on an automotive dataset and apply this patch on an image with an automotive context, then the
attack will not work.

Answer to RQ6: Universal patch latency attacks do not transfer to other datasets.

4.7 Defenses (RQ7)

Experiment: we use 5 datasets (one genuine and 4 adversarial), 1 model (YOLOv8n), and 3 defenses
(PDM-Pure, JPEG, and maximum detection threshold). We set the maximum detection threshold to
10 based on the maximum number of objects present in individual images of COCO 2017 dataset.
All 4 adversarial datasets (4 attacks × 1 model) are based on COCO 2017 validation. In total, we run
20 experiments (5 datasets × 3 defensive cases and one genuine case).

5Note that this paper did not aim at providing a comprehensive study of quantization techniques.

8



Table 9: EVADE: Overall evaluation results for latency NMS attacks. ✗/✓means that the attack failed
/ succeeded when tested against this component. “N/A" means “Not Applicable".

Attack Hardware Model Domain Defenses Score Result
Family Size Format Quantization Shift

D ✗ ✗ ✗ ✓ ✗ N/A ✗ 1/6 harmless
O ✗ ✗ ✗ ✓ ✓ N/A ✗ 2/6 harmless
PS ✗ ✗ ✗ ✓ ✗ ✗ ✗ 1/7 harmless

BPS ✗ ✗ ✗ ✓ ✗ ✗ ✗ 1/7 harmless

Results:Table 7 shows that all attacks were filtered by the three defenses. Since all attacks failed,
there is no need to expand this evaluation with more defenses. A special mention goes to the attack
Overload which shows some resistance against the JPEG defense.

Answer to RQ7: NMS latency attacks couldn’t defeat the defenses. New (realistic) attacks are
needed.

4.8 Summary

As seen in Table 9, all attacks went through 6 evaluations (7 for universal attacks) and were found
harmless in real-world scenario. The best attack is Overload, which passed only 2 out of 6 evaluations.
However, this analysis demonstrates the lack of practicality of the current NMS latency attacks.

5 Discussion

5.1 Is NMS Latency Attack a Dead End?

Thanks to our evaluation framework EVADE, we uncovered many limitations of state-of-the-art
latency NMS attacks. Actually, our results suggest that these attacks did not pose a practical threat
when tested in realistic settings. That being said, because NMS attacks create unwanted bounding
boxes, it would be interesting to analyze their impact on the processes after object detection such as
Object Tracking.

Another idea for latency attacks is to target NMS-free object detection model (e.g., DETR and
YOLOv10). Obviously, existing frameworks for generating latency NMS attack do not apply here
because they require access to the number of proposals before NMS (which is not available in
NMS-free models). One would have to devise a new attack and test it using EVADE.

5.2 Enhancing existing NMS

Clarification on low transferability While low transferability may limit the generalizability of
latency-based attacks, it does not imply that such attacks are ineffective. As demonstrated in Tables
3 and 4, the attack is successful when targeting the same model used to generate the adversarial
input, consistent with white-box assumptions. Importantly, latency attacks remain a credible threat in
scenarios where the target model is known or can be reasonably guessed.

Boosting attack transferability Looking at the attacks’ transferability in Sections 4.2 and 4.3, we
can conclude existing NMS latency attacks do not transfer because they are white-box attacks. There-
fore, the attacks work only against the targeted model. However, to fill this gap, an interesting future
work could be to add techniques for transferability boosting (e.g., Quantization Aware Attack Yang
et al. (2024) and Momentum-based iterative Dong et al. (2018)) in the attack generation pipeline of
existing NMS latency attack and see if the transferability improves.

Generating high-confidence fake boxes Most fake bounding boxes currently have lower confi-
dence scores than genuine ones. As a result, defenses that limit the number of displayed boxes tend to
retain genuine boxes, since they have higher confidence. If an attack could generate fake boxes with
higher confidence than the genuine ones, the defense might mistakenly discard the genuine boxes.

9



Study on quantization A comprehensive evaluation of diverse quantization techniques—including
varying bit-widths, post-training quantization, quantization-aware training, and mixed-precision
strategies—remains an important direction for future work to better understand their impact on NMS
latency attack robustness.

