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Abstract

This paper investigates the convergence proper-
ties of the hypergradient descent method (HDM),
a 25-year-old heuristic originally proposed for
adaptive stepsize selection in stochastic first-
order methods (Almeida et al., 1999; Baydin
et al., 2018). We provide the first rigorous con-
vergence analysis of HDM using the online learn-
ing framework of Gao et al. (2024) and apply this
analysis to develop a new state-of-the-art adap-
tive gradient methods with empirical and the-
oretical support. Notably, HDM automatically
identifies the optimal stepsize for the local op-
timization landscape and achieves local superlin-
ear convergence. Our analysis explains the insta-
bility of HDM reported in the literature and pro-
poses efficient strategies to address it. We also
develop two HDM variants with heavy-ball and
Nesterov momentum. Experiments on determin-
istic convex problems show HDM with heavy-ball
momentum (HDM-HB) exhibits robust perfor-
mance and significantly outperforms other adap-
tive first-order methods. Moreover, HDM-HB of-
ten matches the performance of L-BFGS, an ef-
ficient and practical quasi-Newton method, using
less memory and cheaper iterations.

1. Introduction
We consider smooth convex optimization problem

minimize
x∈Rn

f(x),
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where f : Rn → R is convex and L-smooth with f(x⋆) :=
minx f(x) > −∞. Theoretically, gradient descent

xk+1 = xk − αk∇f(xk)

with constant stepsize αk ≡ 1/L is guaranteed to converge.
However, the choice of stepsize αk strongly affects the per-
formance of gradient descent in practice (Defazio et al.,
2024; Agarwal et al., 2020). Various stepsize selection
strategies have been proposed to improve the convergence
of gradient descent. Examples include line-search (Armijo,
1966), Polyak stepsize (Polyak, 1987), stepsize schedul-
ing (Li et al., 2021; Wang and Yuan, 2023), hypergradient
descent (Almeida et al., 1999; Rubio, 2017; Baydin et al.,
2018) and the well-known adaptive stepsizes (Orabona and
Pál, 2016; Duchi et al., 2011; Kingma, 2014; Malitsky and
Mishchenko, 2020; 2024).

This paper focuses on the hypergradient descent method
(HDM), which was initially proposed by Almeida et al.
(1999) as a heuristic for stochastic optimization. It was
later tested by Baydin et al. (2018) on modern machine
learning problems and exhibited promising performance.
In HDM, the stepsize αk is adjusted by another gradient de-
scent update:

αk+1 = αk − η̃k d
dα [f(x

k − α∇f(xk))]
∣∣
α=αk

= αk − ηk−⟨∇f(xk+1),∇f(xk)⟩
∥∇f(xk)∥2 ,

where the hypergradient stepsize η̃k is often set to be η̃k =
ηk

∥∇f(xk)∥2 for ηk > 0 to make the update invariant of the
scaling of f . Recently, Gao et al. (2024) generalized HDM
to update a matrix stepsize (preconditioner) Pk ∈ Rn×n in
preconditioned gradient descent through the iteration

xk+1 = xk − Pk∇f(xk), (1)

Pk+1 = Pk − ηk−∇f(xk+1)∇f(xk)⊤

∥∇f(xk)∥2 , (2)

where (2) follows from

∇P [f(xk − P∇f(xk))]
∣∣
P=Pk

= −∇f(xk+1)∇f(xk)⊤.

We call the update (1)-(2) vanilla HDM throughout the pa-
per. In practice, matrix stepsize Pk is often set to be diago-
nal and the update (2) simplifies to

Pk+1 = Pk − ηk−diag(∇f(xk+1)◦∇f(xk))
∥∇f(xk)∥2 ,
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Figure 1: The convergence behavior of different HDM vari-
ants on a toy quadratic optimization problem. Figure 1a:
two-phase convergence behavior of vanilla HDM. Figure 1b:
effect of null step and our best variant HDM-Best.

where ◦ is the entry-wise product and diag(d) is the diag-
onal matrix with d ∈ Rn on the diagonal.

While vanilla HDM has been used heuristically in vari-
ous applications (Chandra et al., 2022; Wang et al., 2023;
Ozkara et al., 2024; Baydin et al., 2018), it can be unsta-
ble if the hypergradient stepsize ηk is not carefully tuned
(Kunstner et al., 2024; Chandra et al., 2022; Rubio, 2017).
Figure 1a shows f(xk) can spike as high as 1030 in the
early iterations of vanilla HDM, which would lead users
to abandon the algorithm. Surprisingly, our analysis re-
veals that this behavior of HDM is not true divergence; in-
stead, it can be understood as the warm-up phase of an
online learning procedure, and is followed by fast conver-
gence (Figure 1a). Moreover, we show in both theory and
practice that the explosion of f(xk) can be circumvented
by taking a null step, which skips the update whenever
the new iterate fails to decrease the objective value, i.e.,
f(xk−Pk∇f(xk)) ≥ f(xk). The null steps flatten the ob-
jective value curve in the warm-up phase of HDM but cannot
shorten the warm-up (Figure 1b).

Our analysis exploits the online learning framework by Gao
et al. (2024), in which the authors observe that the P -
update (2) in vanilla HDM can be viewed as online gradient
descent with respect to the online surrogate loss

hx(P ) :=
f(x−P∇f(x))−f(x)

∥∇f(x)∥2 . (3)

The function hx(P ), called hypergradient feedback in this
paper, is a function of preconditioner P and is well-defined
for all non-stationary x. To see that (2) aligns with
the online gradient descent update, notice ∇hxk(Pk) =

−∇f(xk+1)∇f(xk)⊤

∥∇f(xk)∥2 so the update (2) sets

Pk+1 = Pk − ηk∇hxk(Pk).

To ensure boundedness of Pk, P -update in Gao et al.
(2024) and in this paper is projected onto a bounded closed
convex candidate set P:

Pk+1 = ΠP [Pk − ηk∇hxk(Pk)]

However, we do not require P to be a subset of positive
(semi)definite cone and P is often taken to be a simple sub-
set such as a ball or a box.

Algorithm 1 Hypergradient Descent Method (HDM)
input initial point x1, P1 ∈ P (not necessarily PSD)
for k = 1, 2,... do

xk+1 = argmin
x∈{xk,xk−Pk∇f(xk)}

f(x)

Pk+1 = ΠP [Pk − ηk∇hxk(Pk)]

end

Vanilla HDM + null steps (Algorithm 1) was first consid-
ered by Gao et al. (2024) and guaranteed to converge glob-
ally. However, their analysis is not sufficient to explain
the practical behavior of HDM and provides no advice for
how to design a practically efficient HDM. In this paper,
we dive deeper into the convergence behavior of HDM (Al-
gorithm 1), establishing sharper global convergence guar-
antees and conducting a local convergence analysis. Our
findings offer new insights into (vanilla) HDM and serve as
a foundation to design more efficient and practical variants
of HDM. The contributions of this paper include:

• We provide the first rigorous convergence analysis for
HDM, including both global and local convergence guar-
antees (Section 3) that show HDM can adapt to the lo-
cal optimization landscape. Our analysis provides sev-
eral new insights into how HDM adapts to optimization
landscapes (Section 3.1), why vanilla HDM is unstable in
practice (Section 3.2), and the connection between HDM
and quasi-Newton methods (Section 3.3).

