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ABSTRACT

Current approaches to genomic sequence modeling often struggle to align the
inductive biases of machine learning models with the evolutionarily-informed
structure of biological systems. To this end, we formulate a novel application
of hyperbolic CNNs that exploits this structure, enabling more expressive DNA
sequence representations. Our strategy circumvents the need for explicit phylo-
genetic mapping while discerning key properties of sequences pertaining to core
functional and regulatory behavior. Across 37 out of 42 genome interpretation
benchmark datasets, our hyperbolic models outperform their Euclidean equiva-
lents. Notably, our approach even surpasses state-of-the-art performance on seven
GUE benchmark datasets, consistently outperforming many DNA language mod-
els while using orders of magnitude fewer parameters and avoiding pretraining.
Our results include a novel set of benchmark datasets—the Transposable Ele-
ments Benchmark—which explores a major but understudied component of the
genome with deep evolutionary significance. We further motivate our work by
exploring how our hyperbolic models recognize genomic signal under various data-
generating conditions and by constructing an empirical method for interpreting
the hyperbolicity of dataset embeddings. Throughout these assessments, we find
persistent evidence highlighting the potential of our hyperbolic framework as a
robust paradigm for genome representation learning. Our code and benchmark
datasets are available at https://github.com/rrkhan/HGE.

1 INTRODUCTION

Representation learning of genome sequences has enabled the exploration of critical unsolved
problems in biology, particularly the understanding of genome function and organization (Avsec
et al., 2021; Chen et al., 2022a; Dudnyk et al., 2024). Many effective approaches used for genomic
sequence modeling have arisen from the same machine learning methods that have powered natural
language and image embeddings (Yue et al., 2023; Zhou, 2022; Consens et al., 2023). While the field
has made progress by utilizing these methods, the inductive biases of these models are not usually
bespoke to genomic data, limiting the expressive power of the resulting sequence representations.
Given the tremendous amount of information sequestered within DNA sequences encoding cellular
and molecular activity, an efficient and nuanced representation is necessary for genome interpretation
and downstream analyses.

Genome organization is complex, and much of this complexity is the product of evolutionary
processes. Any single genome represents the culmination of information diffusion across generations.
However, this information transfer occurs through noisy channels, as background mutation rates
may degrade the sequence signal (Lu et al., 2020). Accounting for phylogenetic relationships may
therefore contextualize the content of the genome and ultimately benefit genome interpretation
attempts. The shared influence of a common ancestor across all genomes imbues DNA sequence
data with underlying hierarchical structure. These hierarchical relationships emerge through a variety
of mechanisms, such as orthology and paralogy, which both codify homologous sequences but
occur under different circumstances. Further compounding these interdependencies are the multiple
overlapping grammatical structures for different regulatory pathways that characterize the language
of the genome. Altogether, these nested levels of latent hierarchies confound genome interpretation.

In developing a modeling paradigm better suited to handling the hierarchical nature of DNA sequences,
considering the geometry of the embedding spaces is essential. While most embeddings are Euclidean

1

https://github.com/rrkhan/HGE


Published as a conference paper at ICLR 2025

by default, non-Euclidean spaces may offer a compelling alternative. Specifically, hyperbolic spaces,
which have the representational capacity to capture tree-structured data with high fidelity, are well-
equipped to manage the hierarchical patterns ubiquitous in genomic sequences. The negative curvature
of hyperbolic spaces facilitates the continuous embedding of exponentially growing structures like
phylogenetic trees with relatively low distortion.

In this work, we contend that hyperbolic spaces may be appropriate for learning meaningful rep-
resentations of the genome. We leverage a fully hyperbolic framework to embed DNA sequences,
implicitly handling the latent hierarchies present in the data. Our main contributions are:

1. We adopt the machinery of fully hyperbolic convolutional neural networks (HCNNs),
building two classes of HCNNs for genome sequence learning. We contrast hyperbolic and
Euclidean approaches to sequence representation.

2. We introduce a novel, curated set of datasets—the Transposable Elements Benchmark—
designed to investigate transposable elements, which remain an underexplored area of the
genome with deep evolutionary roots.

3. We demonstrate the performance potential of our HCNNs across 42 real-world datasets
addressing foundational challenges in genomics.

4. We elucidate the underlying mechanism by which HCNNs parse genomic signal by simulat-
ing and testing plausible data-generating processes for biological sequences.

5. We further motivate our work by formulating an empirical method for interpreting the
hyperbolicity of dataset embeddings and use this technique to interrogate properties of
genome representations generated by our models.

2 PRELIMINARIES

2.1 RELATED WORK

Driven by the limitations of traditional Euclidean-based approaches in capturing relationships within
complex data structures, hyperbolic deep learning methods have materialized as a promising research
area. Early iterations of these methods introduced formalizations for performing the core opera-
tions of neural networks in hyperbolic space (Ganea et al., 2018; Nickel & Kiela, 2018), alongside
optimization techniques generalized to Riemannian manifolds (Bécigneul & Ganea, 2019). These
approaches have been further extended to a variety of frameworks, including fully hyperbolic neural
networks (Chen et al., 2022b), hyperbolic graph convolutional networks (Chami et al., 2019), hyper-
bolic attention networks (Gulcehre et al., 2018), and hyperbolic variational auto-encoders (Mathieu
et al., 2019). These models, among others, have proven effective across a variety of real-world
domains, including vision (Liu et al., 2020; Hsu et al., 2021; Mathieu et al., 2019), natural lan-
guage (Tifrea et al., 2019; Chen et al., 2024), and computational biology (Zhou & Sharpee, 2021;
Tian et al., 2023).

In genomics, hyperbolic methods have correctly modeled established phylogenies, showcasing their
supremacy in representing tree-structured data (Chami et al., 2020a; Jiang et al., 2022b; Hughes
et al., 2004; Chen et al., 2025). These methods assume that the phylogenetic tree is known a priori;
thus, the scope of these techniques is limited by the availability of evolutionary metadata. A subset
of these methods produces representations of DNA sequences but relies on an explicit mapping
of phylogenetic relationships (Corso et al., 2021; Jiang et al., 2022a) in the form of pairwise edit
distances or incomplete phylogenies.

2.2 BACKGROUND

The n-dimensional hyperbolic space Hn
K is a homogeneous, simply connected Riemannian manifold,

(Mn, gKx ), consisting of a smooth manifold Mn with Riemannian metric gKx , and described by
a constant negative curvature K < 0. Several equivalent formulations of hyperbolic space exist,
including the Lorentz model, the Poincaré disk model, and the (Beltrami-)Klein model. Here,
we use the Lorentz model, Ln

K = (Ln, gKx ), with manifold Ln, Riemannian metric tensor gKx =

diag(−1, 1, . . . , 1), and origin 0 = [
√
−1/K, 0, . . . , 0]T . The Lorentz model describes points by

their configurations on the forward sheet of a two-sheeted hyperboloid Ln
K in (n+ 1)-dimensional
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Minkowski space, defining the manifold as:

Ln := {x ∈ Rn+1 | ⟨x,x⟩L =
1

K
,xt > 0}, (1)

where the Lorentzian inner product is as follows:

⟨x,y⟩L := −xtyt + xT
s ys = xT diag(−1, 1, . . . , 1)y. (2)

Utilizing special relativity conventions, the zeroth element in x is denoted as the timelike component
xt and the remaining n− 1 elements form the spacelike components xs, giving x = [xt,xs]

T , where
we can further define the timelike component xt =

√
||xs||2 − 1/K.

Exponential and logarithmic maps are used to map between the manifold M and tangent space TxM
with x ∈ M. For mapping a tangent vector z ∈ TxLn

K onto the Lorentz manifold, we can use the
exponential map which is defined as:

expKx (z) = cosh(α)x+ sinh(α)
z

α
, where α =

√
−K||z||L, ||z||L =

√
⟨z, z⟩L. (3)

Conversely, to map a point y ∈ Ln
K to the tangent space, we use the logarithmic map:

logKx (y) =
cosh−1(β)√
β2 − 1

· (y − βx), β = K⟨x,y⟩L. (4)

Furthermore, in order to move points along geodesics, the parallel transport operation PTK
x→y(v)

maps a vector v ∈ TxM from the tangent space of x ∈ M to the tangent space of y ∈ M. The
Lorentzian formula for parallel transport is:

PTK
x→y(v) = v +

⟨y,v⟩L
1

−K − ⟨x,y⟩L
(x+ y). (5)

3 METHODS

3.1 FULLY HYPERBOLIC CNN

We leverage the HCNN methodology proposed by Bdeir et al. (2024) in the development of our fully
hyperbolic genome sequence model. Under this framework, the elements of the traditional CNN
model are reinterpreted in the context of the Lorentz model of hyperbolic space. Briefly, we describe
the main Lorentzian components utilized in our model.

Lorentz Convolutional Layer. In a Euclidean setting, a convolutional layer constitutes matrix
multiplication between a linearized kernel and input feature maps. In the hyperbolic analogue, each
channel is defined as a separate point on the hyperboloid, with the input to each layer forming an
ordered set of n-dimensional hyperbolic vectors in Ln

K . This formulation enforces the constraint that
operations on points remain on the hyperboloid, as Ln

K ⊂ Rn+1. In the context of this work, each
sequence is thus an ordered set of n-dimensional hyperbolic vectors, where each position describes a
nucleotide in the sequence.

