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Abstract Machine Learning systems are increasingly prevalent across healthcare, law enforcement,
and finance, but often operate on historical data, which may carry biases against certain
demographic groups. Causal and counterfactual fairness provides an intuitive way to define
fairness that aligns closely with legal standards, capturing the intuition that a decision is
fair to an individual if it remains unchanged in a hypothetical scenario where the individual
is part of another demographic group. Despite the theoretical benefits of counterfactual
fairness, it comes with several practical limitations, largely related to the over-reliance on
domain knowledge and approximate causal discovery techniques in constructing a causal
model. In this study, we take a fresh perspective on achieving counterfactual fairness,
building upon recent work in in-context-learning (ICL) and prior-fitted networks (PFNs) to
learn a transformer called FairPFN. This model is trained using synthetic fairness data to
eliminate the causal effects of protected attributes directly from observational data. In our
experiments, we thoroughly assess the effectiveness of FairPFN in eliminating the causal
impact of protected attributes. Our findings pave the way for a new and promising research
area: transformers for causal and counterfactual fairness.

1 Introduction
Algorithmic bias is one of the most pressing AI-related risks, arising when ML-assisted decisions
produce discriminatory outcomes towards historically underprivileged demographic groups [2].
Despite the topic of fairness receiving significant attention in the ML community, various critics
from outside the fairness community argue that statistical measures of fairness and current methods
to optimize them are largely misguided in terms of their context-dependence and transferability to
effective legislation.

Recent work in causal fairness has proposed the popular notion of counterfactual fairness,
which provides the intuition that outcomes are the same in the real world as in the counterfactual
world where protected attributes, (i.e. attributes which should not influence decision-making such as
ethnicity or sex) take on a different value. According to a recent review contrasting observational
and causal fairness metrics [5], causal fairness holds advantages in human-centricity and its analogy
to the legal notions of direct and indirect discrimination. However, the non-identifiability of causal
models [11] presents a significant challenge in proposing a causal model, as the causal effects of
protected attributes are often complex due to the intricate nature of bias in real-world datasets.
If causal model assumptions are incorrect - for example, when a covariate is assumed not to be
influenced by a protected attribute when in fact it is - proposing the wrong causal graph can have
adverse impacts [9].