• We develop and analyze two improved variants of HDM:
HDM + heavy-ball momentum (HDM-HB in Section 4.1),
which has the same convergence rate as HDM but is faster
than HDM in practice; and HDM + Nesterov momentum
(HDM-AGD in Section 4.2), which is faster in theory and
intermediate between HDM and HDM-HB in practice.

• We develop a practically efficient variant HDM-Best
(Figure 1b), which updates xk by preconditioned gra-
dient descent with heavy-ball momentum and jointly up-
dates Pk and momentum parameter by AdaGrad. Our
HDM-Best outperforms most adaptive first-order meth-
ods and performs on par with L-BFGS (with memory
size 5 or 10) using less memory (memory size 1) (Sec-
tion 5).

1.1. Related Literature

Adaptive First-order Methods. Notable adaptive first-
order methods include AdaGrad (Duchi et al., 2011;
McMahan and Streeter, 2010), Adam (Kingma, 2014;
Zhang et al., 2024), parameter-free stepsizes (Orabona and
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Pál, 2016; Defazio et al., 2024), and online learning guided
stepsizes (Zhuang et al., 2019). Most of these techniques
originate in the online learning community, and they typi-
cally achieve both strong empirical convergence and online
learning regret guarantees.

Hypergradient Descent. Hypergradient descent dates
back to Almeida et al. (1999), which was first proposed as
a heuristic to accelerate stochastic gradient descent. Simi-
lar concepts were also explored in Sutton (1992); Schrau-
dolph (1999); Jacobs (1988); Mahmood et al. (2012), while
those works employed slightly different algorithmic up-
dates. Later, Baydin et al. (2018) rediscovered the HDM
and named it “hypergradient descent”; Baydin et al. (2018)
also extended HDM to other first-order methods with exten-
sive experimental validation of its practical efficacy. Re-
cent studies (Jie et al., 2022; Chandra et al., 2022; Ozkara
et al., 2024) further empirically enhanced HDM for broader
applicability, reporting promising numerical results.

Despite these empirical successes, a rigorous theoretical
understanding of HDM has emerged only recently. Rubio
(2017) showed that HDM converges on convex quadratic
functions and established several analytic properties. Sub-
sequently, Kunstner et al. (2024) demonstrated that when
using a diagonal preconditioner, hypergradient can be em-
ployed to generate cutting planes in the preconditioner
space, achieving an O(

√
nκ⋆ log(1/ε)) complexity on

smooth strongly convex functions. Here, κ⋆ is the condi-
tion number associated with the optimal diagonal precon-
ditioner. The idea to update the preconditioner using the
ellipsoid method also appeared in Monteiro et al. (2004)
for solving linear systems, albeit with a very different mo-
tivation. More recently, Gao et al. (2024) showed that HDM
can be viewed as online gradient descent applied to some
surrogate loss function and that HDM has strong trajectory-
based convergence guarantees.

1.2. Notations

We denote Euclidean norm by ∥ · ∥ and Euclidean in-
ner product by ⟨·, ·⟩. The upper and lower case letters
A, a respectively denote matrices and scalars. Denote the
Frobenius norm by ∥A∥F :=

√∑
ij a

2
ij . Define [·]+ :=

max{·, 0}. We use ΠC [·] to denote the orthogonal pro-
jection onto a closed convex set C and use dist(x, C) :=
∥x − ΠC [x]∥ to denote the distance between a point x and
a closed convex set C. Denote the optimal set of f by
X ⋆ = {x : f(x) = f(x⋆)}; and the α-sublevel set of f
by Lα := {x : f(x) ≤ α}. The condition number of an L-
smooth and µ-strongly convex function is κ := L/µ. For
consistency of notation, a stepsize P in this paper always
refers to a matrix applied in the gradient update. Define the
set of scalar stepsizes S := {P = αI : α ∈ R} and diag-
onal stepsizes D := {P = diag(d) : d ∈ Rn}, for which

the hypergradient feedback (3) simplifies to

hx(α) :=
f(x−α∇f(x))−f(x)

∥∇f(x)∥2 if P = S;

hx(d) :=
f(x−d◦∇f(x))−f(x)

∥∇f(x)∥2 if P = D.

2. Background: HDM and Online Learning
This section establishes the connection between HDM and
online learning through the framework in Gao et al. (2024).
We refer to the following assumptions in the paper.

A1: f(x) is L-smooth and convex.

A2: f(x) is µ-strongly convex with µ > 0.

A3: Closed convex set P satisfies 0 ∈ P, L−1I ∈ P and
diam(P) := minP,Q∈P ∥P −Q∥F ≤ D <∞.

2.1. Descent Lemma and Hypergradient Feedback

Hypergradient feedback (3) is motivated by descent lemma:

f(x− 1
L∇f(x))− f(x) ≤ −

1
2L∥∇f(x)∥

2.

The descent lemma states that, under the constant step-
size Pk ≡ 1

LI , the function value progress of a gradi-
ent step is at least proportional to ∥∇f(x)∥2 with ratio
−1/(2L). When an (effective) preconditioner Pk is used,
the effective smoothness constant decreases, and thus the
ratio hx(P ) = f(x−P∇f(x))−f(x)

∥∇f(x)∥2 is expected to become
smaller than−1/(2L), yielding faster convergence. Hence,
the ratio hx(P ) is a suitable feedback to measure the qual-
ity of a preconditioner. HDM uses this feedback to learn a
good preconditioner with online gradient descent. The hy-
pergradient feedback hx(P ) has the following properties.

Lemma 2.1 (Extension of Proposition 6.1 in Gao et al.
(2024)). For any x ̸∈ X ⋆.

• Under A1, hx(P ) is convex and L-smooth and
hx(

1
LI) ≤ −

1
2L . Moreover, if A2 holds and P ⊆ S ,

then hx(α) is µ-strongly convex.

• Under A1 and A3, hx(P ) is (LD + 1)-Lipschitz. More-
over, if A2 holds and P ⊆ D, then hx(d) is µ

(1+LD)2 -
exponential concave (Hazan et al., 2007).

2.2. Online Learning Guarantees

Using convexity and Lipschitz continuity of hx(P ), analy-
sis in online learning (Orabona, 2019; Hazan et al., 2016)
guarantees sublinear regret for online gradient descent.

Lemma 2.2 (Sublinear regret (Gao et al., 2024)). Under
A1 and A3, online gradient descent

Pk+1 = ΠP [Pk − ηk∇hxk(Pk)] (4)
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with stepsize ηk ≡ D
2(LD+1)

√
K

or ηk = D
2(LD+1)

√
k

gen-

erates {Pk} such that∑K
k=1 hxk(Pk)− min

P∈P

∑K
k=1 hxk(P )

≤ ρK := 8D(LD + 1)
√
K. (5)

If strong convexity A2 is further assumed and Pk ∈ S,
a different choice of hypergradient stepsize ηk in (4) im-
proves the regret to logK.

Lemma 2.3 (Logarithmic regret). Instate A1 to A3 and
suppose P ⊆ S . Then online gradient descent (4) with
ηk = 1/(kµ) generates {Pk} such that

∑K
k=1 hxk(Pk) −

minP∈P
∑K
k=1 hxk(P ) ≤ (LD+1)2

2 logK.