5.3 Expand EVADE

We envision a couple of interesting additions to EVADE. First, we would like to add new metrics,
such as image similarity score (e.g., SSIM, LPIPS) to evaluate how close are the adversarial images
from the genuine ones. This would support assessing the perceptibility of the attack.

Second, EVADE could be applied to other vision models such as audio speech recognition or
natural language processing. For instance, it has been shown that attacks targeting LLM are hardly
transferable across models Lin et al. (2025); Liu et al. (2024) or do not work on a quantized version
of the model Dong et al. (2025); Yi et al. (2025).

6 Conclusion

In recent academic papers, computer vision models have been shown to be vulnerable to latency
attacks. Notably, object detection models were dramatically slowed down by adversarially-crafted
perturbations that exploit the Non-Max Suppression algorithm. However, in this paper, we put the
state-of-the-art NMS latency attacks to the test. We focused on investigating their practicality. We
designed an evaluation framework (EVADE) to test key deployment components. We uncovered that
NMS latency attacks suffer from a set of weaknesses, some specific to latency attacks, some valid
for all digital adversarial examples. As demonstrated in this paper, without addressing the identified
weaknesses, current NMS latency attacks targeting object detection have very limited practical impact,
and hence, just fantasy.

10



References
Rémi Bernhard, Pierre-Alain Moellic, and Jean-Max Dutertre. Impact of low-bitwidth quantization

on the adversarial robustness for embedded neural networks. In 2019 International Conference on
Cyberworlds (CW), pages 308–315. IEEE, 2019.

Erh-Chung Chen, Pin-Yu Chen, I Chung, Che-Rung Lee, et al. Overload: Latency attacks on object
detection for edge devices. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24716–24725, 2024.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

Peiran Dong, Haowei Li, and Song Guo. Durable quantization conditioned misalignment attack on
large language models. In The Thirteenth International Conference on Learning Representations,
2025.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 9185–9193, 2018.

Muhammad Hussain. Yolov5, yolov8 and yolov10: The go-to detectors for real-time vision, 2024.

Glenn Jocher, Jing Qiu, and Ayush Chaurasia. Ultralytics YOLO, 2023.

Qun Li, Yuan Meng, Chen Tang, Jiacheng Jiang, and Zhi Wang. Investigating the impact of
quantization on adversarial robustness. arXiv preprint arXiv:2404.05639, 2024.

Runqi Lin, Bo Han, Fengwang Li, and Tongling Liu. Understanding and enhancing the transferability
of jailbreaking attacks. arXiv preprint arXiv:2502.03052, 2025.

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason
Mars. The architectural implications of autonomous driving: Constraints and acceleration. In
Proceedings of the twenty-third international conference on architectural support for programming
languages and operating systems, pages 751–766, 2018.

Hanqing Liu, Lifeng Zhou, and Huanqian Yan. Boosting jailbreak transferability for large language
models. arXiv preprint arXiv:2410.15645, 2024.

Raymond Muller, Ruoyu Song, Chenyi Wang, Yuxia Zhan, Jean-Philippe Monteuuis, Yanmao Man,
Ming Li, Ryan Gerdes, and Z Berkay Celik. Investigating physical latency attacks against camera-
based perception. In 2025 IEEE Symposium on Security and Privacy (SP), pages 4202–4219. IEEE
Computer Society, 2025.

Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba,
Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben
Edwards. Adversarial robustness toolbox v1.2.0. CoRR, 1807.01069, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Coen Schoof, Stefanos Koffas, Mauro Conti, and Stjepan Picek. Beyond phantomsponges: Enhancing
sponge attack on object detection models. In Proceedings of the 2024 ACM Workshop on Wireless
Security and Machine Learning, pages 14–19, 2024.

Avishag Shapira, Alon Zolfi, Luca Demetrio, Battista Biggio, and Asaf Shabtai. Phantom sponges:
Exploiting non-maximum suppression to attack deep object detectors. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 4571–4580, 2023.

11



Abhishek Shrestha and Jürgen Großmann. Properties that allow or prohibit transferability of ad-
versarial attacks among quantized networks. In Proceedings of the 5th ACM/IEEE International
Conference on Automation of Software Test (AST 2024), pages 99–109, 2024.

Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert Mullins, and Ross Anderson.
Sponge examples: Energy-latency attacks on neural networks. In 2021 IEEE European symposium
on security and privacy (EuroS&P), pages 212–231. IEEE, 2021.

