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Abstract. Deep Reinforcement Learning has achieved important progress
in complex environments but remain difficult to interpret due to the opac-
ity of deep neural policies. This challenge becomes even more pronounced
in cooperative Multi-Agent Reinforcement Learning where coordination
between agents must be understood alongside individual decision-making.
In this work, we investigate whether cooperation is explicitly encoded
in agent policies or if it emerges as the by-product of selfish incentives.
We propose a reward decomposition framework that categorizes reward
components in cooperative or selfish categories to explain cooperative
behaviours and apply this method in the Laser Learning Environment
where agents heavily rely on each other to succeed. Our approach enables
an analysis at two levels: locally, by identifying which incentives dominate
specific actions, and globally, by tracking how priorities evolve during
training. Overall, our experiments uncover explicit cooperation in key
transitions while also exposing the persistence of selfish incentives.

Keywords: Reinforcement Learning · Multi-Agent · Explainability.

1 Introduction

In its early days, Reinforcement learning [Sutton and Barto, 2018, RL] relied on
tabular methods where policies and value functions are stored explicitly in tables
that provide a transparent and interpretable mapping from states and actions
to expected returns. These approaches allowed researchers and practitioners to
directly inspect, analyse, and understand the decision-making process of an agent.
As RL scaled to high-dimensional and complex environments, the use of deep
neural networks became necessary to approximate policies and value functions
[Mnih et al., 2015; Schulman et al., 2017]. This shift to deep RL has led to
remarkable breakthroughs with the caveat that the learned policies are encoded
in large, distributed parameter spaces that are difficult to interpret, making it
significantly more difficult to explain why an agent behaves the way it does.
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In this context, Explainable RL [Puiutta and Veith, 2020; Milani et al., 2024,
XRL] has emerged as a response to the growing opacity of deep RL policies
with the aim to provide insights into the agents’ learning or decision making.
By improving interpretability at various levels, XRL increases the confidence
that humans can put in the agents. Extending the pursuit of explainability to
cooperative Multi-Agent RL [Albrecht et al., 2024, MARL] comes with new and
significant challenges and gave birth to the field of explainable MARL [Zabounidis
et al., 2023; S. Milani et al., 2022, XMARL].

Recent works in the field of XMARL have tackled multiple questions such as
agent-wise credit assignment [Heuillet et al., 2022], division of labour among the
agents [Kazhdan et al., 2020; Khlifi et al., 2023] or even the integration of other
agents into existing XRL techniques [S. Milani et al., 2022]. One particularly
interesting XMARL question that remains unanswered is whether the cooperation
observed in trained agents is genuinely encoded in their policies or if it arises as an
incidental by-product of optimization, a kind of “happy coincidence” rather than
a deliberate, learned strategy. Understanding the difference is critical for both
theoretical and practical reasons: true cooperative behaviour suggests robustness,
adaptability, and generalization across scenarios, whereas accidental cooperation
may fail under even slight environmental or task variations.

In this work, we leverage Reward Decomposition [Juozapaitis et al., 2019, RD]
as an interpretability tool that disentangles the long-term objectives embedded in
agents’ policies and classifies them as cooperative or selfish. Our approach enables
analyses at two complementary levels: locally, by clarifying which incentives
drive specific state–action choices; and globally, by tracking how priorities evolve
over the course of the training. By applying our method to the Laser Learning
Environment – where success requires fine-grained coordination – we show that
it reveals when cooperation is explicitly encoded in policies rather than merely
emerging as a side-effect of selfish behaviour. Additionally, we explain why neural-
network mixing methods such as QMIX are bad candidates in the scope of
XMARL, and prove that they are theoretically unsuitable to RD. To the best
of our knowledge, this is the first work to leverage RD to disentangle genuine
cooperation from coincidental one, providing both methodological contribution to
XMARL and insights in the dynamics of learned cooperative strategies. The code
to reproduce our experiments can be found at https://github.com/yamoling/
marl/releases/tag/bnaic-2025.

