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Abstract
Neural networks (NNs) are often leveraged to represent structural similarities of po-
tential outcomes (POs) of different treatment groups to obtain better finite-sample
estimates of treatment effects. However, despite their wide use, existing works
handcraft treatment-specific (sub)network architectures for representing various
POs, which limit their applicability and generalizability. To remedy these issues,
we develop a framework called Transformers as Treatment Effect Estimators
(TransTEE) where attention layers govern interactions among treatments and co-
variates to exploit structural similarities of POs for confounding control. Using this
framework, through extensive experiments, we show that TransTEE can: (1) serve
as a general purpose treatment effect estimator which significantly outperforms
competitive baselines on a variety of challenging TEE problems (e.g., discrete,
continuous, structured, or dosage-associated treatments.) and is applicable both
when covariates are tabular and when they consist of structural data (e.g., texts,
graphs); (2) yield multiple advantages: compatibility with propensity score mod-
eling, parameter efficiency, robustness to continuous treatment value distribution
shifts, interpretability in covariate adjustment, and real-world utility in debugging
pre-trained language models.

1 Introduction
Recently, feed-forward neural networks have been adapted to model causal relationships and estimate
treatment effects [34, 53, 40, 68, 8, 51, 43, 12], in part due to their flexibility to model nonlinear
functions [28] and high-dimensional input [34]. Among them, the specialized NN’s architecture
plays a key role in learning representations for counterfactual inference [2, 12] such that treatment
variables and covariates are well distinguished [53]. Despite these encouraging results, several key
challenges make it difficult to adopt these methods as standard tools for treatment effect estimation.
We argue that most current works based on subnetworks do not sufficiently exploit the structural
similarities of potential outcomes for heterogeneous TEE and accounting for them needs complicated
regularizations, reparametrization, or multitask architectures that are problem-specific [12]. Practi-
cally, their treatment-specific designs suffer several key weaknesses, including parameter inefficiency
(Table 2), brittleness under different scenarios, such as when treatments or dosages shift slightly from
the training distribution (Figure 4). We discuss these problems in detail in Sections 4.

To overcome the above challenges and be motivated by the observation that the model struc-
ture plays a crucial role in TEE [2, 12], we provide compelling evidence that transformers
can outperform multilayer perceptrons and offer a promising alternative approach when lever-
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aging deep learning to estimate treatment effects. Our work is based on the Transformer ar-
chitecture [60] which has emerged as an architecture of choice for diverse domains, includ-
ing natural language processing [60], image recognition [17], and multimodal processing [57].
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Figure 1: A motivating example with a cor-
responding causal graph. Prev denotes previ-
ous infection condition and BP denotes blood
pressure. TransTEE adjusts an appropriate co-
variate set {Prev,BP} with attention which
is visualized via a heatmap.

In this paper, we investigate the following question:
can Transformers be similarly effective for treatment
effect estimation in problems of practical interest?
Throughout, we adopt the notation of the Rubin-
Neyman potential outcomes framework [47] and fo-
cus on conditional average treatment effect (CATE)
estimation. In particular, we develop TransTEE, a
method that builds upon the attention mechanisms
and achieves state-of-the-art on a wide range of TEE
tasks. Note that the Transformer is originally de-
signed for sequence modeling, to utilize its power in
TEE, three key design choices are proposed. First,
treatment and covariate embedding layer is used to represent covariate and treatment variables
separately through learnable embeddings. This design is parameter-efficient in comparison to related
works and we show that it appears to perform better under some practically motivated treatment shifts.
In summary, we make the following contributions.

1. We propose TransTEE to explore the design space of TEE, showing that Transformers, equipped
with the proposed design choices, can be effective and versatile treatment effect estimators under the
Rubin-Neyman potential outcome framework. TransTEE is empirically verified to be (i) a general
framework applicable for a wide range of neural TEE settings; (ii) compatible with propensity score
modeling; (ii) parameter-efficient; (ii) robust under treatment shifts; (iv) interpretable in covariate
adjustment; (v) deliverable for real world utility beyond semi-synthetic settings.

