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Abstract

The task of ordering a shuffied set of sentences
into a coherent text is used to evaluate the ca-
pacity of a model to understand causal and tem-
poral relations between entities and events. Re-
cent approaches rely on pretrained Transformer-
based models, but it remains unknown whether
the differences between them, such as size, pre-
training data and objectives, affect their coher-
ence modeling capacity. We present a simple
architecture for sentence ordering that relies
exclusively on pretrained Transformer-based
encoder-only models. This allows us to com-
pare the coherence modeling capabilities of
the monolingual and multilingual versions of
BERT, RoBERTa, and DistilBERT. We show
that RoBERTa-based models outperform BERT-
based models and are more robust when order-
ing longer documents with more than 10 sen-
tences. Thus, the intuitive advantage offered
by sentence-based objectives such as Next Sen-
tence Prediction used in BERT is effectively
compensated by the higher amount and diver-
sity of the training data used in RoBERTa.
However, the difference between multilingual
versions of BERT and RoBERTa is narrower.
This suggests that exposure to different lan-
guages partially makes up for the benefits of
larger and more diverse training data.

1 Introduction

As an essential element of discourse, a large num-
ber of works have focused on studying coherence;
cf., e.g., (Wang and Guo, 2014). Textual coher-
ence refers to the relations of meaning between
sentences or propositions of a text, allowing it to be
logical and semantically consistent. It requires an
understanding of entities, events, and the relations
between them. It has a wide range of applications
in tasks such as multi-document extractive summa-
rization (Barzilay and Elhadad, 2002; Galanis et al.,
2012; Nallapati et al., 2017), question answering
(Yu et al., 2018; Liu et al., 2018) and text gener-

ation (Konstas and Lapata, 2013; Schwartz et al.,
2017; Holtzman et al., 2018).

The sentence ordering task (Barzilay and Lapata,
2008) is commonly used to train and evaluate coher-
ence modeling systems. It aims at finding the most
coherent permutation of sentences among all pos-
sible orders in a paragraph. Early works exploited
linguistic features (Elsner and Charniak, 2008; La-
pata et al., 2005; Barzilay and Lapata, 2005; Elsner
and Charniak, 2011a; Louis and Nenkova, 2012)
and the first neural networks-based approaches re-
lied on pointer networks (Gong et al., 2016; Lo-
geswaran et al., 2018; Cui et al., 2018; Yin et al.,
2019, 2020; Wang and Wan, 2019; Oh et al., 2019).
However, the recent success of transfer learning
from Transformer-based language models in a wide
range of cross-lingual transfer tasks has pushed the
state-of-the-art much further (Kumar et al., 2020;
Prabhumoye et al., 2020; Zhu et al., 2021b,a; Cui
et al., 2020; Chowdhury et al., 2021).

There is a wide variety of Transformer-based
models that are pretrained with different objec-
tives and data, such as BERT (Devlin et al., 2019),
RoBERTza (Liu et al., 2019), or DistilBERT (Sanh
et al., 2019). However, the majority of sentence or-
dering works rely exclusively on BERT, originally
trained with the Masked Language Model (MLM)
and Next Sentence Prediction (NSP) objectives on
English data. It remains unknown whether opti-
mizing for different pretraining objectives, with
different data and different languages, affects the
coherence modeling capacity of Transformer-based
language models. It seems intuitive that the NSP
objective present in BERT but not in ROBERTa
should be useful for the sentence ordering task.
However, it is also possible that pretraining mod-
els with larger and more diverse data as done in
RoBERTa can compensate for the lack of sentence-
based objectives. Moreover, multilingual models
that are trained on multiple languages can benefit
by being exposed to different data, e.g. sentences



of different length and complexity.

We explore these and other aspects of coherence
modeling via a clean and simple architecture for
sentence ordering that relies only on pretrained
Transformer-based models as the encoder. Our ar-
chitecture comprises of a document encoder that
captures the relations between the sentences and
generates a representation for each sentence. The
model generates a score for each sentence based on
those representations, which is used to sort them.
We train and evaluate the monolingual and multilin-
gual versions of ROBERTa, BERT and DistilBERT
on five sentence ordering datasets (§4.2). Despite
its simplicity, the proposed method is competitive
and outperforms more complex models (Prabhu-
moye et al., 2020; Kumar et al., 2020).

