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Abstract
We explore how a multi-modal transformer001
trained for generation of longer image descrip-002
tions learns syntactic and semantic represen-003
tations about entities and relations grounded004
in objects at the level of masked self-attention005
(text generation) and cross-modal attention (in-006
formation fusion). We observe that cross-007
attention learns the visual grounding of noun008
phrases into objects and high-level seman-009
tic information about spatial relations, while010
text-to-text attention captures low-level syn-011
tactic knowledge between words. This con-012
cludes that language models in a multi-modal013
task learn different semantic information about014
objects and relations cross-modally and uni-015
modally (text-only). Our code is available016
here: [the GitHub link placeholder].017

1 Introduction018

In this paper, we examine what kind of knowledge019

is encoded in the multi-modal transformer. Exist-020

ing work has mostly looked at the knowledge cap-021

tured in models that operate with a single modality022

(text). For instance, previous research has shown023

that the attention weights in large-scale models,024

e.g. BERT (Devlin et al., 2019), implicitly encode025

knowledge of sentence structure (Raganato and026

Tiedemann, 2018; Ravishankar et al., 2021), part-027

of-speech tags, syntactic dependencies (Clark et al.,028

2019; Vig and Belinkov, 2019), subject-verb agree-029

ment between words (Goldberg, 2019), and even in-030

formation about textual co-reference (Tenney et al.,031

2019). Only a few papers have inspected what032

is captured by multi-modal architectures. Cao033

et al. (2020) demonstrate that the attention heads034

in image-and-text transformers effectively encode035

linguistic and cross-modal knowledge. Ilinykh and036

Dobnik (2021) provide the analysis of how lan-037

guage representations are indirectly affected by038

visual information in language-and-vision model.039

Here we inspect what the model learns about040

two types of words in the multi-modal setting: (i)041

words denoting objects in the scene (e.g. “a red 042

chair”), (ii) words depicting spatial relations be- 043

tween objects (e.g. “a chair next to the table”). 044

While it is relatively simple to associate nouns with 045

specific image regions, words describing relations 046

are much harder to ground (Lu et al., 2017), pos- 047

sibly because visual representations are typically 048

designed to capture objects without any explicit 049

knowledge of relations. Such mismatch between 050

visual features and relations could also be a valid 051

reason to focus on language modality when gen- 052

erating relations (Ghanimifard and Dobnik, 2019). 053

Ideally, each word type should be grounded in both 054

modalities, but to a different degree. The main chal- 055

lenge is to develop such architectures that appropri- 056

ately balance this information, and, therefore, we 057

investigate grounding of different semantic types 058

and test the following hypotheses: 059

• H1: Does attention across two modalities 060

learn visually grounded semantics of nouns? 061

• H2: What is syntactic knowledge encoded in 062

attention on text in the multi-modal set-up? 063

• H3: What does cross-modal attention learn 064

about grounded semantics of spatial relations? 065

We use a two-stream multi-modal transformer 066

(Herdade et al., 2019), which first attends to each 067

modality independently and then learns to attend 068

cross-modally. This architecture uses rich relative 069

geometry between objects, while many other two- 070

stream models (Tan and Bansal, 2019; Lu et al., 071

2019) simply use either coordinates of bounding 072

boxes or their spatial location. We train the model 073

for image paragraph generation (Ilinykh et al., 074

2019; Krause et al., 2017), allowing examination 075

of the knowledge of semantic types in extensive 076

contexts. We believe that our experiments show 077

how language and vision are bridged in the multi- 078

modal transformer. In addition, our work provides 079

insights into the shortcomings of how multi-modal 080

representations are learned for different word types. 081
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Figure 1: Multi-modal image description transformer.
Every next generated word is concatenated with the pre-
viously generated words and passed to the model to out-
put the next word prediction.