For a one-dimensional hyperbolic convolutional layer with input feature map x = {xl ∈ Ln
K}Ll=1,

the features contained in the receptive field of kernel G ∈ Rm×n×L̃ are {xl′+ϵl̃ ∈ Ln
K}L̃

l̃=1
, in which

l′ marks the starting position and ϵ is the stride. Given this parameterization, we can express the
convolution layer as the output of two transformations:

yl = LFC(HCat({xl′+ϵl̃ ∈ Ln
K}L̃

l̃=1
)), (6)

where HCat is an operation concatenating hyperbolic vectors, and LFC is a Lorentz fully-connected
layer performing the affine transformation of the kernel (refer to A.1.1). Next, Lorentz batch
normalization (LBN) reframes the underlying operations of batch normalization by using Fréchet
mean (Lou et al., 2020) for re-centering points and Fréchet variance (Kobler et al., 2022) for re-scaling
them. The algorithm is expressed as:

LBN(x) = expKβ

PTK
0→β

γ ·
PTK

µB→0

(
logKµB

(x)
)

√
σ2
B + ϵ

 . (7)
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Finally, Lorentz multinomial logistic regression (MLR) builds upon the original formulation of a
Euclidean MLR (Lebanon & Lafferty, 2004), which is defined using input x ∈ Rn and C classes:

p(y = c|x) ∝ exp(vwc
(x)), vwc

(x) = sign(⟨wc,x⟩)∥wc∥d(x, Hwc
), wc ∈ Rn, (8)

in which Hwc is the decision hyperplane of class c. Bdeir et al. (2024) replace component operations
with their Lorentzian interpretations to produce the Lorentz MLR formulation. Using parameters
ac ∈ R and zc ∈ Rn, the Lorentz MLR’s output logit for class c given input x ∈ Ln

K is expressed as:

vzc,ac(x) =
1√
−K

sign(α)β
∣∣∣∣sinh−1

(√
−Kα

β

)∣∣∣∣ , (9)

α = cosh(
√
−Ka)⟨z,xs⟩ − sinh(

√
−Ka),

β =

√
∥ cosh(

√
−Ka)z∥2 − (sinh(

√
−Ka)∥z∥)2.

For further details, including Lorentz formulations of residual connections and nonlinear activation,
we refer the reader to Bdeir et al. (2024).

3.2 MODEL OVERVIEW

As our goal is to distill the difference between using Euclidean versus hyperbolic embedding spaces,
we employ a relatively simple model design. The HCNN architecture consists of three major
components: (1) hyperbolic convolutional blocks, (2) a flattening layer, and (3) MLR (Figure 1).
Each input DNA sequence x is one-hot encoded at the nucleotide level, and then projected channel-
wise onto a hyperbolic manifold (φ : R4×L → L4×L). The result of this transformation serves as the
input to the hyperbolic convolutional blocks, which produce output feature maps x ∈ LC×L, where
C is the channel dimension. After a flattening step, the model performs classification using Lorentz
MLR to find the hyperbolic decision hyperplanes splitting the sequences by label.

For each hyperbolic component in our models, there exists an equivalent Euclidean counterpart,
ensuring architectural parity across models for a fair comparison (Appendix Figure 4). However,
the layers in the HCNNs also include a learnable K parameter corresponding to the curvature of the
hyperboloid on which the points reside. For our downstream experiments, we evaluate two versions
of the HCNN model: HCNN-S (single K) and HCNN-M (multiple Ks). In HCNN-S, a single
manifold with a fixed curvature K is used across all layers, offering a more direct comparison with
CNNs. In contrast, HCNN-M assigns distinct curvatures [K1, ...,Ku] to each of the u designated
blocks, with intermediary steps mapping points between manifolds (see A.1.2). By constructing
two classes of HCNN models, we analyze the trade-offs between the enhanced representational
flexibility of multiple curvatures and the potential instability introduced by the additional exponential
and logarithmic mapping steps required for projecting points onto different manifolds. Additional
modeling details are provided in A.2.

3.3 δ-HYPERBOLICITY

Gromov introduces the notion of δ-hyperbolicity as a measure of the deviation of a metric space
from perfect tree-like structure (Gromov, 1987). We can define a metric space (M,d), in which the
Gromov product of z, y ∈M with respect to x ∈M is:

(x, y)z =
1

2
(d(x, z) + d(y, z)− d(x, y)) . (10)

Then, the metric space is characterized as δ-hyperbolic for some δ ≥ 0 if it satisfies the four point
condition, which states that for any four points x, y, z, w ∈M :

(x, y)w ≥ min{(x, z)w, (y, z)w} − δ. (11)

The smallest δ for which this inequality holds is the Gromov δ-hyperbolicity of (M,d).

δ-hyperbolicity has been an important tool in elucidating innate properties of metric spaces (Fournier
et al., 2015; Albert et al., 2014). Recently, this measure has been extended to explore the hyperbolic
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Figure 1: Overview of our HCNNs. Model inputs are sequences with latent phylogenetic structure
(bottom left). As sequences pass through the hyperbolic convolutional module, they are projected onto
a hyperboloid before the model’s convolutional and flattening steps (top insert). Using hyperbolic
MLR, each sequence is classified according to the hyperplane boundaries (bottom right).

behavior of specific datasets and their respective embeddings within the domains of computer
vision (Khrulkov et al., 2020), and natural language processing (Yang et al., 2024). While the original
Gromov’s δ (which we will denote as δworst hereinafter) is designed to represent the upper bound
in terms of deviation from tree-like structure, other approaches have argued in favor of utilizing an
average Gromov hyperbolicity, δavg, on the grounds that a worst case analysis of a space may not
ultimately be representative of the true hyperbolic capacity of the space (Chatterjee & Sloman, 2021;
Albert et al., 2014; Tifrea et al., 2019). We further develop these ideas in the context of the genomic
datasets used in this paper.

As in previous approaches, we examine the behavior of δworst and δavg in high dimensional feature
space. As a comparative measure, we compute a scale-invariant value of δ, defined as δrel :=
2δ

Dmax
(Borassi et al., 2015), where Dmax denotes the maximal pairwise distance, or set diameter. δrel

is constrained to [0, 1], with a value of 0 denoting complete hyperbolicity, or perfect tree structure.
Unless otherwise specified, all δs referred to in this work are the scale-invariant value.

Ultimately, both δworst and δavg are point estimates over what may be a complex landscape of δ values.
To offer a more comprehensive evaluation, we examine the entire distribution of δ values across each
dataset to thoroughly assess the hyperbolic underpinnings of DNA sequence data. By appraising
the full landscape of δ-hyperbolicity in our embedding space, we gain a richer understanding of the
intrinsic tree structure across each dataset. We provide further details on δ computation and other
experimental configurations in A.9.1.

4 DATA

Synthetic Datasets. In order to rigorously interrogate the applicability of hyperbolic architectures in
genomics, we create several synthetic datasets to illuminate the underlying biological processes being
captured by our models. Our approach considers various plausible data-generating processes for
biological sequences, and defines three potential cases of biological signal transmission learned by the
models. Additionally, given prior evidence from Corso et al. (2021) that purely artificial sequences
may not always be indicative of performance on real-world datasets, we explore this phenomenon by
creating two sets of data for each case: one where sequences are completely randomly generated and
one where sequences are randomly sampled from existing genomes.
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Figure 2: The various plausible evolutionary scenarios informing genomic sequence learning. Leaf
coloring (blue vs. red) represents label assignments for A) intra-tree differentiation, B) inter-tree
differentiation, and C) tree identification scenarios.

We mimic evolutionary dynamics in our synthetic datasets by perturbing input sequences based
on phylogenetic tree structure. After establishing an initial input sequence, we simulate sequence
evolution along tree branches with the generalized time-reversible (GTR) nucleotide model (Tavaré,
1984). Each scenario, visualized in Figure 2, is defined as follows:

(A) Intra-tree differentiation: sequences are generated from a single phylogenetic tree, with
labels assigned based on clade membership.

(B) Inter-tree differentiation: sequences are generated from different phylogenetic trees, with
labels derived from phylogeny membership.

(C) Tree identification: sequences are labeled based on the generating process: phylogenetic
tree generation or non-phylogenetic (random) generation.

We leverage these scenarios to better understand the specific advantages of hyperbolic models and
identify the conditions under which they demonstrate the greatest effectiveness. For full details
regarding dataset generation, see A.6.

