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ABSTRACT

Current approaches to genomic sequence modeling often struggle to align the induc-
tive biases of machine learning models with the evolutionarily-informed structure
of biological systems. To this end, we formulate a novel application of hyperbolic
CNNs that exploits this structure, enabling more expressive DNA sequence repre-
sentations. Our strategy circumvents the need for explicit phylogenetic mapping
while discerning key properties of sequences pertaining to core functional and regu-
latory behavior. Across 37 out of 43 genome interpretation benchmark datasets, our
hyperbolic models outperform their Euclidean equivalents. Notably, our approach
even surpasses state-of-the-art performance on seven GUE benchmark datasets,
consistently outperforming many DNA language models while using 13–379×
fewer parameters and avoiding pretraining. Our results include a novel benchmark
dataset—the Transposable Elements Benchmark—which explores a significant but
understudied component of the genome with deep evolutionary significance. We
further motivate our work by constructing an empirical method for interpreting
the hyperbolicity of dataset embeddings. Throughout these assessments, we find
persistent evidence highlighting the potential of our hyperbolic framework as a
robust paradigm for genome representation learning.

1 INTRODUCTION

Representation learning of genome sequence has enabled the exploration of critical unsolved problems
in biology, particularly the understanding of genome function and organization (Avsec et al., 2021;
Chen et al., 2022a; Dudnyk et al., 2024). Many effective approaches used for genome sequence
modeling have arisen from the same machine learning methods that have powered natural language
and image embeddings (Yue et al., 2023; Zhou, 2022; Consens et al., 2023). While the field has made
progress by utilizing these methods, the inductive biases of these models are not usually bespoke
to genomic data, limiting the expressive power of the resulting sequence representations. Given
the tremendous amount of information sequestered within DNA sequences encoding cellular and
molecular activity, an efficient and nuanced representation is necessary for genome interpretation and
downstream analyses.

Genome organization is complex, and much of this complexity is the product of evolutionary
processes. Any single genome represents the culmination of information diffusion across generations.
However, this information transfer occurs through noisy channels, as background mutation rates
may degrade the sequence signal (Lu et al., 2020). Accounting for phylogenetic relationships
may therefore contextualize the content of the genome and ultimately benefit genome interpretation
attempts. The shared influence of a common ancestor across all genomes imbues DNA sequence
data with underlying hierarchical structure. These hierarchical relationships emerge through a variety
of mechanisms, such as orthology and paralogy, which both codify homologous sequences but
occur under different circumstances. Further compounding these interdependencies are the multiple
overlapping sets of grammars for different regulatory pathways that characterize the language of the
genome. Altogether, these nested levels of latent hierarchies confound genome interpretation.

In developing a modeling paradigm better suited to handling the hieararchical nature of DNA
sequences, considering the geometry of the embedding spaces is essential. While most embeddings
are Euclidean by default, non-Euclidean spaces may offer a compelling alternative. Specifically,
hyperbolic spaces, which have the representational capacity to capture tree-structured data with high
fidelity, are well-equipped to manage the hierarchical patterns ubiquitous in genomic sequences.
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The negative curvature of hyperbolic spaces facilitates the continuous embedding of exponentially
growing structures like phylogenetic trees with relatively low distortion.

In this work, we contend that hyperbolic spaces may be appropriate for learning meaningful rep-
resentations of the genome. We leverage a fully hyperbolic framework to embed DNA sequences,
implicitly handling the latent hierarchies present in the data. The main contributions of this paper are
summarized as follows:

1. We adopt the machinery of fully hyperbolic convolutional neural networks (HCNNs),
building two classes of HCNNs for genome sequence learning. We contrast hyperbolic and
Euclidean approaches to sequence representation.

2. We introduce a novel, curated dataset–the Transposable Elements Benchmark–designed to
investigate transposable elements, which remain an underexplored area of the genome with
deep evolutionary roots.

3. We demonstrate the performance potential of our HCNNs across a synthetic dataset and 42
real-world datasets addressing foundational challenges in genomics.

4. We further motivate our work by formulating an empirical method for interpreting the
hyperbolicity of dataset embeddings, and

5. We use this technique to interrogate properties of genome representations generated by our
models, as well as from existing Euclidean models that have been widely used in the field.

2 PRELIMINARIES

2.1 RELATED WORK

Driven by the limitations of traditional Euclidean-based approaches in capturing relationships within
complex data structures, hyperbolic deep learning methods have materialized as a promising research
area. Early iterations of these methods introduced formalizations for performing the core operations
of neural networks in hyperbolic space (Ganea et al., 2018; Nickel & Kiela, 2018), alongside
optimization techniques generalized to Riemannian manifolds (Bécigneul & Ganea, 2019). These
approaches have been further extended to a variety of frameworks, including fully hyperbolic neural
networks (Chen et al., 2022b), hyperbolic graph convolutional networks (Chami et al., 2019),
hyperbolic attention networks (Gulcehre et al., 2018), and hyperbolic variational auto-encoders
(Mathieu et al., 2019). These models, among others, have proven effective across a variety of real-
world domains, including vision (Liu et al., 2020; Hsu et al., 2021; Mathieu et al., 2019), natural
language (Tifrea et al., 2019; Chen et al., 2024), and computational biology (Zhou & Sharpee, 2021;
Tian et al., 2023).

In genomics, hyperbolic methods have correctly modeled established phylogenies showcasing their
supremacy in representing tree-structured data (Chami et al., 2020a; Jiang et al., 2022b; Hughes
et al., 2004). These methods assume that the phylogenetic tree is known a priori, thus the scope of
the techniques are limited by the availability of evolutionary metadata. A subset of these methods
produce representations of DNA sequences, but rely on an explicit mapping of phylogenetic relation-
ships (Corso et al., 2021; Jiang et al., 2022a) in the form of pairwise edit distances or incomplete
phylogenies.

2.2 BACKGROUND

The n-dimensional hyperbolic space Hn
K is a homogeneous, simply connected Riemannian manifold,

described by a constant negative curvature K < 0. Several equivalent formulations of hyperbolic
space exist, including the Lorentz model, the Poincaré disk model, and the (Beltrami-)Klein model.
Here, we use the Lorentz model, Ln

K = (Mn, gKx ), with manifold Mn and Riemannian metric
gKx = diag(−1, 1, . . . , 1). The Lorentz model describes points by their configurations on the forward
sheet of a two-sheeted hyperboloid Ln

K in (n+ 1)-dimensional Minkowski space. Utilizing special
relativity conventions, the zeroth element in x is denoted as the timelike component xt and the
remaining n−1 elements as the spacelike components xs, giving x = [xt, xs]T , where we can further
define the timelike component xt =

√
||xs||2 − 1/K.

Exponential and logarithmic maps are used to map between the manifold M and tangent space TxM
with x ∈ M. For mapping a tangent vector z ∈ TxLn

K onto the Lorentz manifold, we can use the
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exponential map which is defined as:

expKx (z) = cosh(α)x + sinh(α)
z
α
, with α =

√
−K||z||L, ||z||L =

√
⟨z, z⟩L (1)

Inversely, to map a point y ∈ Ln
K to the tangent space, we use the logarithmic map:

logKx (y) =
cosh−1(β)√
β2 − 1

· (y − βx), β = K⟨x, y⟩L (2)

Furthermore, in order to move points along geodesics, the parallel transport operation PTK
x→y(v)

maps a point v ∈ TxM from the tangent space of x ∈ M to the tangent space of y ∈ M. The
Lorentzian formula for parallel transport is:

PTK
x→y(v) = v +

⟨y, v⟩L
1−K⟨x, y⟩L

(x + y). (3)

3 METHODS

3.1 FULLY HYPERBOLIC CNN

We leverage the HCNN methodology proposed by Bdeir et al. (2024) in the development of our fully
hyperbolic genome sequence model. Under this framework, the elements of the traditional CNN
model are reinterpreted in context of the Lorentz model of hyperbolic space. Briefly, we describe the
main Lorentzian components utilized in our model.