2 Experimental Set-Up082

Model We train a multi-modal transformer for083

image paragraph generation. The model is based084

on the image captioning transformer proposed by085

Herdade et al. (2019)1. We use the object detec-086

tor provided by Anderson et al. (2018)2. This087

model comes pre-trained on object annotations088

from Visual Genome (Krishna et al., 2016). We089

extract features of N objects per image, resulting090

in the set V = {v1, . . . , vN} with vn ∈ R1×D.091

We set N = 36 and D = 2048. The object ex-092

tractor also provides us with labels (“table”) and093

attributes (“round”) for the objects, which will094

be used in our experiments. Following Herdade095

et al. (2019), we also extract geometry informa-096

tion about each object G = 〈x, y, w, h〉 (centre097

coordinates, width, height) and use it as an addi-098

tional input along with visual features. Figure 1099

describes the architecture of the model. In this100

model, each attention mechanism consists of six101

layers with eight attention heads in them. The102

image encoder (orange box) learns to combine103

visual and geometric features3 and passes them104

through the standard self-attention block, consist-105

ing of multi-head self-attention, feed-forward net-106

work, residual connections and layer-normalisation.107

1https://github.com/yahoo/object_relation_transformer
2https://github.com/peteanderson80/bottom-up-attention
3For more information on how image encoder employs

both visual and geometric information, we refer the reader to
the original implementation by Herdade et al. (2019).

Figure 2: Ground-truth description of the image: It’s
a room with a bar on the side. There is a pink couch in
the center. There’s a coffee table in front of the couch.
It has a light purple rug. There are three chairs at the
bar.
Generated description of the image: This appears
to be a bonus room that is red and white. There is a
wooden table in the center of the room. There is a red
couch. There is a large plant in the corner.

Due to uni-directional nature of description gener- 108

ation, the text decoder (blue box) produces repre- 109

sentation of the current token wi, based on per- 110

viously generated tokens (w1, . . . , wi−1), while 111

(wi+1, . . . , wW ) are replaced with [MASK]. Fi- 112

nally, the cross-attention (red box) uses informa- 113

tion from both textual and visual streams to output 114

a probability of the next word in the sequence. 115

Dataset We train our model on Tell-Me-More 116

(Ilinykh et al., 2019), the dataset of multi-sentence 117

descriptions of real-world images of rooms in the 118

house setting (Zhou et al., 2017). Figure 2 shows 119

an example of the ground-truth text and gener- 120

ated paragraph. For training, we use train and ex- 121

tra splits, providing us with 4820 image-sequence 122

pairs, while for validation and testing we use 441 123

and 441 pairs respectively. We use beam search to 124

generate sequences with beam width bw = 2. The 125

model is trained with standard cross-entropy loss. 126

The best model’s checkpoint is chosen based on the 127

highest CIDEr score (Vedantam et al., 2015) for 128

the test set after training for 100 epochs. As Table 1 129

shows, our model achieves higher scores across 130

most of the standard automatic metrics compared to 131

the baseline architecture (CNN + LSTM + LSTM). 132

Although our transformer performs slightly worse 133

in terms of CIDEr score, note that different from 134

previous work on multi-sentence image descrip- 135

tion generation (Krause et al., 2017; Chatterjee 136
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Model Type BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr WMD
CNN+LSTM+LSTM (Ilinykh and Dobnik, 2020) 25.10 13.88 8.11 4.61 11.30 26.38 7.61
Multi-Modal Transformer (this paper) 39.68 24.12 14.71 8.33 14.97 17.54 8.66

Table 1: Automatic evaluation of image paragraphs generated by two different model architectures.