We show that, despite the intuitive advantage
of the NSP objective used to train BERT-based
models, the coherence modeling capabilities of
RoBERTa-based models are stronger than those
of BERT-based models. Thus, the larger and more
diverse training data used in RoBERTa compen-
sates for the lack of sentence-based objectives. The
performance difference between BERT-based and
RoBERTa-based models is narrower for the mul-
tilingual models, suggesting that exposure to dif-
ferent languages, with e.g. sentences of different
length and complexity, partially makes up for the
benefits of larger and more diverse training data.
Distilled models are close in accuracy to the origi-
nal models while being lighter and much faster to
train. Our main contributions are:

* A simple yet competitive Transformer-based
architecture for sentence ordering (§3.1).

* A novel data augmentation strategy designed
to leverage as much knowledge as possible
from the available data while keeping the train-
ing procedure tractable (§3.3).

* A thorough comparison of the coherence
modeling abilities of different pretrained
Transformer-based language models: Analyz-
ing 1) the utility of the NSP pretraining objec-
tive by comparing BERT and RoBERTa-based
models; 2) the benefit of using multilingual
models in monolingual downstream tasks; and
3) the impact of model size in the coherence
modeling capabilities of the models (§5).

2 Related work

Early approaches to sentence ordering focused on
modeling local coherence using linguistic features
(Lapata et al., 2005; Barzilay and Lapata, 2008; El-
sner and Charniak, 2011b; Guinaudeau and Strube,
2013). The first neural network-based approaches
relied on pointer networks (Vinyals et al., 2015)
to retrieve the correct order by pair-wise compar-
isons of encoded sentences (Gong et al., 2016; Lo-
geswaran et al., 2018; Cui et al., 2018; Yin et al.,
2019, 2020). Later works used pointer networks for
decoding (Wang and Wan, 2019; Oh et al., 2019),
introducing the use of attention mechanisms (Bah-
danau et al., 2014).

Recent approaches use ranking or sorting frame-
works for this task. RankTxNet (Kumar et al.,
2020) uses BERT sentence representations to com-
pute a score for each sentence, and sorts all the
scores with a ranking-based loss function. B-TSort
(Prabhumoye et al., 2020) predicts the correct con-
straint between sentence pairs and uses topological
sorting to find the final order. Zhu et al. (2021b)
use constraint graphs to generate order-enhanced
sentence representations. BERT4SO (Zhu et al.,
2021a) presents a BERT-base approach that jointly
encodes all sentences instead of encoding each sen-
tence separately, and proposes a margin-based list-
wise ranking loss. BERSON (Cui et al., 2020)
introduces a new relational pointer decoder that in-
corporates the relative ordering information into the
pointer network with a BERT-based deep relational
module. While most approaches use BERT, the
state-of-the-art approach Re-BART (Chowdhury
et al., 2021) is a sequence-to-sequence model that
formulates sentence ordering as a conditional text
generation task using BART (Lewis et al., 2020).

We present a simplified yet competitive version
of Zhu et al.’s BERT4S0. We completely remove
the document encoder and simplify the input en-
coding and the loss function, and our results im-
prove those of BERT4SO. Moreover, the simple
and clean architecture allows us to experiment with
different pretrained Transformer-based models to
study whether optimizing for different model sizes,
languages and pretraining objectives affects the co-
herence modeling capacity of the models.

3 Transformer-based Sentence Ordering

The sentence ordering problem aims at finding the
most coherent permutation of sentences among all
possible orders in a paragraph. Formally, given



a set of N sentences {S,,, So,, ---, So }» With ran-
dom order [01, 09, ..., 0n], the model aims to re-
cover the correct order [0], 03, ..., 0y]. Following
existing work (Kumar et al., 2020; Prabhumoye
et al., 2020; Zhu et al., 2021b,a), we frame the task
as a ranking problem. We train a model to predict a
score z; for each sentence S;, and to determine the
predicted order by sorting all scores from higher
(first sentence) to lower (last sentence).