Lorentz Convolutional Layer. In a Euclidean setting, a convolutional layer constitutes matrix
mulitiplication between a linearized kernel and input feature maps. In the hyperbolic analog, each
channel is defined as a separate point on the hyperboloid, with the input to each layer as an ordered set
of n-dimensional hyperbolic vectors in Ln

K . This formulation enforces the constraint that operations
on points remain on the hyperboloid, as Ln

K ⊂ Rn+1. In the context of this work, each sequence is
thus an ordered set of n-dimensional hyperbolic vectors, where each position describes a nucleotide
in the sequence.

For a 1-dimensional hyperbolic convolutional layer with input feature map x = {xl ∈ Ln
K}Ll=1, the

features contained in the receptive field of kernel K ∈ Rm×n×L̃ are {xl′+ϵl̃ ∈ Ln
K}L̃

l̃=1
, in which

l′ marks the starting position and ϵ is the stride. Given this parameterization, we can express the
convolution layer as the output of two transformations:

yl = LFC(HCat({xl′+ϵl̃ ∈ Ln
K}L̃

l̃=1
)) (4)

Where HCat is an operation concatenating hyperbolic vectors, and LFC is a Lorentz fully-connected
layer performing the affine transformation of the kernel (refer to A.1). Next, Lorentz batch normal-
ization (LBN) reframes the underlying operations of batch normalization by using Fréchet mean
(Lou et al., 2020) for re-centering points and Fréchet variance (Kobler et al., 2022) for re-scaling
them. The algorithm is expressed as:

LBN(x) = expKβ

PTK
0→β

γ ·
PTK

µB→0

(
logKµB

(x)
)

√
σ2
B + ϵ

 . (5)

Finally, Lorentz multinomial logistic regression (MLR) builds on the original formulation of a
Euclidean MLR (Lebanon & Lafferty, 2004), which is defined using input x ∈ Rn and C classes:

p(y = c|x) ∝ exp(vwc(x)), vwc(x) = sign(⟨wc,x⟩)∥wc∥d(x, Hwc), wc ∈ Rn, (6)

in which Hwc is the decision hyperplane of class c. Bdeir et al. (2024) replace component operations
with their Lorentzian intepretations to produce the Lorentz MLR formulation. Using parameters
ac ∈ R and zc ∈ Rn, the Lorentz MLR’s output logit for class c given input x ∈ Ln

K is the following:

vzc,ac
(x) =

1√
−K

sign(α)β
∣∣∣∣sinh−1

(√
−Kα

β

)∣∣∣∣ , (7)
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…

Figure 1: Overview of our HCNNs. Model inputs are sequences with latent phylogenetic structure
(bottom left). As sequences pass through the hyperbolic convolutional module, they are projected
onto a hyperboloid before the model convolutional and flattening steps (top insert). Using hyperbolic
MLR, each sequence is classified according to the hyperplane boundaries (bottom right).

α = cosh(
√
−Ka)⟨z,xs⟩ − sinh(

√
−Ka),

β =

√
∥ cosh(

√
−Ka)z∥2 − (sinh(

√
−Ka)∥z∥)2.

For further details, including Lorentz formulations of residual connections and non-linear activation,
we refer the reader to Bdeir et al. (2024).

3.2 MODEL OVERVIEW

As our goal is to distill the difference between using Euclidean versus hyperbolic embedding spaces,
we employ a relatively simple model design. The HCNN architecture consists of three major
components: (1) hyperbolic convolutional blocks, (2) a flattening layer, and (3) MLR (Figure 1).
Each input DNA sequence x is one-hot encoded at the nucleotide level, then projected channel-wise
onto a hyperbolic manifold (φ : R4×L → L4×L). The result of this transformation serves as the input
to the hyperbolic convolutional blocks, which produce output feature maps x ∈ LC×L, where C is
the channel dimension. After a flattening step, the model performs classification using Lorentz MLR
to find the hyperbolic decision hyperplanes splitting the sequences by label.

For each hyperbolic component of our models, there exists an equivalent Euclidean component, thus
we maintain architectural parity across models for a fair comparison (Appendix Figure 4). However,
the layers in the HCNNs also include a learnable K parameter corresponding to the curvature of the
hyperboloid on which the points reside. For our downstream experiments, we evaluate two versions
of the HCNN model, HCNN-S (single K) and HCNN-M (multiple Ks). In HCNN-S, the same
manifold with fixed curvature K is used across each layer of the model. In contrast, HCNN-M uses
a different manifold [K1, ...,Ku] for each of u designated blocks, with intermediary steps mapping
points between manifolds. By building two classes of HCNN models, we examine the trade-offs
between the added representational flexibility of multiple curvatures and the potential instability
introduced by incorporating multiple exponential/logarithmic mapping steps to project points onto
different manifolds. Additional modeling details are in A.2.

3.3 δ-HYPERBOLICITY

Gromov introduces the notion of δ-hyperbolicity as a measurement of the deviation of a metric space
from perfect tree-like structure (Gromov, 1987). We can define a metric space (M,d), in which the

4
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A B    C  

Figure 2: The various plausible evolutionary scenarios informing genomics sequence learning.
Leaf coloring (blue vs. red) shows label assignment for A) intra-tree differentiation, B) inter-tree
differentiation, and C) tree identification scenarios.

Gromov product of z, y ∈M with respect to x ∈M is:

(x, y)z =
1

2
(d(x, z) + d(y, z)− d(x, y)) (8)

Then, the metric space is characterized as δ-hyperbolic for some δ ≥ 0 if it satisfies the four point
condition - for any four points x, y, z, w ∈M :

(x, y)w ≥ min{(x, z)w, (y, z)w} − δ (9)

The smallest δ for which this inequality is satisfied is the Gromov δ-hyperbolicity of (M,d).

δ-hyperbolicity has been an important tool in elucidating innate properties of metric spaces (Fournier
et al., 2015; Albert et al., 2014). Recently, this measurement has been extended to explore the
hyperbolic behavior of specific datasets and their respective embeddings within the domains of
computer vision (Khrulkov et al., 2020), and natural language processing (Yang et al., 2024). While
the original Gromov’s δ (which we will denote as δworst hereinafter) is designed to represent the
upper bound in terms of deviation from tree-like structure, other approaches have argued in favor
of utilizing an average Gromov hyperbolicity, δavg, on the grounds that a worst case analysis of a
space may not ultimately be representative of the true hyperbolic capacity of the space (Chatterjee &
Sloman, 2021; Albert et al., 2014; Tifrea et al., 2019). We further develop these ideas in the context
of the genomic datasets used in this paper.

As in previous approaches, we examine the behavior of δworst and δavg in high dimensional feature
space. As a comparative measure, we compute a scale-invariant value of δ, which we define as
δrel :=

2δ
Dmax

(Borassi et al., 2015), where Dmax denotes the maximal pairwise distance, or set
diameter. δrel is constrained to [0, 1], with a value of 0 denoting complete hyperbolicity, or perfect
tree structure. Unless reported otherwise, all δs referred to in this work are the scale-invariant value.

Ultimately, both δworst and δavg are point estimates over what may be a complex landscape of δ values.
To offer a more comprehensive evaluation, we examine the entire distribution of δ values across each
dataset to thoroughly evaluate the hyperbolic underpinnings of DNA sequence data. By appraising
the full landscape of δ-hyperbolicity in our embedding space, we gain a richer understanding of the
intrinsic tree structure across each dataset. We provide further details on δ computation and other
experimental configurations in A.9.1.

4 DATA

4.1 BENCHMARKS

Synthetic Datasets. In order to rigorously interrogate the applicability of using a hyperbolic
architecture in a genomics application, we create several synthetic datasets to illuminate the underlying
biological processes being captured by our models. We consider the various plausible data-generating
processes for biological sequences, and define three potential cases of biological signal transmission
being learned by the models. Additionally, given prior evidence in Corso et al. (2021) that purely
artificial sequences may not always be indicative of performance on real-world datasets, we explore
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this phenomenon as well, by creating two sets of data for each case: one in which the sequences used
are completely randomly generated, and one in which the sequences are randomly sampled from
existing genomes.