and Schwing, 2018; Ilinykh and Dobnik, 2020),137

we do not restrict the model to generate a specific138

number of sentences, instead stopping the gener-139

ation when either the END token is encountered140

or the maximum number of words has been gener-141

ated (W = 150). In addition, our dataset is much142

smaller than the Stanford image paragraph dataset143

(Krause et al., 2017), that the first model has been144

trained on.145

3 Methods and Metrics146

We extract the attention weights from both cross-147

modal attention and masked self-attention. We are148

not focused on description generation but on ex-149

amining the attention that particular words and ob-150

jects would receive. Therefore, we use the ground-151

truth descriptions where the words are known and152

test the model on these descriptions in the teacher-153

forcing setting. Both input and target sequence154

of tokens that the model sees are identical, which155

allows us to minimize any noise in the attention156

weights and inspect them as if our model is an157

expert in generating coherent texts. For every gen-158

erated word wi, the attention weight α per head159

h in each layer ` is extracted. In transformers the160

attention weights are computed as the scaled dot-161

product of the query matrix Q with all the keys162

in K followed by a softmax operation. These163

weights are focusing on either previously generated164

words (masked self-attention MSA, Equation 1) or165

image objects (cross-attention CA, Equation 2).166

α`,h(wi | w1, . . . , wi−1) = softmax(
QMSAK

T
MSA√

dk
) (1)167

168

α`,h(wi | v1, . . . , vN ) = softmax(
QCAK

T
CA√

dk
) (2)169

We inspect how much attention is focused on170

specific parts of the input sequence when particular171

parts of the target sequence are generated. We refer172

to this measure as the attention focus or attention173

proportion. In our experiments, we calculate the174

proportion of total attention from a specific head175

that is focused on specific parts of the source se-176

quence, e.g. previously generated words or image177

objects. Attention proportions are generally calcu- 178

lated as follows: 179

P `,h(α | S, T ) =
∑

u∈U

∑|S|
i=1

∑|T |
t=1 α(si,S|tj ,T )∑

u∈U

∑|S|
i=1

∑|T |
t=1 α(si,tj ,T )

, (3) 180

where P `,h is the attention proportion for a specific 181

head, S and T are the specific conditions imposed 182

on the source and target sequences unique for every 183

experiment (described below), U is the set of image 184

descriptions sequences, tj is the text span for either 185

a noun phrase or relation from the target (generated) 186

sequence T , si is the particular object or a text span 187

from the source sequence S. 188

Conditions on P for H1 For our experiments on 189

visual grounding in cross-modal attention, T limits 190

the target sequence to the text span of a noun phrase, 191

while S defines the ground-truth object that this 192

noun phrase depicts. The attention proportion is 193

calculated by computing the accumulated attention 194

weight from the words in the noun phrase towards 195

the corresponding object and then divided by the 196

overall attention on all objects attended when this 197

noun phrase is generated. We use spaCy (Honnibal 198

et al., 2020) to extract noun phrases from image 199

paragraphs. We skip any phrases which contain at 200

least one word from the list specified in Appendix 201

B. We keep determiners and adjectives in the noun 202

phrases and any numerals if they occur. Some of 203

the paragraphs might contain noun phrases that 204

cannot be grounded in the bounding boxes in the 205

image; either because the bounding boxes are not 206

identified or because the noun phrases refer to ab- 207

stract concepts. These phrases typically contain 208

words such as “room”, “image” or “photo” and are 209

generally placed at the beginning of the description 210

(e.g., “the image is of a kitchen with . . . ”). In fu- 211

ture experiments, we plan to investigate how the 212

model grounds general descriptions of the scene 213

(“the nursery room”). 214

Conditions on P for H2 For the experiments on 215

word-to-word attention, T is set to the generated 216

word at the specific timestep tj , while S accumu- 217

lates attention on words of specified part-of-speech 218

tags when the target word tj is generated. We use 219
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two sets of part-of-speech tags, which reflect the220