In this study, we introduce a novel approach to counterfactual fairness based on the recently
proposed TabPFN [7]. Our approach, coined FairPFN, learns to identify and remove the causal
effect of protected attributes by training on a synthetic benchmark of many causally generated data
sets. FairPFN makes predictions that satisfy counterfactual fairness by removing the direct and
indirect effects of discrimination. In our experimental results, we demonstrate the effectiveness,
flexibility, and extensibility of PFNs for algorithmic fairness.
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2 Background
Algorithmic Fairness. Algorithmic bias occurs when past discrimination against a demographic
group, such as ethnicity or sex, is reflected in the training data of an ML algorithm. In such cases,
ML algorithms are well known to reproduce and even amplify this bias in their predictions [4].
Fairness research aims to define and measure algorithmic bias as well as develop principled methods
that mitigate it.
Causal FairnessCausal ML is a new and emerging research field that aims to represent observational
data and prediction problems in the language of causality, providing formalizations for causal
modeling, mediation analysis, and counterfactual explanations [6]. The Causal Fairness Analysis
(CFA) framework [13] draws parallels between causal modeling and legal doctrines of direct and
indirect discrimination. By categorizing variables into protected attributes 𝐴, mediators 𝑋𝑚𝑒𝑑 ,
confounders 𝑋𝑐𝑜𝑛𝑓 , and outcomes 𝑌 , the CFA defines the Fairness Cookbook of causal fairness
metrics: the Direct Effect (DE), Indirect Effect (IE), and Spurious Effect (SE). These metrics facilitate
mediation analysis to assess the causal effects of protected attributes on outcomes both in fairness
problems and datasets as well as after applying bias-mitigation techniques.
Counterfactual Fairness. A related causal concept of fairness is counterfactual fairness [8], which
requires that outcomes remain the same in both the real world and a counterfactual world where a
protected attribute assumes a different value. Given a causal graph, counterfactual fairness can
be obtained either by fitting to observable non-descendants (Level-One), the inferred values of
an exogenous unobserved variable (Level-Two) or the noise terms of an Additive Noise Model
for observable variables (Level-Three) (Appendix Figure 4). Counterfactual fairness has gained
significant popularity in the fairness community, inspiring recent work on path-specific extensions
[12] and CLAIRE, which applies Variational Autoencoders (VAEs) to achieve counterfactually fair
latent representations [9]. CLAIRE is not included as a baseline as their training code or model
is not publicly available. A key challenge in the CFA, counterfactual fairness, and Causal ML in
general is the assumption regarding the prior knowledge of causal graphs and models, which relies
heavily on domain knowledge and approximate causal discovery techniques. In the context of
fairness, Castelnovo et al. [5] argue that it is challenging to obtain causal graphs representing
complex systemic inequalities. Additionally, Ma et al. [9] demonstrate that proposing an incorrect
causal graph or model can invalidate counterfactual fairness and potentially lead to adverse impacts
if the causal relationships between protected attributes and other variables are incorrectly assumed.
Prior-Fitted Networks. Prior-Fitted Networks (PFNs) are a recent approach to incorporating prior
knowledge into neural networks via pre-training on datasets sampled from a prior distribution
[10]. This allows PFNs to perform well on downstream tasks with limited data by leveraging the
learned prior knowledge. TabPFN [7], a recent application of PFNs to small, tabular classification
problems, trains a transformer on a hypothesis of synthetic datasets generated from sparse Structural
Causal Models (SCMs), achieving state-of-the-art results by integrating over the simplest causal
explanations for the data in a single forward pass of the network.

3 Methodology
In this section, we introduce FairPFN, a novel bias mitigation technique that integrates concepts
from prior-fitted networks (PFNs) with principles of causal and counterfactual fairness. FairPFN
aims to eliminate the causal effects of protected attributes from predictions on observational data.
Synthetic Prior Data Generation The main methodological contribution of FairPFN is its fairness
prior, designed to represent the causal mechanisms of bias in real-world data. FairPFN’s fairness
prior includes a key addition to the TabPFN hypothesis space, namely the inclusion and specification
of protected attributes in the randomly generated SCMs as exogenous variables.1 The first step

1The simplifying assumption of exogenous protected attributions is commonly made in the causal fairness literature
as protected attributes are typically unchangeable by definition and hold ancestral closure [13].
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Figure 1: FairPFN Pre-training: FairPFN is pre-trained on a synthetic prior of datasets generated from
sparse SCMs with exogenous protected attributes. A biased dataset is generated and passed
as context to the transformer, and the loss is calculated with respect to the fair outcomes
calculated by removing the causal influence of the protected attribute.

of FairPFN is the generation of biased synthetic datasets that realistically represents the causal
mechanisms of bias in real-world datasets. We provide a visual overview of this process in Figure 1.
Taking inspiration from [7], we represent SCMs as Multi-Layer-Perceptrons (MLPs) with linear
layers serving to represent the structural equation 𝑓 = 𝑃 ·𝑊𝑇𝑥 + 𝜖 , where𝑊 are the weights of the
activations, 𝜖 is Gaussian Noise, and 𝑃 is a dropout mask sampled from a log-scale to encourage
sparsity of the represented SCM. The exogenous protected attribute is sampled from the inputs
to the MLP as a binary variable 𝐴 ∈ {𝑎0, 𝑎1} where 𝑎𝑖 is sampled from the same distribution of
non-protected exogenous variables 𝑈𝑓 𝑎𝑖𝑟 to prevent numeric overflow. We uniformly sample𝑚
features 𝑋 from the second hidden layer onwards to ensure that they contain rich representations
of the causes in the input layer. Finally, we select the target 𝑌 from the output layer. Because 𝑌 is
output as a continuous variable, we binarize it over a random defined threshold.2