Transposable Elements Benchmark. We introduce a multi-species benchmark for exploring how
transposable elements (TEs) are codified in sequence. TEs are highly abundant, mobile elements
of genomic sequence that represent specific evolutionary trajectories within organisms (Hayward
& Gilbert, 2022; Wells & Feschotte, 2020). Due to their ability to move within genomes, TEs
drive genomic plasticity and have been identified as key players in the evolution of genomic com-
plexity (Schrader & Schmitz, 2019; Bowen & Jordan, 2002). TEs can influence gene expression
and regulation by acting as alternative promoters (Faulkner et al., 2009), providing transcription
factor binding sites (Sundaram et al., 2014), introducing alternative splicing (Shen et al., 2011), and
mediating epigenetic modifications (Drongitis et al., 2019). As such, TEs have also been implicated
in disease pathogenesis (Jönsson et al., 2020; Hancks & Kazazian, 2016). Overall, TEs represent a
powerful force in evolutionary biology, continually shaping the genetic landscape.

A variety of TEs exist across genomes and can be categorized into several subclasses. The genetic
structure of TE types follows regular patterns of structural features and motifs, and thus represents an
interesting learning opportunity for sequence models. The Transposable Elements Benchmark (TEB)
presents a novel resource for investigating TEs, which represent an area of genome organization
that remains underexplored in the genomics deep learning literature. TEB surveys several different
TE classes across plant and human genomes. Specifically, TEB offers binary classification datasets
for identifying seven specific elements across three different TE classes: retrotransposons, DNA
transposons, and pseudogenes. Detailed data preprocessing and dataset statistics are further presented
in A.3.

Genome Understanding Evaluation. The Genome Understanding Evaluation (GUE) benchmark is
a recently published tool that contains seven biologically significant genome analysis tasks that span
28 datasets. Designed to scrutinize the capabilities of genome foundation models, GUE prioritizes
genomic datasets that are challenging enough to discern differences between models. The datasets
contain sequences ranging from 70–1000 base pairs in length and originating from yeast, mouse,
human, and virus genomes. Further details can be found in Zhou et al. (2024).
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Genomic Benchmarks. We utilize the Genomic Benchmarks (GB) resource, which consists of
eight separate classification datasets that spotlight regulatory elements across three different model
organisms: human, mouse, and roundworm. Datasets were carefully constructed from published data
repositories and consist of input sequences of length 200–500, with the exception of the drosophila
enhancers stark dataset, in which sequences have a median length of 2,142. Full details on data
preprocessing and dataset summary statistics can be found in Grešová et al. (2023). As the human
non-tata promoters dataset in GB was compiled using data that was also used to create the promoter
detection datasets in GUE (Dreos et al., 2013), we handle this redundancy by only counting non-
overlapping datasets when discussing model performance.

5 EXPERIMENTS

5.1 GENOMIC CLASSIFICATION

Data-Generating Scenarios. The synthetic dataset experiments offer deeper insight into how the
hyperbolic inductive bias operates in a genomic learning context. Table 1 suggests that this bias is
particularly beneficial in Scenario C, where it aids in uncovering the underlying phylogenetic tree
structure in the presence of noise. While this learning mechanism may also help disentangle distinct
evolutionary patterns (Scenario B), the results further indicate that discernment in Scenario C may be
unrelated to discernment in Scenario A. This distinction likely arises because sequence differentiation
occurs at the tree level rather than the clade level.

In evaluating predictive models for biological sequence data, homology splitting is commonly used
to assess a model’s ability to generalize by excluding homologous sequences. We investigate how
this partitioning impacts HCNNs by measuring their zero-shot capability in distinguishing sequences
from an unseen phylogenetic tree against randomly sampled background sequences. This experiment,
detailed in A.7, demonstrates that hyperbolic models outperform Euclidean models in generalizing to
unseen homology branches. These findings suggest that the inductive biases of hyperbolic models
offer an even greater advantage than previously estimated, as most genomic datasets overlook this
effect and may thus overestimate the performance of predictive methods (Teufel et al., 2023).

Table 1: Model performance (MCC) under different
synthetic data-generating scenarios, averaged over five
random seeds (mean ± standard deviation). The highest-
scoring model is in bold, while † denotes a statistically
significant improvement over the opposite geometry
model(s) with p < 0.05, Wilcoxon rank-sum test.

Model
Scenario Sequence Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

A Artificial 62.38±2.28 65.25±3.27 59.25±2.60

Real 61.72±3.08 66.44±3.14 61.26±2.99

B Artificial 58.50±0.82 60.53±0.80 59.75±0.54

Real 57.50±0.88 62.53±6.94 59.12±0.54

C Artificial 62.05±1.62 67.65±1.09 † 67.43±1.57 †

Real 66.22±0.44 73.62±0.62 † 69.30±2.34 †

Classification Tasks. The results from the
three classification benchmarks are sum-
marized in Table 2. Across the 42 dis-
tinct datasets, the hyperbolic models out-
perform the equivalent Euclidean model on
37 tasks, as measured by the Matthews cor-
relation coefficient (MCC). In 29 of these
datasets, the improvement in score by a hy-
perbolic model is statistically significant
when accounting for variance across dif-
ferent model initializations, whereas the
Euclidean CNN statistically outperforms
HCNNs in only two datasets.

Further examination of the results suggests
that HCNNs confer a particularly strong
advantage in distinguishing transcription
factor binding sites, epigenetic marks, and
TEs in sequence. Across promoter detec-
tion tasks, hyperbolic embeddings provide no apparent benefit. Since promoters likely function
through more complex combinatorial interactions, these dynamics may be more challenging for
HCNNs to effectively represent. HCNNs also seem to be significantly disadvantaged in the Covid
variant prediction task, which requires distinguishing nine different COVID variants based on their
sequences. These findings appear consistent with the synthetic dataset results: the most significant
performance gains are observed in scenarios where an evolutionary signal (e.g., transcription factor
binding sites, epigenetic marks, TEs) is distinguished from background noise (e.g., non-functional or
background sequences). In contrast, the Covid task closely resembles Scenario A, in which a single
ancestral sequence evolves along multiple paths.
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Figure 3: Decision boundaries learned by 2-dimensional HCNNs (circles) and CNNs (squares)
for differentiating genomic sequence classes. Boundaries for transposon sequences and processed
pseudogenes are visualized on the Poincaré disk and Euclidean plane. Regions are colored by
predicted class labels, while points are colored based on their true class labels.

Notably, when comparing the best scoring model across runs, HCNNs outperform DNA language
models (LMs) in seven of the 28 GUE datasets (A.4 and Appendix Table 5). Across the majority
of tasks, HCNNs outpace HyenaDNA (Nguyen et al., 2024), Caduceus-Ph (Schiff et al., 2024),
DNABERT (5-mer), DNABERT (6-mer) (Ji et al., 2021), NT-500M human, NT-500M-1000g, and
NT-25000M-1000g (Dalla-Torre et al., 2024). The performance gap between HCNNs and the
aforementioned LMs is especially striking given the immense scale of these LMs, which contain 1.7×
to 543× more trainable parameters than HCNNs and have undergone pretraining on the entire human
genome and 1000 Genomes Project sequences (Byrska-Bishop et al., 2022). HCNNs appear to have
a consistent advantage over Euclidean models across many of the core deep learning genomics tasks.

Expressive Power. By directly comparing the embeddings and decision boundaries learned by each
class of model, we can begin to infer differences in their expressiveness. Figure 3 visualizes the
distinctive class boundaries and sequence relationships learned by HCNNs and CNNs, following
the setup in (Chlenski et al., 2024). We observe far better separation of classes in the hyperbolic
embeddings than in the Euclidean case, lending further credence to the appropriateness of hyperbolic
embeddings in a genomic setting.

Additional experiments, detailed in A.10, develop intuition for factors informing the positioning of
genomic sequence embeddings in the latent space.

Embedding Dimensionality. Prior work on hyperbolic neural networks has demonstrated that the
effectiveness of hyperbolic embeddings is especially pronounced in lower dimensions (Chami et al.,
2020b; Chamberlain et al., 2017). We probed whether this trend holds under our study conditions by
varying the number of channels in the convolutional blocks in both the CNNs and HCNNs. Each
distinct model was then trained and evaluated on TEB. The results in Appendix Figure 5 show that
HCNN-S exhibits a marginal increase in improvement over CNNs at lower channel dimensions and
HCNN-M shows no gains.

Next, we evaluated the potential of the HCNN model class as a foundational framework for DNA
LMs. To align more closely with the parameter scales of DNA LMs, we expanded HCNN-S and
HCNN-M. Benchmarking these larger models against the two leading model classes that achieve
state-of-the-art (SOTA) performance on GUE, DNABERT-2 (Zhou et al., 2024) and NT-2500-multi,
suggests that the hyperbolic framework holds promise for DNA LM adoption. As shown in Appendix
Table 6, despite having fewer parameters than their competitors, the larger HCNNs achieve SOTA
performance on 12 GUE datasets—outperforming DNABERT-2 (11 datasets) and NT-2500-multi
(five datasets).

Learned Curvature. The curvature of the hyperbolic manifold is a learnable parameter. Exploration
of this parameter in TEB (detailed in A.5) illustrates that the value of K does not deviate significantly
from its default initialization value of −1. However, the HCNN-S and HCNN-M models gravitate
towards different curvature values (K > −1 and K < −1, respectively), with small adjustments in
the curvature of the embedding spaces for each block of the model.