Given exponential-concavity of hx in Lemma 2.1, it is pos-
sible to apply online learning algorithms such as the online
Newton method (Hazan et al., 2007).
Remark 1. The diameter D of candidate stepsize set P is
measured in Frobenius norm (A3) and can incur dimen-
sion dependence in the regret bound when Pk are diago-
nal or full matrices. This introduces a trade-off between
online regret and the best possible cumulative feedback
minP∈P

∑K
k=1 hxk(P ): full matrices may achieve smaller

feedback but have larger dimension factor in the regret
bound. Diagonal stepsize often strikes a good balance in
practice.

2.3. Hypergradient Reduction and HDM

One major contribution of Gao et al. (2024) is a reduction
that relates the minimization of cumulative hypergradient
feedback

∑K
k=1 hxk(Pk) to the function value gap:

φ(xk) := f(xk)− f(x⋆). (6)

We provide a sharper version of this reduction.

Lemma 2.4 (Sharper version of Lemma 6.1 in Gao et al.
(2024)). Denote the negative average feedback by

γK({Pk}) := − 1
K

∑K
k=1 hxk(Pk).

Under A1, the iterates generated by Algorithm 1 satisfy

φ(xK+1) ≤ min
{

∆2

K[γK({Pk})]+
, φ(x1)

}
,

where ∆ = maxx∈Lf(x1)
minx⋆∈X⋆ ∥x − x⋆∥. Further,

under A1 and A2,

φ(xK+1) ≤ φ(x1)(1− 2µ [γK({Pk})]+)
K .

According to Lemma 2.4, the negative average feedback
γK({Pk}) determines the rate for sublinear/linear conver-
gence of Algorithm 1: larger γK({Pk}) implies faster con-

vergence. Given the objective γK({Pk}), HDM applies on-
line gradient descent to generate a sequence of precondi-
tioners {Pk} that guarantee the following lower bound:

γK({Pk}) ≥ max
P∈P

1
K

∑K
k=1−hxk(P ) + o(1), (7)

which follows from the sublinear regret ρK = o(K) in
Lemma 2.2 and Lemma 2.3, implying ρK

K = o(1).

3. The Convergence Behavior of HDM
This section presents our main convergence results on HDM
and consequent insights. All the analyses are based on the
online learning framework established in Section 2.

3.1. HDM Adapts to the Local Landscape

Our first convergence result follows by combining
Lemma 2.4 and Lemma 2.2:
Theorem 3.1 (Static adaptivity). Instate φ(xk) in (6). Un-
der A1 and (A1 + A2) respectively, Algorithm 1 with
ηk ≡ D

2(LD+1)
√
K

or ηk = D
2(LD+1)

√
k

satisfies

φ(xK+1) ≤ min{ ∆2

K[γ⋆
K− ρK

K ]+
, φ(x1)}; (A1)

φ(xK+1) ≤ φ(x1)(1− 2µ[γ⋆K −
ρK
K ]+)

K , (A1 + A2)

where ∆ is the same as defined in Lemma 2.4, ρK is de-
fined in (5), and γ⋆K := −minP∈P

1
K

∑K
k=1 hxk(P ). In

particular, the relations hold for all K ≥ 1 when ηk =
D

2(LD+1)
√
k

.

Theorem 3.1 has two implications: 1) Since γ⋆K ≥
− 1
K

∑K
k=1 hxk( 1

LI) ≥
1
2L (by descent lemma) and ρK

K =
o(1), both upper bounds in Theorem 3.1 converge to 0
when K goes to infinity, guaranteeing global convergence
of HDM. 2) More importantly, γ⋆K reflects the possibly im-
proved convergence rate of HDM through the adaptive P -
update, which depends on the local optimization landscape.
To see this, when K is large and ρK

K is negligible, the con-
vergence of HDM is competitive with preconditioned gradi-
ent descent (1) with any static preconditioner. In particular,
the optimal P ⋆K := argminP∈P

1
K

∑K
k=1 hxk(P ) achieves

the rate ∆2

Kγ⋆
K

. Note that γ⋆K (or P ⋆K) depends only on the

past trajectory {xk}k≤K ; and thus if the algorithm visits
a local region with a smaller smoothness constant than the
global constant L, one can expect γ⋆K ≫ 1

2L . In summary,
HDM adapts to the local optimization landscape and leads
to faster convergence than standard gradient descent.

We borrow a standard dynamic regret argument in online
convex optimization literature (Hazan et al., 2016) to pro-
vide an even stronger notion of adaptivity of HDM:
Theorem 3.2 (Dynamic adaptivity). Instate (6). Under A1
and (A1 + A2) respectively, Algorithm 1 with stepsize ηk ≡

4
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D
2(LD+1)

√
K

satisfies

φ(xK+1) ≤ min
{

∆2

K[δ⋆K− ρK
K ]+

, φ(x1)
}
; (A1)

φ(xK+1) ≤ φ(x1)(1− 2µ[δ⋆K −
ρK
K ]+)

K , (A1 + A2)

where ∆ is the same as defined in Lemma 2.4, ρK is defined
in (5),

δ⋆K := − min
{P̂k∈P}

{
1
K

∑K
k=1 hxk(P̂k)

+ 2(LD+1)PL({P̂k})√
K

}
, (8)

and PL({P̂k}) :=
∑K−1
k=1 ∥P̂k+1 − P̂k∥F .

Theorem 3.1 and Theorem 3.2 differ in the constants γ⋆K
and δ⋆K , as the minimum in (8) searches over different opti-
mal preconditioners for different hxk . Theorem 3.2 shows
that, even if the sequence {xk} traverses different regions
of the landscape, HDM automatically chooses P̂k to adapt
to the local region, at the price of an additional regret term
PL({P̂k}). Note that the upper bounds in Theorem 3.2
holds for any benchmark path {P̂k} ⊂ P . In particular,
HDM is guaranteed to asymptotically achieve the perfor-
mance of the optimal path that maximizes the algorithm
progress. Adaptivity of HDM undergirds its good empirical
performance.

Behavior of HDM and Static/Dynamic Adaptivity. We
observe that the behavior of HDM can be divided into two
stages: (1) when the iterates xk are far from the optimum
x⋆, the change in landscape is more drastic and we expect
dynamic adaptivity to capture the convergence behavior;
(2) when xk is near the optimum x⋆, f(x) locally behaves
like a quadratic and Pk remains more stable, and thus static
adaptivity describes the convergence behavior.

3.2. Online Regret and Instability

Though adaptive P -update underpins the strong perfor-
mance of HDM, vanilla HDM is observed unstable in practice.
This section identifies the source of instabilty in vanilla
HDM (Figure 1) based on our analysis. We also propose two
simple yet effective strategies to address the instability.

Divergence Behavior due to Regret. Recall from The-
orem 3.1 that the optimality gap at xK+1 is bounded by

∆2

K[γ⋆
K− ρK

K ]+
. This rate can be better than that of gradient

descent when K is large and γ⋆K ≫ 1
2L , but the anal-

ysis provides no guarantee on earlier iterates {xk}k≤K .
In particular, the convergence rate makes sense only if
γ⋆K > ρK

K . That is, the progress
∑K
k=1 hxk(Pk) accu-

mulated by the online gradient descent outweighs its re-
gret ρK . In other words, online gradient descent takes

0 100 200 300 400
10-50

100

Vanilla HDM
+ Null step
+ Null step + AdaGrad

Figure 2: Addressing instability of HDM

time to learn a good preconditioner, and the regret accu-
mulated during this warm-up phase causes HDM to behave
as if it is diverging until the progress

∑K
k=1 hxk(Pk) out-

paces the regret ρK . Since ρK grows sublinearly with the
iteration countK, HDM will eventually converge. However,
the objective value will usually explode and possibly be
terminated by the user before convergence begins. Conse-
quently, the two-phase convergence behavior (Figure 1a) is
rarely observed.