Manojna Sistla, Yu Wen, Aamir Bader Shah, Chenpei Huang, Lening Wang, Xuqing Wu, Jiefu Chen,
Miao Pan, and Xin Fu. Bit-flip induced latency attacks in object detection. In 2025 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages 6709–6718. IEEE, 2025.

Ajantha Vijayakumar and Subramaniyaswamy Vairavasundaram. Yolo-based object detection models:
A review and its applications. Multimedia Tools and Applications, pages 1–40, 2024.

Chenyi Wang, Yanmao Man, Raymond Muller, Ming Li, Z. Berkay Celik, Jonathan Petit, and Ryan
Gerdes. Physical ID-Transfer Attacks against Multi-Object Tracking via Adversarial Trajectory.
In Annual Computer Security Applications Conference (ACSAC), pages 1–15, 2024.

Derui Wang, Chaoran Li, Sheng Wen, Qing-Long Han, Surya Nepal, Xiangyu Zhang, and Yang
Xiang. Daedalus: Breaking nonmaximum suppression in object detection via adversarial examples.
IEEE Transactions on Cybernetics, 52(8):7427–7440, 2021.

Yong Xiao, Jin Ma, Ping Yi, and Xiuzhen Chen. Sponge backdoor attack: Increasing the latency of
object detection exploiting non-maximum suppression. In 2024 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2024.

Yulong Yang, Chenhao Lin, Qian Li, Zhengyu Zhao, Haoran Fan, Dawei Zhou, Nannan Wang,
Tongliang Liu, and Chao Shen. Quantization aware attack: Enhancing transferable adversarial
attacks by model quantization, 2024.

Sibo Yi, Tianshuo Cong, Xinlei He, Qi Li, and Jiaxing Song. Behind the tip of efficiency: Uncovering
the submerged threats of jailbreak attacks in small language models, 2025.

12



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction describe the contributions and main results of
this paper. They also provide context and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 provides suggestion on how to expand the evaluation framework such
as new metrics or looking at new application domains such as Natural Language Processing
(NLP) and Audio Speech Recognition (ASR).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



Answer: [NA]
Justification: The paper does not include theoretical results. The work is based on empirical
analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3.1, Section 4, and the Appendix describe in detail the dataset, models,
attacks, and metrics used to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The dataset, attacks, and models are already publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 3.1, Section 4, and the Appendix describe in detail the dataset, models,
attacks, and metrics used to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: When relevant, Figures include error bars. We explain the variability in the
text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Section 3.1 and Section 4 describe the specification of the hardware used for
each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read the Code of Ethics. We evaluated adversarial attacks that were publicly
released and we found out they were harmless.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We study renowned adversarial attacks that are deemed harmless. Those
attacks do not have any societal impacts to begin with. Therefore, our study does not have
a societal impact. It would have been the case if the attacks had proven real life societal
impacts (which is not the case).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are evaluating publicly available attacks. Therefore, this question is NA.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the models, code, attacks, and datasets are all cited and used according to
their respective license and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


Appendix

A Non-Maximum Suppression (NMS)

Non-Maximum Suppression (NMS) is a post-processing step commonly used in object detection
pipelines to prune redundant bounding boxes. During inference, a detection model often outputs
multiple overlapping bounding boxes for the same object—each with its own location, size, and con-
fidence score. NMS serves to suppress (i.e., remove) boxes whose overlap with a higher-confidence
box is too large (above a predefined IoU threshold), thereby retaining only the most representative
candidates.

A.1 Background on NMS

Non-Maximum Suppression (NMS) is a post-processing step commonly used in object detection
pipelines to prune redundant bounding boxes. During inference, a detection model often outputs
multiple overlapping candidate bounding boxes for the same object–each with its own location, size,
and confidence score. NMS takes all candidate bounding boxes and filters out the low-confidence ones,
and boxes that have large IoU with higher-confidence boxes. NMS outputs the most representative
candidate bounding boxes (also called proposals).