Our synthetic datasets mimic evolutionary dynamics by perturbing input sequences based on phy-
logenetic tree structure. We simulate sequence evolution along tree branches with the generalized
time-reversible (GTR) nucleotide model (Tavaré, 1984). We define each scenario, visualized in Figure
2, as follows:

(A) Intra-tree differentiation: sequences are generated from a single phylogenetic tree, with
labels derived from clade membership.

(B) Inter-tree differentiation: sequences are generated from different phylogenetic trees, with
labels derived from phylogeny membership.

(C) Tree identification: sequences are labeled based on the generating process: phylogenetic
tree generation or non-phylogenetic (random) generation.

We leverage these scenarios to better understand the specific advantages of hyperbolic models and
identify the conditions under which they demonstrate the greatest effectiveness. For full details
regarding the generation of each dataset, see A.6.

Transposable Elements Benchmark. We introduce a multi-species benchmark for exploring how
transposable elements are codified in sequence. Transposable elements (TEs) are highly abundant,
mobile elements of genomic sequence that represent specific evolutionary trajectories within or-
ganisms (Hayward & Gilbert, 2022; Wells & Feschotte, 2020). Given their ability to move within
genomes, TEs drive genomic plasticity and have been identified as key players in the evolution
of genomic complexity (Schrader & Schmitz, 2019; Bowen & Jordan, 2002). TEs can influence
gene expression and regulation by acting as alternative promoters (Faulkner et al., 2009), providing
transcription factor binding sites (Sundaram et al., 2014), introducing alternative splicing (Shen
et al., 2011), and mediating epigenetic modifications (Drongitis et al., 2019). As such, TEs have been
also implicated in disease pathogenesis (J"onsson et al., 2020; Hancks & Kazazian, 2016). Overall,
TEs represent a powerful force in evolutionary biology, continually shaping the genetic landscape.

A variety of TEs exist across genomes and can be arranged into several sub-classes. The genetic
structure of TE types follow regular patterns of structural features and motifs, and thus represent an
interesting learning opportunity for sequence models. The Transposable Elements Benchmark (TEB)
presents a novel resource for investigating TEs, which represent an area of genome organization
that is under-explored in the genomics deep learning literature. TEB surveys several different TE
classes across plant and human genomes. Specifically, TEB offers binary classification datasets
for identifying seven specific elements across three different TE classes: retrotransposons, DNA
transposons, and pseudogenes. Detailed data preprocessing and statistics of each dataset in TEB are
further presented in A.3.

Genome Understanding Evaluation. The Genome Understanding Evaluation (GUE) benchmark is
a recently published tool that contains seven biologically significant genome analysis tasks that span
28 datasets. Designed to scrutinize the capabilities of genome foundation models, GUE prioritizes
genomic datasets that are challenging enough to discern differences between models. The datasets
are comprised of sequences ranging from 70–1000 base pairs in length and originating from yeast,
mouse, human, and virus genomes. Further details can be found in Zhou et al. (2024).

Genomic Benchmarks. We utilize the Genomic Benchmarks (GB) resource, which consists of
8 separate classification datasets that spotlight regulatory elements across three different model
organisms: human, mouse, and roundworm. Datasets were carefully constructed from published data
repositories and consist of input sequences of length 200–500, with the exception of the drosophila
enhancers stark dataset, in which sequences have a median length of 2,142. Full details on data
preprocessing and dataset summary statistics can be found in Grešová et al. (2023). As the human
non-tata promoters dataset in GB was created using data that was also used in the creation of the
promoter detection datasets in GUE (Dreos et al., 2013), we note this when discussing model
performance.
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5 EXPERIMENTS

5.1 GENOMIC CLASSIFICATION

Classification Tasks. The results from the the three classification benchmarks and synthetic dataset
are summarized in Table 1. Across the 43 distinct datasets, the hyperbolic models outperform the
equivalent Euclidean model on 37 tasks, as measured by Matthew’s correlation coefficient (MCC).
In 29 of these datasets, this improvement in score by a hyperbolic model is statistically significant
when accounting for variance across different model initializations, whereas the Euclidean CNN
statistically outperforms HCNN in only two datasets.

Further examination of the results suggests that HCNNs confer a particularly strong advantage in
distinguishing transcription factors binding sites (across species) and epigenetic marks, as well as in
distinguishing TEs in sequence. Across promoter detection tasks, there appears to be no added benefit
of a hyperbolic embedding. Since promoters likely function through more complex, combinatorial
interactions, these latent hierarchies may be more challenging for HCNNs to effectively capture.
HCNNs also seem to be hugely disadvantaged in the Covid variant prediction task, in distinguishing
nine different variants of Covid from sequence.

Notably, when comparing the best scoring model across runs, HCNNs outperform DNA language
models (LMs) in seven of the 28 GUE datasets (A.4 and Appendix Table 5). Across the majority of
tasks, HCNNs outpace DNABERT (5-mer), DNABERT (6-mer), NT-500M human, NT-500M-1000g,
and NT-25000M-1000g (Lopez et al., 2023). Considering the immense scale of these LMs, with
13× to 379× more trainable parameters than HCNNs, along with pretraining on the entire human
genome and 1000 Genomes Project sequences, the performance gap is particularly striking. HCNNs
appear to have a consistent advantage over Euclidean models across many of the core deep learning
genomics tasks.

Expressive Power. In directly comparing the embeddings and decision boundaries learned by each
class of model, we can begin to infer their differences in expressiveness. Figure 3 visualizes the
distinctive class boundaries and sequence relationships learned by HCNNs and CNNs. We observe
far better separation of classes in the hyperbolic embeddings than in the Euclidean case, lending
further credence to the appropriateness of hyperbolic embeddings in a genomic setting.

Embedding Dimensionality. Prior work on HNNs has demonstrated that the effectiveness of hyper-
bolic embeddings is especially pronounced at lower dimensions (Chami et al., 2020b; Chamberlain
et al., 2017). We attempted to replicate these findings under our study conditions by varying the
number of channels in the convolutional blocks in both the CNNs and HCNNs. We then train and
evaluate each of these distinct models on TEB.

The results in Appendix Figure 5 show that HCNN-S appears to steadily improve its advantage
over the CNN at lower channel dimensions, consistent with the pattern shown in literature. At
very low dimensions, the average improvement in performance is greater than at higher dimensions.
However, HCNN-M does not show increased performance at lower dimensions. As HCNN-M is a
more complex model compared to HCNN-S, it may be possible than a minimum model capacity is
necessary before the benefits of multi-curvature representations become useful.

Learned Curvature. The curvature of the hyperbolic manifold is a learnable parameter. Exploration
of this parameter in TEB (detailed in A.5 and Figure 6) illustrates that the value of K does not vary
far from its default initialization value of −1. However, the HCNN-S models and HCNN-M models
gravitate towards different curvature values (K > −1 and K < −1, respectively), and there are small
adjustments in the curvature of the embedding spaces for each block of the model.

Hybrid Models. We construct hybrid models with mixed Lorentzian and Euclidean components (see
A.8 for details). Our results indicate that Euclidean embeddings may still benefit from hyperbolic
decision boundaries.

5.2 δ-HYPERBOLICITY ESTIMATION

As presented in Figure 11, our investigation reveals several notable characteristics of δ-hyperbolicity
values in finite datasets. The δ (Figure 11) and δworst (Appendix Table 8) values computed from the
final embedding layer are ostensibly hyperbolic; all values are closer to 0 than 1, indicating tree-like

7
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Table 1: Model performance (MCC) on all real-world genomics datasets averaged over 5 random
seeds (mean ± standard deviation). The highest scoring model is in bold, while † denotes that the
hyperbolic model outperformed the Euclidean model, or that the Euclidean model outperformed the
higher-scoring hyperbolic model with p < 0.05, Wilcoxon rank-sum test. *We note that the human
non-tata promoters dataset in GB overlaps with the GUE Promoter Detection datasets.