semantic difference between words. The first set221

contains determiners, adjectives and nouns, while222

the second set restricts attention to verbs and adpo-223

sitions.224

Conditions on P for H3 To examine ground-225

ing of spatial relations, both S and T are de-226

termined based on the set of static spatial re-227

lations extracted from the texts. We extracted228

target − relation − landmark relations, based229

on the annotation schema described in Kolomiyets230

et al. (2013) and publicly available tool4. We ob-231

tained 1015 relations of region type (“clothes on232

hangers”), 239 relations of direction type (“a gold233

chandelier above the table”), and 6 relations of dis-234

tance type (“a large vase in the middle of the table”).235

Each of these relations consists of three spatial el-236

ements: a target (a cup), a landmark (a table) and237

a relation (on) in “a cup on the table”. Given that238

the word order describing relations is typically a239

target− relation− landmark sequence, the at-240

tention proportion for masked self-attention can be241

extracted only in following directions: relation→242

target, landmark → relation, landmark →243

target, and landmark → target+ relation. For244

example, a possible T could restrict currently gen-245

erated word to relation (typically expressed with246

adposition), while S could limit the calculation of247

the attention focus to target (expressed as a noun248

phrase) in case of relation→ target experiment.249

4 Linking Nouns and Objects250

To inspect attention heads for visual grounding, we251

require ground-truth annotations of correct link-252

ing between image objects and noun phrases. We253

construct such links automatically using semantic254

similarity between noun phrases and object labels255

provided by the object feature extractor. First, we256

use spaCy (Honnibal et al., 2020) and extract noun257

phrases on different levels of nesting. For example,258

a noun chunk “a window with white lace curtains”259

and the nested chunk “white lace curtains” are iden-260

tified as two different noun phrases. Potentially,261

this design choice allows for more accurate linking262

between noun phrases focusing on different objects263

(“window” and “curtains”) and corresponding fine-264

grained object detections. In addition, noun phrases265

with specific details potentially disambiguate link-266

ing when multiple objects of the same type are in267

4https://github.com/mmxgn/sprl-spacy

Combination Method Measure mAP@K Acc
GloVe Multiply cos 0.095 13.78
GloVe Add cos 0.276 41.84
BERTScore F1 0.232 41.84
Sentence Transformer cos 0.313 44.39

Table 2: Results of the search for the optimal method
of linking noun phrases and object descriptions.

the image, e.g., several windows. As for object 268

labels, for every detected object in every image, 269

we take the predicted label and its attribute if the 270

extractor’s confidence for this attribute is higher 271

than 0.1. 272

Noun phrases and object descriptions typically 273

include multiple words, Therefore, we compute 274

semantic similarity between phrases. We exam- 275

ine several methods for linking noun phrases and 276

object descriptions and compare them against the 277

small subset of image paragraphs with manually 278

annotated linking. Specifically, we randomly sam- 279

ple ten image-text pairs, consisting of 196 detected 280

noun phrases. Then, 158 noun phrases were man- 281

ually linked with image objects by the first author. 282

The subset of the remaining 38 noun phrases in- 283

cluded pronouns and abstract descriptions, too am- 284

biguous to be linked with the specific object in 285

the scene. In addition, we found that some noun 286

phrases describe either a non-detected object or 287

were extracted by mistake. A fraction of noun 288

phrases that were not linked with any object is 289

shown in Appendix A. 290

Table 2 shows the results of our search for the 291

best linking method. We use GloVe embeddings 292

(Pennington et al., 2014) to represent each word in 293

a phrase and combine them by either element-wise 294

multiplication (GloVe Multiply) or addition (GloVe 295

Add), inspired by methods for phrase meaning rep- 296

resentation (Mitchell and Lapata, 2008). The re- 297

sulting vectors for a noun phrase and object de- 298

scription were compared based on cosine similar- 299

ity. For BERTScore we follow Zhang et al. (2020) 300

and use contextual word embeddings (Devlin et al., 301

2019) to represent every word. Words in a noun 302

phrase and object description are then matched 303

against each other by cosine similarity, and the F1 304

score can be used to examine the similarity. Fi- 305

nally, for Sentence Transformer we represent each 306

word with the embedding from Sentence Trans- 307

former (Reimers and Gurevych, 2019). This model 308

fine-tunes BERT embeddings for numerous NLI 309

tasks and applies a mean pooling operation to get 310

the fixed-size vector representing embedding of 311
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a whole phrase. We report accuracy Acc against312