Addressing Instability. While our analysis guarantees
HDM will converge eventually, an algorithm that diverges
up to 1030 before converging is not practical. We propose
two simple but effective fixes based on our analysis:

• Null step. The x-update is skipped if new iterate in-
creases objective value (see the first line of Algorithm 1).
The null step ensures a monotonic decrease as HDM
learns a good preconditioner, although it requires an ad-
ditional function value oracle call at each iteration. Even
on iterations when xk is not updated, the preconditioner
Pk is updated using online gradient descent, so the algo-
rithm is still making progress. In Figure 2, the null steps
flatten the objective value curve in the divergence phase.

• Advanced Learning Algorithms. Better online learn-
ing algorithms with lower regret shorten the divergence
phase. Figure 2 shows a significant speedup when the
online gradient descent in Algorithm 1 is replaced by
AdaGrad. In our experiments, AdaGrad often im-
proves the robustness of HDM since it does not require
pre-specifying algorithm parameters that depend on the
total iteration count K and provides convergence guar-
antees for the earlier iterates {xk}k≤K (Appendix B.6).

3.3. Local Superlinear Convergence

Figure 1 shows HDM converges faster than the (linearly con-
vergent) first-order methods. In fact, HDM exhibits local su-
perlinear convergence on strongly convex objectives (The-
orem 3.3 below). This subsection assume a strongly convex
objective (A2) and Lipschitz Hessian (A4):

A4: f(x) has H-Lipschitz Hessian.

5
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Strongly Convex Quadratics. We develop intuition by
considering a strongly convex quadratic. For f(x) =
1
2 ⟨x,Ax⟩− ⟨b, x⟩, we have x⋆ = x− [∇2f(x⋆)]−1∇f(x).
In other words, P ⋆ = [∇2f(x⋆)]−1 is a universal mini-
mizer of hx(P ) that drives any non-optimal point x ̸∈ X ⋆
to the optimum x⋆ in one step. When [∇2f(x⋆)]−1 ∈ P ,
Theorem 3.1 guarantees the performance of HDM is com-
petitive to [∇2f(x⋆)]−1. Therefore, we expect the descent
curve to decrease more and more sharply, giving superlin-
ear convergence (Figure 1a).

Local Superlinear Convergence. For general functions
satisfying A4, f(x) behaves like a quadratic near x⋆:

f(x) ≈ f(x⋆) + 1
2 ⟨x− x

⋆,∇2f(x⋆)(x− x⋆)⟩.

Therefore, local superlinear convergence is expected for
HDM near x⋆. Theorem 3.3 formalizes this intuition.

Theorem 3.3 (Local superlinear convergence). Instate
φ(xk) in (6). Suppose [∇2f(x⋆)]−1 ∈ P and assume A1
to A4. Then Algorithm 1 with ηk = D

2(LD+1)
√
k

has local
superlinear convergence:

φ(xK+1) ≤ φ(x1)
(
H2κ2

4µ2K

∑K
k=1 ∥x

k − x⋆∥2 + 2LρK
K

)K
, (9)

where ρK is the regret bound defined in (5).

Theorem 3.3 justifies our observation of superlinear con-
vergence in Figure 1a: for strongly convex quadrat-
ics, the Hessian Lipschitz constant is zero (H = 0)
and (9) guarantees the superlinear convergence at rate
O((ρKK )K) = O(( 1√

K
)K). For general strongly convex

objectives, global linear convergence (Theorem 3.1) im-
plies limK→∞

1
K

∑K
k=1 ∥xk − x⋆∥2 = 0 when ηk =

O(1/
√
k). So eventually the first term in (9) vanishes,

giving superlinear convergence. This superlinear conver-
gence behavior demonstrates that HDM can perform sig-
nificantly better than standard adaptive first-order methods
and line search. HDM represents a new family of first-order
methods that achieves superlinear convergence on strongly
convex objectives, following the celebrated quasi-Newton
(QN) family (Nocedal and Wright, 1999; Fletcher, 2000).
Table 1 summarizes the superlinear convergence rates of
HDM and other QN methods.

Table 1: Recent Superlinear convergence rates

Algorithm Rate

Greedy QN (Rodomanov and Nesterov, 2021) O(e− 1
2K

2

)

Broyden family (Rodomanov and Nesterov, 2022) O(e− 1
2K logK)

Online-learning guided QN (Jiang et al., 2023) O(e− 1
2K logK)

BFGS with line-search (Jin et al., 2024a;b) O(e−K logK)

HDM (This paper) O(e− 1
2K logK)

HDM Learns the Hessian at the Optimum. In fact, {Pk}
in HDM will converge to [∇2f(x⋆)]−1 under an assumption
similar to one studied in the quasi-Newton literature (Conn
et al., 1991; Nocedal and Wright, 1999). Lemma 3.1 quan-
tifies the effect of learning the preconditioner through the
distance ∥Pk − [∇2f(x⋆)]−1∥F .

Lemma 3.1. Under the same assumptions as Theorem 3.3,
Algorithm 1 generates {Pk} such that

∥Pk+1 − [∇2f(x⋆)]−1∥2F
≤ ∥Pk − [∇2f(x⋆)]−1∥2F

− µ(η−Lη2)
2

∥∥(Pk − [∇2f(x⋆)]−1) ∇f(xk)
∥∇f(xk)∥

∥∥2
+ (2η − Lη2)H

2κ
4µ3 ∥xk − x⋆∥2. (10)

Relation (10) consists of three terms: the distance ∥Pk −
[∇2f(x⋆)]−1∥2F ; a decrement in the distance; and an er-
ror term that converges to zero as xk → x⋆. The
decrement is determined by the magnitude of

∥∥(Pk −
[∇2f(x⋆)]−1) ∇f(xk)

∥∇f(xk)∥

∥∥2, which measures the difference
between the operators Pk and [∇2f(x⋆)]−1 in the (unit)
gradient direction ∇f(xk)

∥∇f(xk)∥ . To ensure fast convergence,
it suffices for Pk∇f(xk) and [∇2f(x⋆)]−1∇f(xk) to re-
main sufficiently close. If the set

{ ∇f(xk)
∥∇f(xk)∥

}
spans the en-

tire space over the iterations, Pk and [∇2f(x⋆)]−1 should
align in all directions, leading to convergence of {Pk}.
Theorem 3.4 (Convergence of the preconditioner). Instate
the same assumptions as in Lemma 3.1 and let ηk ≡ η ∈
(0, 1

2L(LD+1)2κ ] in online gradient descent (4). Suppose

the gradient directions
{ ∇f(xk)

∥∇f(xk)∥
}

are uniformly indepen-
dent 1. Then limk→∞ ∥Pk − [∇2f(x⋆)]−1∥ = 0.

The convergence of stepsize in HDM was observed exper-
imentally by Baydin et al. (2018) for a scalar stepsize.
(P ⊆ S). Our result theoretically justifies this observation.