We would like to bring attention to two important parameters: the maximum number of bounding
box proposals (set by the model), and the maximum detection (set by NMS). In the YOLO model
family, the former parameter has been reduced with every version. In fact, YOLOv5 caps the number
of proposals to 25,000, while YOLOv8 caps it to 8,000. PyTorch NMS implementation sets the
maximum number of bounding box proposals to 30,000. As we will discuss in Section 4, this has
a huge impact on the attack success. The maximum detection set by NMS defines the maximum
number of proposals to output. This means that even if the attack forces the model to feed more
bounding box proposals than what NMS accepts, it won’t necessarily affect the latency.

In the standard implementation of NMS (Table 10), the maximum detection is set to 300. This
parameter directly limits the effect of the fake bounding boxes on the downstream tasks (e.g., multi-
object tracking Wang et al. (2024)). However, the four state-of-the-art NMS latency attacks (described
in Section 2) consider a maximum detection of 30,000 which is not realistic in most use cases (e.g.,
autonomous driving, surveillance, or traffic monitoring).

A.2 Parameters

In Table 10, we describe the parameters of NMS used in the hardware evaluation.

Parameter Description Value
conf_thres The confidence threshold below which boxes will be filtered out 0.25
iou_thres The IoU threshold below which boxes will be filtered out during NMS 0.45
classes A list of class indices to consider. None

If None, all classes will be considered
agnostic If True, the model is agnostic to the number of classes. False

And all classes will be considered as one.
multi_label If True, each box may have multiple labels. False
labels The list contains the apriori labels for a given image. ()
maximum detection The maximum number of boxes to keep after NMS 300
nc The number of classes output by the model. 0

Any indices after this will be considered masks.
max_time_img The maximum time (seconds) for processing one image. 0.05
max_nms The maximum number of boxes into torchvision.ops.nms(). 30000
max_wh The maximum box width and height in pixels. 7680
in_place If True, the input prediction tensor will be modified in place. True
rotated If Oriented Bounding Boxes (OBB) are being passed for NMS. False
end2end If the model doesn’t require NMS. False

Table 10: Parameters of Non-Maximum Suppression by Ultralytics

1



A.3 NMS processing time

Figure 10 depicts the line of code (328) of the function named non_max_suppression located
in ultralytics.utils.ops.py from the library Ultralytics containing the inference time for
the NMS processing. For our hardware evaluation, we captured (time.time()-t) into a vari-
able name time_nms which was returned by non_max_suppression in addition to the output of
non_max_suppression. For those who wish to reproduce our approach, we use the version 8.3.34
of Ultralytics.

Figure 4: Location of inference time for NMS within the Ultralytics library

B Commands used for evaluation

All our commands are based on the documentation from the Ultralytics library.

B.1 Format

to export our model to a different format, we use the mode export available with the model of
our choice. Then, we specify the model format (e.g., ONNX) required for the export such as
model.export(format="onnx").

B.2 Quantization

To quantize our model, we need to export a model in a specific format (like in the previous section).
Then, we need to enable the int8 quantization during the model export. For instance, if we want
a quantized int8 version of OpenVINO, then we just need to run the following command such as
model.export(format="openvino", int8=True, nms=True). The nms argument includes the
NMS post-processing in addition to the quantized model during the export process.

C NMS Latency Attacks

C.1 Prior Art

Previous work on latency attacks exploits the observation that generating numerous bounding boxes
resistant to NMS elimination. There is an extensive literature on NMS Latency Attacks targeting
Object Detection such as backdoor attack Xiao et al. (2024), bit-flip attack Sistla et al. (2025),
and adversarial inputs attack. However, the first two categories rely on strong assumptions. For
backdoor attacks, those assumptions include having access to the training dataset (which is not
publicly disclosed) or being able to inject sufficient malicious data into the training dataset (which
implies the attacker knows which data will be picked to train the model). For bit-flip attack, the
attacker somehow has access to the weights of the model used in production and can tamper with
the weights. In general, model weights are not easily accessible because they are private and there
are plenty of security mechanisms to monitor any change made to the model such as cryptographic
signature, encryption for data obfuscation, access control for people accessing the model weights.
With such privileges, an attacker can have a better impact by using a malware attack or by leaking the
model weights to the public or to competitors. Adversarial inputs attack, on the other hand, is based
on more realistic assumptions such as tampering inputs at inference by probing a model in a product
or by using a surrogate model that may be the same as the one in production.

For adversarial inputs attack, There are five attacks which focus on Camera Object Detection:
Daedalus, Overload, Phantom Sponge, Beyond Phantom Sponge, and DetStorm.