Model
Benchmark Task Dataset Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

T
E

B

LTR Copia 54.73±1.45 64.58±3.07 † 68.05±2.80 †

Retrotransposons LINEs 70.63±1.24 76.12±2.16 † 77.10±2.92 †

SINEs 85.15±1.64 85.45±1.16 81.85±2.95

DNA transposons CMC-EnSpm 72.18±0.32 80.98±1.48 † 80.65±1.30 †

hAT-Ac 87.45±0.90 89.61±1.34 91.04±1.58 †

Pseudogenes processed 60.66±0.82 68.30±0.93 † 65.41±5.54

unprocessed 51.94±2.69 56.13±0.56 † 58.36±1.80 †

G
U

E

H3 64.83±2.17 68.14±1.44 68.32±2.12 †

H3K14ac 34.27±6.14 50.37±8.14 † 45.69±1.95 †

H3K36me3 43.74±2.32 53.28±1.94 † 43.41±2.00

H3K4me1 28.76±3.00 40.84±1.18 † 34.71±3.70

Epigenetic Marks H3K4me2 25.38±5.40 39.74±4.61 † 29.53±1.97

Prediction H3K4me3 21.77±5.58 49.51±0.96 † 30.39±3.32 †

H3K79me3 54.88±2.09 62.39±2.14 † 58.48±1.88

H3K9ac 40.37±3.89 52.90±1.12 † 50.21±1.52 †

H4ac 31.59±8.45 52.29±0.93 † 44.88±4.70

H4 74.81±0.92 75.43±1.49 76.20±0.61

0 58.65±3.40 62.84±0.64 60.92±1.72

Human 1 61.41±1.60 67.13±2.59 † 66.76±1.25 †

Transcription Factor 2 49.79±0.51 67.17±5.26 † 68.36±2.70 †

Prediction 3 35.67±0.30 41.96±2.95 42.93±2.30 †

4 57.68±0.26 66.01±1.88 † 67.99±2.30 †

Splice Site Prediction reconstructed 78.64±0.43 80.32±1.24 † 80.76±1.06 †

0 22.51±2.78 46.09±2.17 † 47.96±5.01 †

Mouse 1 76.56±0.51 78.93±0.31 † 76.68±0.81

Transcription Factor 2 62.69±1.52 74.76±3.07 † 74.78±2.98 †

Prediction 3 36.93±8.35 68.61±4.24 † 66.58±3.24 †

4 30.23±3.13 40.07±0.83 † 40.57±2.09 †

Covid Variant Classification Covid 66.43±0.48† 36.71±9.69 14.81±0.46

tata 78.26±2.85 79.54±1.61 79.87±2.50

Core Promoter Detection notata 66.60±1.07 66.52±0.28 65.95±0.51

all 66.47±0.74 65.26±1.11 67.16±0.55

tata 78.58±3.39 79.74±2.66 78.77±0.78

Promoter Detection notata 90.81±0.51 89.86±0.76 90.28±0.37

all 88.00±0.39 87.60±0.51 87.93±0.76

G
B

Demo coding vs intergenomic seqs 75.14±0.35 80.04±0.28 † 80.25±0.24 †

human or worm 89.89±0.15 92.65±0.11 † 92.71±0.27 †

drosophila enhancers stark 7.99±3.01 10.77±2.34 10.87±3.32

Enhancers human enhancers cohn 30.76±2.05 46.63±0.88 † 46.68±1.11 †

human enhancers ensembl 79.48±0.10 † 44.48±2.94 72.99±0.36

Regulatory human ensembl regulatory 89.73±0.21 89.91±0.72 90.21±1.37

human non-tata promoters* 64.98±0.21 83.57±0.73 † 79.90±1.48 †

Open Chromatin Regions human ocr ensembl 39.92±0.85 56.22±0.28 † 55.36±2.52 †
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Figure 3: The decision boundaries learned by 2-dimensional HCNNs (circles) and CNNs (squares).
Boundaries for transposon sequences and processed pseudogenes are visualized on the Poincaré disk
and Euclidean plane. Regions are colored according to their predicted class labels, whereas points
are colored with respect to their true class labels.

tendencies. However, we observe that the increase in values of δworst are only weakly anticorrelated
with relative improvements in performance on learning tasks (rS = −0.35, rM = −0.21, Appendix
Figure 10). An outlier to this pattern appears to be the Covid dataset, which has low hyperbolicity
and poor performance in HCNNs.

Table 2: Model performance (MCC) under different synthetic
data-generating scenarios (with the same notation as Table
1).

Model
Scenario Sequence Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

A Artificial 62.38±2.28 65.25±3.27 59.25±2.60

Real 61.72±3.08 66.44±3.14 61.26±2.99

B Artificial 58.50±0.82 60.53±0.80 59.75±0.54

Real 57.50±0.88 62.53±6.94 59.12±0.54

C Artificial 62.05±1.62 67.65±1.09 † 67.43±1.57 †

Real 66.22±0.44 73.62±0.62 † 69.30±2.34 †

Previous studies have attempted to
calibrate their reported δworst values
by comparing them to empirical esti-
mates of δworst for the Poincaré disk
D2, and the 2-sphere S2 (Khrulkov
et al., 2020; Yang et al., 2024), how-
ever we note that these empirical es-
timates are for metric spaces that are
categorically much lower in dimen-
sionality than the feature spaces used
for the dataset embeddings, leading to
potentially incongruous comparisons.

Indeed, we find evidence that high-
dimensional data may lead to "emer-
gent hyperbolicity," with points at
higher dimensions producing smaller
δworst and δavg values (Appendix Figures 12 and 13). Our results highlight a pronounced disparity:
the difference in empirical δ values between embeddings sampled on H2 and those sampled on
higher-dimensional hyperbolic spaces (Hd, where d ∈ [200, 1000]) – with comparable magnitudes to
the sequence embeddings – can be as large as 0.2 (Appendix Figure 12). This disparity becomes even
more pronounced on Euclidean (Rd) and hyperspherical (Sd) manifolds. Such significant differences
in δ values may largely determine whether the estimated δ indicates a more hyperbolic nature of the
underlying space or otherwise.

To provide a more equitable calibration of hyperbolicity, we compare the δ distributions from our
genomic datasets to those from simulated datasets of matching dimensionality. We generate these
simulated datasets on both Euclidean (K = 0) and hyperbolic (K = −1) manifolds. Figure 11
illustrates the δ distributions for each set of dataset embeddings, where each embedding G ∈ R528.
Our results reveal that the majority of the genomic dataset embeddings exhibit greater hyperbolicity
(lower δ values) compared to embeddings simulated from a baseline Gaussian distribution on a
Euclidean manifold of the same dimensionality. To quantify this difference, we employ the Wilcoxon
rank-sum test between the baseline and the genome dataset distributions. This analysis shows that
25 out of 43 sequence datasets have significantly lower δ values than the baseline (p < 0.05).
These findings lend credence to the hypothesis that genomic sequence data may possess an innate
hyperbolicity, making them better suited to hyperbolic representations.

Our approach of examining the entire distribution of δ values, rather than relying on a single
scalar measure, reveals nuanced insights into the hyperbolic tendencies of different datasets. This
comprehensive view allows us to capture subtleties that might otherwise be overlooked. For instance,
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the H3K36me3 dataset exhibits a δ distribution that is significantly lower in hyperbolicity compared
to the baseline. However, its high δworst estimate suggests that it may be less hyperbolic than the
baseline when considering only this single metric. Similarly, while the TEB datasets show relatively
large δworst estimates, their δ distributions are notably right-skewed. These characteristics appear
more consistent with the superior performance of HCNN models on these datasets.

The discrepancies between single-point estimates (δworst, δavg) and the full distributions underscore
the importance of a more holistic approach. By considering the entire spectrum of δ values across
the feature space, we gain a more accurate characterization of the data’s tree-like properties. This
comprehensive perspective not only provides a richer understanding of the dataset’s geometric
structure but also offers better insights into why certain models, such as HCNNs, perform well on
these datasets. Finally, in expanding our analysis to DNA LMs in section A.9.3, we observe that
these characteristics extend to a wide range of models.

6 CONCLUSION

We present a novel application of hyperbolic CNNs for genomic sequence modeling, thoroughly
examining both the strengths and limitations of this approach. Our findings demonstrate that hyper-
bolic embeddings provide a distinct performance advantage in key genomics tasks, particularly when
working within resource constraints. Additionally, our investigation into the hyperbolicity of dataset
embeddings reveals meaningful correlations between dimensionality and δ-hyperbolicity, further
underscoring the utility of hyperbolic space for genome representation.