Hybrid Models. We construct hybrid models that combine Lorentzian and Euclidean components
(see A.8 for details). Our results indicate that Euclidean embeddings may still benefit from hyperbolic
decision boundaries.
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5.2 δ-HYPERBOLICITY ESTIMATION

As presented in Appendix Figure 10, our investigation reveals several notable characteristics of
δ-hyperbolicity values in finite datasets. The δ (Appendix Figure 10) and δworst (Appendix Table
9) values computed from the final embedding layer are ostensibly hyperbolic; all values are closer
to 0 than 1, indicating tree-like tendencies. However, we observe that the increase in values of
δworst are only weakly anticorrelated with relative improvements in performance on learning tasks
(rS = −0.35, rM = −0.21, Appendix Figure 11). An outlier to this pattern appears to be the Covid
dataset, which has low hyperbolicity and poor performance from HCNNs.

Table 2: Model performance (MCC) on all real-world genomics datasets, averaged over five random
seeds (mean ± standard deviation). The highest-scoring model is in bold, while † denotes a statistically
significant improvement over the opposite geometry model(s) with p < 0.05, Wilcoxon rank-sum
test. Note: the GB human non-tata promoters dataset and GUE promoter detection datasets overlap.

Model
Benchmark Task Dataset Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

T
E

B

LTR Copia 54.73±1.45 64.58±3.07 † 68.05±2.80 †

Retrotransposons LINEs 70.63±1.24 76.12±2.16 † 77.10±2.92 †

SINEs 85.15±1.64 85.45±1.16 81.85±2.95

DNA transposons CMC-EnSpm 72.18±0.32 80.98±1.48 † 80.65±1.30 †

hAT-Ac 87.45±0.90 89.61±1.34 91.04±1.58 †

Pseudogenes processed 60.66±0.82 68.30±0.93 † 65.41±5.54

unprocessed 51.94±2.69 56.13±0.56 † 58.36±1.80 †

G
U

E

H3 64.83±2.17 68.14±1.44 68.32±2.12 †

H3K14ac 34.27±6.14 50.37±8.14 † 45.69±1.95 †

H3K36me3 43.74±2.32 53.28±1.94 † 43.41±2.00

H3K4me1 28.76±3.00 40.84±1.18 † 34.71±3.70

Epigenetic Marks H3K4me2 25.38±5.40 39.74±4.61 † 29.53±1.97

Prediction H3K4me3 21.77±5.58 49.51±0.96 † 30.39±3.32 †

H3K79me3 54.88±2.09 62.39±2.14 † 58.48±1.88

H3K9ac 40.37±3.89 52.90±1.12 † 50.21±1.52 †

H4ac 31.59±8.45 52.29±0.93 † 44.88±4.70

H4 74.81±0.92 75.43±1.49 76.20±0.61

0 58.65±3.40 62.84±0.64 60.92±1.72

Human 1 61.41±1.60 67.13±2.59 † 66.76±1.25 †

Transcription Factor 2 49.79±0.51 67.17±5.26 † 68.36±2.70 †

Prediction 3 35.67±0.30 41.96±2.95 42.93±2.30 †

4 57.68±0.26 66.01±1.88 † 67.99±2.30 †

Splice Site Prediction reconstructed 78.64±0.43 80.32±1.24 † 80.76±1.06 †

0 22.51±2.78 46.09±2.17 † 47.96±5.01 †

Mouse 1 76.56±0.51 78.93±0.31 † 76.68±0.81

Transcription Factor 2 62.69±1.52 74.76±3.07 † 74.78±2.98 †

Prediction 3 36.93±8.35 68.61±4.24 † 66.58±3.24 †

4 30.23±3.13 40.07±0.83 † 40.57±2.09 †

Covid Variant Classification Covid 66.43±0.48† 36.71±9.69 14.81±0.46

tata 78.26±2.85 79.54±1.61 79.87±2.50

Core Promoter Detection notata 66.60±1.07 66.52±0.28 65.95±0.51

all 66.47±0.74 65.26±1.11 67.16±0.55

tata 78.58±3.39 79.74±2.66 78.77±0.78

Promoter Detection notata 90.81±0.51 89.86±0.76 90.28±0.37

all 88.00±0.39 87.60±0.51 87.93±0.76

G
B

Demo coding vs intergenomic seqs 75.14±0.35 80.04±0.28 † 80.25±0.24 †

human or worm 89.89±0.15 92.65±0.11 † 92.71±0.27 †

drosophila enhancers stark 7.99±3.01 10.77±2.34 10.87±3.32

Enhancers human enhancers cohn 30.76±2.05 46.63±0.88 † 46.68±1.11 †

human enhancers ensembl 79.48±0.10 † 44.48±2.94 72.99±0.36

Regulatory human ensembl regulatory 89.73±0.21 89.91±0.72 90.21±1.37

human non-tata promoters* 64.98±0.21 83.57±0.73 † 79.90±1.48 †

Open Chromatin Regions human ocr ensembl 39.92±0.85 56.22±0.28 † 55.36±2.52 †
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Previous studies have attempted to calibrate their reported δworst values by comparing them to
empirical estimates of δworst for the Poincaré disk D2, and the 2-sphere S2 (Khrulkov et al., 2020;
Yang et al., 2024), however we note that these empirical estimates are for metric spaces that are
categorically much lower in dimensionality than the feature spaces used for the dataset embeddings,
leading to potentially incongruous comparisons. Indeed, we find that high-dimensional data produces
"emergent hyperbolicity", with points at higher dimensions producing smaller δworst and δavg values
(detailed in A.9.2). Our results highlight a pronounced disparity: the difference in empirical δ values
between embeddings sampled on H2 and those sampled on higher-dimensional hyperbolic spaces
(Hd, where d ∈ [200, 1000]) – with comparable magnitudes to the sequence embeddings – can be as
large as 0.2 (Appendix Figure 12). This disparity becomes even more pronounced on Euclidean (Rd)
and hyperspherical (Sd) manifolds. Such significant differences in δ values may largely determine
whether the estimated δ indicates a more hyperbolic nature of the underlying space or otherwise.

To provide a more equitable calibration of hyperbolicity, we compare the δ distributions from our
genomic datasets to those from simulated datasets of matching dimensionality. We generate these
simulated datasets on both Euclidean and hyperbolic (K = −1) manifolds. Appendix Figure 10
illustrates the δ distributions for each set of dataset embeddings, where each embedding G ∈ RdF ,
with dF as the final embedding layer size. Our results reveal that the majority of the genomic dataset
embeddings exhibit greater hyperbolicity (lower δ values) compared to embeddings simulated from
a baseline Gaussian distribution on a Euclidean manifold of the same dimensionality. To quantify
this difference, we employ the Wilcoxon rank-sum test between the baseline and the genome dataset
distributions. This analysis shows that 25 out of 43 sequence datasets have significantly lower δ
values than the baseline (p < 0.05). These findings support the hypothesis that genomic sequence
data may possess an innate hyperbolicity, making them better suited to hyperbolic representations.

Our approach of examining the entire distribution of δ values, rather than relying on a single
scalar measure, reveals nuanced insights into the hyperbolic tendencies of different datasets. This
comprehensive view allows us to capture subtleties that might otherwise be overlooked. For instance,
the H3K36me3 dataset exhibits a δ distribution that is significantly lower in hyperbolicity compared
to the baseline. However, its high δworst estimate suggests that it may be less hyperbolic than the
baseline when considering only this single metric. Similarly, while the TEB datasets show relatively
large δworst estimates, their δ distributions are notably right-skewed. These characteristics appear
more consistent with the superior performance of HCNN models on these datasets.

The discrepancies between single-point estimates (δworst, δavg) and full distributions underscore the
importance of a more holistic approach. By considering the entire spectrum of δ values across
the feature space, we gain a more accurate characterization of the data’s tree-like properties. This
comprehensive perspective not only provides a richer understanding of the dataset’s geometric
structure but also offers better insights into why models like HCNNs perform well. Expanding this
analysis to DNA LMs (Section A.9.3) reveals that these characteristics generalize across a broader
range of models. Still, while moving beyond scalar metrics and calibrating against dimensionality-
matched geometries has uncovered hyperbolic tendencies in genomic data that point estimates miss,
critical challenges persist: formalizing the behavior of δ-distributions statistically, particularly in
the face of emergent hyperbolicity, and exploring their robustness to the choice of metric would
significantly clarify in which situations hyperbolic representation learning is applicable.

6 CONCLUSION

We introduce a novel application of HCNNs for genomic sequence modeling, critically evaluating
their strengths and limitations. Our findings show that hyperbolic embeddings offer a distinct
performance advantage in key genomics tasks, particularly under resource constraints. Additionally,
our analysis of dataset embeddings uncovers significant correlations between dimensionality and
δ-hyperbolicity, reinforcing the value of hyperbolic space for genome representation.

HCNNs are lightweight, modular models with the scalability to produce competitive DNA LMs,
offering additional performance gains through pretraining and complementary techniques. Moreover,
this work drives future research toward developing robust metrics for evaluating dataset hyperbolicity
and formalizing its relationship with curvature and dimensionality. By advancing the understanding
and optimization of hyperbolic models in genomics, our study encourages deeper exploration of this
promising paradigm.
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distance embeddings for biological sequences. Advances in Neural Information Processing Systems,
34:18539–18551, 2021.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
human genomics. Nature Methods, pp. 1–11, 2024.