manual annotations of ten image-text pairs. We313

also compute mean average precision mAP@K, a314

metric that allows us to see whether a particular315

combination method generally rates relevant object316

descriptions more similar to a noun phrase:317

AP@K =

m∑
k=1

Pk(Rk −Rk−1), (4)318

where Pk and Rk are the precision and recall at319

cut-off k, m is the number of noun phrases detected320

in an image paragraph. K is set to the number of321

objects (36) since we inspect the linking of noun322

phrases with the whole set of objects. The final323

mAP@K score is the mean of average precisions324

for noun phrases in descriptions of images. Our325

search results for the linking method demonstrate326

that using embeddings from Sentence Transformer327

and comparing them for cosine similarity performs328

the best in terms of both metrics. Interestingly, sim-329

ply using BERT embeddings and match them for330

similarity (BERTScore) is not enough to achieve a331

high mAP@K score, and this method also performs332

worse than a simple addition of non-contextualised333

embeddings (GloVe Add). A more complex fusion334

of information from different words is required335

to represent a phrase. When examining attention336

heads for visual grounding of nouns and relations,337

we thus use the best performing linking method338

(Sentence Transformer). Noun phrases might de-339

scribe a group of objects in the scene (“six chairs”),340

corresponding to multiple object detections (sev-341

eral chairs). Labels of such objects are often identi-342

cal, which makes their cosine similarity scores also343

identical. Therefore, we link a noun phrase with344

multiple objects on top of the similarity ranking345

if they have the same cosine score. Otherwise, a346

noun phrase is linked with the object that is ranked347

the highest.348

5 Experiments and Results349

Attention Entropy We compute entropy of the350

attention weights in both modules for each attention351

head. Specifically, the entropy E of an attention352

head h in layer ` is defined as follows:353

E`,h(tj) = −
|S|∑
i=1

α(si, tj) log(α(si, tj)) (5)354

where si and tj are specific source and target se-355

quence items and α is the attention weight between356
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Figure 3: Normalised entropy of attention heads in
different layers for masked-self attention (MSA) and
cross-attention (CA). The darker the colour, the higher
the entropy. All values were normalised by the maxi-
mum achievable entropy −log2(O).

them. As Figure 3 shows, the entropy pattern is 357

similar across both attention modules. Attention 358

heads have lower entropy in deeper layers, focus- 359

ing more on specific parts of the source sequence. 360

In contrast, earlier layers scatter attention across 361

many items (either objects or previously generated 362

words). Intuitively, such progressive increase of 363

attention focus from lower to higher levels indi- 364

cate that both modules first learn to generalise over 365

low-level features, gradually moving to capture 366

more specialised, high-level conceptual knowledge 367

(Ullman, 1984). Here, a fair question to ask is 368

what kind of low-level and high-level knowledge 369

do masked and cross-modal attention learn in dif- 370

ferent layers with different entropy? 371

As Ghader and Monz (2017) show for the task 372

of machine translation, lower attention entropy is 373

mainly observed when looking at nouns and ad- 374

jectives, while higher entropy is witnessed when 375

attending to adpositions and verbs. This finding 376

demonstrates that attending to nouns in purely tex- 377

tual syntactic dependencies is less complex than 378

focusing on verbs. In the context of our task, ad- 379
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positions and verbs would be used when generat-380