2



Daedalus (D) Wang et al. (2021) pioneered latency attacks, using adversarial examples against NMS
to achieve image-wide perturbation.

Overload (O) Chen et al. (2024), improved on DS by proposing a spatial attention mechanism, that
prioritizes bounding box creation in less occupied areas to reduce overlap.

Phantom Sponge (PS) Shapira et al. (2023), advances latency attacks using universal adversarial
perturbations (UAP) to apply a single pattern across multiple images, removing generation time.

Beyond Phantom Sponges (BPS) Schoof et al. (2024) is a spin-off of the original Phantom Sponge
Attack. BPS replaces the bounding box area loss from PS with a new loss (named IoU loss). This
new loss function decreases the IoU of a given bounding box and every other bounding boxes instead
of just decreasing the bounding box area.

DetStorm (DS) Muller et al. (2025) is another spin-off of the original Phantom Sponge Attack. DS
modifies the original PS attack to make it work as a physical adversarial example (real-world). Since
DetStorm is based on PS, it has the same flaws as Phantom Sponge.

C.2 Evaluation Settings

Each latency attack relies on a set of parameters and values that are common to all attacks but also
specific to an attack (see Table 11). Here is a list of all the parameters with their description.

maximum iterations is the maximum number of iterations allowed to optimize the adversarial noise
to be added to the image.

initial constant (c0) is the value of the constant (c) at initialization when generating the Daedalus
attack. The constant (c) helps to balance the distortion and the adversarial loss function related to the
attack.

binary search steps is the maximum number of search steps used during the binary search to find the
best value for the constant c.

confidence (γ) is the minimal threshold value for the confidence of adversarial bounding boxes.

grid size is the size of the grids used to divide the image for the spatial attention mechanism Chen
et al. (2024).

epsilon is the maximum size of the perturbation.

lambda 1 (λ1) is a weighting factor affecting the maximum object loss and the maximum IoU
loss Shapira et al. (2023); Schoof et al. (2024).

lambda 2 (λ2) is a weighting factor affecting the bounding box area loss Shapira et al. (2023); Schoof
et al. (2024).

Parameter D O PS BPS
max. iterations 1000
initial constant (c0) 2 NA NA NA
binary search steps 5 NA NA NA
confidence 0.3 NA NA NA
grid size NA 10x10 NA NA
ϵ NA 15 70
λ1 NA NA 1
λ2 NA NA 10

Table 11: Attacks’ parameters and values used in our paper. “N/A" means “Not Applicable".

D Generating box proposals for NMS

For the hardware evaluation, we use Algorithm 1 to generate non-overlapping bounding boxes for a
given image size (W ×H). The motivation to create such a script is because existing NMS attacks
do not always For instance, if we use a 640× 640 images, then we will generate 409600 boxes which
is way above the maximum number of bounding box proposals that can be handled by Ultralytics
NMS. Therefore, we make sure to cap our total number of proposals with the parameter M . By

3



default, M is set to 30000 because it is the maximum number of proposals allowed to be processed
by Ultralytics’ NMS. Now, if we want to choose the number of proposals being processed by the
NMS function, then we are using the parameter N . For instance, if the NMS must process 5000
proposals, then N equals 5000. The remaining 25000 proposals will have their confidence value set
to 0 and thus, they will be filtered out as part of the NMS pre-processing.

Algorithm 1 Generate non-overlapping box proposals

Require: W,H: List
1: B ← ∅ // Set of bounding boxes proposals
2: M = 30000 // Max. proposals for PyTorch’s NMS
3: w = 1 // Width of the box
4: h = 1 // Height of the box
5: n = 0 // Number of proposals
6: l = 1 // Identifier of the object class for this proposal
7: while n < M do
8: for h = 0→ H do
9: for w = 0→W do

10: n = n+ 1
11: x = h+ 0.5 // Box’s center (x) coordinate
12: y = w + 0.5 // Box’s center (y) coordinate
13: if n < N then
14: // Wanted number of proposals for NMS
15: c = 1
16: else
17: c = 0
18: end if
19: b = [x, y, w, h, c, l] // Define proposal box
20: B ← b // Append the b to B
21: end for
22: end for
23: end while
24: return B

E Additional Details regarding the evaluation

E.1 Hardware: measuring inference time

To measure the inference time (in milliseconds), we use the time computed in the Ultralytics NMS
code (see Appendix A.3). Because existing attacks couldn’t generate the maximum bounding box
proposals of 30,000 and we need to evaluate the worst case scenario, we created a python script to
generate a tensor of non-overlapping 30,000 bounding box proposals, where 30,000 is the maximum
number of proposals allowed by the NMS function in the Ultralytics library. Then, for each proposal,
we set its confidence score and its class probability to 1. For the NMS function, we use the default
value of each parameter (see Appendix A.2 for details).