3.1 Model architecture

We present a clean and simple architecture for
sentence ordering that relies exclusively on a
Transformer-based model, which is used as the en-
coder (Figure 1). We experiment with both BERT-
based and RoBERTa-based models, and in what fol-
lows we will refer to them generally as Pretrained
Language Models (PLM).

Input encoding. PLMs are trained with a maxi-
mum of two sentences as input, and therefore they
are not directly applicable for sentence ordering,
where the model has to handle multi-sentence doc-
uments. To overcome this obstacle, some works en-
code each sentence separately (Kumar et al., 2020),
while others encode sentence pairs (Prabhumoye
et al., 2020; Zhu et al., 2021b). Following Zhu
et al. (2021a), we concatenate all sentences into a
single sequence, separating each sentence with a
[CLS] token (BERT) or a <s> token (RoBERTa).
Each input sequence starts with a [CLS] token
and ends with a[ SEP] token (BERT) or a </s>
token (RoBERT?3). If the input length exceeds the
model capacity (512 tokens) at training time, we
randomly remove sentences. !

Sentences encoding. After concatenating the to-
kens of the different sentences, three different em-
beddings are added up as input to the encoder: to-
ken embeddings, segment embeddings and position
embeddings. As shown in Figure 1, the alternation
of segment embeddings is used to indicate the sen-
tence to which each token belongs. The output of
the [CLS] token preceding each sentence is used
as sentence representation to compute the score.

Score generation. Once generated, the represen-
tation of each sentence is fed into a 2-layer Percep-
tron in order to generate a score, which is then used

'Removing sentences generates harder examples, because
part of the semantic content necessary to recover the correct
order may be potentially removed.

to order the input sentences from higher score (first
sentence) to lower score (last sentence).

3.2 Loss function

We use ListMLE (Xia et al., 2008), a listwise rank-
ing loss that minimizes a likelihood loss function
defined on the predicted list and the ground-truth
list. ListMLE has been shown to perform better
than pointwise or pairwise losses in optimizing
sentence ordering methods (Kumar et al., 2020).
Let o = [01, 02, ..., 0, | be the correct order of a
document n containing m sentences. Then,
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3.3 Data augmentation strategy

The common approach to neural sentence ordering
relies mainly on shuffling the sentences in each
document and training the model to predict the cor-
rect order (Kumar et al., 2020; Prabhumoye et al.,
2020; Zhu et al., 2021b,a; Cui et al., 2020; Chowd-
hury et al., 2021). Since n distinct objects can
have n! permutations, we could potentially gener-
ate a huge amount of training examples. However,
training with all possible permutations would be
extremely time-consuming, and thus we propose
a novel training strategy that aims at leveraging as
much knowledge as possible from the data while
keeping the training procedure efficient. We start
by generating a random shuffle order for each doc-
ument, to compose our default training set. Then,
at each epoch we train with the default training set,
augmented with 1) a percentage of the examples
with a different randomly generated shuffle order;
and 2) a percentage of documents from which we
randomly remove sentences to generate harder ex-
amples. By removing sentences, we are removing
semantic content, which difficults recovering the
correct order. After experimenting with different
combinations of percentages, we select the combi-
nation that offers the best accuracy over the valida-
tion sets: augment with 100% of documents with
different shuffle order, and 25% of documents with
one randomly-removed sentence.
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+ + + + + + + + + +
eml)s:ting:g"s‘ Eo Eo Eg ‘ E1 ‘ ‘ E1 ‘ ‘ E1 ‘ Eo Eo Eo Eo
+ + + + + + + + + +
emb:::iitr:;: ‘ E ‘ ‘ =] ‘ ‘ Ent41 ‘ Ents2 Entia Entinzsz | | Entinzes | | Entangss | oo ENTAN2iNGS3| EN14N2iN3:4
o | | J | } | } | b
S::;i':’?r ‘ Transformer ‘
| | |
Es1 Es2 Es3
1 | }
2-layer Perceptron
1 | |
Zs1 252 Zs3
Figure 1: Clean and simple Transformer-based architecture for sentence ordering.
4 Experiments Split Sentences
41 Pretrained Model Dataset | Train Dev  Test | Max Avg
. retrain
etramne odels NIPS | 24K 04K 04K 15 6
To study the effect of pretraining objective, lan- AAN | 85K 962 26K | 20 5
guage and size on the coherence modeling capacity NSF | 96K 10K 215K | 40 89
of the models, we conduct experiments with six pre- ROCStories | 785K 10K 10k
trained Transformer-based models based on BERT SIND | 40K 5K 5K

and RoBERTa base models.

BERT (Devlin et al., 2019). Bidirectional Trans-
former trained with MLM and NSP. Monolingual
(16 GB of English data from Book Corpus and
Wikipedia). 30k WordPiece vocabulary. 110M
parameters.

RoBERTa (Liu etal., 2019). Bidirectional Trans-
former trained with MLM. Monolingual (160 GB
of English data). 50k BPE vocabulary. 125M
parameters. Compared with BERT, RoBERTa is
trained with dynamic masking (instead of static)
on much more data and without NSP loss.

DistilBERT (Sanh et al., 2019). BERT distilla-
tion. Monolingual (16 GB of English data from
Book Corpus and Wikipedia). 30k WordPiece vo-
cabulary. 66M parameters. 40% less parameters
than BERT, while retaining 97% of its language
understanding capabilities and being 60% faster.

XLM-R (Conneau et al., 2020). Bidirectional
Transformer trained with MLM. Multilingual (2 TB
filtered CommonCrawl data; 100 languages). 250k
Sentence Piece vocabulary. 270M parameters.

mBERT (Devlin et al.,, 2019). Bidirectional
Transformer trained with MLM and NSP. Multilin-

Table 1: Datasets statistics. Two different domains:
scientific papers abstracts (NIPS, AAN, NSF) and sto-
rytelling (ROCStories, SIND).

gual (top 104 languages with the largest Wikipedia).
110k WordPiece vocabulary. 177M parameters.

mDistilBERT (Sanh et al., 2019). mBERT dis-
tillation. Multilingual (top 104 languages with the
largest Wikipedia). 110k WordPiece vocabulary.
134M parameters.

4.2 Datasets for Sentence Ordering

We run our experiments on five datasets from
two different domains: scientific papers abstracts
(NIPS/AAN/NSF) and storytelling (ROCStories
and SIND). We describe all datasets below, and
report statistics in Table 1.

Scientific abstracts: NIPS/AAN/NSF abstracts
(Logeswaran et al., 2018)). Abstracts from NIPS
papers, the ACL Anthology Network corpus and
NSF research award papers. The percentage of doc-
uments with more than 10 sentences, which will be
used to analyse the coherence modeling capabili-
ties of the models on long documents (§5.3), are
1.48%, 2.78% and 24.22%, respectively.



ROCStories (Mostafazadeh et al., 2016). Five-
sentence commonsense stories capturing a rich set
of causal and temporal commonsense relations be-
tween daily event.

SIND (Huang et al., 2016). Sequential vision-
to-language dataset containing photo sequences
aligned to both descriptive and story language.

Scientific abstracts are challenging due to their
specific domain and the higher number of sentences
per document (specially high in NSF). ROCStories
appears to be the easiest dataset due to the sim-
plicity of its 5-sentence stories. The multimodal
nature of SIND makes the dataset very challenging
when working only with the textual part, because in
the absence of images, the sentence order of many
examples is highly ambiguous.

4.3 Metrics

Following previous studies (Prabhumoye et al.,
2020; Kumar et al., 2020; Chowdhury et al., 2021;
Cui et al., 2020; Zhu et al., 2021a), we use three
different metrics:

Sentence accuracy (Acc). Ratio of sentences
whose absolute positions are correctly predicted.
The metric ranges from 0 (worst) to 100 (best).

Perfect Match Ratio (PMR). Percentage of doc-
uments for which the entire order of the sequence
is correctly predicted. The metric ranges from 0
(worst) to 100 (best).

Kendall’s Tau (7). Measures how well a rank-
ing agrees with the ground-truth. For a paragraph
containing N sentences:

ro1- 2L 3)

N
(5)
where ¢ denotes the number of pairs in the pre-
dicted sequence with the incorrect relative order

(Lapata, 2003). The metric ranges from -1 (worst)
to 1 (best).

4.4 Sentence Ordering Baselines

Even though our focus is not on improving the
sentence ordering state of the art but on comparing
the coherence modeling capabilities of different
pretrained Transformer-based models, we compare
our results with 5 previous methods for the sake of
completeness: Re-BART (Chowdhury et al., 2021),
BERSON (Clui et al., 2020), BERT4SO (Zhu et al.,

2021a), B-TSort (Prabhumoye et al., 2020) and
RankTxNet (Kumar et al., 2020).

4.5 Experimental setup

We use Apache MXNet (Chen et al., 2015) for our
experiments, and we train on NVIDIA®V100 Ten-
sor Core GPUs. For the sentence encoder, we rely
on the base cased versions of the pretrained models.
The Perceptron has two layers with 768 hidden size.
We use Adam (Kingma and Ba, 2014) as optimizer,
a batch size of 4 and an initial learning rate of 2¢ 6,
reduced with a polynomial scheduler with 20% of
warmup steps. We train to convergence, with 25 pa-
tience epochs and a minimum validation accuracy
improvement of 1e 3 afterwards for early-stopping.
To mitigate the variance in performance induced by
weight initialization and training data order (Dodge
et al., 2020), we train each model 3 times with dif-
ferent random seeds and average the results.

5 Results analysis

Table 2 shows a summary of the results on the sen-
tence ordering task for all the models and all the
datasets. We will analyse the results along two dif-
ferent axes, comparing 1) monolingual models with
their multilingual counterparts, and 2) the three
families of models: RoBERTa-based (RoBERTa
and XLM-R), BERT-based (BERT and mBERT)
and DistilBERT-based (DistilBERT and mDistil-
BERT). Unless stated otherwise, we will compare
the accuracy of the models for simplicity, but the
observations hold for all metrics.

As expected, given the simplicity and homogene-
ity of its 5-sentence documents, all models have a
higher accuracy on ROCStories than other datasets.
On the other side, SIND and NSF prove to be much
more challenging, given the high ambiguity (SIND)
and the larger number of sentences of the docu-
ments (NSF).

Next, multilingual models do not leverage
enough knowledge from other languages to im-
prove their coherence modeling capabilities, and
monolingual models clearly outperform their mul-
tilingual counterparts in all datasets. DistilBERT-
based models show the lower difference between
monolingual and multilingual models, with an aver-
age accuracy difference of 1.4, followed by BERT-
based models, with an accuracy difference of 2.34.
RoBERTa-based models show the highest drop,
with an accuracy difference of 5.69.

Intuitively, BERT-based models trained with a



NIPS AAN NSF SIND ROC
Models Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR
RoBERTa 62.62 0.82 31.84 | 7256 086 54.73 37.12  0.67 17.48 5598  0.64 234 82.57 0.89  64.88
BERT 5732 0.78 2745 66.69 0.82  46.86 3435  0.64 15.22 51.63  0.59 18.11 7389 0.82 4824
DistilBERT 56.06 0.76  25.12 6249  0.78 4099 29.6 0.59 11.32 50.63  0.58 16.69 68.53 0.78 3895
XLM-R 57.1 0.78  26.95 67.63  0.83  48.05 3223  0.62 14.1 51.55  0.59 18.04 7389 0.82  48.65
mBERT 5054  0.72 19.9 67.07 0.82 4735 34.21 0.63 15.72 5033 0.56 16.82 70.02  0.78 4298
mDistilBERT | 53.96 0.75 23.13 62.17 0.78  41.08 30.3 0.57 12.67 48.57  0.55 14.84 6525 0.75 33.47

Table 2: Sentence ordering results summary. Monolingual models on top, and multilingual models on bottom.

Models NIPS | AAN NSF SIND | ROC
RoBERTa 85.86 | 87.83 | 72.69 74.46 91.77
BERT 83.04 | 8533 | 7055 70.7 87.5
DistilBERT 82.84 | 8291 68.61 70.52 85.16
XLM-R 82.71 85.51 68.78 71.32 87.71
mBERT 7774 | 85.59 | 69.36 69.53 86.15
mDistilBERT | 81.55 82.47 | 66.17 68.3 83.42

Table 3: First and last sentences prediction accuracy.

NSP objective should have an advantage in model-
ing this task, as predicting if a sentence is the next
sentence is a simplification of the sentence ordering
task. However, results shows that RoBERTa-based
models offer the highest accuracy in both monolin-
gual (RoBERTa) and multilingual (XLM-R) model
sets, indicating that indeed the amount and diver-
sity of data compensates the lack of NSP objective.
However, RoBERTa outperforms BERT by 5.39
in accuracy in average, while XLM-R outperforms
mBERT by only 2.05. This suggests that the ad-
vantage gained from the amount of training data is
partially mitigated by the exposure of the model to
different languages.

DistilBERT-based models, with only 44% of pa-
rameters compared to BERT, are able to keep most
of the knowledge while offering a faster training
and inference times. DistilBERT loses an average
of 3.3 accuracy with respect to BERT, and mDis-
tilBERT loses an average of 2.38 accuracy with
respect to mBERT. Thus, distilled models are a
good choice for applications where efficiency need
to be prioritised. Surprisingly, mDistilBERT out-
performs mBERT in the NIPS dataset.

5.1 Predicting first and last sentences

The first and last sentences play crucial roles in a
paragraph (Oh et al., 2019; Yin et al., 2019), and
thus following previous works (Chowdhury et al.,
2021; Cui et al., 2020) we report the accuracy of
all the models in ordering the first and the last
sentences of each document (Table 3).

The accuracy predicting first and last sentences

is higher than the overall accuracy shown in Table
2. The difference is wider for NIPS/AAN/NSF,
probably due to the presence of strong cues typi-
cally marking the last sentence in scientific articles
(Finally, To conclude, ...).

As in the overall results, RoBERTa-based mod-
els outperform BERT-based models with a dif-
ference of 3.09 accuracy between RoBERTa and
BERT and a difference of 1.5 accuracy between
XLM-R and mBERT. Again, monolingual models
outperform their multilingual counterparts, with
the higher difference in RoOBERTa-based models
(3.3 accuracy), followed by BERT-based mod-
els (1.75 accuracy) and DistilBERT-based models
(1.63 accuracy). The distilled versions of BERT
and mBERT offer a slightly lower accuracy than
their original models, with a difference of 1.42 and
1.29 respectively, and mDistilBERT surprisingly
outperforms mBERT in the NIPS dataset. Thus, as
previously observed, the bigger quantity and diver-
sity of training data seems to be more helpful than
sentence-based objectives.

5.2 Sentence displacement analysis

In the sentence ordering task, misplacing a sen-
tence by one position from its original position
may not be as harmful to the general coherence
as misplacing a sentence by farther positions. To
analyse to which degree the models misplace the
sentences when ordering documents, we comple-
ment our study with an analysis of the displacement
of the sentences (Table 4) by calculating the per-
centage of sentences whose predicted location is
within one (winl), two (win2) or three (win3) po-
sitions from their original location, following pre-
vious studies (Prabhumoye et al., 2020; Cui et al.,
2020).

Naturally, win3 accuracy is closer to 100.00 for
those datasets with only five sentences per docu-
ment (SIND and ROCStories), and lower for those
with more sentences per document, with NSF show-
ing the lower values as it is the one containing the