ing spatial relations, while objects are described381

with nouns and adjectives. Learning nouns in a382

multi-modal setting implies their visual ground-383

ing, a more complex task that requires knowledge384

of the scene. Similarly, in general, understand-385

ing spatial relations is a much more sophisticated386

task for the multi-modal transformer. It requires387

higher-level semantic knowledge and identifica-388

tion of objects and relations, compared to sim-389

ple attention on verbs and adpositions as part-of-390

speech tags in a uni-modal setting. It has also been391

shown that attention on highly complex phenomena392

(named entities) would happen in deeper layers of393

the model, while low-level constructs (determiners)394

are attended much earlier in the layers of both uni-395

modal (Vig and Belinkov, 2019), and multi-modal396

(Ilinykh and Dobnik, 2021) architectures. There-397

fore, in our experiments, we examine how atten-398

tion heads in different layers of masked and cross-399

modal attention capture either syntactic knowl-400

edge (nouns and relation phrases as words) or se-401

mantic information (visually grounded nouns and402

spatial relations).403

Visual Grounding in Cross-Attention Here404

we investigate whether the high focus of cross-405

attention heads in deeper layers can be attributed406

to their specialisation in visual grounding of nouns.407

Specifically, based on the linking method, we com-408

pute the proportion of attention that radiates from409

words in a noun phrase towards corresponding410

objects described by this noun phrase. Figure 4411

shows the results. We can see that attention heads412

in deeper layers concentrate on linking bounding413
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Figure 4: Attention proportions P on correct noun-
object pairs (as determined by linking) for each atten-
tion head in the cross-modal attention. The darker the
colour, the bigger the proportion. The proportions are
averaged over the noun phrases in descriptions.
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Figure 5: Attention proportions on words of specific
part-of-speech tags for every head in the masked self-
attention module. The proportions are averaged over
the samples in the test set.

boxes of detected objects with noun phrases that 414

describe them when these phrases are generated. 415

Specifically, while in the first layer, attention heads 416

pay on average 16% of their attention to the linked 417

objects, in the deeper layers, the average attention 418

focus reaches 29%. The best attention head is 419

the second head in the sixth layer, which places 420

33% of its attention on connecting noun phrases 421

with the bounding boxes of objects linked with 422

this phrase. These findings show that the model 423

captures complex visually grounded semantics of 424

nouns in deeper layers of cross-attention. In addi- 425

tion, lower entropy observed in these layers (Fig- 426

ure 3b) also indicates that deeper heads are strongly 427

focused and specialised in grounding of nouns. 428

Masked Self-Attention on Specific Part-of- 429

Speech Tags Figure 5 demonstrates the attention 430

focus on previously generated words of specific 431

POS tags. We separate between tags which ei- 432

ther describe objects 〈DET, ADJ, NOUN〉 or re- 433

lations 〈VERB, ADP〉. Based on the heatmaps, 434

we can see that previously generated determiners, 435

adjectives and nouns are more attended in all layers 436
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Figure 6: Heatmap visualisations of P for masked self-attention (the top row) and cross-attention (the bottom
row) for different possible configurations of attention between words constituting spatial relations. All attention
proportions are normalised by the number of spatial relations in the test set.