2. Experiments are conducted on six benchmarks with four types of treatments in various scenarios
to verify the effectiveness of TransTEE and propensity score regularized adversarial training in
estimating treatment effects. We show that TransTEE produces covariate adjustment interpretation
and significant performance gains given discrete, continuous or structured treatments on popular
benchmarks including IHDP, News, TCGA. An empirical study on pre-trained language models is
conducted to show the real-world utility of TransTEE that implies potential applications.

2 Problem Statement and Assumptions
Given N observed samples (xi, ti, si, yi)

N
i=1, each containing N pre-treatment covariates {xi ∈

Rp}Ni=1, the treatment variable ti in this work has various support, e.g., {0, 1} for binary settings,
R for continuous settings, and graphs/words for structured settings. For each sample, the potential
outcome (µ-model) µ(x, t) or µ(x, t, s) is the response of the i-th sample to a treatment t, where in
some cases each treatment will be associated with a dosage sti ∈ R. The propensity score (π-model)
is the conditional probability of treatment assignment given the observed covariates π(T = t|X = x).
The above two models can be parameterized as µθ and πϕ, respectively. The task is to estimate the
Average Dose Response Function (ADRF): µ(x, t) = E[Y |X = x, do(T = t)] [55], which includes
special cases in discrete treatment scenarios that can also be estimated as the Average Treatment
Effect (ATE): ATE = E[µ(x, 1)− µ(x, 0)] and its individual version ITE.
Assumption 2.1. We assume no hidden confounders such that Y (T = t) |= T |X . In the binary
treatment case, Y (0), Y (1) |= T |X . Besides, the treatment assignment is non-deterministic such that,
i.e. 0 < π(t|x) < 1,∀x ∈ X , t ∈ T

3 TransTEE: Transformers as Treatment Effect Estimators
Preliminary. The main module in TransTEE is the attention layer [60]: given d-dimensional query,
key, and value matrices Q ∈ Rd×dk ,K ∈ Rd×dk , V ∈ Rd×dv , attention mechanism computes
the outputs as H(Q,K, V ) = softmax(QKT

√
dk

)V . In practice, multi-head attention is preferable
to jointly attend to the information from different representation subspaces at different positions.
HM (Q,K, V ) = Concat(head1, ..., headh)WO,where headi = H(QWQ

i ,KWK
i , V WV

i ), where
WQ

i ∈ Rd×dk ,WV
i ∈ Rd×dk ,WV

i ∈ Rd×dv and WO ∈ Rhdv×d are learnable matrices.
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Figure 2: A schematic comparison of TransTEE and recent works including DragonNet[54],
FlexTENet[12], DRNet[51] and VCNet[43]. TransTEE handles all the scenarios without handcrafting
treatment-specific architectures and any additional parameter overhead.

Covariate and Treatment Embedding Layers. (1) Treatment Embedding Layer. We use two
learnable linear layers to project scalar treatments and dosages to d-dimension vectors separately:
Mt = Linear(t),Ms = Linear(s), where Mt ∈ Rd. Ms ∈ Rd exists just when each treatment has a
dosage parameter, otherwise, only treatment embedding is needed. When multiple (n) treatments act
simultaneously, the projected matrix will be Mt ∈ Rd×n,Ms ∈ Rd×n and when facing structural
treatments (languages, graphs), the embedding of the treatment will be projected by language models
and graph neural networks respectively. By using the treatment embeddings, TransTEE is shown
to be (i) robust under treatment shifts (Proposition 2 in Appendix D), and (ii) parameter-efficient
(Figure 2 and Table. 2). (2) Covariates Embedding Layer. Different from previous works that embed
all covariates by one fully connected layer, where the differences between covariate tend to be lost,
and is hard to study the function of an individual covariate in a sample. TransTEE learns different
embeddings for each covariate, namely Mx = Linear(x), and Mx ∈ Rd×p, where p is the number of
covariate. Covariates embedding enables us to study the effect of the individual covariates on the
outcome.