NIPS AAN NSF SIND ROC
Models winl win2 win3 winl win2 win3 winl win2 win3 winl win2 win3 winl win2 win3
RoBERTa 88.27 9597  98.38 92.03 97.14 9872 | 5899 70.86 78.41 84.89  95.79 99.2 96.57 99.24  99.84
BERT 85.1 93.99 9732 89.82 9626  98.51 5696  69.58  77.68 82.21 9479  99.06 | 94.35 98.77  99.81
DistilBERT 85.13  93.63 97.33 87.7 95.64  98.21 5474 6777  76.18 81.69  94.68 99.02 | 9276  98.41 99.79
XLM-R 86.05 94.64 97.56 | 90.15 96.52 9854 | 54.12 66.59 7475 82.41 9493  99.14 | 9427  98.75 99.8
mBERT 8097  92.05  96.54 89.52  96.19  98.48 56.12 6847  76.43 80.99 94.16  98.83 93.09 9836  99.78
mbDistilBERT 83.24 93.0 97.11 87.41 9542 9823 52.04 6493 7346 | 7996 93.85  98.78 90.84 9798  99.72

Table 4: Analysis of the displacement of sentences. Percentage of sentences whose predicted location is within one
(winl), two (win2) or three (win3) positions from their original location.

NIPS AAN NSF

Models Acc Tau PMR Acc Tau PMR Acc Tau PMR
RoBERTa 34.8 0.70 0.0 31.17  0.59 0.0 25.03  0.54 1.0

BERT 26.0 0.58 0.0 30.65 0.56 0.0 22.81 0.53 0.63
DistilBERT 25.16  0.63 0.0 27.14 054 0.0 2097 049 042
XLM-R 31.24  0.63 0.0 31.68  0.58 0.0 19.98 047 0.18
mBERT 2327  0.58 0.0 2895 0.56 0.0 2229  0.50 0.69
mDistilBERT 2558  0.62 0.0 2652  0.53 0.0 19.1 0.43 0.38

Table 5: Ordering longer documents. Sentence ordering results on documents with 10 sentences or more.

longest documents, with an average of almost 9
sentences per document. On the SIND dataset,
there is an average of 30.6 points difference be-
tween the general accuracy of the models and the
winl accuracy. This reinforces our intuition that the
SIND dataset is highly ambiguous in order, and the
models are prone to swap positions of contiguous
sentences.

As previously observed, ROBERTa-based mod-
els outperform BERT-base models, monolingual
models outperform multilingual models, and full-
size models outperform their distillation models.
As the window size decreases, the differences get
larger, indicating that RoOBERTa/monolingual/full-
size models offer a lower sentence displacement
than their counterparts.

5.3 Performance on longer documents

If the number of sentences in a document is large,
these documents will be harder to order. To ana-
lyze the models’ capabilities of ordering long doc-
uments, we evaluate their performance on docu-
ments containing more than 10 sentences (Table
5), following previous studies (Prabhumoye et al.,
2020; Cui et al., 2020). Indeed, longer documents
prove to be much harder to order, and none of the
models are able to correctly order any of the long
documents, with PMR values dropping to O for
NIPS and AAN, and less than 1% for NSF.
RoBERTa-based models outperform BERT-base
models with an average accuracy difference of 3.85
between RoBERTa and BERT and a difference of

2.8 between XLM-R and mBERT. Compared to the
general results in Table 2, RoBERTa-based mod-
els lose 47.18% of accuracy when ordering long
documents, while BERT-based models lose 50%.
Again, monolingual models outperform their mul-
tilingual counterparts, but the accuracy loss with
respect the general results is very similar for both
groups, with and average accuracy loss of 49.18%
for monolingual models, and of 49.83% for multi-
lingual models.

As previously observed, the average accuracy
difference between the normal and distilled BERT
models is higher (2.06) than the difference between
the normal and distilled versions of mBERT (1.1),
with all models offering similar accuracy losses of
around 50% with respect to the general results.

Therefore, in applications where the expected
number of sentences per document is large,
RoBERTa-based models are a better choice, of-
fering more robust results across sentences lengths.

5.4 Comparison with baselines

Table 6 shows the evaluation metrics of the state-of-
the-art methods for sentence ordering (top) along
with the evaluation metrics for the models pre-
sented in this work (bottom). Despite the simplicity
of our method, the model using RoBERTa as en-
coder ranks in third position for all datasets, and all
of our models closely match (and even outperform
in some cases) RankTxNet.



NIPS AAN NSF SIND ROC

Models Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR Acc Tau PMR
Re-BART 7741 0.89 57.03 | 84.28 091 73,50 | 50.23 0.76 29.74 | 6499 0.72 43.15 90.78 0.94 81.88
BERSON 73.87 0.85 48.01 78.03  0.85  59.79 50.02  0.67 23.07 5891 0.65 31.69 82.86 0.88  68.23
B-TSort 61.48  0.81 32.59 69.22 0.83  50.76 35.21 0.66 10.44 5223  0.60 2032 — — —

RankTxNet — 075  24.13 — 0.77  39.18 — 0.58 9.78 — 0.57 15.48 — 0.76  38.02
BERT4SO — 0.78  30.70 — 0.81 45.41 — 0.64 13.00 — 0.59 19.07 — 085  55.65
RoBERTa 62.62 0.82 31.84 | 7256 086 54.73 37.12  0.67 17.48 5598  0.64 234 82.57 0.89  64.88
BERT 5732 0.78 2745 66.69 0.82  46.86 3435 0.64 15.22 51.63  0.59 18.11 7389 0.82 4824
DistilBERT 56.06 0.76  25.12 6249  0.78 4099 29.6 0.59 11.32 50.63  0.58 16.69 68.53 0.78 3895
XLM-R 57.1 0.78 2695 67.63 083  48.05 3223 0.62 14.1 51.55  0.59 18.04 73.89  0.82  48.65
mBERT 5054  0.72 19.9 67.07 0.82 4735 34.21 0.63 15.72 5033  0.56 16.82 70.02  0.78 4298
mDistilBERT | 5396 0.75 23.13 62.17 0.78  41.08 30.3 0.57 12.67 48.57  0.55 14.84 6525 0.75 33.47

Table 6: Sentence ordering results summary. The best results are in bold. The last six rows correspond to the models
developed in this work, with monolingual models on top, and multilingual models on bottom.

6 Conclusion and Future Work

Our experiments shed light on the coherence mod-
eling capabilities of the monolingual and multi-
lingual versions of BERT, RoBERTa and Distil-
BERT. We present a simple yet competitive ar-
chitecture for sentence ordering that relies on pre-
trained Transformer-based language models as the
encoder, and a novel data augmentation strategy
designed to use as much knowledge as possible
from the data while keeping the training tractable.

We run experiments on 5 different datasets from
two different domains: scientific abstracts and
commonsense stories. We show that RoBERTa-
based models outperform BERT-based models in
both monolingual and multilingual subsets, con-
cluding that the intuitive advantage offered by the
NSP objective is successfully compensated by the
higher amount and diversity of data used to train
RoBERTa models. However, the accuracy differ-
ence between families is wider in the monolingual
set (5.39 accuracy between RoBERTa and BERT,
compared to 2.05 accuracy between XLM-R and
mBERT). This suggests that the exposure of the
models to different languages partially mitigates
the advantage gained from the larger and more
diverse training data. When trained on multilin-
gual data, RoOBERTa-based models lose more accu-
racy than BERT-based models, being DistilBERT-
based models the family with the lower loss. De-
spite having only 44% of the original parame-
ters, DistilBERT-based models offer a surprisingly
strong performance compared with the original
models, losing and average accuracy of only 3.31 in
the monolingual case, and 2.38 in the multilingual
case.

All models offer a higher accuracy when order-

ing only the first and last sentences of the docu-
ments. The difference is especially noticeable for
the scientific abstracts datasets (NIPS/AAN/NSF),
which are more likely to contain stronger cues
such as "Finally" or "To conclude". Finally, both
monolingual and multilingual sets of models are
equally affected by the length of the documents, but
RoBERTa-based models are more robust, losing
around 3% less accuracy when ordering documents
with more than 10 sentences.

A question that still remains to be answered is
whether the coherence modeling capabilities of
RoBERTa-based models can be further improved
by the use of different pretraining objectives such
as the NSP used in BERT or, on the contrary, the
use of larger amounts of more diverse training data
and bigger models suffices to leverage the knowl-
edge from Masked Language Modeling alone.
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