To measure the inference time of NMS for a specific number of bounding boxes (N), we set the
confidence score to 1 for N proposals out of the 30,000 proposals. The remaining proposals (30,000
minus N) have their confidence score set to 0. Therefore, thanks to the confidence threshold, there
will be N bounding boxes after NMS. In this study, the value of N ranges from 1 to 30,000. Also,
it is important to know that models may have a threshold in terms of number of proposals such as
YOLOv5 (25,000) and YOLOv8 (8,000). This factor may prevent a latency attack to succeed due to a
potentially insufficient number of bounding boxes proposals passed to the NMS.

E.2 Hardware: determining the success of an attack

We define a successful NMS attack as an attack capable to increase the processing time of the NMS
above a defined threshold. In this paper, we set this threshold to 100 ms, 500 ms, 1000 ms, and 2000
ms. The value of each threshold serves as an indicator of the performance of the attack for a specific

4



use case. For instance, a maximum latency above 100 milliseconds is unsafe in the autonomous
driving domain Lin et al. (2018). In a different context, a 100 ms delay will remain unnoticed by
someone using an AI model for editing pictures on his phone or on his computer. However, a 2
seconds delay would be noticeable. Going back to Table 2, we observe a NMS attack will not work if
the NMS processing is performed by a GPU instead of a CPU. Therefore, the evaluation shows that
NMS latency attacks are harmless when NMS runs on GPU, which is becoming best practice.

Another factor impacting the success of the attack is the maximum number of proposal output by
the AI model. As discussed in Appendix A.1 and shown in Table 2, YOLOv8 caps the number of
proposals to 8,000. Hence, the attack can only generate sub-500 ms latency, considering it successful
only for applications with latency threshold of 100-400 ms. For YOLOv5, which has a cap of 25,000
proposals, NMS attacks are capable to reach the 2 seconds threshold.

E.3 Metrics

E.3.1 Metric: definition of intervals for number of bounding boxes (colors)

The definition of each interval is unique to this work. Our approach does not rely on empirical
distributions, previous work, or some application-specific-criteria. The definition is purely based
on arbitrary decision. To elaborate on the empirical distribution, this approach would have tied the
definition of the intervals to the specific dataset used in our evaluation. Whereas, on the contrary,
we wanted to have a metric dataset-agnostic. In our opinion, it was important to highlight at least
the following scenarios: the attack does not work (‘green’), the attack works (‘red’), and the attack
has some effect on the system while remaining unsuccessful (‘yellow’ and ‘orange’). Using three
intervals instead of four would be a valid alternative. At the end, the intention of our metric is to
provides pointers for future research who wish to understand why an attack partially failed or succeed.
Using a binary classification (‘red’ and ‘green’) would not provide such insights.

E.3.2 Additional metric: number of bounding boxes before and after the attack

Another way to provide more insights to the evaluation would be to compute the boxes ratio under
attack (brua) (Equation 1) to assess the strength of the attack. This metric computes the ratio between
the number of bounding boxes for the genuine image and the number of bounding boxes for the
adversarial image. For instance, a genuine image contains 300 objects (bounding boxes) such as
candies in a candy factory. Whereas, the adversarial version of this image contains 315 objects. Using
our current evaluation, we may think the latency attack is working because there is a high number of
bounding boxes. However, the high number of bounding boxes is due to the scene captured in the
genuine image. Therefore, brua can be a handy metric to assess the attack strength in particular for
an image or a dataset of images with large number of bounding boxes. Although, we believe brua
will be better suited as a loss function to ensure the attack version of the image has more bounding
boxes than the genuine version of the image.

brua =
Nbbox_after_attack

Nbbox_before_attack + ϵ
(1)

E.4 Evaluation setup

Table 12 lists each setup used in our evaluation. As pointed out to us, in practice, latency can vary
a lot depending on things like OS-level optimizations, driver versions, or background load. And,
indeed, this study can be part of an extension for EVADE.