Covariate and Treatment Self-Attention For covariates, prevalent methods represent covariates
as a whole feature using MLPs, where pairwise covariate interactions are lost when adjusting
covariates. Therefore, we cannot study the effect of each covariate on the estimated result. In contrast,
TransTEE processes each covariate embedding independently and models their interactions by self-
attention layers. Namely, M̂ l

x = HM (M l−1
x ,M l−1

x ,M l−1
x ) + M l−1

x ,M l
x = MLP(BN(M̂ l

x)) +

M̂ l
x, where M l

x is the output of l layer and BN is the BatchNorm layer. Simultaneously, the
treatments and dosages embeddings are concatenated and projected to the latent dimension by a
linear layer, which generates a new embedding Mst ∈ Rd. Then self-attention is applied M l

st =

HM (M l−1
st ,M l−1

st ,M l−1
st ) +M l−1

st ,M l
st = MLP(BN(M̂ l

st)) + M̂ l
st.

The self-attention layer for treatments enables treatment interactions, an important desideratum for S-
and T-learners. Namely, TransTEE can model the scenario where multiple treatments are applied
and attains strong practical utility, e.g., multiple prescriptions in healthcare or different financial
measures in economics. This is an effective remedy for existing methods which are limited to settings
where various treatments are not used simultaneously.

Treatment-Covariate Cross-Attention One of the fundamental challenges of causal metalearners is
modeling treatment-covariate interactions. TransTEE realizes such a goal using a cross-attention mod-
ule, treating Mst as a query and Mx as both the key and the value M̂ l = HM (M l−1

st ,M l−1
x ,M l−1

x )+

M l−1,M l = MLP(M̂ l) + M̂ l, ŷ = MLP(Pooling(ML)), where ML is the output of the last cross-
attention layer and M0 = ML

st. The above interactions are particularly important for adjusting proper
covariate or confounder sets for estimating treatment effects [59], which empirically yields suit-
able covariate adjustment principles (the Disjunctive Cause Criteria) [14, 59] about pre-treatment
covariates and confounders as intuitively illustrated in Figure 1 and corroborated in our experiments.

Denote ŷ := µθ(x, t) and the training objective is the mean square error (MSE) of the outcome
regression is Lθ(x, y, t) =

∑n
i=1 (yi − µθ(xi, ti))

2.

In summary, thanks to the designs described above for modeling treatments and covariates, when
combined with strong modeling capacity of Transformers, TransTEE can be extended to high-
dimensional data easily and effectively on the tabular, graph, and textual data. The generalizability of
the TransTEE also allows new applications like auditing language models beyond semi-synthetic
settings as shown in the next section. We include an illustration of the TransTEE workflow using a
concrete example in Appendix B.
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Table 1: Experimental results comparing NN based methods on the IHDP datasets. We report
the results based on 100 repeats, and numbers after ± are the estimated standard deviation. For
Extrapolation (h = 2), models are trained with t ∈ [0.1, 2.0] and tested in t ∈ [0, 2.0]. For
Extrapolation (h = 5), models are trained with t ∈ [0.25, 5.0] and tested in t ∈ [0, 5].

METHODS VANILLA (BINARY) VANILLA (h = 1) EXTRAPOLATION (h = 2) VANILLA (h = 5) EXTRAPOLATION (h = 5)

TARNET 0.3670 ± 0.61112 2.0152 ± 1.07449 12.967 ± 1.78108 5.6752 ± 0.53161 31.523 ± 1.5013
DRNET 0.3543 ± 0.60622 2.1549 ± 1.04483 11.071 ± 0.99384 3.2779 ± 0.42797 31.524 ± 1.50264

FLEXTENET 0.2700 ± 0.10000 —— —— —— ——
VCNET 0.2098 ± 0.18236 0.7800 ± 0.61483 NAN NAN NAN

TRANSTEE 0.0983 ± 0.15384 0.1151 ± 0.10289 0.2745 ± 0.14976 0.1621 ± 0.14443 0.2066 ± 0.23258
TRANSTEE+MLE 0.1721 ± 0.40061 0.0877 ± 0.03352 0.2685 ± 0.17552 0.2079 ± 0.17637 0.1476 ± 0.07123
TRANSTEE+TR 0.1913 ± 0.29953 0.0781 ± 0.03243 0.2393 ± 0.08154 0.1143 ± 0.03224 0.0947 ± 0.0824

TRANSTEE+PTR 0.2193 ± 0.34667 0.0762 ± 0.07915 0.2352 ± 0.17095 0.1363 ± 0.08036 0.1363 ± 0.08035

4 Experimental Results
We elaborate basic experimental settings, results, analysis and empirical studies in this section.
See Appendix E for full details of all experimental settings and detailed definition of metrics. See
Appendix F for many more results and remarks.

Case study on treatment distribution shifts We start by conducting a case study on treatment dis-
tribution shifts (Figure 4), and exploring an extrapolation setting in which treatment can subsequently
be administered at values never seen before during training. Surprisingly, we find that while standard
results rely on constraining the values of treatments [43] and dosages [51] to a specific range, our
methods perform surprisingly well when extrapolating beyond these ranges as assessed on several
empirical benchmarks. By comparison, many other methods appear to be comparatively brittle in the
same settings. See Appendix D for a detailed discussion and analysis.

Case study of propensity modeling. TransTEE is conceptually simple and effective. However,
when the sample size is small, it becomes important to account for selection bias [2]. However,
most existing regularizations can only be used when treatments are discrete [7, 37, 18]. Thus we
propose two regularization variants for continuous treatment/dosages, which are termed Treatment
Regularization (TR, LTR

ϕ (x, t) =
∑n

i=1

(
ti − πϕ(t̂i|xi)

)2
) and its probabilistic version Probabilistic

Treatment Regularization (PTR, LPTR
ϕ =

∑n
i=1

[
(ti−πϕ(µ|xi))2

2πϕ(σ2|xi) + 1
2 log πϕ(σ

2|xi)
]
) respectively.

The overall model is trained in an adversarial pattern, namely minθ maxϕ Lθ(x, y, t) − Lϕ(x, t).
Specifically, a propensity score model πϕ(t|x) parameterized by an MLP is learned by minimizing
Lϕ(x, t), and then the outcome estimators µθ (x, t) is trained by minθ Lθ(x, y, t) − Lϕ(x, t). To
overcome selection biases, the bilevel optimization enforces effective treatment effect estimation
while modeling the discriminative propensity features to partial out parts of covariates that cause the
treatment but not the outcome and dispose of nuisance variations of covariates [36].

Continuous dosage. In Table 3, we compare TransTEE against baselines on the TCGA (D) dataset
with default treatment selection bias 2.0 and dosage selection bias 2.0. As the number of treatments
increases, TransTEE and its variants (with regularization term) consistently outperform the baselines
by a large margin on both training and test data. TransTEE’s effectiveness is also shown in Appendix
Figure 6, where the estimated ADRF curve of each treatment considering continuous dosages is
plotted. Compared to baselines, TransTEE attains better results over all treatments. Stronger selection
bias in the observed data makes estimation more difficult because it becomes less likely to see certain
treatments or particular covariates. Considering different dosage and treatment selection biases,
Appendix Figure 5 shows that as biases increase, TransTEE consistently performs the best.

Structured treatments. We compared the performance of TransTEE to baselines on the training
and test set of the SW and TCGA datasets with varying degrees of treatment selection bias. The
numerical results are shown in Appendix Table 9. The performance gain between GNN and Zero
indicates that taking into account graph information significantly improves estimation. The results
suggest that, overall, the performance of TransTEE is the best due to the strong modeling ability and
advanced model structureto process high-dimensional treatments.

5 Concluding Remarks
In this work, we show that transformers can be effective and versatile treatment effect estimators.
Extensive experiments well verify the effectiveness and utility of TransTEE, which also imply that a
more challenging and unified evaluation alternatives of TEE with domain experts are needed.
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