HDM and Quasi-Newton Methods. Our results identify a
similarity between HDM and quasi-Newton methods. Both
learn the inverse Hessian operator g 7→ [∇2f(x⋆)]−1g as
the algorithm progresses, but through different properties
of the operator. The quasi-Newton methods use the se-
cant equation x − y ≈ [∇2f(x⋆)]−1(∇f(x) − ∇f(y))
for x, y close to x⋆ and enforce this equation, replacing
the inverse Hessian by Pk, to guide learning (Jiang et al.,
2023). In contrast, HDM learns an optimal preconditioner
for the function. Since the function is locally quadratic,
this optimal preconditioner is the inverse Hessian. HDM
uses the hypergradient feedback hx(P ) to directly measure

1The formal definition of a uniformly independent sequence
is given in Appendix C.5, which is adapted from quasi-Newton
literature (Conn et al., 1991; Nocedal and Wright, 1999)
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the quality of the preconditioner and can search for an opti-
mal preconditioner in a given closed convex set P , whereas
quasi-Newton methods use the secant equation as an indi-
rect proxy. Both approaches require a safeguard to pre-
vent divergence in the warm-up phase, which is achieved
by line-search in quasi-Newton and null step in HDM.

4. HDM with Momentum
In this section, we develop two variants of HDM, with
heavy-ball momentum (Polyak, 1964) and with Nesterov
momentum (Nesterov, 1983).

4.1. Heavy-ball Momentum

Heavy-ball method is a practical acceleration technique:

xk+1 = xk − Pk∇f(xk) +Bk(x
k − xk−1). (11)

The momentum parameter Bk is typically chosen as a
scalar Bk = βkI with βk > 0. HDM can learn a matrix
momentum Bk ∈ B ⊆ Rn×n with convergence guarantees
(Theorem 4.1) when B satisfies this assumption:

A5: Closed convex set B satisfies 1
2I ∈ B, diam(B) ≤ D.

HDM can jointly learn the pair (Pk, Bk) using the modified
feedback function

hx,x−(P,B) := ψ(x+(P,B),x)−ψ(x,x−)
∥∇f(x)∥2+ τ

2 ∥x−x−∥2 , (12)

where ψ is the potential function for heavy-ball momentum
defined by ψ(x, x−) := f(x) + ω

2 ∥x − x−∥2 (Danilova
et al., 2020); x+(P,B) := x − P∇f(x) + B(x − x−)
updates x; and ω > 0 and τ > 0 are constants. Algorithm 2
presents the resulting method, HDM-HB, which uses HDM,
heavy-ball momentum, and a null step to ensure decrease of
the potential function ψ. Figure 3a compares non-adaptive
heavy-ball (Pk ≡ αI,Bk ≡ βI) against HDM-HB with
full-matrix/diagonal preconditioner and scalar momentum.

Algorithm 2 HDM with heavy-ball momentum (HDM-HB)
input initial point x0 = x1, ηp, ηb > 0, P1, B1

for k = 1, 2,... do
xk+1/2 = xk − Pk∇f(xk) +Bk(x

k − xk−1)
Pk+1 = ΠP [Pk − ηp∇Phxk,xk−1(Pk, Bk)]
Bk+1 = ΠB[Bk − ηb∇Bhxk,xk−1(Pk, Bk)]

(xk+1, xk) = argmin
(x+,x)∈{(xk,xk−1),(xk+1/2,xk)}

ψ(x+, x)

end
output xK+1

Theorem 4.1 (Convergence of HDM-HB). Instate φ(xk) in
(6). Under A1, A3 and A5, Algorithm 2 with ηb, ηp =

O(1/
√
K) or O(1/

√
k) satisfies

φ(xK+1) ≤ φ(x1)

KV [γ⋆
K− ρK

K ]++1
,
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Figure 3: The convergence behavior of HDM-HB and
HDM-AGD on a toy quadratic problem. Figure 3a:
HDM-HB. Figure 3b: HDM with Nesterov momentum.

where γ⋆K := −min(P,B)∈P×B
1
K

∑K
k=1 hxk,xk−1(P,B)

depends on the iteration trajectory {xk}k≤K; ρK =

O(
√
K) is the regret with respect to feedback (12); V :=

min
{φ(x1)

4∆2 ,
τ
4ω

}
; ∆ is defined in Lemma 2.4.

4.2. Nesterov Momentum

HDM can also improve accelerated gradient descent AGD
(a.k.a. Nesterov momentum): for a given sequence {Ak},

yk = xk + (1− Ak

Ak+1
)(zk − xk)

xk+1 = yk − 1
L∇f(y

k) (13)

zk+1 = zk + Ak+1−Ak

L ∇f(yk).

HDM can learn a preconditioner Pk that replaces 1
L to ac-

celerate the gradient step (13) in AGD. We call the resulting
algorithm HDM-AGD. It achievesO(1/K2+ρK/K

3) con-
vergence rate and an empirical speedup (Figure 3b). Fur-
ther discussion of HDM-AGD appears in Appendix D.2.
Theorem 4.2 (Informal). Instate φ(xk) in (6). Under A1,
A3, HDM-AGD with proper initialization gives φ(xK+1) ≤
O(λ

⋆
K

K2 + ρK
K3 ), where λ⋆K ≤ 2L depends on γ⋆K .

5. Experiments
This section conducts numerical experiments to validate
the empirical performance of hypergradient descent. We
compare HDM-Best (see Section 5.1 below) with differ-
ent adaptive optimization algorithms.

5.1. Efficient and Practical Variant: HDM-Best

This section highlights the major components of our most
competitive variant HDM-Best. The algorithm and a more
detailed explanation are available in Appendix A. The im-
plementation is available at https://github.com/
udellgroup/hypergrad.

Diagonal Preconditioner and Heavy-ball Momentum.
HDM-Best updates x by (11) with diagonal preconditioner
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P ⊆ D and scalar momentum B = {βI : β ∈ R}.
This choice balances practical efficiency and implementa-
tion complexity. Boundedness ofP does not greatly impact
the performance, while the bound on B can significantly
change algorithm behavior. Two empirically robust ranges
for B are [0, 0.9995] and [−0.9995, 0.9995].

AdaGrad for Online Learning. HDM-Best uses
AdaGrad to shorten the warm-up phase for learning of
(Pk, βk) (see Section 3.2). AdaGrad usually yields faster
convergence of HDM than online gradient descent at the cost
of additional memory of size n.

5.2. Dataset and Testing Problems

We test HDM-Best on deterministic convex problems. We
adopt two convex optimization tasks in machine learning:
support vector machine (Lee and Mangasarian, 2001) and
logistic regression (Hastie, 2009). The testing datasets are
obtained from LIBSVM (Chang and Lin, 2011).

5.3. Experiment Setup

Algorithm Benchmark. We benchmark the following
algorithms. More details appear in the appendix Table 3.

• GD. Vanilla gradient descent.
• GD-HB. Gradient descent with heavy-ball momentum.
• AGD-CVX. The smooth convex version of accelerated

gradient descent (Nesterov momentum).
• AGD-SCVX. The smooth strongly convex version of ac-

celerated gradient descent.
• Adam. Adaptive momentum estimation.
• AdaGrad. Adaptive (sub)gradient method.
• BFGS. BFGS from scipy.
• L-BFGS-Mk. L-BFGS with memory size k in scipy.
• Practical variant HDM-Best uses as memory 7 vectors

of size n, comparable to memory for L-BFGS-M1.

Algorithm Configuration. See Appendix A for details.

• For HDM-Best, we search for the optimal ηp within
{0.1/L, 1/L, 10/L, 100/L} and ηb ∈ {1, 3, 5, 10, 100}.