except the first one, in which the focus is on rela-437

tion part-of-speech tags. At the same time, accord-438

ing to Figure 3a, the attention in the first layer is439

more dispersed, which means that when attending440

to verbs and adpositions, attention is also looking441

at other words to a lesser degree, possibly such442

words which are involved in the action described443

by the verb. We calculated the Pearson correla-444

tion coefficient between both heatmaps in Figure 3.445

The test has shown a significant negative correla-446

tion (r = −0.71, p = 1.7e − 08), indicating that447

there is a clear separation in attention focus on two448

types of words in masked self-attention. Overall,449

text-to-text attention is able to capture local and450

non-grounded syntactic knowledge of objects and451

relations between them.452

Masked Self-Attention on Spatial Relations453

Figures 6a–6d show the attention focus in masked454

self-attention for several possible directions be-455

tween parts of the phrase describing spatial relation.456

For example, rel→ target shows the attention on457

the noun phrase describing the target object when458

a phrase describing relation is generated. Note that459

in masked self-attention, we are not able to look460

into the future; thus, we cannot inspect attention on461

rel → landmark or target → landmark. The462

first important observation is a clear difference be-463

tween attention on the word depicting the target464

object depending on where this attention is coming465

from. Numerous attention heads in the first layers466

focus on the target when relation is generated (Fig-467

ure 6a), while only a few heads are looking at the468

target when landmark is generated. According to469

Figure 6b, relation is more important for landmark 470

since it is widely attended by many heads, com- 471

pared to only a few heads in Figure 6c and only a 472

single head (head 8, layer 4) being highly active. 473

In addition, there are three attention heads in the 474

second layer (2, 3, 4) in Figure 6a, which are also 475

highly activated in Figure 5a. This might indicate 476

that these heads do not simply look at the words de- 477

picting objects but specialise in such words, which 478

are playing the part of the “target” object in spa- 479

tial relations. Therefore, we can identify particular 480

heads that learn knowledge of syntactic dependen- 481

cies between words describing spatial relations in 482

the textual encoder. Also, based on Figure 6b, we 483

can see that the focus on relation phrases is mostly 484

captured in earlier layers, which supports our state- 485

ment that the model first needs to learn general 486

knowledge about existing relations in the scene, 487

later starting to exploit it for better focus on correct 488

target and landmark nouns. 489

Cross-Attention on Spatial Relations Fig- 490

ures 6e–6h show how much each head looks at 491

the specific object that corresponds to a target or a 492

landmark in spatial relations. Similar to our exper- 493

iment on visual grounding, we linked every noun 494

phrase describing either a target or a landmark with 495

a bounding box of the detected object by computing 496

semantic similarity between the noun phrase and 497

the label of every object. Note that here we look 498

at how words of semantic categories describing 499

relations between objects are grounded in visual 500

representations (objects) rather than other words, 501

as in the case of the masked self-attention. One 502
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noticeable difference between the top and bottom503