GPU / CPU Operating System CUDA / Driver Version
NVIDIA A100-SXM4-80 GB / AMD EPYC Ubuntu 20.04.6 CUDA 12.2
GRID A100D-10C / Intel Xeon Ubuntu 20.04.6 CUDA 12.2
ORIGN / ARM Cortex Ubuntu 20.04 CUDA 11.4
Apple M1 Max (CPU only) macOS Sequoia 15.2 N/A

Table 12: Hardware and software configurations used in experiments

5



F Defenses

F.1 Prior Art on defenses

In this paper, PDM-Pure is our active defense. PDM-Pure is an off-the-shelf adversarial purifier
based on a pixel diffusion model (PDM). PDM-Pure aims to effectively eliminate adversarial patterns
generated by latent diffusion models, thereby maintaining the integrity of images.

Our passive defense is Maximum detection threshold, a defense advertised in the Overload paper Chen
et al. (2024). However, the impact of this defense on Overload has not been tested despite being
already implemented as a parameter of the NMS component used by all YOLO models Jocher et al.
(2023).

For our natural defense, we choose JPEG, a popular image compression algorithm, used in many use
cases. For instance, an image may need to be compressed if the image needs to transits through a
network with limited data bandwidth. This scenario can occur in embedded system such as within an
autonomous driving car or in collective perception where a system shares images to an external party.
During those uses cases, compression is necessary.

F.2 Expanding the attack evaluation against defenses: model sizes and family

Table 13 extends the evaluation done in Section 4.7 by evaluating the performance of the defenses
against attacks targeting models different than the original model (YOLOv8n) used in Table 7. These
2 models different from the original model on two aspects which are the model size (YOLOv8x)
and the model family (YOLOv12n). Results-wise, Table 13 is consistent with Table 7 because each
defense decreases drastically the number of bounding boxes. From an attack goal perspective, each
defense prevents the attack to reach its goal which is a critical increase of inference time. However,
preventing the attack’s goal does not mean the defense prevented all goals of the attack. For instance
in Table 13, even with a defense such as JPEG, an abnormally high number of bounding boxes
remains. While not impact the inference time, this high number of bounding boxes still translate
in poor detection performance because the model generates fake bounding boxes. This evaluation
shows the importance of not choosing the defense from a single perspective (e.g., inference time).

Table 13: Model Comparison Under Various Defenses
Defense Model Genuine DS O PS BPS
None v8n 6 233 300 224 152

v8x 7 276 300 212 116
v12n 7 284 300 195 218

PDM v8n 5 5 5 5 5
v8x 5 5 5 5 4
v12n 4 4 4 5 4

JPEG v8n 6 8 55 5 6
v8x 6 8 9 7 7
v12n 6 64 21 4 4

Max_Det(10) v8n 5 7 8 6 6
v8x 5 7 7 6 6
v12n 5 8 7 5 6

6


	Introduction
	Related Work
	Latency Attacks
	Evaluation of Adversarial Attacks

	Evaluation Framework: EVADE
	Components
	Inputs
	Metrics

	Evaluation
	Hardware (RQ1)
	Model Family Transferability (RQ2)
	Model Size Transferability (RQ3)
	Model Export Transferability (RQ4)
	Model Quantization Transferability (RQ5)
	Domain Shift Transferability (RQ6)
	Defenses (RQ7)
	Summary

	Discussion
	Is NMS Latency Attack a Dead End?
	Enhancing existing NMS
	Expand EVADE

	Conclusion
	Non-Maximum Suppression (NMS)
	Background on NMS
	Parameters
	NMS processing time

	Commands used for evaluation
	Format
	Quantization

	NMS Latency Attacks
	Prior Art
	Evaluation Settings

	Generating box proposals for NMS
	Additional Details regarding the evaluation
	Hardware: measuring inference time
	Hardware: determining the success of an attack
	Metrics
	Metric: definition of intervals for number of bounding boxes (colors)
	Additional metric: number of bounding boxes before and after the attack

	Evaluation setup

	Defenses
	Prior Art on defenses
	Expanding the attack evaluation against defenses: model sizes and family