While our model is relatively simple, this paper lays the groundwork for more sophisticated ap-
proaches that could further harness the strengths of hyperbolic embeddings. As CNNs are workhorses
of machine learning in genomics, substituting in HCNNs in more specialized genomics challenges
while integrating complementary techniques such as pretraining could significantly enhance perfor-
mance.

Moreover, this paper sets the stage for future research aimed at developing more robust metrics for
quantifying and assessing the hyperbolicity of dataset embeddings. We have only begun to explore the
relationship between hyperbolicity, curvature, and dimensionality, and these properties would greatly
benefit from formalization and rigorous testing. Our work opens up new avenues for understanding
and optimizing hyperbolic models in genomics, encouraging further exploration into this promising
paradigm.
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A APPENDIX

A.1 LORENTZ CONVOLUTIONAL LAYER

A.1.1 LAYER COMPONENTS

We further break down the Lorentz convolutional layer by defining each separate transformation.
First, given hyperbolic points {xi}Ni=1, the Lorentz direct concatenation (HCat) (Qu & Zou, 2022) is
given by:

y = HCat({xi}Ni=1) =


√√√√ N∑

i=1

x2it +
N − 1

K
, xT1s , . . . , x

T
Ns

 ,T (10)

with y ∈ LnN
K ⊂ RnN+1. This manipulation represents a numerically stable way to concatenate

hyperbolic representations. Next, Chen et al. (2022b) derived a Lorentz fully-connected layer where
given the input vector x and the weight parameters W ∈ Rm×n+1, v ∈ Rn+1 for the fully connected
layer, the transformation matrix is defined as:

fx

([
vT
W

])
=

[ √
∥Wx∥2−1/K

vT x
vT

W

]
(11)

Then, incorporating normalization gives

y = LFC(x) =

[√
∥ψ(Wx+ b)∥2 − 1/K

ψ(Wx+ b)

]
(12)

with operation function

ϕ(Wx, v) = λσ(vTx+ b′)
Wψ(x) + b

∥Wψ(x) + b∥
(13)

where λ > 0 is a learnable scaling parameter and b ∈ Rn, ψ, σ denote the bias, activation, and
sigmoid function, respectively.

A.1.2 LAYER MAPPING

HCNN-M models leverage multiple manifolds [K1, ...,Ku] for each of u designated blocks. There-
fore, we define the mapping between manifolds as follows, using the definitions of exponential and
logarithmic maps defined in equations 1 and 2, respectively. For a mapping of point x ∈ M1, where
manifold M1 has curvatureK1, to manifold M2 with curvatureK2, we must first apply a logarithmic
map to bring x to the tangent space T0M1 at the origin. Then, we perform an exponential mapping
of the resulting point from the tangent space at the origin to the new manifold M2. The layer map
operation LMM1→M2

(x) can therefore be defined as follows:

LMM1→M2
(x) = expK2

0 (logK1
0 (x)) (14)

A.2 MODELING DETAILS

A.2.1 MODEL

A detailed breakdown of the CNN/HCNN model architecture is visualized in Figure 4. The HCNNs
use the Lorentz formulation of each model component. For HCNN-M, we show the partition of each
manifold across each segment of the architecture. We use cross-entropy loss for our objective, and
train each model end-to-end on each dataset.
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BatchNorm

BatchNorm
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Manifold K1

Manifold K2

Manifold K3

Manifold K4

HCNN-M 
Partitions
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Architecture

ReLU

ReLU

+

Figure 4: The generalized block architecture for the CNNs/HCNNs. On the left, we delineate the
manifold partitions used for our HCNN-M models.

A.2.2 HYPERPARAMETERS

When possible, we keep the hyperparameters constant across the different model types (Table 3).
However, we train the Euclidean CNN with the AdamW optimizer (Loshchilov & Hutter, 2019) and
the HCNNs with RiemannianAdam (Bécigneul & Ganea, 2019).

Table 3: Hyperparameter settings for CNN/HCNN training.

Euclidean CNN HCNN-S HCNN-M

Optimizer AdamW RiemannianAdam RiemannianAdam
Learning Rate (TEB/GUE/GB) 1e-4, 1e-4, 1e-5 1e-4, 1e-4, 1e-5 1e-4, 1e-4, 1e-5
Manifold Learning Rate N/A 2e-2 2e-2
Batch size 100 100 100
Weight decay 0.1 0.1 0.1
Epochs 100 100 100
β1, β2 0.9, 0.999 0.9, 0.999 0.9, 0.999

A.3 TRANSPOSABLE ELEMENTS BENCHMARK

TEB presents seven distinct sequence classification datasets categorized within three prediction tasks.
An overview of the datasets are presented in Table 4. Sequence and annotation data were integrated
from both human and plant genome datasets. TEB is publicly available online.

For the retrotransposon and DNA transposon tasks, we craft a dataset by employing annotations from
PlantRep (Luo et al., 2022), a database that provides comprehensive annotations of plant repetitive
elements across 459 plant genomes. We narrowed the number of candidate species to those that had an
appropriate number of TEs of interest to power deep learning tasks, as well as an average TE sequence
length of similar magnitude to the other benchmark datasets (200-1000 bp). Then, we randomly
selected Oryza glumipatula from the set of candidate species to use as as the plant species for our
benchmark. Annotations were downloaded from PlantRep, while the Oryza glumipatula genome
(v1.5) was downloaded from the NCBI genome browser (https://ftp.ncbi.nlm.nih.gov).
Within the retrotransposon group, we study LTR Copia, LINEs, and SINEs. LTR Copia are a type of
retrotransposon characterized by a pair of identical flanking repetitive regions called long terminal
repeats (LTRs). Conversely, long interspersed nuclear elements (LINEs), and short interspersed
nuclear elements (SINEs) are retrotransposons that do not contain LTRs, and generally contain a
promoter while varying by length. Next, within the DNA transposon group, we target two of the most
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ubiquitous sub-families: CMC-EnSpm and hAT-Ac, each of which are distinguished by specific short
terminal inverted repeats.

While pseudogenes themselves are not a type of TE, they are often the result of TE activity. Therefore,
we examine the presence of pseudogenes in the human reference genome (GRCh38.p12), using
gene/transcript biotype annotations from GENCODE and Ensembl (Frankish et al., 2019). Pseu-
dogenes are classified as processed and unprocessed, each of which are the result of a different
mechanism of action. A processed pseudogene lacks introns and arises from reverse transcription of
mRNA and then reinsertion of DNA into the genome, while an unprocessed pseudogene may contain
introns and is the product of a gene duplication event.

For dataset construction, we created a positive set of sequences spanning each TE of interest. We
then generated a negative set by randomly sampling non-overlapping, remaining portions of the
genome (without replacement) until we had a matching number of negative sequences. We used a
chromosome level train/validation/test split for our sequences, separating out chromosomes 8/9 and
20-22/17-19 for validation/test in Oryza glumipatula and human, respectively, while the remaining
chromosomes are used for training.

Table 4: Summary statistics for TEB, including the specific type of TE and the number of training,
validation, and test samples in each dataset.

Prediction Task Species Max Length Datasets Train / Dev / Test
500 LTR Copia 7666 / 682 / 568

Retrotransposons Plant 1000 LINEs 22502 / 2030 / 1782
500 SINEs 21152 / 1836 / 1784

DNA Transposons Plant 200 CMC-EnSpm 19912 / 1872 / 1808
1000 hAT-Ac 17322 / 1822 / 1428

Pseudogenes Human 1000 processed 17956 / 1046 / 1740
1000 unprocessed 12938 / 766 / 884

A.4 DNA LANGUAGE MODELS

We compare the classification performance of our HCNN models to the performance of several DNA
LMs, as reported in (Zhou et al., 2024). Table 5 documents the performance of eight large DNA LMs
on a subset of GUE datasets, as well as the number of trainable parameters present in each model.
We provide a short description of each model:
DNABERT (5-mer, 6-mer): An early iteration of a pretrained transformer model for the genome,
DNABERT (Ji et al., 2021) uses the BERT architecture and is trained on human DNA sequences.
There are four variants of the model, and here we list the results for the 5-mer and 6-mer versions,
which use overlapping 5/6-mer tokenization of sequences.
NT (500M human, 500M 1000g, 2500M 1000g, 2500M multi): NT represents the largest class of
models in terms of parameters and training data. There are four variants of NT. The labels "500M"
and "2500M" refer to the number of trainable parameters in the model. For the training data, the
categories "human", "1000g", and "multi" refer to the human reference genome, the 3203 human
genomes from the 1000 Genome project (Byrska-Bishop et al., 2022), and genomes from 850
different species, respectively.
DNABERT-2, DNABERT-2-PT: A refinement over DNABERT, DNABERT-2 incorporates Byte-Pair
Encoding and several architectural upgrades for improved learning capabilities. DNABERT-2 is
pretrained on the human reference genome, while DNABERT-2-PT is further pretrained on the
training sets of the 28 GUE datasets.

A.5 MANIFOLD CURVATURE

Figure 6 depicts the learned curvatures for models trained on TEB. In the HCNN-M models, blocks
1-3 represent each hyperbolic convolutional block in the model, which have a corresponding manifold
with its own curvature. Block 4 represents the portion of the model that involves flattening, a dense
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Table 5: The performance (MCC) of several prominent DNA LMs in comparison to the HCNNs on
GUE. The best performing score for each GUE dataset is bolded.

Caduceus
-Ph

Hyena
DNA

DNA
BERT

(5-mer)

DNA
BERT

(6-mer)

NT
-500M
human

NT
-500M
1000g

NT
-2500M
1000g

NT
-2500M

multi

DNA
BERT-2

DNA
BERT-2

-PT

HCNN
-S

HCNN
-M

Parameters 7.7M 28.2M 87M 89M 500M 500M 2.5B 2.5B 117M 117M 6.6M 6.6M

H3 77.09 67.17 73.40 73.10 69.67 72.52 74.61 78.77 78.27 80.17 69.42 69.95
H3K14ac 41.44 31.98 40.68 40.06 33.55 39.37 44.08 56.20 52.57 57.42 56.03 48.25
H3K36me3 46.49 48.27 48.29 47.25 44.14 45.58 50.86 61.99 56.88 61.90 55.27 45.76
H3K4me1 37.76 35.83 40.65 41.44 37.15 40.45 43.10 55.30 50.52 53.00 41.86 39.78
H3K4me2 28.16 25.81 30.67 32.27 30.87 31.05 30.28 36.49 31.13 39.89 43.88 31.27
H3K4me3 24.40 23.15 27.10 27.81 24.06 26.16 30.87 40.34 36.27 41.20 50.58 33.59
H3K79me3 60.31 54.09 59.61 61.17 58.35 59.33 61.20 64.70 67.39 65.46 64.62 63.35
H3K9ac 52.70 50.84 51.11 51.22 45.81 49.29 52.36 56.01 55.63 57.07 54.09 52.25
H4 79.91 73.69 77.27 79.26 76.17 76.29 79.76 81.67 80.71 81.86 77.24 76.94
H4ac 40.90 38.44 37.48 37.43 33.74 36.79 41.46 49.13 50.43 50.35 52.94 51.86
prom all 85.87 47.38 90.16 90.48 87.71 89.76 90.95 91.01 86.77 88.31 88.23 88.83
prom notata 93.23 52.24 92.45 93.05 90.75 91.75 93.07 94.00 94.27 94.34 90.92 90.74
prom tata 66.07 5.34 69.51 61.56 78.07 78.23 75.80 79.43 71.59 68.79 82.70 79.80
Human TF 0 67.32 62.30 66.97 66.84 61.59 63.64 66.31 66.64 71.99 69.12 63.56 63.35
Human TF 1 72.10 67.86 69.98 70.14 66.75 70.17 68.30 70.28 76.06 71.87 69.39 68.48
Human TF 2 58.92 46.85 59.03 61.03 53.58 52.73 58.70 58.72 66.52 62.96 73.80 71.40
Human TF 3 54.85 41.78 52.95 51.89 42.95 45.24 49.08 51.65 58.54 55.35 44.08 43.66
Human TF 4 69.45 61.23 69.26 70.97 60.81 62.82 67.59 69.34 77.43 74.94 68.43 70.01
c. prom all 67.28 36.95 69.48 68.90 63.45 66.70 67.39 70.33 69.37 67.50 66.33 67.84
c. prom notata 66.07 35.38 69.81 70.47 64.82 67.17 67.46 71.58 68.04 69.53 66.78 66.48
c. prom tata 72.94 72.87 76.79 76.06 71.34 73.52 69.66 72.97 74.17 76.18 81.34 82.07
Mouse TF 0 56.18 35.62 42.45 44.42 31.04 39.26 48.31 63.31 56.76 64.23 48.41 52.31
Mouse TF 1 80.31 80.50 79.32 78.94 75.04 75.49 80.02 83.76 84.77 86.28 79.26 77.41
Mouse TF 2 75.89 65.34 62.22 71.44 61.67 64.70 70.14 71.52 79.32 81.28 77.86 77.51
Mouse TF 3 73.47 54.20 49.92 44.89 29.17 33.07 42.25 69.44 66.47 73.49 73.51 69.73
Mouse TF 4 47.98 19.17 40.34 42.48 29.27 34.01 43.40 47.07 52.66 50.80 41.27 43.62
Covid 45.19 23.27 50.46 55.50 50.82 52.06 66.73 73.04 71.02 68.49 46.43 16.38
Splice 81.59 72.67 84.02 84.07 79.71 80.97 85.78 89.35 84.99 85.93 81.96 82.23

Figure 5: On the left, we show the average improvement in performance (MCC) on TEB from
HCNNs compared to CNNs, as the channel dimension in the convolutional layers varies. On the
right, we show the mean MCC achieved by the models with each channel dimension on TEB.

layer, and MLR, operations which all occur on a single hyperbolic manifold (Figure 4). For the
HCNN-S models, the value of K is fixed, as a single manifold is used across the entire model.

A.6 SYNTHETIC DATASETS

We construct each synthetic dataset by randomly sampling a phylogenetic tree using the ETE
(Environment for Tree Exploration) toolkit Huerta-Cepas et al. (2016). To simulate nucleotide
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Figure 6: Average values of K, the curvature parameter in the HCNNs, as they vary across each
block of the model. These values are reported for models trained on each of the seven classification
tasks in TEB.

sequence evolution along the tree’s branches, we use the Pyvolve package (Spielman & Wilke, 2015),
specifically for its implementation of the Generalized Time-Reversible (GTR) model (Tavaré, 1984)
with default parameters. Four types of fixed-length sequences are generated and used across scenarios
A, B, and C:

Artificial tree: The starting ancestral (root) sequence is randomly generated.

Real tree: The starting ancestral sequence is sampled from the human genome.

Artificial background sequence: Sequences are generated randomly and independently by sampling
nucleotides.

Real background sequence: Sequences are sampled from independent (different chromosome)
regions of the human genome relative to the starting ancestral sequence.

We define the task for each scenario as follows:

(A) Intra-tree differentiation: One tree is sampled, with clade membership determining class
labels. The model task is to differentiate clades.

(B) Inter-tree differentiation: A different tree (with a different starting ancestral sequence) is
sampled per label. The model task is to differentiate trees.

(C) Tree identification: One tree is sampled, and all sequences from this tree share the same
label. Independently sampled background sequences are given a separate label. The model
task is to differentiate the tree from the background sequences.

Simulated phylogenetic trees and labels are visualized in Figures 7 and 8. We add noise to the datasets
by randomly swapping 10% of the labels in the train and validation sets.

A.7 HOMOLOGY SPLITTING

In testing predictive models of biological sequence data, it is common to perform homology splitting
where sequences related through their homologous relationships are excluded to determine the model’s
capacity for generalizability to unseen homology branches. We determine how this partitioning affects
HCNNs by assessing the zero-shot capability of our model in identifying sequences originating from
an unseen phylogenetic tree against random background sequences.

The experiment setup is visualized in Figure 9. For our training data, we generate a synthetic dataset as
we did for testing Scenario C (sequences generated from the tree share the same label, and background
sequences not originating from the tree share a different label). However, instead of splitting this one
dataset into train/validation/test sequences, we create our test set by generating a completely new
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Figure 7: Leaf node sequence classifications (with added noise) in Scenario A for the simulated
phylogenetic tree (structure visible left).

Figure 8: Hamming distance matrix between all leaves in the simulated phylogenetic tree for Scenario
A.
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Train + Validation     Test    C  

Figure 9: Overview of the homology splitting experiment. A train and validation dataset is generated
in the same manner as the scenario C synthetic data. For the test dataset, a completely new tree (and
ancestral sequence) is used to generate the tree class.

phylogenetic tree and sampling sequences from this set. The tree-generated sequences in the test
dataset thus originate from completely unseen homology branches.

Results of this experiment are in Table 6. Hyperbolic models gain a significant advantage over the
Euclidean model in generalizing to unseen homology branches, which suggests that the inductive
biases of a hyperbolic model offer an even larger advantage over Euclidean models than originally
estimated, since most genomic datasets do not account for this effect and may therefore overestimate
performance of prediction methods (Teufel et al., 2023).

Table 6: Model performance (MCC) on the homology splitting task (with the same notation as Table
1).

CNN HCNN-S HCNN-M

24.31±7.99 45.73±8.93 † 40.87±8.93 †

A.8 HYBRID MODELS

Following Bdeir et al. (2024), we experiment with the use of hybrid CNN models, in which we
substitute components of our models across manifolds. We construct two hybrid model variants:
E2H-CNN and H2E-CNN. In E2H-CNN, we use a Euclidean CNN head and a Lorentzian MLR,
whereas H2E-CNN uses a HCNN head and a Euclidean MLR. We compare the performance of the
two hybrid models to the other three models in Table 7. On TEB datasets, we observe that the use of
a Lorentzian component generally offers an improvement over using a fully Euclidean model, with
larger improvements from E2H-CNN. This result would suggest that using hyperbolic hyperplanes
to separate classes may be beneficial, even for Euclidean embeddings. Overall, the results show
promise in the use of hybrid models.

Table 7: Model performance (MCC) in TEB, averaged over 5 random seeds. The best performing
model is bolded.

Dataset CNN HCNN-S HCNN-M E2H-CNN H2E-CNN
LTR Copia 54.73±1.45 64.58±3.07 68.05±2.80 61.82±2.21 63.95±3.52

LINEs 70.63±1.24 76.12±2.16 77.10±2.92 75.65±0.83 79.15±2.36

SINEs 85.15±1.64 85.45±1.16 81.85±2.95 89.65±2.13 79.49±3.40

CMC-EnSpm 72.18±0.32 80.98±1.48 80.65±1.30 76.75±0.60 77.15±3.43

hAT-Ac 87.45±0.90 89.61±1.34 91.04±1.58 89.76±0.85 85.63±1.44

processed 60.66±0.82 68.30±0.93 65.41±5.54 66.68±1.31 66.12±0.43

unprocessed 51.94±2.69 56.13±0.56 58.36±1.80 58.09±0.96 58.16±1.40
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A.9 δ-HYPERBOLICITY

A.9.1 ESTIMATION PROCEDURE

Computing δworst naively is an O(n4) operation for a set of n points, therefore we use the efficient
approach introduced in Khrulkov et al. (2020) and Cohen et al. (2015). Specifically, we incorporate a
sampling procedure to estimate hyperbolicity in an computationally tractable manner. The steps are
as follows:

1. Sample Ns points from the dataset (we set Ns = 1000).

2. Compute the matrix A of pairwise Gromov products using equation 8, and a fixed point
z = z0 (detailed in Cohen et al. (2015)).

3. Determine the the matrix C = (A ⊗ A) − A, where ⊗ represents the min-max matrix
product: (A⊗B)ij = maxmink{Aik, Bkj}

4. For δworst, we take the maximum value from C, and for δavg, we compute the expected
value over the unique elements of C pertaining to valid tuples. We apply the scale-invariant
transformation mentioned in the main text to the δs in determining the final values reported.
However, for the δavg values, we instead transform the raw values using the scale-invariant
ratio introduced in Borassi et al. (2015): 2δavg

Davg
, where Davg is the average distance between

two randomly selected points.

Results are averaged across multiple runs, and we provide resulting mean and standard deviation. For
the genomic datasets, we use the test set of sequence embeddings generated from the final embedding
layer of the trained Euclidean CNN models (Table 8).

Figure 10: Correlation between δworst and performance differential between HCCN-S and CNN
models. routliers includes outliers in the Pearson correlation coefficient calculation and r excludes
them (p < 0.05 except for HCNN-M r).

A.9.2 METRIC SPACE CALIBRATIONS

In order to calibrate our δ-hyperbolicity measurements, we scrutinize the behavior of δ approximations
at various fixed curvatures (K) and dimensionalities (d). We use the EMBEDDERS package, introduced
in Chlenski et al. (2024), to randomly sample data points from the Gaussian distribution across
different manifolds, using the wrapped normal distribution in hyperbolic (K = −1,−2) (Nagano
et al., 2019) and hyperspherical (K = 1, 2) (Skopek et al., 2020) cases. We then compute δ estimates
according to the procedure in A.9.1. We use the geodesic distance of each manifold to determine the
distance matrix between points.
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Figure 11: Distribution of scaled δ-hyperbolicity values across each of the genomic datasets. Colors
delineate the different task categories, while the bottom two entries provide reference distributions for
δs computed from a set of points sampled from the normal distribution on a Euclidean (K = 0, red)
and hyperbolic (K = −1, blue) manifold. Dashed lines indicate the δavg values for the hyperbolic
reference (blue) and the Euclidean reference (red). * Denotes that the corresponding distribution
constitutes smaller δ values (is more hyperbolic) than the Euclidean reference based on the Wilcoxon
rank-sum test (p < 0.01).

Figure 12: δworst estimates using simulated data points from the wrapped normal distribution on
manifolds of varying curvatures (K) and dimensionalities.

The results of the simulations are visualized in Figures 12 and 13. The decreasing trend in both
δworst and δavg estimates (across curvatures) suggests that higher dimensionality of data points may
lead to increasing hyperbolicity in datasets. For discrete metric spaces, we confirm that for trees
δworst = δavg = 0 by using the NETWORKX package (Hagberg et al., 2008) to generate random
tree graphs, and compute the distance matrix based on shortest paths within each graph.
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Figure 13: δavg estimates using simulated data points from the wrapped normal distribution on
manifolds of varying curvatures (K) and dimensionalities.

A.9.3 DNA LANGUAGE MODELS

We explore the hyperbolicity of sequences embedded by large DNA LMs. Our analysis encompasses
a diverse range of pretrained models, selected to represent various architectural approaches and scales.
The models under examination include:

• HyenaDNA: A long-context model that employs a subquadratic alternative to attention,
utilizing extended convolutions and data-controlled gating mechanisms (Nguyen et al.,
2024).

• DNABERT-2: As described in Section A.4.

• Nucleotide Transformer: A transformer-based model with 500 million parameters, trained
on a comprehensive dataset comprising 3,202 human genomes and 850 genomes from
diverse organisms (Lopez et al., 2023).

As a case study, we probe a subset of sequences that likely reflect strongly conserved evolutionary
relationships. We therefore generate LM embeddings of a randomly sampled set of SINE sequences
from TEB. The embeddings are derived by applying mean-pooling over the final layer embedding
output of each model. To establish a comparative baseline, we juxtapose the underlying δ distribution
of each LM with a distribution generated from randomly sampled points drawn from a Gaussian of
equivalent dimensionality, following the procedure outlined in Section 5.2.

The results of our analysis are presented in Figure 14. Notably, we observe that the embeddings
produced by HyenaDNA and DNABERT-2 exhibit significantly higher degrees of hyperbolicity
compared to a null distribution of d-dimensional points (p < 0.01, Wilcoxon rank-sum test). In
contrast, the representations generated by the Nucleotide Transformer demonstrate markedly lower
hyperbolicity than the null distribution. This disparity may be attributed to the higher dimensionality
of the Nucleotide Transformer embeddings, suggesting that the necessity for hyperbolic geometry
may diminish as the latent space expands.

A.10 HYPERBOLIC SEQUENCE REPRESENTATIONS

In exploring the sequence representations of HCNNs, we started with the intuition built by Khrulkov
et al. (2020), where hyperbolic image embeddings of MNIST near the center of the Poincaré disk
represent the most ambiguous looking digits, while clear images lie near the boundary. Similarly, in
Figure 15, we observe that in the processed pseudogene dataset in TEB, the sequence embeddings
that lie close to the center of the Poincaré disk (the top of the hierarchy) correspond to low confidence
embeddings for HCNNs (approximated by model loss on label predictions), while the embeddings
near the disk boundaries show the highest classification confidence. This is consistent with the idea
that well defined sequences are at the bottom of the hierarchy where there is more space to separate
out nuanced differences between sequences based on distinctive features.
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Table 8: δ-Hyperbolicity values of the final embeddings for CNNs trained on each genomic dataset.
Results are averaged over 10 sampling runs.

Benchmark Task Dataset δworst δavg

T
E

B

LTR Copia 0.36±0.0175 0.145±0.0019

Retrotransposons LINEs 0.40±0.0110 0.164±0.0004

SINEs 0.08±0.0076 0.170±0.0016

DNA transposons CMC-EnSpm 0.18±0.0181 0.163±0.0009

hAT-Ac 0.37±0.0220 0.215±0.0026

Pseudogenes processed 0.36±0.0204 0.189±0.0007

unprocessed 0.35±0.0140 0.157±0.0003

G
U

E

H3 0.10±0.0072 0.098±0.0005

H3K14ac 0.09±0.0090 0.101±0.0030

H3K36me3 0.26±0.0541 0.251±0.0014

H3K4me1 0.21±0.0185 0.225±0.0056

Epigenetic Marks H3K4me2 0.13±0.0112 0.125±0.0039

Prediction H3K4me3 0.14±0.0168 0.169±0.0020

H3K79me3 0.15±0.0255 0.122±0.0067

H3K9ac 0.21±0.0160 0.265±0.0058

H4ac 0.18±0.0156 0.186±0.0024

H4 0.10±0.0058 0.082±0.0041

0 0.20±0.0114 0.160±0.0026

Human 1 0.20±0.0245 0.152±0.0044

Transcription Factor 2 0.19±0.0189 0.148±0.0021

Prediction 3 0.19±0.0189 0.141±0.0004

4 0.18±0.0098 0.140±0.0009

Splice Site Prediction splice 0.29±0.0363 0.256±0.0012

0 0.21±0.0147 0.140±0.0043

Mouse 1 0.35±0.0301 0.249±0.0032

Transcription Factor 2 0.21±0.0226 0.139±0.0011

Prediction 3 0.19±0.0237 0.131±0.0009

4 0.19±0.0112 0.148±0.0022

Covid Variant Classification covid 0.50±0.0388 0.417±0.0030

all 0.29±0.0105 0.229±0.0034

Core Promoter Detection notata 0.28±0.0184 0.212±0.0010

tata 0.22±0.0082 0.138±0.0013

all 0.29±0.0146 0.260±0.0024

Promoter Detection notata 0.31±0.0210 0.257±0.0043

tata 0.16±0.0127 0.138±0.0069

G
B

Demo coding vs intergenomic seqs 0.21±0.0180 0.118±0.0019

human or worm 0.19±0.0189 0.121±0.0010

drosophila enhancers stark 0.30±0.0174 0.209±0.0012

Enhancers human enhancers cohn 0.19±0.0137 0.092±0.0002

human enhancers ensembl 0.19±0.0198 0.109±0.0001

Regulatory human ensembl regulatory 0.23±0.0282 0.148±0.0013

human non-tata promoters 0.19±0.0053 0.103±0.0002

Open Chromatin Regions human ocr ensembl 0.24±0.0400 0.189±0.0011

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 14: Distribution of scaled δ-hyperbolicity values using embeddings from various DNA LMs.
The distribution of each model is overlaid with the the δ distribution of randomly sampled points on a
Gaussian of equal dimensionality (red). * Denotes that the corresponding distribution constitutes
smaller δ values (is more hyperbolic) than the Euclidean reference based on the Wilcoxon rank-sum
test (p < 0.01)

Next, we conduct an experiment to dissect the sequence features informing the hyperbolic genome
embedding. Given our dataset of processed pseudogenes, we examine the changes made to the HCNN
representation by perturbing a fixed pseudogene sequence. For a fixed sequence, we follow these
steps:

1. Compute the Genomic Evolutionary Rate Profiling (GERP) Cooper et al. (2005) score
for each nucleotide along the sequence. GERP scores quantify evolutionary constraints at
specific genomic positions, identifying which positions are functionally important based
on selective pressure. GERP uses multiple sequence alignments across species to identify
conserved regions.

2. Mutate a fraction of the nucleotides under the highest selective pressure (repeat for multiple
perturbed sequences).

3. Use HCNN to generate an embedding for this perturbed instance of our original sequence.

Figure 16 visualizes this experiment using a processed pseudogene sequence and a background
sequence. As the evolutionary signal under strong selection is eroded by the introduced mutations, it
is likely that the features that make the pseudogene more “gene-like” are degraded. This degradation
ultimately makes the sequence more ambiguous to the HCNN, and we observe that the perturbed
representations move closer to the top of the hierarchy (near the center of the Poincaré disk), where
the low confidence sequences lie. Removal of these evolutionary features actively hinders the model
in identifying pseudogenes. However, perturbing conserved regions from the noisy background
sequences does not appear to have this effect, as the model focuses on learning features common to
the pseudogene class.
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Figure 15: HCNN embeddings for the processed pseudogene dataset, colored by model confidence
on the left, and by the probability that the sequence is a processed pseudogene (vs. a background
sequence) on the right. Sequences embeddings are visualized on the Poincaré disk.

Sequence Type

Original pseudogene 
sequence

Perturbed pseudogene 
sequence

Original background 
sequence

Perturbed background 
sequence
 

Figure 16: HCNN embeddings for a processed pseudogene sequence and background sequence. Each
sequence has been perturbed multiple times, with different instances shown on the Poincaré disk.

Figure 17: UMAP of the embeddings generated by the HCNN (left) and CNN (right) trained on the
processed pseudogene dataset in TEB.
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Table 9: Mean model performance (MCC) by genomics task (mean ± standard error).

Model
Benchmark Task Euclidean

CNN
Hyperbolic
HCNN-S

Hyperbolic
HCNN-M

T
E

B Retrotransposon Prediction 70.48±8.02 74.80±13.48 75.98±12.48

DNA transposon Prediction 79.91±10.85 85.30±13.82 85.77±20.37

Pseudogene Prediction 56.30±7.40 62.22±10.26 60.31±11.66

G
U

E

Epigenetic Marks Prediction 40.76±4.07 55.31±2.64 48.18±2.81

Human Transcription Factor Prediction 52.52±3.63 61.12±3.12 61.25±2.86

Splice Site Prediction 78.64±0.19 80.32±0.55 80.76±0.47

Mouse Transcription Factor Prediction 45.79±4.72 61.93±5.52 61.52±5.08

Core Promoter Detection 70.13±2.06 70.12±3.48 70.99±2.39

Promoter Detection 85.80±1.75 85.73±1.37 85.66±1.82

Covid Variant Classification 66.43±0.21 36.71±4.33 14.81±0.21

G
B

Demo 82.52±2.79 86.34±2.83 86.48±2.83

Enhancers 39.41±9.00 34.18±7.46 28.77±2.83

Regulatory 77.36±4.73 86.74±1.35 85.05±2.34

Open Chromatin Regions 39.92±0.38 56.22±0.13 55.36±1.23
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