• Stepsize in GD, GD-HB, AGD-CVX, and AGD-SCVX are
all set to 1/L.

• The momentum parameter in GD-HB is chosen within
the set {0.1, 0.5, 0.9, 0.99}.

• The Adam stepsize is chosen within the set
{1/L, 10−3, 10−2, 10−1, 1, 10}. β1 = 0.9, β2 = 0.999.

• The AdaGrad stepsize is chosen within the set
{1/L, 10−3, 10−2, 10−1, 1, 10}.

• BFGS, L-BFGS-Mk use default parameters in scipy.

Testing Configurations.

1) Maximum oracle access. We allow a maximum of 1000
gradient oracles for each algorithm.

2) Initial point. All the algorithms are initialized from the
same starting point generated from normal distribution
N (0, In) and normalized to have unit length.

3) Stopping criterion. Algorithms stop if ∥∇f∥∞ ≤ 10−4.

Table 2: Number of solved problems for each algorithm.

Algorithm/Problem SVM (33 ↑) Logistic Regression (33 ↑)

GD 5 2
GD-HB 9 7

AGD-CVX 8 3
AGD-SCVX 7 6
Adam 26 11

AdaGrad 9 8
L-BFGS-M1 13 11
L-BFGS-M3 20 14
L-BFGS-M5 26 16
L-BFGS-M10 31 18

BFGS 32 26
HDM-Best 32 21

For each algorithm, we record the number of successfully
solved instances (∥∇f∥∞ ≤ 10−4 within 1000 gradient
oracles). Table 2 summarizes the detailed statistics. The
number of instances solved by HDM-Best is comparable
to that of L-BFGS-M10.

Support Vector Machine. Figure 4 shows the function
value gap and gradient norm plots on sample test instances
on support vector machine problems. The optimal value for
each instance is obtained by running BFGS until ∥∇f∥∞ ≤
10−4. We see that the practical variant of HDM-Best
achieves a significant speedup over other adaptive first-
order methods. In particular, HDM-Best often matches
L-BFGS-M5 and L-BFGS-M10, while its memory usage
is closer to L-BFGS-M1. Notably, Adam also achieves
competitive performance in several instances.

Logistic Regression. In logistic regression (Figure 5),
HDM-Best still compares well with L-BFGS-M5 and is
significantly faster than other adaptive first-order methods.

Overall, HDM-Best demonstrates superior performance
on deterministic convex problems and is comparable with
the mature L-BFGS family. We believe that further devel-
opment of HDM will fully unleash its potential for a broad
range of optimization tasks.

6. Conclusion
This paper addresses the long-standing challenge of estab-
lishing convergence of the hypergradient descent heuristic.

8



Provable and Practical Hypergradient Descent

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

Fu
nc

tio
n 

va
lu

e 
ga

p

a1a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4 a9a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4

w8a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

svmguide3

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

G
ra

di
en

t N
or

m

a1a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a9a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

w8a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3 svmguide3

GD
GD-HB

AGD-CVX
AGD-SCVX

Adam
AdaGrad

BFGS
L-BFGS-M1

L-BFGS-M3
L-BFGS-M5

L-BFGS-M10
HDM-Best

Figure 4: Experiments on support vector-machine problem. First row: function value gap. Second row: gradient norm
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Figure 5: Experiments on logistic regression problems. First row: function value gap. Second row: gradient norm

We provide the first rigorous theoretical foundation for hy-
pergradient descent and introduce a novel online learning
perspective that extends to other first-order methods with
adaptive hyperparameter updates. Our theoretical advances
support effective and scalable enhancements that allow the
(first-order) HDM to achieve superlinear convergence with
guarantees that resemble quasi-Newton methods. Build-
ing on these results, we propose HDM-Best, an efficient
variant of HDM that performs competitively with the widely
used L-BFGS method on convex problems. This empiri-
cal success positions HDM as a compelling alternative for
modern machine learning. Extending the theory of HDM
to stochastic and nonconvex optimization is a crucial next
step to understanding its potential to speed up the training
of large-scale models.
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A. HDM in Practice
This section introduces HDM-Best, our recommended practical hypergradient descent method. This variant is adapted
from HDM-HB, with simplifications to reduce the implementation complexity. The algorithm is given in Algorithm 3.

Algorithm 3 HDM-Best
input starting point x0 = x1, P = Sn+ ∩ D,B = [0, 0.9995], initial diagonal preconditioner P1 ∈ Sn+ ∩ D,
initial scalar momentum parameter β1 = 0.95, AdaGrad stepsize ηp, ηb > 0, AdaGrad diagonal matrix U1 = 0,
AdaGrad momentum scalar v1 = 0, τ > 0
for k = 1, 2,... do

xk+1/2 = xk − Pk∇f(xk) + βk(x
k − xk−1)

∇Phxk,xk−1(Pk, βk) =
diag(∇f(xk+1/2)◦∇f(xk))
∥∇f(xk)∥2+ τ

2 ∥xk−xk−1∥2 # Element-wise product

∇βhxk,xk−1(Pk, βk) =
⟨∇f(xk+1/2),xk−xk−1⟩

∥∇f(xk)∥2+ τ
2 ∥xk−xk−1∥2 # Inner product

Uk+1 = Uk +∇Phxk,xk−1(Pk, βk) ◦ ∇Phxk,xk−1(Pk, βk) # Diagonal matrix

vk+1 = vk +∇βhxk,xk−1(Pk, βk) · ∇βhxk,xk−1(Pk, βk) # Scalar matrix

Pk+1 = ΠRn
+∩D[Pk − ηpU−1/2

k+1 ∇Phxk,xk−1(Pk, βk)] # Diagonal matrix

βk+1 = Π[0,0.9995][βk − ηbv
−1/2
k+1 ∇βhxk,xk−1(Pk, βk)]

xk+1 = argmin
x∈{xk,xk+1/2}

f(x).

end
output xK+1

We make several remarks about Algorithm 3.

• Choice of online learning algorithm. Unless f(x) is quadratic, adaptive online learning algorithms such as AdaGrad
often significantly outperform online gradient descent with constant stepsize. Note that AdaGrad introduces additional
memory of size n to store the diagonal online learning preconditioner U .

• Sensitivity of parameters. The two stepsize parameters in AdaGrad are the most important algorithm parameters: ηp, ηb.
According to the experiments, ηp should be set proportional to 1/L, the smoothness constant, while an aggressive choice
of ηb ∈ {1, 10, 100} often yields fast convergence. A local estimator of the smoothness constant L can significantly
enhance algorithm performance.

• Heavy-ball feedback and null step. In practice, it is observed that dropping the ω
2 ∥x

+(P,B) − x∥2 in the numerator
of heavy-ball feedback (12) often does not affect algorithm performance. Therefore, in Algorithm 3 the hypergradient
with respect to ω

2 ∥x
+(P,B) − x∥2 is ignored. On the other hand, the τ

2∥x
+(P,B) − x∥2 term in the denominator

smoothes the update of βk and can strongly affect convergence. The parameter τ should be taken to be proportional to
L2 according to the discussions in Appendix D.1. The null step is taken with respect to the function value f(x) instead
of the heavy-ball potential function.

• Memory usage. The memory usage of HDM-Best, measured in terms of number of vectors of length n is 7n: 1) three
vectors store primal iterates x−, x, x+. 2) Two vectors store past and buffer gradients ∇f(x),∇f(x+). 3) A vector
stores the diagonal preconditioner Pk. 4) A vector stores the AdaGrad stepsize matrix U .