René Dreos, Giovanna Ambrosini, Rouayda Cavin Périer, and Philipp Bucher. Epd and epdnew,
high-quality promoter resources in the next-generation sequencing era. Nucleic acids research, 41
(D1):D157–D164, 2013.

Denise Drongitis, Francesco Aniello, Laura Fucci, and Aldo Donizetti. Roles of transposable elements
in the different layers of gene expression regulation. International Journal of Molecular Sciences,
20(22):5755, 2019.

Kseniia Dudnyk, Donghong Cai, Chenlai Shi, Jian Xu, and Jian Zhou. Sequence basis of transcription
initiation in the human genome. Science, 384(6694):eadj0116, 2024.

Geoffrey J Faulkner, Yasumasa Kimura, Carsten O Daub, Shivangi Wani, Charles Plessy, Katharine M
Irvine, Kate Schroder, Nicole Cloonan, Anita L Steptoe, Timo Lassmann, et al. The regu-
lated retrotransposon transcriptome of mammalian cells. Nature Genetics, 41(5):563–571, 2009.
doi:10.1038/ng.368.

Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the gromov hyperbolicity of a
discrete metric space. Information Processing Letters, 115(6-8):576–579, 2015.

Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis, Jane Loveland,
Jonathan M Mudge, Cristina Sisu, James Wright, Joel Armstrong, et al. Gencode reference
annotation for the human and mouse genomes. Nucleic acids research, 47(D1):D766–D773, 2019.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in
neural information processing systems, 31, 2018.
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A APPENDIX

A.1 LORENTZ CONVOLUTIONAL LAYER

A.1.1 LAYER COMPONENTS

We further break down the Lorentz convolutional layer by defining each separate transformation.
First, given hyperbolic points {xi}Ni=1, the Lorentz direct concatenation (HCat) (Qu & Zou, 2022) is
defined as:

y = HCat({xi}Ni=1) =


√√√√ N∑

i=1

x2it +
N − 1

K
,xT

1s , . . . ,x
T
Ns

T

(12)

with y ∈ LnN
K ⊂ RnN+1. This manipulation provides a numerically stable way to concatenate

hyperbolic representations. Next, Chen et al. (2022b) introduced a Lorentz fully-connected layer.
Given the input vector x and the weight parameters W ∈ Rm×n+1, v ∈ Rn+1 for the fully connected
layer, the transformation matrix is defined as:

fx

([
vT
W

])
=

[ √
∥Wx∥2−1/K

vTx
vT

W

]
. (13)

Then, adding in other layer components (except for internal layer normalization) results in the
following formula:

y = LFC(x) =
[√

∥ψ(Wx+ b)∥2 − 1/K
ψ(Wx+ b)

]
(14)

where b ∈ Rn and ψ denote the bias and activation, respectively.

A.1.2 LAYER MAPPING

HCNN-M models leverage multiple manifolds with corresponding curvatures [K1, ...,Ku] for each
of u designated blocks. Therefore, we define the mapping between manifolds as follows, using the
definitions of exponential and logarithmic maps defined in equations 3 and 4, respectively. For a
mapping of point x ∈ M1 (where M1 has corresponding curvature K1) to the manifold M2 (with
curvature K2), we must first apply a logarithmic map at the origin to bring x to the tangent space
T0M1. Then, we apply an exponential map at the origin of the resulting point to the new manifold
M2. The layer map operation LMM1→M2

(x) can therefore be defined as follows:

LMM1→M2
(x) = expK2

0
(logK1

0
(x)). (15)

A.2 MODELING DETAILS

A.2.1 MODEL

A detailed breakdown of the CNN/HCNN model architecture is visualized in Figure 4. The HCNNs
use the Lorentz formulation of each model component. For HCNN-M, we show the partition of each
manifold across each segment of the architecture. We use cross-entropy loss as our objective and
train each model end-to-end on each dataset.
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Figure 4: The generalized block architecture for the CNNs/HCNNs. On the left, we delineate the
manifold partitions used in our HCNN-M models.

A.2.2 HYPERPARAMETERS

When possible, we keep the hyperparameters constant across the different model types (Table 3).
However, we train the Euclidean CNN using the AdamW optimizer (Loshchilov & Hutter, 2019) and
the HCNNs using RiemannianAdam (Bécigneul & Ganea, 2019).

Table 3: Hyperparameter settings for CNN/HCNN training.

Euclidean CNN HCNN-S HCNN-M

Optimizer AdamW RiemannianAdam RiemannianAdam
Learning Rate (TEB/GUE/GB) 1e-4, 1e-4, 1e-5 1e-4, 1e-4, 1e-5 1e-4, 1e-4, 1e-5
Manifold Learning Rate N/A 2e-2 2e-2
Batch size 100 100 100
Weight decay 0.1 0.1 0.1
Epochs 100 100 100
β1, β2 0.9, 0.999 0.9, 0.999 0.9, 0.999

A.3 TRANSPOSABLE ELEMENTS BENCHMARK

TEB presents seven distinct sequence classification datasets categorized within three prediction tasks.
An overview of the datasets is presented in Table 4. Sequence and annotation data were integrated
from both human and plant genome datasets.

For the retrotransposon and DNA transposon tasks, we crafted a dataset by employing annotations
from PlantRep (Luo et al., 2022), a database that provides comprehensive annotations of plant
repetitive elements across 459 plant genomes. We narrowed the number of candidate species to those
that had an appropriate number of TEs of interest to power deep learning tasks, as well as an average
TE sequence length of similar magnitude to the other benchmark datasets (200-1000 bp). Then, we
randomly selected Oryza glumipatula from the set of candidate species to use as the plant species for
our benchmark. Annotations were downloaded from PlantRep, while the Oryza glumipatula genome
(v1.5) was downloaded from the NCBI genome browser (https://ftp.ncbi.nlm.nih.gov).
Within the retrotransposon group, there are three datasets: LTR Copia, LINEs, and SINEs. LTR Copia
are a type of retrotransposon characterized by a pair of identical flanking repetitive regions called
long terminal repeats (LTRs). Conversely, long interspersed nuclear elements (LINEs), and short
interspersed nuclear elements (SINEs) are retrotransposons that do not contain LTRs, and generally
contain a promoter while varying by length. Next, within the DNA transposon group, we target two
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of the most ubiquitous subfamilies: CMC-EnSpm and hAT-Ac, each of which is distinguished by
specific short terminal inverted repeats.

While pseudogenes themselves are not a type of TE, they are often the result of TE activity. Therefore,
we examine the presence of pseudogenes in the human reference genome (GRCh38.p12), using
gene/transcript biotype annotations from GENCODE and Ensembl (Frankish et al., 2019). Pseudo-
genes are classified as processed and unprocessed, each of which results from a different mechanism
of action. A processed pseudogene lacks introns and arises from reverse transcription of mRNA
followed by reinsertion of DNA into the genome, while an unprocessed pseudogene may contain
introns and is the product of a gene duplication event.

For dataset construction, we created a positive set of sequences spanning each TE of interest. We
then generated a negative set by randomly sampling non-overlapping, remaining portions of the
genome (without replacement) until we had a matching number of negative sequences. We used
a chromosome level train/validation/test split for our sequences, separating out chromosomes 8/9
and 20-22/17-19 for validation/test sets in Oryza glumipatula and human, respectively, while the
remaining chromosomes were used for the training sets.

Table 4: Summary statistics for TEB, including the specific type of TE and the number of training,
validation, and test samples in each dataset.

Prediction Task Species Max Length Datasets Train / Dev / Test
500 LTR Copia 7666 / 682 / 568

Retrotransposons Plant 1000 LINEs 22502 / 2030 / 1782
500 SINEs 21152 / 1836 / 1784

DNA Transposons Plant 200 CMC-EnSpm 19912 / 1872 / 1808
1000 hAT-Ac 17322 / 1822 / 1428

Pseudogenes Human 1000 processed 17956 / 1046 / 1740
1000 unprocessed 12938 / 766 / 884

A.4 DNA LANGUAGE MODELS

We compare the best classification performance of our HCNN models to that of several DNA LMs.
Table 5 documents the performance of ten large DNA LMs on the GUE datasets, along with the
number of trainable parameters present in each model. We benchmarked HyenaDNA and Caduceus-
Ph, while for other models, we used the benchmarking results reported in (Zhou et al., 2024). For the
HCNN-S and HCNN-M models, we report the average number of model parameters used across all
GUE datasets. Below, we provide a short description of each model class:

• HyenaDNA: A long-context DNA LM that uses the Hyena operator as a basic building
block (Poli et al., 2023), which is a subquadratic alternative to attention. HyenaDNA
utilizes extended convolutions and data-controlled gating mechanisms to identify long-range
genomic effects (Nguyen et al., 2024).

• Caduceus-Ph: A bidirectional DNA LM for long-range sequence modeling that builds on
the Mamba module (Gu & Dao, 2024; Schiff et al., 2024).