2 Background

2.1 Multi-Agent Reinforcement learning

In Reinforcement Learning [Sutton and Barto, 2018, RL], agents learn a policy
by interacting with an environment and by receiving rewards or punishments
according to their actions. The process of decision-making under uncertainty is
modelled by a Markov Decision Processes [Bellman, 1957, MDP] as the tuple
⟨S,A, T,R⟩, where S is the finite set of states, A is the finite set of actions,

https://github.com/yamoling/marl/releases/tag/bnaic-2025
https://github.com/yamoling/marl/releases/tag/bnaic-2025
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T : S ×A× S → [0, 1] is the transition that gives the probability to land in state
s′ by taking action a in state s, and R : S ×A× S → R is the reward function.

Similarly, a Multi-agent Markov Decision Process [Boutilier, 1996, MMDP] is
described as a tuple ⟨n, S,A, T,R⟩ where S, T and R are the same as for MDPs,
n is the number of agents, and A ≡ A1 × · · · ×An is the set of joint actions with
Ai being the set of actions of agent i.

In RL, the objective of the agent is to find the policy π : S → ∆A that maxi-
mizes the expected sum of discounted rewards Eπ [

∑∞
t=0 γ

tR(st, at, st+1) | s0 = s],
where γ is a discount factor that weights the importance of future rewards in
comparison to immediate ones. The action-value function under a given pol-
icy is Qπ(s, a) = Eπ [

∑∞
t=0 γ

tR(st, at, st+1) | s0 = s, a0 = a] and is referred to as
Q-function. The output of a Q-function is referred to as Q-value.

2.2 Value function factorisation

Laurent et al. [2011] showed that multi-agent systems are susceptible to a non-
stationarity problem, which Tuyls and Weiss [2012] also refer to as the multi-agent
moving target problem. This arises because learning agents perceive the other
learning agents as part of the environment. As a result, in a given state, an
agent may perform the same action twice but observe different outcomes due to
the actions of other agents. Claus and Boutilier [1998] have shown that naive
implementations of Independent Q-Learning (IQL) were often unsuccessful, even
for very simple tasks, partly because of this non-stationarity.

To tackle these challenges, Oliehoek et al. [2008] propose to factor out the
value function, and Sunehag et al. [2018] introduce Value Decomposition Network
(VDN), a MARL algorithm in which each agent i has its own utility function
Qi : S×Ai → R. The authors then optimize the Q-network under the assumption
that the joint Q-value is the sum of the agents’ utility, i.e. QVDN =

∑n
i=1 Q

i.
This factorization allows for decentralized execution thanks to the Individual
Global Max property [Son et al., 2019, IGM], which ensures consistency in action
selection between the centralized training and the decentralized execution. Rashid
et al. [2018] extend the principle of Q-value factorization with QMIX, identifying
that any monotonically increasing function respects the IGM property, thereby
increasing the range of functions that can be used and therefore the representation
capabilities of mixing functions.

2.3 Laser Learning Environment

The Laser Learning Environment [Molinghen et al., 2025, LLE] illustrated in
Figure 1 is the multi-agent environment used throughout this work. LLE is a
cooperative grid world where coordination is essential. Agents operate on a grid
and can move in the four cardinal directions or remain stationary. The objective
of the environment is to collect the gems and reach the designated exit tiles while
avoids hazards such as holes and lasers.

Lasers are a central feature of LLE. Each laser is associated with a specific
agent colour. An agent can block lasers of its own colour, but stepping into a laser
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of a different colour results in the agent’s death, a negative associated reward,
and in the premature termination of the episode. This design enforces both
inter-agent dependence – as agents must rely on each other to safely navigate the
environment – and perfect coordination, since even small discrepancies in timing
or movement can lead to failure.

Green laser

Laser
source

Exit tilesGem

Start tiles

Yellow Agent

Fig. 1: An annotated representation of the Laser Learning Environment where
the blue agent is blocking the blue laser for other agents to proceed south.

The standard observation that agents receive in LLE is a representation of the
entire game board and an array of extra features. The game board representation
is layered, meaning that each feature is one-hot encoded on the board in an
individual layer.

3 Related works

We give an overview of related works in the field of XRL. We discuss the two
techniques similar to ours and explain how they differ from our own approach.