Causal Effect Removal. The strategy by which we train the transformer to perform counterfactual
fairness is by generating two datasets, 𝐷𝑏𝑖𝑎𝑠 and 𝐷 𝑓 𝑎𝑖𝑟 . The fair dataset is generated by performing
dropout on the outgoing edges of the protected attribute in the sampled MLP. This has the effect
of setting the weight to 0 in the represented equation 𝑓 = 0 ·𝑤𝑥 + 𝜖 . This means that the effect
of the protected attribute is transformed to Gaussian noise 𝜖 as visualized in Appendix Figure 7.3.
Having generated two datasets, we pass in 𝐷𝑏𝑖𝑎𝑠 as context to the transformer and calculate the
loss between the transformer’s predictions and the fair outcomes 𝑌𝑓 𝑎𝑖𝑟 . This strategy relates to
aligning real and counterfactual predictions as required by counterfactual fairness [8], because if
the protected attribute has no causal effect on outcomes, intervening on it will not produce different
counterfactual outcomes.
Fairness Prior-Fitting. We train the transformer for approximately 3 days on an RTX-2080 GPU.
Throughout training, we vary several hyperparameters, including the size and connectivity of the
MLPs, the number of features sampled, and the number of dataset samples generated.4 To calculate
the loss between the predicted and ground truth values of 𝑌𝑓 𝑎𝑖𝑟 classification setting, we apply
Binary Cross-Entropy (BCE) loss and a decaying learning rate schedule.
Causal Case Studies. First, we introduce our synthetic benchmark, a hand-crafted set of causal
scenarios with increasing difficulty (Figure 2 top). We generate 100 independent datasets per
benchmark class varying the causal weights of simulated protected attributes 𝑤𝐴, the number
of samples 𝑚 ∈ (100, 10, 000) (log-scale), and the standard deviation of noise terms 𝜎 ∈ (0, 1)
(log-scale).

2Without binarizing, future versions of FairPFN are extensible to fairness regression tasks and to handle multiple
protected attributes.

3This bias removal strategy motivates our sampling of𝐴 from an arbitrary distribution𝐴 ∈ {𝑎0, 𝑎1} and not𝐴 ∈ {0, 1}
because in the latter case 𝑓 = 0 ·𝑤𝑥 + 𝜖 would have the same result as 𝑓 = 𝑝 · 0𝑥 + 𝜖 , potentially causing the transformer
to learn to treat all samples as if they belonged to the underprivileged group.

4In practice, the utility of FairPFN is restricted to datasets which fit the assumptions in our prior that we make
about the causal effect of protected attributes. The likelihood that FairPFN be applicable to any fairness dataset can be
increased by either 1) increasing the flexibility of the prior or 2) pre-training on more datasets.
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Figure 2: Synthetic Data: Causal effect (IE, DE, or TCE) and error (1-AUC) of FairPFN vs. the Unfair
baseline (top left) and compared to all baselines (top right) on our synthetic causal case studies
(top). FairPFN reliably removes the causal effect of protected attributes (left), achieving Pareto
optimality in 5/6 case studies.

Real-World Datasets. We also apply FairPFN to two real-world datasets with widely agreed-upon
causal graphs. The first problem we focus on is the Law School Admissions problem [15], which
records law school admissions data from approximately 30,000 applicants to top US law schools,
reporting a significant disparity of bar passage and first-year average (FYA) outcomes with respect
to applicant race. We use the causal graph visualized in Figure 3 and observational data as input to
the dowhy.gcmmodule [14], which fits a causal model to measure the TCE and create counterfactual
data. We also apply inverse probabilistic programming using the compute_noise functionality to
infer the values of noise terms 𝜖𝐺𝑃𝐴 and 𝜖𝐿𝑆𝐴𝑇 to use later as training data for our Level-Three
baseline (Appendix Section A). The next problem we focus on is the Adult Census Income problem
[3], which records the demographic information and income outcomes (𝐼𝑁𝐶 ≥ 50𝐾) for nearly
50,000 individuals. Again, we fit a causal model in order to measure the TE of protected attribute
𝑅𝐴𝐶𝐸, create a counterfactual dataset and infer values of noise terms 𝜖 (Appendix Figure 8).