• DNABERT (5-mer, 6-mer): An early iteration of a pretrained transformer model for the
genome, DNABERT (Ji et al., 2021) uses the BERT architecture and is trained on human
DNA sequences. There are four variants of the model, and here we list the results for
the 5-mer and 6-mer versions, which use overlapping 5-mer and 6-mer tokenization of
sequences.

• Nucleotide Transformer (500M human, 500M 1000g, 2500M 1000g, 2500M multi): Nu-
cleotide Transformer (NT) represents the largest class of models in terms of parameters and
training data. There are four variants of NT. The labels "500M" and "2500M" correspond to
the number of trainable parameters in the model (Dalla-Torre et al., 2024). For the training
data, the categories "human", "1000g", and "multi" refer to the human reference genome,
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the 3203 human genomes from the 1000 Genome project, and genomes from 850 different
species, respectively.

• DNABERT-2, DNABERT-2-PT: A refinement of DNABERT, DNABERT-2 incorporates
Byte-Pair Encoding and several architectural upgrades for improved learning capabilities.
DNABERT-2 is pretrained on the human reference genome, whereas DNABERT-2-PT is
further pretrained on the training sets of the 28 GUE datasets (Zhou et al., 2024).

Table 5: The performance (F1-score for Covid, MCC for all other datasets) of several prominent
DNA LMs in comparison to the HCNNs on GUE. The best-performing score for each GUE dataset is
bolded.

Caduceus
-Ph

Hyena
DNA

DNA
BERT

(5-mer)

DNA
BERT

(6-mer)

NT
-500M
human

NT
-500M
1000g

NT
-2500M
1000g

NT
-2500M

multi

DNA
BERT-2

DNA
BERT-2

-PT

HCNN
-S

HCNN
-M

Parameters 7.7M 28.2M 87M 89M 500M 500M 2.5B 2.5B 117M 117M 4.6M 4.6M

H3 77.09 67.17 73.40 73.10 69.67 72.52 74.61 78.77 78.27 80.17 69.42 69.95
H3K14ac 41.44 31.98 40.68 40.06 33.55 39.37 44.08 56.20 52.57 57.42 56.03 48.25
H3K36me3 46.49 48.27 48.29 47.25 44.14 45.58 50.86 61.99 56.88 61.90 55.27 45.76
H3K4me1 37.76 35.83 40.65 41.44 37.15 40.45 43.10 55.30 50.52 53.00 41.86 39.78
H3K4me2 28.16 25.81 30.67 32.27 30.87 31.05 30.28 36.49 31.13 39.89 43.88 31.27
H3K4me3 24.40 23.15 27.10 27.81 24.06 26.16 30.87 40.34 36.27 41.20 50.58 33.59
H3K79me3 60.31 54.09 59.61 61.17 58.35 59.33 61.20 64.70 67.39 65.46 64.62 63.35
H3K9ac 52.70 50.84 51.11 51.22 45.81 49.29 52.36 56.01 55.63 57.07 54.09 52.25
H4 79.91 73.69 77.27 79.26 76.17 76.29 79.76 81.67 80.71 81.86 77.24 76.94
H4ac 40.90 38.44 37.48 37.43 33.74 36.79 41.46 49.13 50.43 50.35 52.94 51.86
prom all 85.87 47.38 90.16 90.48 87.71 89.76 90.95 91.01 86.77 88.31 88.23 88.83
prom notata 93.23 52.24 92.45 93.05 90.75 91.75 93.07 94.00 94.27 94.34 90.92 90.74
prom tata 66.07 5.34 69.51 61.56 78.07 78.23 75.80 79.43 71.59 68.79 82.70 79.80
Human TF 0 67.32 62.30 66.97 66.84 61.59 63.64 66.31 66.64 71.99 69.12 63.56 63.35
Human TF 1 72.10 67.86 69.98 70.14 66.75 70.17 68.30 70.28 76.06 71.87 69.39 68.48
Human TF 2 58.92 46.85 59.03 61.03 53.58 52.73 58.70 58.72 66.52 62.96 73.80 71.40
Human TF 3 54.85 41.78 52.95 51.89 42.95 45.24 49.08 51.65 58.54 55.35 44.08 43.66
Human TF 4 69.45 61.23 69.26 70.97 60.81 62.82 67.59 69.34 77.43 74.94 68.43 70.01
c. prom all 67.28 36.95 69.48 68.90 63.45 66.70 67.39 70.33 69.37 67.50 66.33 67.84
c. prom notata 66.07 35.38 69.81 70.47 64.82 67.17 67.46 71.58 68.04 69.53 66.78 66.48
c. prom tata 72.94 72.87 76.79 76.06 71.34 73.52 69.66 72.97 74.17 76.18 81.34 82.07
Mouse TF 0 56.18 35.62 42.45 44.42 31.04 39.26 48.31 63.31 56.76 64.23 48.41 52.31
Mouse TF 1 80.31 80.50 79.32 78.94 75.04 75.49 80.02 83.76 84.77 86.28 79.26 77.41
Mouse TF 2 75.89 65.34 62.22 71.44 61.67 64.70 70.14 71.52 79.32 81.28 77.86 77.51
Mouse TF 3 73.47 54.20 49.92 44.89 29.17 33.07 42.25 69.44 66.47 73.49 73.51 69.73
Mouse TF 4 47.98 19.17 40.34 42.48 29.27 34.01 43.40 47.07 52.66 50.80 41.27 43.62
Covid 45.19 23.27 50.46 55.50 50.82 52.06 66.73 73.04 71.02 68.49 46.43 24.74
Splice 81.59 72.67 84.02 84.07 79.71 80.97 85.78 89.35 84.99 85.93 81.96 82.23

A.5 MANIFOLD CURVATURE

Figure 6 depicts the learned curvatures for models trained on TEB. In the HCNN-M models, blocks
1-3 represent the hyperbolic convolutional blocks in the model, each associated with a corresponding
manifold that has its own curvature. Block 4 represents the portion of the model that involves a
flattening step, a dense layer, and MLR, operations that all occur on a single hyperbolic manifold
(Figure 4). In the HCNN-S models, the value of K is fixed, as a single manifold is used across the
entire model.

A.6 SYNTHETIC DATASETS

We construct each synthetic dataset by randomly sampling a phylogenetic tree using the Environment
for Tree Exploration (ETE) toolkit Huerta-Cepas et al. (2016). To simulate nucleotide sequence
evolution along the tree’s branches, we use the PYVOLVE package (Spielman & Wilke, 2015),
specifically for its implementation of the Generalized Time-Reversible (GTR) model (Tavaré, 1984)
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Figure 5: On the left, we show the average improvement in performance (MCC) on TEB datasets for
HCNNs compared to CNNs as the channel dimension in the convolutional layers varies. On the right,
we present the mean MCC achieved by the models across TEB datasets, for each channel dimension.

Figure 6: Average values of K, the curvature parameter in the HCNNs, as they vary across each block
of the model. Values are reported for models trained on each of the seven classification tasks in TEB.

with default parameters. Four types of fixed-length sequences are generated and used across Scenarios
A, B, and C:

Artificial tree: The starting ancestral (root) sequence is randomly generated.

Real tree: The starting ancestral sequence is sampled from the human genome.

Artificial background sequence: Sequences are generated randomly and independently by sampling
nucleotides.

Real background sequence: Sequences are sampled from independent (different chromosome)
regions of the human genome relative to the starting ancestral sequence.

We define the task for each scenario as follows:

(A) Intra-tree differentiation: A single tree is sampled, with clade membership determining
class labels. The model’s task is to differentiate clades.

(B) Inter-tree differentiation: A different tree (with a different starting ancestral sequence) is
sampled for each label. The model’s task is to differentiate trees.

(C) Tree identification: A single tree is sampled, and all sequences from this tree share the
same label. Independently sampled background sequences are assigned a separate label.
The model’s task is to differentiate the tree from the background sequences.
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Table 6: The performance (F1-score for Covid, MCC for all other datasets) of SOTA DNA LMs and
scaled HCNNs on GUE benchmark datasets. The best-performing score for each dataset is bolded.
For the scaled HCNN-S and HCNN-M models, we report the average number of model parameters
used across all GUE datasets.

NT
-2500M
-multi

DNABERT-2 DNABERT-2
-PT

HCNN-S
(Large)

HCNN-M
(Large)

Parameters 2.5B 117M 117M 43M 43M

H3 78.77 78.27 80.17 72.17 72.21
H3K14ac 56.20 52.57 57.42 70.56 69.87
H3K36me3 61.99 56.88 61.90 68.06 67.92
H3K4me1 55.30 50.52 53.00 53.33 55.45
H3K4me2 36.49 31.13 39.89 54.67 52.50
H3K4me3 40.34 36.27 41.20 67.25 64.61
H3K79me3 64.70 67.39 65.46 70.49 70.65
H3K9ac 56.01 55.63 57.07 63.36 60.66
H4 81.67 80.71 81.86 76.54 74.78
H4ac 49.13 50.43 50.35 62.16 67.30
promoter all 91.01 86.77 88.31 83.35 83.73
promoter notata 94.00 94.27 94.34 88.36 90.67
promoter tata 79.43 71.59 68.79 81.86 79.19
Human TF 0 66.64 71.99 69.12 65.09 62.85
Human TF 1 70.28 76.06 71.87 67.59 69.91
Human TF 2 58.72 66.52 62.96 70.73 63.79
Human TF 3 51.65 58.54 55.35 42.12 46.26
Human TF 4 69.34 77.43 74.94 71.95 70.33
core promoter all 70.33 69.37 67.50 61.77 62.56
core promoter notata 71.58 68.04 69.53 66.01 65.71
core promoter tata 72.97 74.17 76.18 80.20 80.26
Mouse TF 0 63.31 56.76 64.23 48.84 49.24
Mouse TF 1 83.76 84.77 86.28 81.07 79.43
Mouse TF 2 71.52 79.32 81.28 80.51 75.61
Mouse TF 3 69.44 66.47 73.49 81.57 78.77
Mouse TF 4 47.07 52.66 50.80 41.79 43.70
Covid 73.04 71.02 68.49 45.06 31.09
Splice 89.35 84.99 85.93 79.23 78.84

Representative simulated phylogenetic trees and their corresponding labels are visualized in Figures
7 and 8. We introduce noise into the datasets by randomly swapping 10% of the labels in the training
and validation sets.

A.7 HOMOLOGY SPLITTING

The experimental setup for homology splitting is visualized in Figure 9. For the training and validation
data, we generate a synthetic dataset as in Scenario C, where sequences generated from the tree
share the same label, and background sequences not originating from the tree share a different
label. However, instead of creating a test set from this dataset, we create the test set by generating a
completely new phylogenetic tree and sampling sequences from it. The tree-generated sequences in
the test dataset thus originate from entirely unseen homology branches.

Results of this experiment are presented in Table 7. Hyperbolic models show significantly improved
generalization over the Euclidean model in an evolutionary and phylogenetic context.
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Figure 7: Leaf node sequence classifications (with added noise) in Scenario A for the simulated
phylogenetic tree (structure visible on the left).

Figure 8: Hamming distance matrix for all leaves in the simulated phylogenetic tree for Scenario A.

Table 7: Model performance (MCC) on the homology splitting experiment, averaged over five
random seeds (mean ± standard deviation). The highest-scoring model is in bold, while † denotes a
statistically significant improvement over the opposite geometry model(s) with p < 0.05, Wilcoxon
rank-sum test.

CNN HCNN-S HCNN-M

24.31±7.99 45.73±8.93 † 40.87±8.93 †
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Train + Validation     Test    C  

Figure 9: Overview of the homology splitting experiment. A training and validation dataset (left) are
generated in the same manner as the synthetic dataset used for Scenario C. For the test dataset (right),
a completely new tree and ancestral sequence are used to generate the tree class.

A.8 HYBRID MODELS

Following Bdeir et al. (2024), we evaluate hybrid CNN models, in which we substitute components
of our models across different manifolds. We construct two hybrid model variants: E2H-CNN
and H2E-CNN. In E2H-CNN, we use a Euclidean CNN head and a Lorentzian MLR, whereas
H2E-CNN employs an HCNN head and a Euclidean MLR. We compare the performance of the two
hybrid models to the other three models in Table 8. On TEB datasets, we observe that incorporating a
Lorentzian component generally improves performance over a fully Euclidean model, with larger
gains from E2H-CNN. These results suggest that using hyperbolic hyperplanes to separate classes
may be beneficial, even for Euclidean embeddings. Overall, the results highlight the potential of
hybrid models.

Table 8: Model performance (MCC) in TEB, averaged over five random seeds. The best-performing
model is bolded.

Dataset CNN HCNN-S HCNN-M E2H-CNN H2E-CNN
LTR Copia 54.73±1.45 64.58±3.07 68.05±2.80 61.82±2.21 63.95±3.52

LINEs 70.63±1.24 76.12±2.16 77.10±2.92 75.65±0.83 79.15±2.36

SINEs 85.15±1.64 85.45±1.16 81.85±2.95 89.65±2.13 79.49±3.40

CMC-EnSpm 72.18±0.32 80.98±1.48 80.65±1.30 76.75±0.60 77.15±3.43

hAT-Ac 87.45±0.90 89.61±1.34 91.04±1.58 89.76±0.85 85.63±1.44

processed 60.66±0.82 68.30±0.93 65.41±5.54 66.68±1.31 66.12±0.43

unprocessed 51.94±2.69 56.13±0.56 58.36±1.80 58.09±0.96 58.16±1.40

A.9 δ-HYPERBOLICITY

A.9.1 ESTIMATION PROCEDURE

Computing δworst naively is an O(n4) operation for a set of n points, therefore we use the efficient
approach introduced in Khrulkov et al. (2020) and Cohen et al. (2015). Specifically, we incorporate a
sampling procedure to estimate hyperbolicity in a computationally tractable manner. The steps are as
follows:

1. Sample Ns points from the dataset (we set Ns = 1000).
2. Compute the matrix A of pairwise Gromov products using equation 10, and a fixed point
z = z0 (detailed in Cohen et al. (2015)).

3. Determine the matrix C = (A⊗A)−A, where ⊗ represents the min-max matrix product:
(A⊗B)ij = maxmink{Aik, Bkj}.

4. For δworst, we take the maximum value from C, and for δavg, we compute the expected
value over the unique elements of C pertaining to valid tuples. We apply the scale-invariant
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transformation mentioned in the main text to the δ values to determine the final values
reported. However, for the δavg values, we instead transform the raw values using the
scale-invariant ratio introduced in Borassi et al. (2015): 2δavg

Davg
, where Davg is the average

distance between two randomly selected points.

Results are averaged across multiple runs, and we provide the resulting mean and standard deviation.
For the genomic datasets, we use the test set of sequence embeddings generated from the final
embedding layer of the trained Euclidean CNN models (Table 9).

A.9.2 METRIC SPACE CALIBRATIONS

In order to calibrate our δ-hyperbolicity measurements, we scrutinize the behavior of δ approximations
at various fixed curvatures (K) and dimensionalities (d). We use the MANIFY package, introduced in
Chlenski et al. (2025), to randomly sample data points from a Gaussian distribution across different
manifolds, using the wrapped normal distribution in the hyperbolic (K = −1,−2) (Nagano et al.,
2019) and the hyperspherical (K = 1, 2) (Skopek et al., 2020) cases. We then compute δ estimates
according to the procedure in A.9.1. We use the geodesic distance of each manifold to determine the
distance matrix between points.

The results of the simulations are visualized in Figure 12. The decreasing trend in both δworst and δavg
estimates across curvatures suggests that a higher dimensionality of data points may lead to increased
hyperbolicity in datasets. For discrete metric spaces, we confirm that for trees, δworst = δavg = 0 by
using the NETWORKX package (Hagberg et al., 2008) to generate random tree graphs and compute
the distance matrix based on shortest paths within each graph.

A.9.3 DNA LANGUAGE MODELS

We explore the hyperbolicity of sequences embedded by large DNA LMs. Our analysis encompasses
a diverse range of pretrained models, selected to represent various architectural approaches and scales.
The models under examination are HyenaDNA, DNABERT-2, and NT-500M human.

As a case study, we probe a subset of sequences that likely reflect strongly conserved evolutionary
relationships. We therefore generate LM embeddings for a randomly sampled set of SINE sequences
from TEB. The embeddings are derived by applying mean pooling over the final layer embedding
output of each model. To establish a comparative baseline, we juxtapose the underlying δ distribution
of each LM with a distribution generated from randomly sampled points from a Gaussian of equivalent
dimensionality, following the procedure outlined in Section 5.2.

The results of our analysis are presented in Figure 13. Notably, the embeddings produced by
HyenaDNA and DNABERT-2 exhibit significantly higher hyperbolicity compared to the baseline
embeddings (p < 0.01, Wilcoxon rank-sum test). In contrast, the representations generated by the
NT-500M human display substantially lower hyperbolicity than the baseline. This disparity may stem
from the higher dimensionality of the NT-500M human embeddings, suggesting that hyperbolicity
may become less critical at sufficiently large embedding scales.

A.10 HYPERBOLIC SEQUENCE REPRESENTATIONS

In exploring the sequence representations learned by HCNNs, we build on the intuition introduced by
Khrulkov et al. (2020), where hyperbolic image embeddings of MNIST show that ambiguous digits
tend to cluster near the center of the Poincaré disk, while clearer, more confidently classified digits lie
closer to the boundary. Similarly, in Figure 14, we observe that in the processed pseudogene dataset
from TEB, sequence embeddings located near the center of the Poincaré disk (representing the top
of the hierarchy) correspond to low-confidence predictions by HCNNs, approximated using model
loss. In contrast, embeddings near the boundary exhibit the highest classification confidence. This
pattern supports the notion that well-defined sequences occupy lower regions in the hierarchy, where
the increased representational capacity of hyperbolic space allows for finer-grained separation based
on distinctive sequence features.

To systematically investigate the underlying sequence features informing these hyperbolic genome
embeddings, we performed an in silico mutagenesis experiment using the processed pseudogene
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Figure 10: Distribution of scaled δ-hyperbolicity values across each genomic dataset. Colors delineate
different task categories, while the bottom two rows provide reference distributions for δ values
computed from a set of points sampled from the normal distribution on a Euclidean (K = 0, red)
and a hyperbolic (K = −1, blue) manifold. Dashed lines indicate the δavg values for the hyperbolic
reference (blue) and the Euclidean reference (red). An asterisk (*) denotes that the corresponding
distribution constitutes smaller δ values (i.e., is more hyperbolic) than the Euclidean reference based
on the Wilcoxon rank-sum test (p < 0.01).
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Table 9: δ-Hyperbolicity values of the final embeddings for CNNs trained on each genomic dataset.
Results are averaged over 10 sampling runs (mean ± standard deviation).

Benchmark Task Dataset δworst δavg

T
E

B

LTR Copia 0.36±0.0175 0.145±0.0019

Retrotransposons LINEs 0.40±0.0110 0.164±0.0004

SINEs 0.08±0.0076 0.170±0.0016

DNA transposons CMC-EnSpm 0.18±0.0181 0.163±0.0009

hAT-Ac 0.37±0.0220 0.215±0.0026

Pseudogenes processed 0.36±0.0204 0.189±0.0007

unprocessed 0.35±0.0140 0.157±0.0003

G
U

E

H3 0.10±0.0072 0.098±0.0005

H3K14ac 0.09±0.0090 0.101±0.0030

H3K36me3 0.26±0.0541 0.251±0.0014

H3K4me1 0.21±0.0185 0.225±0.0056

Epigenetic Marks H3K4me2 0.13±0.0112 0.125±0.0039

Prediction H3K4me3 0.14±0.0168 0.169±0.0020

H3K79me3 0.15±0.0255 0.122±0.0067

H3K9ac 0.21±0.0160 0.265±0.0058

H4ac 0.18±0.0156 0.186±0.0024

H4 0.10±0.0058 0.082±0.0041

0 0.20±0.0114 0.160±0.0026

Human 1 0.20±0.0245 0.152±0.0044

Transcription Factor 2 0.19±0.0189 0.148±0.0021

Prediction 3 0.19±0.0189 0.141±0.0004

4 0.18±0.0098 0.140±0.0009

Splice Site Prediction splice 0.29±0.0363 0.256±0.0012

0 0.21±0.0147 0.140±0.0043

Mouse 1 0.35±0.0301 0.249±0.0032

Transcription Factor 2 0.21±0.0226 0.139±0.0011

Prediction 3 0.19±0.0237 0.131±0.0009

4 0.19±0.0112 0.148±0.0022

Covid Variant Classification covid 0.50±0.0388 0.417±0.0030

all 0.29±0.0105 0.229±0.0034

Core Promoter Detection notata 0.28±0.0184 0.212±0.0010

tata 0.22±0.0082 0.138±0.0013

all 0.29±0.0146 0.260±0.0024

Promoter Detection notata 0.31±0.0210 0.257±0.0043

tata 0.16±0.0127 0.138±0.0069

G
B

Demo coding vs intergenomic seqs 0.21±0.0180 0.118±0.0019

human or worm 0.19±0.0189 0.121±0.0010

drosophila enhancers stark 0.30±0.0174 0.209±0.0012

Enhancers human enhancers cohn 0.19±0.0137 0.092±0.0002

human enhancers ensembl 0.19±0.0198 0.109±0.0001

Regulatory human ensembl regulatory 0.23±0.0282 0.148±0.0013

human non-tata promoters 0.19±0.0053 0.103±0.0002

Open Chromatin Regions human ocr ensembl 0.24±0.0400 0.189±0.0011
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Figure 11: Correlation between δworst and the performance differential between HCCN-S and CNN
models. routliers includes outliers in the Pearson correlation coefficient calculation, while r excludes
them (p < 0.05, except for HCNN-M r).

dataset. Our methodology involves a structured approach to dissecting sequence representations. For
a given sequence, we:

1. Retrieve the Genomic Evolutionary Rate Profiling (GERP) Cooper et al. (2005) score for
each nucleotide along the sequence. GERP scores quantify evolutionary constraints at
specific genomic positions, identifying which positions are functionally important based
on selective pressure. GERP uses multiple sequence alignments across species to identify
conserved regions.

2. Strategically mutate a subset of nucleotides under the highest selective pressure, generating
multiple perturbed sequence variants.

3. Generate embeddings for each perturbed sequence using the trained HCNN.

Figure 15 visualizes this experiment using both a processed pseudogene sequence and a background
sequence. As mutations progressively erode the evolutionary signal associated with strong selec-
tion (corresponding to the nucleotides with the highest GERP scores), the features rendering the
pseudogene "gene-like" may deteriorate. This degradation increases sequence ambiguity from the
HCNN’s perspective, manifesting as a shift of the perturbed representations toward the top of the
hierarchy—near the center of the Poincaré disk—where low-confidence sequences typically reside.
The loss of these evolutionary features actively hinders the model’s ability to recognize pseudogenes.

Critically, this effect is sequence-specific: perturbing conserved regions within noisy background
sequences fails to produce an equivalent shift, suggesting the model prioritizes features consistently
associated with the pseudogene class.

To validate the generalizability of this phenomenon, we conducted a comprehensive analysis on a
randomly sampled set of 10,000 sequences from the processed pseudogene dataset, ensuring balanced
class representation. For each sequence, we applied our mutagenesis protocol (steps 1-3), generating
10 perturbed sequence variants and corresponding HCNN representations.

We quantify this effect by measuring the embedding shifts of these perturbed sequences relative to
their original embeddings, specifically tracking their movement toward the representation space’s
origin. This directional analysis provides insight into the HCNN’s representational sensitivity: a
trajectory toward the origin likely indicates increased representational ambiguity for the perturbed
sequence. The distance between each sequence (perturbed and original) and the origin in the
embedding space is computed using Poincaré geodesics.
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Figure 12: Estimates for δworst (top) and δavg (bottom) using simulated data points from a wrapped
normal distribution on manifolds with varying curvatures (K) and dimensionalities.

When comparing representational shifts between perturbed processed pseudogene and background
sequences, we observe significantly greater movement toward the Poincaré disk’s origin for perturbed
pseudogene sequences. This difference, statistically validated by the Wilcoxon rank-sum test (p <
0.05), demonstrates the robustness of our findings. We tested a range of mutation rates, altering
10− 30% of nucleotides per sequence, and found that the effect remained consistent and statistically
significant across all rates.
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Figure 13: Distribution of scaled δ-hyperbolicity values using embeddings from various DNA LMs.
The distribution of each model is overlaid with the δ distribution of randomly sampled points from a
Gaussian of equal dimensionality (red). An asterisk (*) denotes that the corresponding distribution
has significantly smaller smaller δ values (i.e., is more hyperbolic) than the Euclidean reference,
based on the Wilcoxon rank-sum test (p < 0.01).

Table 10: Mean model performance (MCC) aggregated by genomics task (mean ± standard error).

Model
Benchmark Task Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

T
E

B

Retrotransposon Prediction 70.48±8.02 74.80±13.48 75.98±12.48

DNA transposon Prediction 79.91±10.85 85.30±13.82 85.77±20.37

Pseudogene Prediction 56.30±7.40 62.22±10.26 60.31±11.66

G
U

E

Epigenetic Marks Prediction 40.76±4.07 55.31±2.64 48.18±2.81

Human Transcription Factor Prediction 52.52±3.63 61.12±3.12 61.25±2.86

Splice Site Prediction 78.64±0.19 80.32±0.55 80.76±0.47

Mouse Transcription Factor Prediction 45.79±4.72 61.93±5.52 61.52±5.08

Core Promoter Detection 70.13±2.06 70.12±3.48 70.99±2.39

Promoter Detection 85.80±1.75 85.73±1.37 85.66±1.82

Covid Variant Classification 66.43±0.21 36.71±4.33 14.81±0.21

G
B

Demo 82.52±2.79 86.34±2.83 86.48±2.83

Enhancers 39.41±9.00 34.18±7.46 28.77±2.83

Regulatory 77.36±4.73 86.74±1.35 85.05±2.34

Open Chromatin Regions 39.92±0.38 56.22±0.13 55.36±1.23
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Figure 14: HCNN embeddings for the processed pseudogene dataset, colored by model confidence on
the left and by the probability that a sequence is a processed pseudogene (vs. a background sequence)
on the right. Sequence embeddings are visualized on the Poincaré disk.

Sequence Type

Original pseudogene 
sequence

Perturbed pseudogene 
sequence

Original background 
sequence

Perturbed background 
sequence
 

Figure 15: HCNN embeddings for a processed pseudogene sequence and a background sequence.
Each sequence has been perturbed multiple times, with different instances shown on the Poincaré
disk.

Figure 16: UMAP visualizations of the embeddings generated by the HCNN (left) and CNN (right)
trained on the processed pseudogene dataset in TEB.
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