• Computational cost. The major additional computation cost arises from computing hypergradient ∇h, which involves
one element-wise product and one inner product for vectors of size n. In addition, HDM-Best needs to maintain a
diagonal matrix for AdaGrad. The overall additional computational cost is several O(n) operations.
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B. Proof of Results in Section 2
B.1. Auxiliary Results

Lemma B.1 (Sublinear static regret). Given a family of convex and γ-Lipschitz losses {hk}, online gradient descent
Pk+1 = ΠP [Pk − ηk∇hk(Pk)] with stepsize ηk ≡ D

2γ
√
K

or ηk = D
2γ

√
k

generates {Pk} such that∑K
k=1 hk(Pk)−

∑K
k=1 hk(P ) ≤ 2γD

√
K

for any P ∈ P .

The result follows from a standard dynamic regret analysis from online convex optimization literature, and we adapt the
proof for our analysis. For any P ∈ P , we deduce

∥Pk+1 − P∥2F = ∥ΠP [Pk − ηk∇hk(Pk)]− P∥2F
≤ ∥Pk − P − ηk∇hk(Pk)∥2F (14)

≤ ∥Pk − P∥2F − 2ηk⟨∇hk(Pk), Pk − P ⟩+ η2k∥∇hk(Pk)∥2F
≤ ∥Pk − P∥2F − 2ηk[hk(Pk)− hk(P )] + η2kγ

2, (15)

where (14) uses non-expansiveness of orthogonal projection; (15) applies convexity and γ-Lipschitz continuity of hk.
Re-arranging, we get

hk(Pk)− hk(P ) ≤ 1
2ηk

[∥Pk − P∥2F − ∥Pk+1 − P∥2F ] +
ηk
2 γ

2.

Suppose ηk is non-increasing, and we have∑K
k=1 hk(Pk)− hk(P ) ≤

∑K
k=1[

1
2ηk
∥Pk − P∥2F − 1

2ηk
∥Pk+1 − P∥2F ] +

γ2

2

∑K
k=1 ηk

≤ 1
2η1
∥P1 − P∥2F + 1

2

∑K−1
k=1 ( 1

ηk+1
− 1

ηk
)∥Pk+1 − P∥2F + γ2

2

∑K
k=1 ηk

≤ 1
2η1

D2 + 1
2

∑K−1
k=1 ( 1

ηk+1
− 1

2ηk
)D2 + γ2

2

∑K
k=1 ηk

≤ D2

2ηK
+ γ2

∑K
k=1

ηk
2 ≤ 2γD

√
K

since
∑K
k=1

1√
k
≤ 2
√
K. This completes the proof.

Lemma B.2 (Sublinear dynamic regret (Hazan et al., 2016)). Given a family of convex and γ-Lipschitz losses {hk}, online
gradient descent Pk+1 = ΠP [Pk − η∇hk(Pk)] with constant stepsize η = D

2γ
√
K

generates stepsizes {Pk} such that∑K
k=1 hk(Pk)− hk(P̂k) ≤

7γD√
K

+ 2γ
η PL({P̂k}). (16)

where {P̂k}, P̂k ∈ P are arbitrarily chosen competitor stepsizes and PL({P̂k}) :=
∑K−1
k=1 ∥P̂k − P̂k+1∥F is the path

length of the competitors.

Proof. Starting from (15), we let P = P̂k and re-arrange to get

hk(Pk)− hk(P̂k) ≤ 1
2η [∥Pk − P̂k∥

2
F − ∥Pk+1 − P̂k∥2F ] +

η
2γ

2

= 1
2η [∥Pk∥

2
F − ∥Pk+1∥2F + 2⟨P̂k, Pk+1 − Pk⟩] + η

2γ
2

Telescoping, we get∑K
k=1 hk(Pk)− hk(P̂k) ≤

∥P1∥2
F

2η + η
2γ

2K + 1
η

∑K
k=1⟨P̂k, Pk+1 − Pk⟩

=
∥P1∥2

F

2η + η
2γ

2K + 1
η

∑K−1
k=1 ⟨Pk+1, P̂k − P̂k+1⟩+ 1

η ⟨P̂K , PK+1⟩ − 1
η ⟨P̂1, P1⟩ (17)

≤ 3D2

η + η
2γ

2K + D
η

∑K−1
k=1 ∥P̂k − P̂k+1∥F (18)

= 3D2

η + η
2γ

2K + D
η PL({P̂k}),

where (17) is by re-arrangement:
∑K
k=1⟨P̂k, Pk+1 − Pk⟩ =

∑K−1
k=1 ⟨Pk+1, P̂k − P̂k+1⟩ + ⟨P̂K , PK+1⟩ − ⟨P̂1, P1⟩; (19)

applies diam(P) < D and Cauchy-Schwarz ⟨Pk+1, P̂k−P̂k+1⟩ ≤ ∥Pk+1∥F ∥P̂k−P̂k+1∥F ≤ D∥P̂k−P̂k+1∥F . Plugging
in η = D

2γ
√
K

completes the proof.
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Lemma B.3 (Logarithmic static regret (Orabona, 2019)). Given a family of µ-strongly convex and γ-Lipschitz losses {hk},
online gradient descent Pk+1 = ΠP [Pk−ηk∇hk(Pk)] with stepsize ηk = 1/(µk) generates a sequence of scaling matrices
{Pk} such that

∑K
k=1 hk(Pk)− hk(P ) ≤

1
2γ

2 logK.

Proof. Using strong convexity, we have hk(P ) ≥ hk(Pk) + ⟨∇hk(Pk), P − Pk⟩+ µ
2 ∥P − Pk∥

2
F and

∥Pk+1 − P∥2F ≤ ∥Pk − P∥2F − 2ηk⟨∇hk(Pk), Pk − P ⟩+ η2kγ
2

≤ ∥Pk − P∥2F − 2ηk[hk(Pk)− hk(P )] + η2kγ
2 − µηk∥P − Pk∥2F

= k−1
k ∥Pk − P∥

2
F − 2

kµ [hk(Pk)− hk(P )] +
γ2

k2µ2 , (19)

where (19) plugs in ηk = 1/(µk). Re-arranging the terms,

hk(Pk)− hk(P ) ≤ µ
2 [(k − 1)∥Pk − P∥2F − k∥Pk+1 − P∥2F ] +

γ2

2kµ

and telescoping gives
∑K
k=1 hk(Pk)− hk(P ) ≤

∑K
k=1

γ2

2kµ ≤
γ2

2µ (logK + 1), which completes the proof.

B.2. Proof of Lemma 2.1

Consider the first property. Convexity and smoothness follow directly from (Gao et al., 2024). To verify strong convexity,
note that for hx(α) =

f(x−α∇f(x))−f(x⋆)
∥∇f(x)∥2

h′′x(α) =
d
dα

[
⟨∇f(x−α∇f(x)),∇f(x)⟩

∥∇f(x)∥2

]
=

〈 ∇f(x)
∥∇f(x)∥ ,∇

2f(x) ∇f(x)
∥∇f(x)∥

〉
≥ µ

since ∇2f(x) ⪰ µI and x ̸∈ X ⋆. This completes the proof of the first property.