4 Results
Synthetic Data. First, we evaluate FairPFN on our synthetic causal case studies by visualizing the
change in causal effect (NDE, NIE, or TCE) before and after bias-mitigation with FairPFN (Figure 2
bottom left). We observe across all case studies that FairPFN learns to remove the causal effect of
the protected attribute with two interesting effects. First, we observe that datasets with higher noise
levels (green and yellow) can generally be solved while maintaining a higher level of accuracy. This
could be due to 1) the lower initial causal effect in these datasets or 2) the increased identifiability of
SCMs with noise and non-linearity [12]. In either case, this outcome shows that FairPFN is able to
identify and remove the causal effect of protected attributes even in noisy datasets, an encouraging
outcome for the use of FairPFN in real-world scenarios where measurement error is often present.
Additionally, we find that the Biased case study often achieves an AUC greater than 0.5, which
provides an interesting insight into the inner workings of FairPFN. By maintaining a degree of
accuracy in its predictions, FairPFN effectively removes only the causal effect𝑤𝐴𝐴

2 of the protected
attribute in the corresponding structural equation, while allowing the noise terms 𝜖𝑋 and 𝜖𝑦 (or the
fair parts of these variables) to influence its predictions. This result shows that FairPFN performs
Level-Three counterfactual fairness (Section 2), automatically inferring the values of fair noise
terms, while having no explicit knowledge of the causal model.
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Figure 3: Real-World Data: Alignment of real and counterfactual predictive distributions 𝑌 and
𝑌𝑎→𝑎′ on the Law School Admissions problem (bottom left) and Mean-Absolute Error (MAE)
between predictions on original and counterfactual real-world datasets (right). FairPFN
aligns real and counterfactual predictions (bottom), achieving competitive MAE with the
CFP ground truth (top right).

Real-World Data. In Figure 3 (bottom-left), we visualize the alignment of real and counterfactual
predictive distributions 𝑌 and 𝑌𝑎→𝑎′ obtained by intervening on the protected attribute 𝑅𝐴𝐶𝐸. We
observe that FairPFN better aligns predictive distributions compared to the Unfair and Unaware
baselines, reducing the maximum difference between real and counterfactual predictions to less
than 0.2. We observe the same effect in Figure 3 (right), where we measure elementwise Mean-
Absolute Error (MAE) between real and counterfactual predictive distributions. Again, we observe
that FairPFN minimizes the difference between these distributions, achieving competitive MAE
with the ground truth CFP baseline which has full knowledge of the assumed causal model.

5 Conclusion
We introduce FairPFN, a novel bias-mitigation technique that learns a pre-trained transformer to
remove the causal effect of protected attributes in fairness-aware binary classification problems,
achieving counterfactual fairness with no knowledge of the underlying causal model. Through
experiments on a benchmark of synthetic and real-world datasets, we demonstrate the inner
workings and potential of FairPFN.
Future Work. Looking ahead, we believe that FairPFN opens the door to several promising avenues
of research, including PFNs for fairness pre-processing and fair data generation, path-specific
variations of causal and counterfactual fairness, and multi-objective optimization. While we believe
that proposing a causal model is cumbersome, we also acknowledge its benefits in terms of human-
centricity and interpretability. As such, future versions of FairPFN could incorporate domain
knowledge regarding known causal relationships or output a (set of) predictions regarding possible
causal explanations for the data.
Limitations. A key limitation of FairPFN is that although it removes the requirement of knowing
the causal model, real-world evaluation of causal effects and counterfactual alignment still require
this assumption. Therefore, a crucial follow-up would include predicting the effect of interventions
on protected attributes, allowing FairPFN to be evaluated and reliably deployed in real-world
fairness applications.
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Broader Impact Statement
FairPFN addresses a key limitation in the causal fairness literature by eliminating the need for prior
knowledge of the true causal graph in fairness datasets, making it easier for practitioners to apply
counterfactual fairness to complex problems where the underlying causal model is unknown. This
expands the scope and applicability of causal fairness techniques, enabling their use in a broader
range of scenarios.