rows in the Figure 6 is that the attention focus in504

the cross-modal part of the architecture is much505

more distributed across many heads.506

Given that, according to Figure 4, multi-modal507

grounding of nouns into objects is clearly observed508

in later parts of the model, grounding of relations509

in objects becomes much less interpretable. First,510

relations cannot be directly linked to the objects511

in the scene since relations do not describe them.512

When grounding relations, the system needs to rely513

on several sources of knowledge: it tends to rely514

on linguistic knowledge much more than on vi-515

sual information (Ghanimifard and Dobnik, 2019).516

Learning is further complicated by the fusion of517

information in cross-attention. For example, the518

model needs to simultaneously rely on the semantic519

information from the language representations and520

identify objects that are targets and landmarks in521

spatial relations. Therefore, cross-modal attention522

activates many attention heads when trying to learn523

about spatial relations, which require attention on524

multiple sources of knowledge.525

Interestingly, as Figure 6f shows, a lot of at-526

tention on landmark is distributed across multi-527

ple layers. Specifically, surface layers, which also528

have higher entropy (Figure 3b), are activated much529

more compared to, for example, target → land530

relation (Figure 6h). This can be attributed to the531

fact that the model learns to attend to targets with532

high confidence in deeper layers because targets533

constitute the central part of spatial relations and534

require more complex reasoning. At the same time,535

landmarks are intuitively semantically closer to the536

relation and general information about the target537

object, which can be captured in surface layers.538

Dobnik et al. (2018) have shown that there is a539

strong asymmetry between knowledge about tar-540

gets and landmarks: landmarks are generally much541

easier to predict, and they contribute less to the542

perplexity of the model than targets. Intuitively, a543

speaker would like to describe the target, and they544

need to find a suitable contextually salient land-545

mark to produce such a description. Therefore, it546

might happen that the model first distributes its at-547

tention between heads in earlier and later layers to548

identify landmarks in the context of particular rela-549

tion, and then learns to strongly map this relation-550

landmark context with the specific target in deeper551

layers. This idea is also supported by strongly lo-552

calised and focused attention on the target object in553

deeper layers when either a relation or a landmark 554

are generated (Figure 6g and Figure 6e). 555

Note the differences between attention patterns 556

in Figure 6a and Figure 6e for the relation → 557

target direction. Lower layers in masked self- 558

attention, as we have shown, seem to learn lo- 559

cal syntactic dependencies between words in the 560

source input (text). This is different from the 561

multi-modal scenario, where deeper layers are 562

much more activated for visual and language in- 563

puts. This indicates that spatial relations are much 564

more sophisticated in the language-and-vision con- 565

text: they need to capture semantic dependencies 566

between words and objects in the scene. Also, the 567

complexity of information might be the reason why 568

rel → target attention is much more scattered 569

across many heads in deeper layers in cross-modal 570

attention, compared to more focused attention in 571

specific heads in earlier layers for masked self- 572

attention. 573

6 Conclusion 574

We have shown that the language model in a multi- 575

modal task captures linguistic phenomena of dif- 576

ferent kind depending on the source knowledge 577

(text or objects) and semantic type of the output 578

words (noun phrases or spatial relations). In par- 579

ticular, while text-only attention learns low-level 580

linguistic phenomena, e.g. local syntactic depen- 581

dencies. On the other hand, cross-modal attention 582

visually grounds objects and, therefore, semantic 583

dependencies in its deeper layers. We has also 584

shown that learning spatial relations cross-modally 585

is challenging. Overall, our work demonstrates 586

that attention on vision and language captures con- 587

siderably more diverse linguistic knowledge, both 588

syntactic and semantic which might not be linearly 589

aligned, compared to uni-modal (language only) 590

architectures. One possible follow-up experiment 591

is to use attention as input to the probing classifier 592

and identify a specific knowledge encoded by the 593

weights. However, the performance of the probing 594

model does not tell us whether the original model 595

utilises acquired knowledge since it is detached 596

from the original architecture (Belinkov, 2021). In 597

contrast, inferring linguistic properties from atten- 598

tion weights makes our analysis “weightless”, with 599

no requirement of learning a new set of parameters. 600

We believe that our work provides one possible ex- 601

planation of how a complex, large-scale language 602

model learns knowledge about the world. 603
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A Appendix A 786

Pronouns, e.g. it, his were not linked with 787

any object in the scene. Also, several noun 788

phrases depicting spatial descriptions or locations 789

were also ignored, e.g. the right, the 790

background, the corner. Some noun 791

phrases were describing properties of objects in 792

the scene (e.g., color, the overall color 793

of the room) or positional arrangement (a 794

straight line in three paintings 795

hang in a straight line). Other noun 796

phrases described a general understanding of the 797

image, and not a single bounding box could cover 798

it (a beachside hotel in a room that 799

looks like inside a beachside 800

hotel). Some noun phrases looked incorrect 801

due to either an error by spaCy or human who 802

produced the original description, e.g. the 803

walls floor sofa. 804

B Appendix B 805

When extracting noun phrases for the exper- 806

iment on visual grounding, we ignore any 807

pronouns and spatial phrases, which are found 808

in the following list: right, a right, the 809

right, left, a left, the left, top, 810

the top, bottom, the bottom, back, 811

the back, front, the front, far, the 812

far, close, the close, side, each 813

side, background, the background, 814

foreground, the foreground, middle, 815

the middle, corner, a corner, the 816

corner. 817

10

https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://aclanthology.org/P08-1028
https://aclanthology.org/P08-1028
https://aclanthology.org/P08-1028
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/W18-5431
https://www.aclweb.org/anthology/2021.eacl-main.264
https://www.aclweb.org/anthology/2021.eacl-main.264
https://www.aclweb.org/anthology/2021.eacl-main.264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.1016/0010-0277(84)90023-4
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.pdf
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf
https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf
https://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf

