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Abstract

The task of ordering a shuffled set of sentences001
into a coherent text is used to evaluate the ca-002
pacity of a model to understand causal and tem-003
poral relations between entities and events. Re-004
cent approaches rely on pretrained Transformer-005
based models, but it remains unknown whether006
the differences between them, such as size, pre-007
training data and objectives, affect their coher-008
ence modeling capacity. We present a simple009
architecture for sentence ordering that relies010
exclusively on pretrained Transformer-based011
encoder-only models. This allows us to com-012
pare the coherence modeling capabilities of013
the monolingual and multilingual versions of014
BERT, RoBERTa, and DistilBERT. We show015
that RoBERTa-based models outperform BERT-016
based models and are more robust when order-017
ing longer documents with more than 10 sen-018
tences. Thus, the intuitive advantage offered019
by sentence-based objectives such as Next Sen-020
tence Prediction used in BERT is effectively021
compensated by the higher amount and diver-022
sity of the training data used in RoBERTa.023
However, the difference between multilingual024
versions of BERT and RoBERTa is narrower.025
This suggests that exposure to different lan-026
guages partially makes up for the benefits of027
larger and more diverse training data.028

1 Introduction029

As an essential element of discourse, a large num-030

ber of works have focused on studying coherence;031

cf., e.g., (Wang and Guo, 2014). Textual coher-032

ence refers to the relations of meaning between033

sentences or propositions of a text, allowing it to be034

logical and semantically consistent. It requires an035

understanding of entities, events, and the relations036

between them. It has a wide range of applications037

in tasks such as multi-document extractive summa-038

rization (Barzilay and Elhadad, 2002; Galanis et al.,039

2012; Nallapati et al., 2017), question answering040

(Yu et al., 2018; Liu et al., 2018) and text gener-041

ation (Konstas and Lapata, 2013; Schwartz et al., 042

2017; Holtzman et al., 2018). 043

The sentence ordering task (Barzilay and Lapata, 044

2008) is commonly used to train and evaluate coher- 045

ence modeling systems. It aims at finding the most 046

coherent permutation of sentences among all pos- 047

sible orders in a paragraph. Early works exploited 048

linguistic features (Elsner and Charniak, 2008; La- 049

pata et al., 2005; Barzilay and Lapata, 2005; Elsner 050

and Charniak, 2011a; Louis and Nenkova, 2012) 051

and the first neural networks-based approaches re- 052

lied on pointer networks (Gong et al., 2016; Lo- 053

geswaran et al., 2018; Cui et al., 2018; Yin et al., 054

2019, 2020; Wang and Wan, 2019; Oh et al., 2019). 055

However, the recent success of transfer learning 056

from Transformer-based language models in a wide 057

range of cross-lingual transfer tasks has pushed the 058

state-of-the-art much further (Kumar et al., 2020; 059

Prabhumoye et al., 2020; Zhu et al., 2021b,a; Cui 060

et al., 2020; Chowdhury et al., 2021). 061

There is a wide variety of Transformer-based 062

models that are pretrained with different objec- 063

tives and data, such as BERT (Devlin et al., 2019), 064

RoBERTa (Liu et al., 2019), or DistilBERT (Sanh 065

et al., 2019). However, the majority of sentence or- 066

dering works rely exclusively on BERT, originally 067

trained with the Masked Language Model (MLM) 068

and Next Sentence Prediction (NSP) objectives on 069

English data. It remains unknown whether opti- 070

mizing for different pretraining objectives, with 071

different data and different languages, affects the 072

coherence modeling capacity of Transformer-based 073

language models. It seems intuitive that the NSP 074

objective present in BERT but not in RoBERTa 075

should be useful for the sentence ordering task. 076

However, it is also possible that pretraining mod- 077

els with larger and more diverse data as done in 078

RoBERTa can compensate for the lack of sentence- 079

based objectives. Moreover, multilingual models 080

that are trained on multiple languages can benefit 081

by being exposed to different data, e.g. sentences 082
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of different length and complexity.083

We explore these and other aspects of coherence084

modeling via a clean and simple architecture for085

sentence ordering that relies only on pretrained086

Transformer-based models as the encoder. Our ar-087

chitecture comprises of a document encoder that088

captures the relations between the sentences and089

generates a representation for each sentence. The090

model generates a score for each sentence based on091

those representations, which is used to sort them.092

We train and evaluate the monolingual and multilin-093

gual versions of RoBERTa, BERT and DistilBERT094

on five sentence ordering datasets (§4.2). Despite095

its simplicity, the proposed method is competitive096

and outperforms more complex models (Prabhu-097

moye et al., 2020; Kumar et al., 2020).098

We show that, despite the intuitive advantage099

of the NSP objective used to train BERT-based100

models, the coherence modeling capabilities of101

RoBERTa-based models are stronger than those102

of BERT-based models. Thus, the larger and more103

diverse training data used in RoBERTa compen-104

sates for the lack of sentence-based objectives. The105

performance difference between BERT-based and106

RoBERTa-based models is narrower for the mul-107

tilingual models, suggesting that exposure to dif-108

ferent languages, with e.g. sentences of different109

length and complexity, partially makes up for the110

benefits of larger and more diverse training data.111

Distilled models are close in accuracy to the origi-112

nal models while being lighter and much faster to113

train. Our main contributions are:114

• A simple yet competitive Transformer-based115

architecture for sentence ordering (§3.1).116

• A novel data augmentation strategy designed117

to leverage as much knowledge as possible118

from the available data while keeping the train-119

ing procedure tractable (§3.3).120

• A thorough comparison of the coherence121

modeling abilities of different pretrained122

Transformer-based language models: Analyz-123

ing 1) the utility of the NSP pretraining objec-124

tive by comparing BERT and RoBERTa-based125

models; 2) the benefit of using multilingual126

models in monolingual downstream tasks; and127

3) the impact of model size in the coherence128

modeling capabilities of the models (§5).129

2 Related work 130

Early approaches to sentence ordering focused on 131

modeling local coherence using linguistic features 132

(Lapata et al., 2005; Barzilay and Lapata, 2008; El- 133

sner and Charniak, 2011b; Guinaudeau and Strube, 134

2013). The first neural network-based approaches 135

relied on pointer networks (Vinyals et al., 2015) 136

to retrieve the correct order by pair-wise compar- 137

isons of encoded sentences (Gong et al., 2016; Lo- 138

geswaran et al., 2018; Cui et al., 2018; Yin et al., 139

2019, 2020). Later works used pointer networks for 140

decoding (Wang and Wan, 2019; Oh et al., 2019), 141

introducing the use of attention mechanisms (Bah- 142

danau et al., 2014). 143

Recent approaches use ranking or sorting frame- 144

works for this task. RankTxNet (Kumar et al., 145

2020) uses BERT sentence representations to com- 146

pute a score for each sentence, and sorts all the 147

scores with a ranking-based loss function. B-TSort 148

(Prabhumoye et al., 2020) predicts the correct con- 149

straint between sentence pairs and uses topological 150

sorting to find the final order. Zhu et al. (2021b) 151

use constraint graphs to generate order-enhanced 152

sentence representations. BERT4SO (Zhu et al., 153

2021a) presents a BERT-base approach that jointly 154

encodes all sentences instead of encoding each sen- 155

tence separately, and proposes a margin-based list- 156

wise ranking loss. BERSON (Cui et al., 2020) 157

introduces a new relational pointer decoder that in- 158

corporates the relative ordering information into the 159

pointer network with a BERT-based deep relational 160

module. While most approaches use BERT, the 161

state-of-the-art approach Re-BART (Chowdhury 162

et al., 2021) is a sequence-to-sequence model that 163

formulates sentence ordering as a conditional text 164

generation task using BART (Lewis et al., 2020). 165

We present a simplified yet competitive version 166

of Zhu et al.’s BERT4SO. We completely remove 167

the document encoder and simplify the input en- 168

coding and the loss function, and our results im- 169

prove those of BERT4SO. Moreover, the simple 170

and clean architecture allows us to experiment with 171

different pretrained Transformer-based models to 172

study whether optimizing for different model sizes, 173

languages and pretraining objectives affects the co- 174

herence modeling capacity of the models. 175

3 Transformer-based Sentence Ordering 176

The sentence ordering problem aims at finding the 177

most coherent permutation of sentences among all 178

possible orders in a paragraph. Formally, given 179
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a set of N sentences {So1 , So2 , ..., SoN }, with ran-180

dom order [o1, o2, ..., oN ], the model aims to re-181

cover the correct order [o∗1, o
∗
2, ..., o

∗
N ]. Following182

existing work (Kumar et al., 2020; Prabhumoye183

et al., 2020; Zhu et al., 2021b,a), we frame the task184

as a ranking problem. We train a model to predict a185

score zi for each sentence Si, and to determine the186

predicted order by sorting all scores from higher187

(first sentence) to lower (last sentence).188

3.1 Model architecture189

We present a clean and simple architecture for190

sentence ordering that relies exclusively on a191

Transformer-based model, which is used as the en-192

coder (Figure 1). We experiment with both BERT-193

based and RoBERTa-based models, and in what fol-194

lows we will refer to them generally as Pretrained195

Language Models (PLM).196

Input encoding. PLMs are trained with a maxi-197

mum of two sentences as input, and therefore they198

are not directly applicable for sentence ordering,199

where the model has to handle multi-sentence doc-200

uments. To overcome this obstacle, some works en-201

code each sentence separately (Kumar et al., 2020),202

while others encode sentence pairs (Prabhumoye203

et al., 2020; Zhu et al., 2021b). Following Zhu204

et al. (2021a), we concatenate all sentences into a205

single sequence, separating each sentence with a206

[CLS] token (BERT) or a <s> token (RoBERTa).207

Each input sequence starts with a [CLS] token208

and ends with a[SEP] token (BERT) or a </s>209

token (RoBERTa). If the input length exceeds the210

model capacity (512 tokens) at training time, we211

randomly remove sentences.1212

Sentences encoding. After concatenating the to-213

kens of the different sentences, three different em-214

beddings are added up as input to the encoder: to-215

ken embeddings, segment embeddings and position216

embeddings. As shown in Figure 1, the alternation217

of segment embeddings is used to indicate the sen-218

tence to which each token belongs. The output of219

the [CLS] token preceding each sentence is used220

as sentence representation to compute the score.221

Score generation. Once generated, the represen-222

tation of each sentence is fed into a 2-layer Percep-223

tron in order to generate a score, which is then used224

1Removing sentences generates harder examples, because
part of the semantic content necessary to recover the correct
order may be potentially removed.

to order the input sentences from higher score (first 225

sentence) to lower score (last sentence). 226

3.2 Loss function 227

We use ListMLE (Xia et al., 2008), a listwise rank- 228

ing loss that minimizes a likelihood loss function 229

defined on the predicted list and the ground-truth 230

list. ListMLE has been shown to perform better 231

than pointwise or pairwise losses in optimizing 232

sentence ordering methods (Kumar et al., 2020). 233

Let o = [o1, o2, ..., omn ] be the correct order of a 234

document n containing m sentences. Then, 235

LListMLE(pn) = −logPM (o|pn) (1) 236

237

PM (o|pn) =

mn∏
k=1

exp(zok)∑mn
i=k exp(zoi)

(2) 238

3.3 Data augmentation strategy 239

The common approach to neural sentence ordering 240

relies mainly on shuffling the sentences in each 241

document and training the model to predict the cor- 242

rect order (Kumar et al., 2020; Prabhumoye et al., 243

2020; Zhu et al., 2021b,a; Cui et al., 2020; Chowd- 244

hury et al., 2021). Since n distinct objects can 245

have n! permutations, we could potentially gener- 246

ate a huge amount of training examples. However, 247

training with all possible permutations would be 248

extremely time-consuming, and thus we propose 249

a novel training strategy that aims at leveraging as 250

much knowledge as possible from the data while 251

keeping the training procedure efficient. We start 252

by generating a random shuffle order for each doc- 253

ument, to compose our default training set. Then, 254

at each epoch we train with the default training set, 255

augmented with 1) a percentage of the examples 256

with a different randomly generated shuffle order; 257

and 2) a percentage of documents from which we 258

randomly remove sentences to generate harder ex- 259

amples. By removing sentences, we are removing 260

semantic content, which difficults recovering the 261

correct order. After experimenting with different 262

combinations of percentages, we select the combi- 263

nation that offers the best accuracy over the valida- 264

tion sets: augment with 100% of documents with 265

different shuffle order, and 25% of documents with 266

one randomly-removed sentence. 267
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Figure 1: Clean and simple Transformer-based architecture for sentence ordering.

4 Experiments268

4.1 Pretrained Models269

To study the effect of pretraining objective, lan-270

guage and size on the coherence modeling capacity271

of the models, we conduct experiments with six pre-272

trained Transformer-based models based on BERT273

and RoBERTa base models.274

BERT (Devlin et al., 2019). Bidirectional Trans-275

former trained with MLM and NSP. Monolingual276

(16 GB of English data from Book Corpus and277

Wikipedia). 30k WordPiece vocabulary. 110M278

parameters.279

RoBERTa (Liu et al., 2019). Bidirectional Trans-280

former trained with MLM. Monolingual (160 GB281

of English data). 50k BPE vocabulary. 125M282

parameters. Compared with BERT, RoBERTa is283

trained with dynamic masking (instead of static)284

on much more data and without NSP loss.285

DistilBERT (Sanh et al., 2019). BERT distilla-286

tion. Monolingual (16 GB of English data from287

Book Corpus and Wikipedia). 30k WordPiece vo-288

cabulary. 66M parameters. 40% less parameters289

than BERT, while retaining 97% of its language290

understanding capabilities and being 60% faster.291

XLM-R (Conneau et al., 2020). Bidirectional292

Transformer trained with MLM. Multilingual (2 TB293

filtered CommonCrawl data; 100 languages). 250k294

Sentence Piece vocabulary. 270M parameters.295

mBERT (Devlin et al., 2019). Bidirectional296

Transformer trained with MLM and NSP. Multilin-297

Split Sentences
Dataset Train Dev Test Max Avg

NIPS 2.4K 0.4K 0.4K 15 6

AAN 8.5K 962 2.6K 20 5

NSF 96K 10K 21.5K 40 8.9

ROCStories 78.5K 10K 10k 5 5

SIND 40K 5K 5K 5 5

Table 1: Datasets statistics. Two different domains:
scientific papers abstracts (NIPS, AAN, NSF) and sto-
rytelling (ROCStories, SIND).

gual (top 104 languages with the largest Wikipedia). 298

110k WordPiece vocabulary. 177M parameters. 299

mDistilBERT (Sanh et al., 2019). mBERT dis- 300

tillation. Multilingual (top 104 languages with the 301

largest Wikipedia). 110k WordPiece vocabulary. 302

134M parameters. 303

4.2 Datasets for Sentence Ordering 304

We run our experiments on five datasets from 305

two different domains: scientific papers abstracts 306

(NIPS/AAN/NSF) and storytelling (ROCStories 307

and SIND). We describe all datasets below, and 308

report statistics in Table 1. 309

Scientific abstracts: NIPS/AAN/NSF abstracts 310

(Logeswaran et al., 2018)). Abstracts from NIPS 311

papers, the ACL Anthology Network corpus and 312

NSF research award papers. The percentage of doc- 313

uments with more than 10 sentences, which will be 314

used to analyse the coherence modeling capabili- 315

ties of the models on long documents (§5.3), are 316

1.48%, 2.78% and 24.22%, respectively. 317
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ROCStories (Mostafazadeh et al., 2016). Five-318

sentence commonsense stories capturing a rich set319

of causal and temporal commonsense relations be-320

tween daily event.321

SIND (Huang et al., 2016). Sequential vision-322

to-language dataset containing photo sequences323

aligned to both descriptive and story language.324

325

Scientific abstracts are challenging due to their326

specific domain and the higher number of sentences327

per document (specially high in NSF). ROCStories328

appears to be the easiest dataset due to the sim-329

plicity of its 5-sentence stories. The multimodal330

nature of SIND makes the dataset very challenging331

when working only with the textual part, because in332

the absence of images, the sentence order of many333

examples is highly ambiguous.334

4.3 Metrics335

Following previous studies (Prabhumoye et al.,336

2020; Kumar et al., 2020; Chowdhury et al., 2021;337

Cui et al., 2020; Zhu et al., 2021a), we use three338

different metrics:339

Sentence accuracy (Acc). Ratio of sentences340

whose absolute positions are correctly predicted.341

The metric ranges from 0 (worst) to 100 (best).342

Perfect Match Ratio (PMR). Percentage of doc-343

uments for which the entire order of the sequence344

is correctly predicted. The metric ranges from 0345

(worst) to 100 (best).346

Kendall’s Tau (τ ). Measures how well a rank-347

ing agrees with the ground-truth. For a paragraph348

containing N sentences:349

τ = 1− 2i(
N
2

) (3)350

where i denotes the number of pairs in the pre-351

dicted sequence with the incorrect relative order352

(Lapata, 2003). The metric ranges from -1 (worst)353

to 1 (best).354

4.4 Sentence Ordering Baselines355

Even though our focus is not on improving the356

sentence ordering state of the art but on comparing357

the coherence modeling capabilities of different358

pretrained Transformer-based models, we compare359

our results with 5 previous methods for the sake of360

completeness: Re-BART (Chowdhury et al., 2021),361

BERSON (Cui et al., 2020), BERT4SO (Zhu et al.,362

2021a), B-TSort (Prabhumoye et al., 2020) and 363

RankTxNet (Kumar et al., 2020). 364

4.5 Experimental setup 365

We use Apache MXNet (Chen et al., 2015) for our 366

experiments, and we train on NVIDIA®V100 Ten- 367

sor Core GPUs. For the sentence encoder, we rely 368

on the base cased versions of the pretrained models. 369

The Perceptron has two layers with 768 hidden size. 370

We use Adam (Kingma and Ba, 2014) as optimizer, 371

a batch size of 4 and an initial learning rate of 2e−6, 372

reduced with a polynomial scheduler with 20% of 373

warmup steps. We train to convergence, with 25 pa- 374

tience epochs and a minimum validation accuracy 375

improvement of 1e−3 afterwards for early-stopping. 376

To mitigate the variance in performance induced by 377

weight initialization and training data order (Dodge 378

et al., 2020), we train each model 3 times with dif- 379

ferent random seeds and average the results. 380

5 Results analysis 381

Table 2 shows a summary of the results on the sen- 382

tence ordering task for all the models and all the 383

datasets. We will analyse the results along two dif- 384

ferent axes, comparing 1) monolingual models with 385

their multilingual counterparts, and 2) the three 386

families of models: RoBERTa-based (RoBERTa 387

and XLM-R), BERT-based (BERT and mBERT) 388

and DistilBERT-based (DistilBERT and mDistil- 389

BERT). Unless stated otherwise, we will compare 390

the accuracy of the models for simplicity, but the 391

observations hold for all metrics. 392

As expected, given the simplicity and homogene- 393

ity of its 5-sentence documents, all models have a 394

higher accuracy on ROCStories than other datasets. 395

On the other side, SIND and NSF prove to be much 396

more challenging, given the high ambiguity (SIND) 397

and the larger number of sentences of the docu- 398

ments (NSF). 399

Next, multilingual models do not leverage 400

enough knowledge from other languages to im- 401

prove their coherence modeling capabilities, and 402

monolingual models clearly outperform their mul- 403

tilingual counterparts in all datasets. DistilBERT- 404

based models show the lower difference between 405

monolingual and multilingual models, with an aver- 406

age accuracy difference of 1.4, followed by BERT- 407

based models, with an accuracy difference of 2.34. 408

RoBERTa-based models show the highest drop, 409

with an accuracy difference of 5.69. 410

Intuitively, BERT-based models trained with a 411
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NIPS AAN NSF SIND ROC

Models Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR

RoBERTa 62.62 0.82 31.84 72.56 0.86 54.73 37.12 0.67 17.48 55.98 0.64 23.4 82.57 0.89 64.88

BERT 57.32 0.78 27.45 66.69 0.82 46.86 34.35 0.64 15.22 51.63 0.59 18.11 73.89 0.82 48.24

DistilBERT 56.06 0.76 25.12 62.49 0.78 40.99 29.6 0.59 11.32 50.63 0.58 16.69 68.53 0.78 38.95

XLM-R 57.1 0.78 26.95 67.63 0.83 48.05 32.23 0.62 14.1 51.55 0.59 18.04 73.89 0.82 48.65

mBERT 50.54 0.72 19.9 67.07 0.82 47.35 34.21 0.63 15.72 50.33 0.56 16.82 70.02 0.78 42.98

mDistilBERT 53.96 0.75 23.13 62.17 0.78 41.08 30.3 0.57 12.67 48.57 0.55 14.84 65.25 0.75 33.47

Table 2: Sentence ordering results summary. Monolingual models on top, and multilingual models on bottom.

Models NIPS AAN NSF SIND ROC

RoBERTa 85.86 87.83 72.69 74.46 91.77

BERT 83.04 85.33 70.55 70.7 87.5

DistilBERT 82.84 82.91 68.61 70.52 85.16

XLM-R 82.71 85.51 68.78 71.32 87.77

mBERT 77.74 85.59 69.36 69.53 86.15

mDistilBERT 81.55 82.47 66.17 68.3 83.42

Table 3: First and last sentences prediction accuracy.

NSP objective should have an advantage in model-412

ing this task, as predicting if a sentence is the next413

sentence is a simplification of the sentence ordering414

task. However, results shows that RoBERTa-based415

models offer the highest accuracy in both monolin-416

gual (RoBERTa) and multilingual (XLM-R) model417

sets, indicating that indeed the amount and diver-418

sity of data compensates the lack of NSP objective.419

However, RoBERTa outperforms BERT by 5.39420

in accuracy in average, while XLM-R outperforms421

mBERT by only 2.05. This suggests that the ad-422

vantage gained from the amount of training data is423

partially mitigated by the exposure of the model to424

different languages.425

DistilBERT-based models, with only 44% of pa-426

rameters compared to BERT, are able to keep most427

of the knowledge while offering a faster training428

and inference times. DistilBERT loses an average429

of 3.3 accuracy with respect to BERT, and mDis-430

tilBERT loses an average of 2.38 accuracy with431

respect to mBERT. Thus, distilled models are a432

good choice for applications where efficiency need433

to be prioritised. Surprisingly, mDistilBERT out-434

performs mBERT in the NIPS dataset.435

5.1 Predicting first and last sentences436

The first and last sentences play crucial roles in a437

paragraph (Oh et al., 2019; Yin et al., 2019), and438

thus following previous works (Chowdhury et al.,439

2021; Cui et al., 2020) we report the accuracy of440

all the models in ordering the first and the last441

sentences of each document (Table 3).442

The accuracy predicting first and last sentences443

is higher than the overall accuracy shown in Table 444

2. The difference is wider for NIPS/AAN/NSF, 445

probably due to the presence of strong cues typi- 446

cally marking the last sentence in scientific articles 447

(Finally, To conclude, ...). 448

As in the overall results, RoBERTa-based mod- 449

els outperform BERT-based models with a dif- 450

ference of 3.09 accuracy between RoBERTa and 451

BERT and a difference of 1.5 accuracy between 452

XLM-R and mBERT. Again, monolingual models 453

outperform their multilingual counterparts, with 454

the higher difference in RoBERTa-based models 455

(3.3 accuracy), followed by BERT-based mod- 456

els (1.75 accuracy) and DistilBERT-based models 457

(1.63 accuracy). The distilled versions of BERT 458

and mBERT offer a slightly lower accuracy than 459

their original models, with a difference of 1.42 and 460

1.29 respectively, and mDistilBERT surprisingly 461

outperforms mBERT in the NIPS dataset. Thus, as 462

previously observed, the bigger quantity and diver- 463

sity of training data seems to be more helpful than 464

sentence-based objectives. 465

5.2 Sentence displacement analysis 466

In the sentence ordering task, misplacing a sen- 467

tence by one position from its original position 468

may not be as harmful to the general coherence 469

as misplacing a sentence by farther positions. To 470

analyse to which degree the models misplace the 471

sentences when ordering documents, we comple- 472

ment our study with an analysis of the displacement 473

of the sentences (Table 4) by calculating the per- 474

centage of sentences whose predicted location is 475

within one (win1), two (win2) or three (win3) po- 476

sitions from their original location, following pre- 477

vious studies (Prabhumoye et al., 2020; Cui et al., 478

2020). 479

Naturally, win3 accuracy is closer to 100.00 for 480

those datasets with only five sentences per docu- 481

ment (SIND and ROCStories), and lower for those 482

with more sentences per document, with NSF show- 483

ing the lower values as it is the one containing the 484
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NIPS AAN NSF SIND ROC

Models win1 win2 win3 win1 win2 win3 win1 win2 win3 win1 win2 win3 win1 win2 win3

RoBERTa 88.27 95.97 98.38 92.03 97.14 98.72 58.99 70.86 78.41 84.89 95.79 99.2 96.57 99.24 99.84

BERT 85.1 93.99 97.32 89.82 96.26 98.51 56.96 69.58 77.68 82.21 94.79 99.06 94.35 98.77 99.81

DistilBERT 85.13 93.63 97.33 87.7 95.64 98.21 54.74 67.77 76.18 81.69 94.68 99.02 92.76 98.41 99.79

XLM-R 86.05 94.64 97.56 90.15 96.52 98.54 54.12 66.59 74.75 82.41 94.93 99.14 94.27 98.75 99.8

mBERT 80.97 92.05 96.54 89.52 96.19 98.48 56.12 68.47 76.43 80.99 94.16 98.83 93.09 98.36 99.78

mDistilBERT 83.24 93.0 97.11 87.41 95.42 98.23 52.04 64.93 73.46 79.96 93.85 98.78 90.84 97.98 99.72

Table 4: Analysis of the displacement of sentences. Percentage of sentences whose predicted location is within one
(win1), two (win2) or three (win3) positions from their original location.

NIPS AAN NSF

Models Acc Tau PMR Acc Tau PMR Acc Tau PMR

RoBERTa 34.8 0.70 0.0 31.17 0.59 0.0 25.03 0.54 1.0

BERT 26.0 0.58 0.0 30.65 0.56 0.0 22.81 0.53 0.63

DistilBERT 25.16 0.63 0.0 27.14 0.54 0.0 20.97 0.49 0.42

XLM-R 31.24 0.63 0.0 31.68 0.58 0.0 19.98 0.47 0.18

mBERT 23.27 0.58 0.0 28.95 0.56 0.0 22.29 0.50 0.69

mDistilBERT 25.58 0.62 0.0 26.52 0.53 0.0 19.1 0.43 0.38

Table 5: Ordering longer documents. Sentence ordering results on documents with 10 sentences or more.

longest documents, with an average of almost 9485

sentences per document. On the SIND dataset,486

there is an average of 30.6 points difference be-487

tween the general accuracy of the models and the488

win1 accuracy. This reinforces our intuition that the489

SIND dataset is highly ambiguous in order, and the490

models are prone to swap positions of contiguous491

sentences.492

As previously observed, RoBERTa-based mod-493

els outperform BERT-base models, monolingual494

models outperform multilingual models, and full-495

size models outperform their distillation models.496

As the window size decreases, the differences get497

larger, indicating that RoBERTa/monolingual/full-498

size models offer a lower sentence displacement499

than their counterparts.500

5.3 Performance on longer documents501

If the number of sentences in a document is large,502

these documents will be harder to order. To ana-503

lyze the models’ capabilities of ordering long doc-504

uments, we evaluate their performance on docu-505

ments containing more than 10 sentences (Table506

5), following previous studies (Prabhumoye et al.,507

2020; Cui et al., 2020). Indeed, longer documents508

prove to be much harder to order, and none of the509

models are able to correctly order any of the long510

documents, with PMR values dropping to 0 for511

NIPS and AAN, and less than 1% for NSF.512

RoBERTa-based models outperform BERT-base513

models with an average accuracy difference of 3.85514

between RoBERTa and BERT and a difference of515

2.8 between XLM-R and mBERT. Compared to the 516

general results in Table 2, RoBERTa-based mod- 517

els lose 47.18% of accuracy when ordering long 518

documents, while BERT-based models lose 50%. 519

Again, monolingual models outperform their mul- 520

tilingual counterparts, but the accuracy loss with 521

respect the general results is very similar for both 522

groups, with and average accuracy loss of 49.18% 523

for monolingual models, and of 49.83% for multi- 524

lingual models. 525

As previously observed, the average accuracy 526

difference between the normal and distilled BERT 527

models is higher (2.06) than the difference between 528

the normal and distilled versions of mBERT (1.1), 529

with all models offering similar accuracy losses of 530

around 50% with respect to the general results. 531

Therefore, in applications where the expected 532

number of sentences per document is large, 533

RoBERTa-based models are a better choice, of- 534

fering more robust results across sentences lengths. 535

5.4 Comparison with baselines 536

Table 6 shows the evaluation metrics of the state-of- 537

the-art methods for sentence ordering (top) along 538

with the evaluation metrics for the models pre- 539

sented in this work (bottom). Despite the simplicity 540

of our method, the model using RoBERTa as en- 541

coder ranks in third position for all datasets, and all 542

of our models closely match (and even outperform 543

in some cases) RankTxNet. 544
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NIPS AAN NSF SIND ROC

Models Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR

Re-BART 77.41 0.89 57.03 84.28 0.91 73.50 50.23 0.76 29.74 64.99 0.72 43.15 90.78 0.94 81.88
BERSON 73.87 0.85 48.01 78.03 0.85 59.79 50.02 0.67 23.07 58.91 0.65 31.69 82.86 0.88 68.23

B-TSort 61.48 0.81 32.59 69.22 0.83 50.76 35.21 0.66 10.44 52.23 0.60 20.32 —– —– —–

RankTxNet —– 0.75 24.13 —– 0.77 39.18 —– 0.58 9.78 —– 0.57 15.48 —– 0.76 38.02

BERT4SO —– 0.78 30.70 —– 0.81 45.41 —– 0.64 13.00 —– 0.59 19.07 —– 0.85 55.65

RoBERTa 62.62 0.82 31.84 72.56 0.86 54.73 37.12 0.67 17.48 55.98 0.64 23.4 82.57 0.89 64.88

BERT 57.32 0.78 27.45 66.69 0.82 46.86 34.35 0.64 15.22 51.63 0.59 18.11 73.89 0.82 48.24

DistilBERT 56.06 0.76 25.12 62.49 0.78 40.99 29.6 0.59 11.32 50.63 0.58 16.69 68.53 0.78 38.95

XLM-R 57.1 0.78 26.95 67.63 0.83 48.05 32.23 0.62 14.1 51.55 0.59 18.04 73.89 0.82 48.65

mBERT 50.54 0.72 19.9 67.07 0.82 47.35 34.21 0.63 15.72 50.33 0.56 16.82 70.02 0.78 42.98

mDistilBERT 53.96 0.75 23.13 62.17 0.78 41.08 30.3 0.57 12.67 48.57 0.55 14.84 65.25 0.75 33.47

Table 6: Sentence ordering results summary. The best results are in bold. The last six rows correspond to the models
developed in this work, with monolingual models on top, and multilingual models on bottom.

6 Conclusion and Future Work545

Our experiments shed light on the coherence mod-546

eling capabilities of the monolingual and multi-547

lingual versions of BERT, RoBERTa and Distil-548

BERT. We present a simple yet competitive ar-549

chitecture for sentence ordering that relies on pre-550

trained Transformer-based language models as the551

encoder, and a novel data augmentation strategy552

designed to use as much knowledge as possible553

from the data while keeping the training tractable.554

We run experiments on 5 different datasets from555

two different domains: scientific abstracts and556

commonsense stories. We show that RoBERTa-557

based models outperform BERT-based models in558

both monolingual and multilingual subsets, con-559

cluding that the intuitive advantage offered by the560

NSP objective is successfully compensated by the561

higher amount and diversity of data used to train562

RoBERTa models. However, the accuracy differ-563

ence between families is wider in the monolingual564

set (5.39 accuracy between RoBERTa and BERT,565

compared to 2.05 accuracy between XLM-R and566

mBERT). This suggests that the exposure of the567

models to different languages partially mitigates568

the advantage gained from the larger and more569

diverse training data. When trained on multilin-570

gual data, RoBERTa-based models lose more accu-571

racy than BERT-based models, being DistilBERT-572

based models the family with the lower loss. De-573

spite having only 44% of the original parame-574

ters, DistilBERT-based models offer a surprisingly575

strong performance compared with the original576

models, losing and average accuracy of only 3.31 in577

the monolingual case, and 2.38 in the multilingual578

case.579

All models offer a higher accuracy when order-580

ing only the first and last sentences of the docu- 581

ments. The difference is especially noticeable for 582

the scientific abstracts datasets (NIPS/AAN/NSF), 583

which are more likely to contain stronger cues 584

such as "Finally" or "To conclude". Finally, both 585

monolingual and multilingual sets of models are 586

equally affected by the length of the documents, but 587

RoBERTa-based models are more robust, losing 588

around 3% less accuracy when ordering documents 589

with more than 10 sentences. 590

A question that still remains to be answered is 591

whether the coherence modeling capabilities of 592

RoBERTa-based models can be further improved 593

by the use of different pretraining objectives such 594

as the NSP used in BERT or, on the contrary, the 595

use of larger amounts of more diverse training data 596

and bigger models suffices to leverage the knowl- 597

edge from Masked Language Modeling alone. 598
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