3.1 Diagnostics for MARL training

Khlifi et al. [2023] introduce statistics driven metrics to help identify hidden
behavioural trends. Building on top of the policy entropy [Abdallah, 2009] which
quantifies how uncertain or deterministic an agent’s policy is, the authors compute
the agent update divergence. This metric measures how much agents policies
change from one time-step to another during training by computing the KL
divergence [Kullback and Leibler, 1951] of the policy entropy in two consecutive
steps. Finally they quantify how often agents change actions during evaluation,
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resulting in the distribution of actions they take over the course of training,
informing analysts of how labour is divided among agents.

These metrics enable analysis of the agents joint strategy and by extension
the identification of flaws in said strategy. However, they do not dive deeper to
provide insights on the motivations of agents during training.

3.2 Reward decomposition

Reward decomposition [Russell and Zimdars, 2003; Juozapaitis et al., 2019, RD]
is an approach to XRL that relies on the definition of a set of reward components
C = {c1, c2, . . . , cn} that contribute to the reward function. For instance, in
the case of self driving car agents, components could relate to traffic code ccode
and fuel consumption cfuel. In that setting, traffic rule violations would yield a
punishment in ccode, and rewards related to fuel consumption would be issued in
cfuel. In RD, the reward function is defined as the sum of the reward components
as shown in Equation 1.

R(st, a, st+1) =
∑
c∈C

Rc(st, at, st+1) (1)

In turn, it is possible to train value or action-value functions to estimate each
of the individual components and then to sum these functions to retrieve the
global action-value function, as shown in Equation 2.

Q(s, a) =
∑
c∈C

Qc(s, a) (2)

In essence, RD enhances the interpretability of the agent’s policy by making
the underlying objectives transparent and by enabling analysts to understand
and diagnose how specific environmental cues influence agent behaviour.

Juozapaitis et al. [2019] also present Reward Difference Explanations (RDX)
and Minimal Sufficient Explanations (MSX). These metrics allow them to quantify
the impact of individual components and highlight the most impactful components
for or against a specific decision. With that, they focus on individual decisions in
a single-agent settings

In a recent work, Iturria-Rivera et al. [2024] use RD in a multi-agent setup and
combine RD with Q-value factorisation in order to understand which component
contributes the most or the least to the policy of their multi-agent system.
However, the authors do not tackle the question of agent cooperation, which is
at the centre of this work.

Both of these works limit their interpretations to a decision-making level and
do not apply reward decomposition to a larger scope. This work also extends the
technique to a global scope to get insights on policies and the learning process.

4 Highlighting cooperation via Reward Decomposition

In this section, we investigate how RD can be used to show the presence of cooper-
ation in LLE. We first present our methodology, describe how we decompose the
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reward function of LLE, explain our experimental setup and how we gathered the
Q-values for our interpretations. Finally, we present the insights and explanations
obtained from the reward decomposition with regard to cooperation.

4.1 Method

We work with the shaped version of LLE introduced by Molinghen and Lenaerts
[2025a] that promotes laser-blocking behaviour and enables state-of-the-art multi-
agent algorithms to complete the task. We decompose the reward signal of
LLE into the five components illustrated in Table 1. We categorize the reward
components as selfish or cooperative depending on the level of coordination
required to acquire the reward and on the impact of collecting that reward on
the other agents.

On the one hand, since collecting a gem or reaching an exit can generally be
done single-handedly, these actions are categorised as selfish, with Rexit being
particularly so, as an agent’s exit from the environment prevents any further
action and therefore any coordination. On the other hand, receiving a penalty for
dying Rdeath ends the current episode, which affects all of the agents, Rdone can
only be achieved when all of the agents have reached an exit, and Rpbrs requires
other agents to block the laser to collect the corresponding reward. As a result,
the three latter components are categorized as cooperative.

Table 1: LLE reward decomposition with their signal and classification.
Component Signal Classification

Rgem +1 when a gem is picked up Selfish
Rexit +1 when an agent enters an exit tile Selfish
Rdeath −1 when an agent dies Cooperative
Rdone +1 when agents have arrived Cooperative
Rpbrs +1 the first time each agent crosses each laser

without dying (Potential-Based Reward Shaping)
Cooperative

We adapt VDN [Sunehag et al., 2018] and QMIX [Rashid et al., 2018] to
accommodate RD by vectorizing the outputs of the individual Qi-networks to size
|C|, and then applying the mixing on a per-component basis. The corresponding
equations are respectively shown in Equation 3 and Equation 4, where fθ(s) is a
monotonically increasing function.

