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Abstract

Molecular dynamics (MD) simulations are indispensable for probing the struc-
ture, dynamics, and functions of biomolecular systems, including proteins and
protein–ligand complexes. Despite their broad utility in drug discovery and protein
engineering, the technical complexity of MD setup—encompassing parameteriza-
tion, input preparation, and software configuration—remains a major barrier for
widespread and efficient usage. Agentic LLMs have demonstrated their capacity
to autonomously execute multi-step scientific processes, and to date, they have
not successfully been used to automate protein-ligand MD workflows. Here, we
present DynAgent, a modular multi-agent framework that autonomously designs
and executes complete MD workflows for both protein and protein–ligand systems,
and integrates free energy binding affinity calculations with the MM-PB(GB)SA
method. The framework integrates dynamic tool use, web search, PaperQA, and a
self-correcting behavior. DynAgent comprises three specialized agents, interact-
ing to plan the experiment, perform the simulation, and analyze the results. We
evaluated its performance across eight benchmark systems of varying complexity,
assessing success rate, efficiency, and adaptability. DynAgent reliably performed
full MD simulations, corrected runtime errors through iterative reasoning, and
produced meaningful analyses of protein–ligand interactions. This automated
framework paves the way toward standardized, scalable, and time-efficient molecu-
lar modeling pipelines for future biomolecular and drug design applications.

1 Introduction
Molecular dynamics (MD) simulations are a cornerstone of computational chemistry and biophysics,
enabling atomistic modeling of molecular interactions and conformational changes over time (1; 2; 3;
4). They provide crucial insights into the structure, stability, and function of biomolecules such as
proteins, nucleic acids, and membranes, and have become indispensable tools in areas such as drug
design and protein engineering.

In practice, MD simulations are typically performed using specialized engines such as GROMACS (5),
OpenMM (6), or AmberTools (7). However, preparing a molecular system for simulation remains
one of the most error-prone and labor-intensive steps in the workflow (8). Several frameworks
have sought to automate MD simulations, including CHAPERONg (9) and PyAutoFEP (10), which
facilitate simulation setup and analysis or integrate free-energy perturbation (FEP) workflows (11; 12).
However, these pipelines remain rigid and domain-specific: extending them to new systems or
simulation engines often requires significant manual modification and expert knowledge.
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Recent advances in large language models (LLMs) (13; 14; 15) have introduced a new paradigm for
scientific automation. LLMs can interpret natural language instructions, reason about domain-specific
constraints, and orchestrate external tools, offering a flexible control layer that can adapt to new
workflows and dynamically recover from errors. The emergence of agentic LLMs (16; 17; 18) has
demonstrated their capacity to autonomously execute multi-step scientific processes, including early
efforts in MD workflow automation through MDCrow (19) and NAMD-Agent (20). Both systems
successfully automate protein-only simulations using OpenMM or CHARMM-GUI, respectively,
and can handle basic preprocessing and simulation stages. Yet, they remain limited in scope—unable
to process protein–ligand systems, perform adaptive recovery from simulation errors, or generalize
across simulation platforms.

In this work, we introduce DynAgent, a modular multi-agent framework that autonomously designs
and executes complete MD workflows for both protein and protein–ligand systems, with the option
to perform free energy binding affinity calculations with the MM-PB(GB)SA method. Unlike prior
systems, DynAgent separates high-level reasoning (e.g., parameter planning, structure retrieval)
from low-level execution (e.g., simulation setup, file handling). This design enables dynamic tool
use, retrieval-augmented parameter selection, and self-correcting behavior during simulation runs.
By combining domain-aware reasoning with multi-agent coordination (21; 18), DynAgent bridges
natural-language goal specification and robust computational execution in molecular simulation.

Table S1 summarizes key differences between existing agentic MD frameworks and DynAgent. Our
system uniquely supports protein–ligand systems, integrates retrieval from external databases (web
search as well as literature search with PaperQA (22; 17; 23)), and implements adaptive tool selection
and error correction, thus extending the capabilities of current MD automation pipelines.

2 Methods
MD Workflow Our system, DynAgent, is designed as a multi-agent framework that autonomously
prepares, executes, and analyzes MD simulations. The architecture extends previous agentic ap-
proaches such as MDCrow (19) and NAMD-Agent (20) by introducing a dedicated planner agent,
dynamic feedback with error correction, and by enabling simulations of protein–ligand complexes.

The workflow (Figure 1) is organized into three main components:

1. Planner Agent (PrepAgent): Extracts user intent and scientific requirements from natural
language input, retrieves structural information, and constructs a context-aware simulation
plan. The planner leverages retrieval-augmented reasoning (24) and tool invocation to
retrieve the PDB file and select appropriate parameters for the MD simulation such as
temperature and duration.

2. Molecular Dynamics Agent (DynAgent): Interprets the plan produced by the PrepAgent
and autonomously executes it through a loop of tool invocation → validation → reflec-
tion (18). Each subtask is validated against the filesystem and output logs, allowing the
agent to detect and repair common runtime errors by regenerating or modifying input files
(e.g., correcting missing atom names or updating topology directives).

3. Analyzer Agent: Post-processes MD trajectories and outputs descriptive analyses. Standard
GROMACS modules are used to compute RMSD, radius of gyration, RMSF, and hydrogen-
bond statistics. The agent further provides qualitative summaries of stability, convergence,
and ligand–protein interactions in natural language form.

4. Execution environment: Both agents operate within a sandboxed directory structure, en-
suring safe read/write operations and reproducibility. Interactions with external LLMs are
routed through LiteLLM, which acts as a unified interface for model invocation, request rout-
ing, and provider abstraction. The framework supports both AmberTools and GROMACS,
providing flexibility beyond prior works restricted to OpenMM or CHARMM-GUI.

A representative workflow is shown in Figure S1, illustrating the difference between a protein-only
simulation and a protein–ligand complex. The planner dynamically selects additional steps for ligand
parameterization and topology construction, automatically adjusting the downstream MD setup.

Agent Toolset Each agent interacts with a structured set of domain-specific tools, defined through a
formal schema that includes tool names, descriptions, and JSON input specifications. The PrepAgent
loads these tool schemes at runtime and delegates tasks to corresponding Python functions. The major
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Figure 1: Overview of the framework. The PrepAgent constructs a context-aware simulation plan,
the DynAgent executes it with error-corrective reasoning, and the Analyzer interprets the resulting
trajectories.

tool families include structural preparation, ligand parameterization, system building and solvation,
equilibration and production, and web and data retrieval (Figure 1).

• Structural preparation: cleaning and protonation of PDB files, capping termini, and
correcting atom naming inconsistencies.

• Ligand parameterization: generation of topology and force field parameters using acpype
or antechamber, automatically detected from the ligand identifier.

• System building and solvation: generation of topology and coordinate files with tleap,
using the AMBER force fields 14ffsb (25) for proteins and GAFF2 (26) for ligands. The
system is solvated with the TIP3P model (27) and neutralized by ion placement.

• Equilibration and production: energy minimization, NVT/NPT equilibration, and produc-
tion MD runs executed through GROMACS.

• Web and data retrieval: web search or PaperQA (22; 17; 23) queries to determine experi-
mental conditions such as recommended temperature or ligand information.

This modular design allows for tool reuse and extension across multiple agents and systems, and
facilitates transparent LLM–tool interactions.

Error Correction and Feedback Memory A key feature of the framework is its iterative feedback
mechanism, which is similar to the mechanism outlined in (28; 18), which enables self-correction
for failed or incomplete subtasks. Each tool invocation is sandboxed, logged, and summarized into
a compressed message context to maintain continuity between attempts. If a subtask fails (ie. due
to missing files, naming errors, or incompatible parameters) the agent analyzes the log output and
proposes a corrected re-execution plan.

Retrieval-Augmented Generation for Parameter Selection The PrepAgent integrates retrieval-
augmented generation (RAG) to enable domain-aware parameterization. During the planning phase,
the agent can use the its built-in web_search tool to query the internet and obtain up-to-date
knowledge and parameter recommendations, while PaperQA (22; 17; 23) can be used to search
uploaded literature for system specific references regarding the protein and ligands, as well as
software details. The LLM integrates retrieved information into its reasoning to select MD parameters
(as well as to identify possible errors). This allows the LLM to justify and select simulation parameters
(e.g., 310 K for human proteins, 298 K for mesophilic enzymes). By grounding parameter decisions
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in primary data sources, the agent improves the scientific interpretability and reproducibility of
molecular dynamics setups.

Analysis and Visualization Upon successful completion of the MD run, the Analyzer agent performs
automated trajectory analysis. It generates RMSD, radius of gyration, RMSF, and hydrogen-bond
statistics, using GROMACS analysis tools. Each plot is accompanied by an automatically generated
textual interpretation describing structural stability, folding dynamics, and binding behavior.

3 Results
The performance and generalizability of DynAgent was evaluated across eight distinct simulation
setups, five of which were well-established protein-ligand complexes that are widely used in the
literature for benchmarking MD and free energy calculation methodologies (eight systems detailed in
Table S2). The other three systems didn’t contain a ligand so that we could test the agent’s ability to
adapt its workflow and use of tools based on the system to simulate. The inputs directly originated
from the PDB (29), as requested either by the user prompt or the user upload. The temperature
and simulation duration was chosen by the agent. The agent’s success was measured by its ability
to correctly execute the tools required for the simulation to succeed, the creation of the necessary
(non-empty) files, and the stability of the simulation.

The selected systems span diverse protein families and ligand chemotypes, providing a representative
testbed for assessing the agent’s ability to set up, parameterize, and execute MD workflows across
different biochemical contexts. The chosen systems and PDB IDs are detailed in the Supplementary
Information.

DynAgent successfully performed a production MD run for all five systems, as evidenced by the
output RMSD, RMSF, and radius of gyration plots, consistent with equilibrated systems (outputs for
PDB:5UEZ system shown in Figure 2). Human inspection of the generated files confirmed that each
system was correctly parameterized by the agent.

Figure 2: Solvated protein-ligand complex systems. Representative output plots automatically
generated by the Analyzer for the 5UEZ system: RMSD, RMSF, radius of gyration, and hydrogen-
bond analysis. Example of a dynamic workflow with the agent.
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We evaluated the performance of DynAgent with three different Claude agents: Haiku 3.5, Opus
4.1, and Sonnet 4.5. DynAgent’s error correction efficiency was calculated from the number of
iterations performed per experiment, divided by the minimum number of iterations required for
completion (Figure 3a). Claude Opus and Sonnet were as efficient, while Haiku underperformed for
all experiments. Efficiency losses most often occur when the agent uses tools in the wrong order,
or with incorrect inputs, which increases the number of iterations and setup time required. Next,
accuracy (defined as the proportion of successfully completed tasks out of the human defined required
tasks) was evaluated (Figure 3b). Required subtasks are detailed in Figure S1. Claude Opus and
Sonnet outperformed Haiku again. 100% accuracy was obtained for 4 protein-ligand systems. The
fifth system, 4W52_BNZ, completed the MD simulation, and the 80% accuracy demonstrated the
agent’s ability to correct errors. Indeed, the tools were not all used successfully in the first attempt,
but with more iterations, the simulation reached completion. Finally, three systems did not reach full
completion: 1J37, 5KB6, and 6TX6. The structures with missing residues and PDB input files with
unknown atom names were the cause of the Amber and GROMACS tools failing in these cases.

(a) Efficiency of the different LLMs, defined as mini-
mum required iterations divided by total iterations.

(b) Accuracy of the different LLMs, defined as the
proportion of successfully completed tasks out of the
human defined required tasks.

Figure 3: Comparison of efficiency and accuracy across different LLM systems, shown side by side.

Once a protein-ligand simulation is complete, DynAgent offers the option to perform MM-PG(GB)SA
calculations to obtain ligand binding free energies, with the gmx_MMPBSA tool. (12; 30) The integra-
tion of this binding affinity tool was tested against a set of inhibitor molecules for the bromodomain
1 of Bromodomain-containing protein 4 (BRD4 BD1). The binding affinity values obtained with
DynAgent were compared with experimental IC50 values. (31) Two inhibitors (compounds 17 and
25 from Jiang et al. (31)) were first docked into BRD4 BD1 (PDB: 6JJ3 (31)) with the software GN-
INA (32). DynAgent then autonomously performed 10 ns MD simulations of the complex structures
and determined a binding free energy value with the PB solvation model in each case. As seen in
Table 1, the ∆∆G values given by the agent allow to differentiate a very potent inhibitor (compound
25) from a less potent one (compound 17). The MM-PBSA method further provides more insights
into the nature of the binding interactions. For instance, while Van der Waals interactions stabilize
better compound 25 with respect to compound 17, stronger electrostatic interactions interactions
seem to be the cause of the major difference in binding between the two inhibitors.

Table 1: Comparison of the MM-PBSA binding affinity values obtained with DynAgent and experi-
mental IC50 values (31), on a set of two inhibitor compounds binding to BRD4 BD1.

Compounds Experimental IC50

(nM)
DynAgent

MM-PBSA ∆∆G
(kcal/mol)

DynAgent
∆VdVaals
(kcal/mol)

DynAgent ∆EEL
(kcal/mol)

Compound 17 2436±290 -23.86 -33.22 -10.75
Compound 25 49.5±10.3 -26.06 -34.09 -16.57

4 Discussion
Agentic systems like DynAgent illustrate the feasibility of “AI scientists” (17; 33) capable of per-
forming full experimental workflows in computational chemistry. Unlike rigid automation scripts,
our multi-agent architecture generalizes across simulation goals and tools by reasoning about both

5



physical constraints and software syntax. The streamlined usability of DynAgent enables more effi-
cient incorporation of computational binding-affinity calculations into drug-optimization campaigns.
However, current limitations include dependency on external LLM APIs, lack of long-term memory
across sessions, and limited quantitative evaluation of trajectory quality. Future work will integrate
reinforcement feedback from simulation outcomes and benchmarking datasets (e.g., MD17 (34),
PDBbind (35)) to enhance self-improvement.

The modularity of the agentic architecture will allow the facile extension of possible experiments.
The context-aware nature of the PrepAegent makes it possible to suggest the most appropriate
workflows for a series of new tasks. The aim is to introduce diverse systems into the pipeline, such as
DNA, membrane proteins, and multimers containing several ligands. The goal is also to explore the
analytic capabilities of the agent, to compare different simulations, and to analyze the outputs with
the knowledge of the specific system.
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Supplementary Information
A DynAgent Capabilities
Here, we outline the current state of both existing agentic frameworks that run MD simulations, and
our framework. We specify both the types of systems it can accept, and the range of tasks it can
perform.

Table S1: Comparison of capabilities across existing agentic MD frameworks. DynAgent extends
prior systems by enabling ligand handling, adaptive error correction, and retrieval-augmented param-
eter selection.

Capability MDCrow NAMD-Agent DynAgent (ours)

Protein-only simulations Yes Yes Yes
Protein–ligand simulations No No Yes
Automated structure cleaning Partial Yes Yes
Force field parameterization Yes (OpenMM) Yes

(CHARMM-GUI)
Yes (Amber-

Tools/GROMACS)
Retrieval from literature/databases Yes (limited) No Yes (RAG via

RCSB/PubChem/Google)
Adaptive tool selection No Partial Yes
Error correction and recovery No No Yes
Natural-language task specification Yes Yes Yes
Modular multi-agent architecture No Partial Yes
Cross-platform compatibility OpenMM only CHARMM only GROMACS /

AmberTools

B Human defined workflow
There is a series of tools provided to the agent, that it should use correctly for simulation success.
The tools provided include:

• Fetch and save the pdb file.

• Preparation of pdb files. This comprises cleaning the protein file, capping it (C- and N-
termini with ACE and NME), extracting the ligand file, and protonating it at pH = 7 using
Open Babel (36).

• Preparation of ligand parameters with AmberTools.

• Generation of the protein-ligand complex file if a ligand is present.

• Web and data retrieval: query of external sources (RCSB, PubChem, Google) to determine
experimental conditions such as recommended temperature or ligand information.

• Generation parameters for the protein or protein-ligand systems using tLEaP. The protein
is parameterized with the ff14sb force field and the ligand with GAFF2, with AM1-BCC
charges.

• Preparation the simulation box with AmberTools, by solvating with the TIP3P model and
neutralising with ions.

• Equilibration the system with GROMACS: it includes energy minimisation until the maxi-
mum force on all atoms is inferior to 10.0 kJ/mol, 100 ps NVT and 100 ps NPT simulations
to equilibrate the temperature and pressure of the system. Both properties are plotted and
analyzed for convergence.

• Generation of the NPT production run with GROMACS, with the temperature either specified
by the user, or determined by the agent with its web-search tool.

• Analysis of the RMSD, RMSF, radius of gyration, number of hydrogen-bonds (between
protein side-chains, protein-ligand and protein-water) plots generated by GROMACS.
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Figure S1: Agentic workflow for a protein-only system (yellow) and a protein-ligand system (or-
ange+yellow). Steps include structure retrieval, preprocessing, generation of input force field parame-
ters, solvation, equilibration, and production.

C Reference Systems for Evaluation
First, β-Trypsin–Benzamidine in complex with benzamidine (PDB ID: 3PTB(37)) is one of the most
popular and historically important benchmarks for protein–ligand simulations, owing to its well-
characterized binding pocket and simple ligand structure. Second, Bromodomain-containing Protein
4 bound to 5-methoxy-2-methyl-6-(2-phenoxyphenyl)pyridazin-3(2H)-one (PDB ID: 5UEZ(38))
represents a pharmaceutically relevant target. This system introduces a more chemically complex
ligand with multiple aromatic and heterocyclic moieties, allowing evaluation of the agent’s handling,
protonation, and parameterization of flexible ligands. Third, the Tyrosine Kinase 2 (JH1 domain) do-
main complexed with 2,6-dichloro-N-2-[(cyclopropylcarbonyl)amino]pyridin-4-ylbenzamide (PDB
ID: 4GIH(39)) is a well-known benchmark system for free energy methods. The presence of halogen
atoms and multiple rotatable bonds makes it an ideal test case for assessing the robustness of ligand
parameterization and sampling accuracy. Then, the T4 Lysozyme L99A–Benzene mutant complexed
with benzene (PDB ID: 4W52(40)) is frequently used as a model system for studying hydrophobic
binding, validating force fields, and comparing computational and experimental binding thermody-
namics. Finally, the T4 Lysozyme L99A/M102Q–2-Propylphenol mutant bound to 2-propylphenol
(PDB ID: 3HTB(41)) extends the previous system to include a polar binding environment. This sys-
tem is a common model for assessing protein-ligand MD simulations and binding affinities. Together,
these five systems encompass a range of protein classes, ligand complexities, and interaction types,
thereby providing a comprehensive evaluation of the LLM agent’s capability to autonomously set up
and conduct MD simulations across chemically diverse systems.
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Table S2: Systems used to evaluate the LLM agent for molecular dynamics simulations (Protein-
ligand complexes and Protein systems).

PDB ID Protein Ligand Rationale for Selection

1J37 (42) Drosophila AnCE / High resolution crystal structure of a protein monomer.
3HTB (41) T4 Lysozyme

L99A/M102Q
JZ4 Common model for studying polar cavity binding;

probes hydrogen bonding and solvation effects.
3PTB (37) β-Trypsin BEN Canonical benchmark system for protein–ligand MD;

simple and well-characterized binding site.
4GIH (39) Tyk2 (JH1 domain) 0X5 Popular benchmark for free energy methods; halo-

genated, conformationally complex inhibitor.
4W52 (40) T4 Lysozyme L99A BNZ Minimal hydrophobic binding model; widely used to

test force fields and thermodynamics.
5KB6 (43) adenosine kinase / High resolution crystal structure of a well-studied pro-

tein.
5UEZ (38) BRD4 (Bromodomain-

containing protein 4)
89G Pharmacologically relevant target; tests handling of

flexible, aromatic ligands.
6TX6 (44) Human FKBP51 FK1

Domain A19T mutant
/ High resolution crystal structure of a well-studied pro-

tein.
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