A Baseline Models
To compare FairPFN to a diverse set of traditional, causal-fairness, and fairness-awareML algorithms,
we also implement several baselines which we summarize below:

• Unfair: A TabPFNClassifier is fit the entire dataset (𝑋,𝐴,𝑦)

• Unaware: A TabPFNClassifier is fit to non-protected attributes (𝑋,𝑦)

• Constant: A "classifier" that always predicts the majority class

• Random: A "classifier" that randomly predicts the target

• Level-One: A TabPFNClassifier is fit to non-descendant observables of the protected attribute
(𝑋𝑓 𝑎𝑖𝑟 , 𝑦) if any exist

• Level-Two: A TabPFNClassifier is fit to non-descendant unobservables of the protected attribute
(𝑈𝑓 𝑎𝑖𝑟 , 𝑦) if any exist

• Level-Three: A TabPFNClassifier is fit to noise terms of observables (𝜖,𝑦) if any exist

• EGR: Exponentiated Gradient Reduction (EGR) for fairness metric DP as proposed by [1]

We note that these baselines are specifically designed to provide ground truths of the best and
worst that can be done in terms of fairness metrics and that certain baselines are only applicable
to certain datasets. For example Unfair, Unaware, Random, Constant, and EGR are applicable on all
synthetic and real-world datasets. Level-One is only applicable to Direct Effect, Indirect Effect
synthetic causal case studies. Level-Two is additionally applicable to the Level-Two synthetic case
study, and Level-Three is additionally applicable to the Level-Three synthetic case study as well
as the real-world datasets where the causal model is known and noise terms 𝜖 can be estimated. To
synthesize the naming of the Level-X baseleines we refer to this strategy as CFP.
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Figure 4: Counterfactually Fair Prediction (CPF): Visualization of the three levels of Counterfactually
Fair Prediction (CFP), obtained either by fitting to observable non-descendants (Level-One),
the inferred values of an exogenous unobserved variable (Level-Two) or the noise terms of
an Additive Noise Model for observable variables (Level-Three).
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Figure 5: Aligning Counterfactual Distributions (Adult): Alignment of real and counterfactual pre-
dictive distributions 𝑌 and 𝑌𝑎→𝑎′ on the Adult Census Income problem. FairPFN best aligns
the predictive distributions (top) and achieves the lowest mean (0.01) and maximum (0.75)
absolute error.

Figure 6: Counterfactual Fairness (Synthetic): Mean Absolute Error (MAE) between predictive dis-
tributions on the original and counterfactual versions of our causal case studies. FairPFN
achieves competitive MAE with CFP and Constant baselines without having prior knowledge
of the causal graph.
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Figure 7: Effect of Dropout: Visualization of the effect of dropout on the outgoing edges of a protected
attribute in a sampled MLP. In the biased dataset (left), the protected attribute has a slight
negative correlation with the target, while in the fair dataset this effect is reduced to Gaussian
Noise.

Figure 8: Derivation of Noise Variables: Pearson correlation of features including noise terms cal-
culated using inverse probabilistic programming in dowhy’s compute_noise functionality.
Noise terms are uncorrelated with protected attributes and highly correlated with their
corresponding observable.
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