QVDN
c (s, a) =

N∑
i=1

Qi
c(s, a) (3)

QQMIX
c (s, a) = fθ(s)(Q

1
c(s, a), . . . , Q

n
c (s, a)) (4)
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(a) (b)

Fig. 2: (Left) Representation of the first LLE state under study for Feature
Importance analysis. The yellow agent is about to block the yellow laser. (Right)
Component-wise Qyellow

c -values for the state represented on the left. The stacked
bars account for the total Qyellow-value.

4.2 Experimental Setup

We train cooperative agents on the map shown in Figure 2a where the yellow
agent and the blue agent should go down the central part of the map, blocking
their associated lasers in the process and allowing the green and the red agent to
pass through towards the exit located in the bottom right corner of the grid.

We train agents with VDN and QMIX adapted for RD and collect the agents’
best action Qi across every reward component every 5000 time steps over the
course of the training. Agents use an ϵ-greedy policy with ϵ decaying from
1 to 0.05 over 200k time steps, and the length of each episode is capped to
⌊width×height

2 ⌉ = 78 time steps, i.e. enough to discover the environment without
collecting too many irrelevant transitions. Since this work focuses on explainability
techniques and the interpretations that they provide, the other hyper-parameters
and the Q-network architecture can be found in Appendix B.

Note that we use the shaped version of LLE introduced in [Molinghen and
Lenaerts, 2025b] because Molinghen et al. [2025] have shown in a previous work
that it was a very difficult task that VDN and QMIX were unable to solve
otherwise.

4.3 Results

We repeat our experiments with 12 different seeds and analyse the Qi-values with
regard to agents cooperation both on the feature importance and on the policy
learning level. We first explain why QMIX results were inconclusive, and then
focus on the results of our VDN experiments. Nonetheless, the policy learning
level results using QMIX are shown in Appendix C.
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Inapplicability of QMIX Our results with QMIX were inconclusive, both in
terms of performance and in in terms of explainability (on the feature importance
level and on the policy learning level). In this section, we give an intuition of
why neural-network based mixing methods such as QMIX or QPLEX fail with
RD and give a detailed proof in Appendix A.

Intuitively, consider the fact that mixing networks can end up in different
local optima from one component to an other, thereby possibly scaling the agents’
Qc

i -values up or down accordingly. Since every mixing network is optimized
against it own component, it is possible for the componentQi-values of agents to
be of different orders of magnitude, which we illustrate in Figure 3.

Q1
i -values 0.1 0.2 0.5

Mixing weights 1.5 0.5 2
× 1.25 Q1-value

(a) Q1 computation

Q2
i -values 1 2 5

Mixing weights 0.15 0.05 0.2
× 1.25 Q2-value

(b) Q2 computation

Fig. 3: Fictive weights for mixing networks for components 1 and 2. The joint
action-value Qc is 1.25 in both cases, although the individual agents’ Qc

i -values
are of different orders of magnitude.

Even though each individual mixing network ensures the IGM property
discussed in Section 2.2 at the component-level, the action selection as defined in
Equation 2 is no longer consistent because it does not account for this potential
scaling. We illustrate this with a fictional example in Table 2 where components
1 and 2 are respectively scaled by w1 =0.1 and w2 =1.0 by their mixing networks.
The action selected by Equation 2 is action 2. However, if we scale these values
by the weight of their respective mixing networks, the best action is action 3.

Table 2: Fictional Qc
i -values of an agent trained with non-linear component-wise

mixing networks. The orders of magnitude of the Qc
i -values are very different

from one component to the next, resulting in inconsistent total Qi-values.
Action 1 Action 2 Action 3

Component 1 10.5 10.7 9.0
Component 2 -1.0 -1.0 0.2∑

c∈C Qi
c(s, a) 9.5 9.7 9.2∑

c∈C wcQ
i
c(s, a) 0.05 0.07 1.1

To conclude, the scaling of Qc
i occurs at training time (at the good will of

the optimizer) but the agent is unaware of it at decision-making time, which
can result in a good policy. That being said, independently of the quality of the
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learned policy, this difference in scales has consequences on the explainability
side. Since the decision-making has become inconsistent with the training, it is no
longer possible to interpret Qc

i -values across components at the decision-making
level.

Feature Importance level By analysing the individual agents’ Qi-values
during the transitions shown in Figure 2a, Figure 4a and Figure 5a, we gather
insights on the long term reward components that motivate the agents’ decisions.

(a) (b)

Fig. 4: (Left) Representation of the second LLE state under study for Feature
Importance analysis. (Right) Component-wise Qyellow

c -values for the state repre-
sented on the left. The stacked bars account for the total Qyellow-value.

Consider the state shown in Figure 2a where agent yellow should go south
and block its laser to enable the other agents to pass and make progress in the
collaborative task. Figure 2b illustrates the Qyellow-values in this state by the
end of the training. We can see that the most important incentive moving south
is Qyellow

pbrs which is sensible since the agent will receive a reward of +1 when it
enters this laser for the first time. Any other action is heavily dis-incentivized,
with Qyellow

death accounting for a large part of the negative values, even though agent
yellow is not at risk in any way. This clearly indicates explicit coordination, with
agent yellow prioritizing a cooperative long term reward, and considering the
risk of death of other agents as indicated by the negative Qyellow-values.

This consideration is visible in Figure 4a as well, where actions north and
south have a high negative and Qyellow

death accounting for a large part of it due to
both agents green and red potentially being in range of the laser at the next step.

Meanwhile, if no agent is under threat by a laser, as shown in Figure 5a where
all agents have already passed the blue laser, the incentive related to the death
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(a) (b)

Fig. 5: (Left) Representation of the third LLE state under study for Feature Im-
portance analysis.(Right) Component-wise Qblue

c -values for the state represented
on the left. The stacked bars account for the total Qblue-value.

reward Qblue
death, is negligible for all actions as shown in Figure 5b. We provide

additional evidence of explicit cooperation from the point of view of other agents
in Appendix D.

Policy learning level Figure 6 shows the relative importance of each reward
component for agent yellow over the course of the training, averaged over the 12
repetitions. Each curve represents the prioritization order of reward components
that drives the agent’s decisions. Concretely, during training at each time-step,
the optimal action’s Q-values are collected (independently of the agent’s effective
action). Every 5000 time-step these collected Q-values are averaged and stored,
representing the agent’s prioritization with regards to objectives at that point
during training. In the figure these values are normalized across categories for
each time-step, so that the sum of all Q-values at a given time-step is 1.

We can see that Qdeath positively dominates the others in the early stages of the
training. This is expected since positive rewards are sparse in LLE, in particular
before agents manage to coordinate effectively. Early on, the most reliable signal
comes from the negative reward associated with dying. Consequently, the agents
rapidly learn to take actions that take this signal into account, effectively avoiding
deaths.

The associated positive value can be confusing and should not be interpreted
as "by taking this action we get a positive death reward", but rather as "by
taking this action we avoid a negative death reward". If stepping away from a
laser results in an immediate null reward rather than the negative reward received
by stepping in a laser, the result is relatively speaking positive. Thus the neural
network learns to reinforce that behaviour resulting in a positive Q value. From
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Fig. 6: Component importance on the course of the training for agent yellow. At
each time-step the components Qyellow

c are normalized to sum to 1 at each time
step.

a long term point of view this action might eventually also result in an actual
positive reward being received further reinforcing this notion. This is for instance
illustrated in Figure 4b where Qgem is evaluated negatively for actions North and
South (although the gem component is always positive), while Qdeath is slightly
evaluated positively for the other actions (though the death component is always
negative).

The initially negative Qpbrs value shows that the -1 death penalty outweighs
the +1 shaping reward, leading to an aversion toward the risk constituted by
the traversal of lasers. Still, over time and thanks to the decrease of exploration,
the shaping reward provides enough incentive for agents to attempt it, and
the balance gradually shifts. This shift becomes visible around the 150kth time
step, when Qpbrs starts to rise while Qdeath declines, reflecting that agents learn
to block lasers. Once Qpbrs takes precedence over Qdeath, agents also begin to
prioritize Qgem as they are now able to collect more of them.

As the training stabilizes, several long-term patterns tend to emerge: Qdeath

and Qdone converge to 0, indicating that death avoidance has been fully internal-
ized and that all agents completing the task is not a strong driver. The narrow
confidence interval and high value of Qexit indicates that exiting the level is a
consistent strong motivation across. Finally, Qgem positively dominates the other
components, meaning that agents come to prioritise the acquisition of gems over
coordination.

5 Conclusion

In this work, we leveraged reward decomposition (RD) for explainable multi-
agent reinforcement learning (XMARL) in coordination-critical environments
and found evidence that cooperation is not a “happy coincidence” of a selfish
policy but indeed encoded in the agents’ individual policies. By decomposing
the reward function into cooperative and selfish components, we provided a lens
through which the motivations behind agents’ behaviours can be analysed both
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locally at the level of individual state–action transitions and globally over the
course of training. Additionally, we intuitively showed and formally proved that
for neural-network based mixing methods such as QMIX, there is a mismatch
between the training and the exploitation of the policy under RD.

Our experiments in the Laser Learning Environment with Value Decompo-
sition Network (VDN) demonstrated that RD offers concrete interpretability
benefits. At the local feature importance level, we were able to identify ex-
plicit instances of cooperation such as agents prioritising laser-blocking even in
the absence of selfish incentives. At the policy-learning level, we observed how
agents initially relied on the avoidance of death as the dominant decision-making
component, before progressively shifting towards more cooperative strategies.
Importantly, our findings highlight the nuanced interplay between cooperative
and selfish incentives: while cooperation emerges explicitly in key transitions,
agents ultimately stabilise around policies that still reflect strong self-serving
motivations such as collecting gems and exiting the level.

Our results suggest two important takeaways. First, reward decomposition
provides a structured methodology to distinguish genuine cooperation from in-
cidental coordination in MARL systems, contributing to the broader goal of
building transparent and trustworthy AI. Second, our findings highlight the limi-
tations of current cooperative training setups: even when coordination is required,
agents may converge towards behaviours that prioritise selfish components once
minimal cooperation is achieved.

Overall, this work demonstrates that RD is a valuable tool to interpret the
opaque dynamics of cooperation in multi-agent reinforcement learning and to
understand how cooperation emerges over the course of the learning.
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A Mismatch between QMIX training and decision-making

We show in this section that there can be a mismatch between the policy training
and the policy application when mixing networks such as QMIX or QPLEX are
used due to the possible discrepancy of scaling across components.

Theorem 1. Let C = {c1, c2, . . . } be reward components, A = {1, 2, . . . } be the
action state, Qc

i (s, a) the state–action value of agent i for component c in state
s, and suppose a mixing network for each component c that produces a joint
component value Qc and guarantees the component-wise IGM property, i.e. Qc

i

correctly ranks actions for agent i within component c.

Let the state-action value of agent i be computed by summing Qc
i (s, a) across

components, as stated by Equation 2.
If an action a⋆i is maximal across all components, i.e.

Qc
i (s, a

⋆
i ) ≥ Qc

i (s, a) ∀c ∈ C, ∀a ∈ A,

Then a⋆i is the optimal action.
Similarly, if a−i is minimal across all components, i.e.

Qc
i (s, a

−
i ) ≤ Qc

i (s, a) ∀c ∈ C, ∀a ∈ A

Then a−i is the worst action.

Proof. We note fθc the mixing function of component c (e.g. QMIX) and Ai the
action space of agent i.
For the agents’ action selection to be consistent with the mixing weights, we must
ensure that for any agent i and for a fixed action selection of the other agents

argmax
ai∈Ai

∑
c∈C

fθc(Q
c
i (s, ai), ·) = argmax

a∈Ai

∑
c∈C

Qc
i (s, a) (5)

Where the right-hand-side is the action selection according to Equation 2.
We identify three cases: when action a is maximal across every component, when
a is minimal across every component, and the general case.

Case 1: a⋆ is maximal across every component. We know that

fθc (Q
c
i (s, a

⋆
i ), ·) ≥ fθc (Q

c
i (s, ai), ·) ∀ai ∈ Ai

thanks to the IGM property. Therefore,
∑
c∈C

Qc
i (s, a

⋆) is also maximal.

Case 2: a− is minimal across every component. Similarly to case 1, we know
that

fθc
(
Qc

i (s, a
−
i ), ·

)
≤ fθc (Q

c
i (s, ai), ·) ∀ai ∈ Ai

thanks to the IGM property. Therefore,
∑
c∈C

Qc
i (s, a

⋆) is also minimal.
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Case 3: general case Let us illustrate with a counter-example that illustrates
that Equation 5 does not always hold true. We consider two components c1, c2,
three actions a1, a2, a3, a mixing function fθc that is a dot product with weights
[1.0, 0.1] (respectively noted w1 and w2) for the considered agent, and the Qc

i -
values shown in Table 3 that result in the selection of action 2 as the best action.

Table 3: Qc
i -values of a agent i. The optimal action is action 2.

a1 a2 a3

c1 -1.0 -1.0 0.2
c2 10.5 10.7 9.0∑
c∈C

Qi
c(s, a) 9.5 9.7 9.2

When we adjust each component by its weight, we obtain Table 4 where the
optimal scaled action is a3.

Table 4: Qc
i -values of a agent i scaled by their respective weights w1 = 1.0 and

w2 = 0.1. The optimal action is action 3.
a1 a2 a3

c1 × w1 -1.0 -1.0 0.2
c2 × w2 1.05 1.07 0.9∑
c∈C

wcQ
i
c(s, a) 0.05 0.07 1.1

Equation 5 does not hold since the left-hand side yields a3 and the right-hand
side yields a2. □

B Agent Hyperparameters

Table 5 shows the hyper-parameters used when training the DQN agents used in
our experiments in LLE. These were of application independently of the Level,
mixer and use of PBRS.

C Policy learning level results with QMIX

As is shown on Figure 7, the black-box mixing from QMIX results in inconclusive
decompositions of Q-values.
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Table 5: The hyper-parameters used across all experiments for training agents.
Hyperparameter Value Comment

Memory size 50000 Transitions
Batch size 64 Transitions
Train intervals 5 Time-steps
Optimizer Adam
α 5× 10−4 Learning rate - Both Q-network and mixer
Grad norm clipping 10 Both Q-network and mixer
γ 0.95 Discount factor
τ 0.01 Soft update rate
ϵstart 1
ϵmin 0.05
ϵannealing 200000 Linearly annealed over time

Fig. 7: Component importance on the course of the training for agent yellow with
QMIX. At each time-step the components Qyellow

c are normalized to sum to 1 at
each time step.

D Complementary results of state-action RD

Agent blue’s motivation (Figure 8) to step through the blocked laser, and to later
block its laser in Frame 6 (left) is mostly motivated by QPBRS . Although there
also happens to be a gem in the southern part which would be enough to send
the agent southward. However, in frame 7 (right), agent blue goes eastward in
large part due to Qgem but also Qexit. Among the five available actions, it also
has the highest Q-value, albeit minimal, contribution from the PBRS objective.
Picking the gem in the east, results in the laser being blocked longer (and twice
considering the agent’s way back), leaving more time to other agents to cross
that laser which enables more agents to exit the level. The initial blocking of
the laser is explicit coordination, motivated by QPBRS mainly. However, the
coordination resulting in more agents traversing that laser is the result of a mix
between cooperative objectives—more agents exiting, leading to a higher Qdone

value—and a self-serving policy—picking up the gem.
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Fig. 8: Decomposed Q-values of agent blue (1) in frames 6 (left) and 7 (right)

In Frame 4, agent green has one of the clearer cases of PBRS’ effect as shown
in Figure 9. Most of their Q-values sends them northward, but a noticeably
higher QPBRS value makes them go southward. This stronger QPBRS was the
primary motivator for the southward action and is a clear indication of explicit
cooperation. Agent red primarily goes southward in big parts because of QPBRS

in frames 5 to 7.
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Fig. 9: Decomposed Q-values of agent green (2) at frame 4
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