Next, we consider the second property. Lipschitz continuity also follows from (Gao et al., 2024). To verify exp-concavity,
recall that a twice-differentiable function h is β-exp-concave if∇2h(x) ⪰ β∇h(x)∇h(x)⊤ for some β ≥ 0. By definition
of D,

∇hx(P ) = −∇f(x)◦∇f(x−P∇f(x))
∥∇f(x)∥2 = −diag(∇f(x))∇f(x−P∇f(x))

∥∇f(x)∥2

and ∇2hx(P ) =
diag(∇f(x))∇2f(x−P∇f(x))diag(∇f(x))

∥∇f(x)∥2 . Using∇2f(x− P∇f(x)) ⪰ µI , we deduce that

∇2hx(P )− β∇hx(P )∇hx(P )⊤

= diag(∇f(x))∇2f(x−P∇f(x))diag(∇f(x))
∥∇f(x)∥2 − β diag(∇f(x))∇f(x−P∇f(x))∇f(x−P∇f(x))⊤diag(∇f(x))

∥∇f(x)∥4

= diag
( ∇f(x)
∥∇f(x)∥

)[
∇2f(x− P∇f(x))− β∇f(x−P∇f(x))

∥∇f(x)∥
∇f(x−P∇f(x))⊤

∥∇f(x)∥

]
diag

( ∇f(x)
∥∇f(x)∥

)
⪰ diag

( ∇f(x)
∥∇f(x)∥

)[
µI − β∇f(x−P∇f(x))

∥∇f(x)∥
∇f(x−P∇f(x))⊤

∥∇f(x)∥

]
diag

( ∇f(x)
∥∇f(x)∥

)
, (20)

where (20) uses µ-strong convexity of f(x). Now, it suffices to verify that

∇f(x−P∇f(x))
∥∇f(x)∥

∇f(x−P∇f(x))⊤
∥∇f(x)∥ ⪯ µ

β I (21)

for all x ̸∈ X ⋆. Write ∇f(x−P∇f(x))
∥∇f(x)∥ = ∇f(x)

∥∇f(x)∥ + ∇f(x−P∇f(x))−∇f(x)
∥∇f(x)∥ and let z := ∇f(x − P∇f(x)) − ∇f(x), we

have, by L-smoothness, that ∥z∥ ≤ L∥P∇f(x)∥ ≤ LD∥∇f(x)∥ and∥∥∥∇f(x−P∇f(x))
∥∇f(x)∥

∇f(x−P∇f(x))⊤
∥∇f(x)∥

∥∥∥ =
∥∥∥( ∇f(x)

∥∇f(x)∥ + z
∥∇f(x)∥

)(
∇f(x)

∥∇f(x)∥ + z
∥∇f(x)∥

)⊤∥∥∥
=

∥∥∇f(x)∇f(x)⊤
∥∇f(x)∥2 + z∇f(x)⊤

∥∇f(x)∥2 + ∇f(x)z⊤
∥∇f(x)∥2 + zz⊤

∥∇f(x)∥2

∥∥
≤ 1 + 2∥z∥

∥∇f(x)∥ + ∥z∥2

∥∇f(x)∥2 = (1 + ∥z∥
∥∇f(x)∥ )

2 ≤ (1 + LD)2.

Hence, for β ≤ µ
(1+LD)2 the relation (21) holds. We conclude that hx(P ) = hx(d) is µ

(1+LD)2 -exponential concave.
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B.3. Proof of Lemma 2.2

We use Lipschitzness from Lemma 2.1 and Lemma B.1 by taking γ = 1 + LD and ηk ≡ D
(LD+1)

√
K

or η = D
(LD+1)

√
k

.
Here, we use a slightly loose bound to unify the constants in static and dynamic regret bounds.

B.4. Proof of Lemma 2.3

We use Lipschitzness and strong convexity from Lemma 2.1 and invoke Lemma B.3 by taking γ = 1 + LD.

B.5. Proof of Lemma 2.4

The proof resembles (Gao et al., 2024) and uses a tighter analysis. Consider the optimality measure f(xK+1)−f(x⋆), and
we deduce that

f(xK+1)− f(x⋆) = 1
1

f(xK+1)−f(x⋆)

=
1∑K

k=1
1

f(xk+1)−f(x⋆)
− 1

f(xk)−f(x⋆)
+ 1

f(x1)−f(x⋆)

=
1∑K

k=1
f(xk)−f(xk+1)

[f(xk+1)−f(x⋆)][f(xk)−f(x⋆)]
+ 1

f(x1)−f(x⋆)

=
1∑K

k=1
max{−h

xk (Pk),0}∥∇f(xk)∥2

[f(xk+1)−f(x⋆)][f(xk)−f(x⋆)]
+ 1

f(x1)−f(x⋆)

Next, using f(x)− f(x⋆) ≤ ∥∇f(x)∥ · ∥x− x⋆∥,
max{−h

xk (Pk),0}∥∇f(xk)∥2

[f(xk+1)−f(x⋆)][f(xk)−f(x⋆)]
≥ max{−h

xk (Pk),0}∥∇f(xk)∥2

[f(xk)−f(x⋆)]2
≥ max{−h

xk (Pk),0}
dist(xk,X⋆)2

≥ max{−h
xk (Pk),0}
∆2 .

Finally, we deduce that

f(xK+1)− f(x⋆) ≤ ∆2∑K
k=1 max{−h

xk (Pk),0}+
∆2

f(x1)−f(x⋆)

≤ ∆2

max{
∑K

k=1 −h
xk (Pk),0}+ ∆2

f(x1)−f(x⋆)

≤ min
{

∆2

Kmax{ 1
K

∑K
k=1 −h

xk (Pk),0}
, f(x1)− f(x⋆)

}
and this completes the proof.

B.6. Intermediate Iterate Convergence with Adaptive Online Algorithms

Two disadvantages of constant stepsize in online gradient descent is 1) the dependence on the total number of iterations K;
and 2) no regret guarantee for the intermediate iterates. One simple fix is let ηk = O(1/

√
k) and online gradient descent

achieves the same sublinear regret guarantee (up to a constant multiplicative factor) for any k (Orabona, 2019). Similar
arguments hold for adaptive gradient methods (Duchi et al., 2011; McMahan and Streeter, 2010).

C. Proof of Results in Section 3
C.1. Proof of Theorem 3.1

Plugging (5) from Lemma 2.2 into Lemma 2.4 completes the proof.

C.2. Proof of Theorem 3.2

Invoking Lipschitzness from Lemma 2.1 and (16) from Lemma B.2 with γ = 1 + LD, η = D
(LD+1)

√
K

gives

∑K
k=1 hxk(Pk)− hxk(P̂k) ≤ ρK + LD+1

2

√
K

∑K−1
k=1 ∥P̂k − P̂k+1∥F .
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Plugging the relation into Lemma 2.4 completes the proof.

C.3. Proof of Theorem 3.3

For Theorem 3.3 and Lemma 3.1 only, we will define the following modified feedback function by replacing f(xk) in the
numerator by f(x⋆):

ĥx(P ) :=
f(x−P∇f(x))−f(x⋆)

∥∇f(x)∥2 ≥ 0.

For a fixed x, ĥx(P ) only differs from the original hypergradient feedback by a constant; it has the same properties as
the original feedback function, and the algorithm is exactly the same since only the gradient of ĥx is considered in the
algorithm update. Using the definition of ĥx(P ), we deduce that

f(xK+1)−f(x⋆)
f(x1)−f(x⋆) =

∏K
k=1

f(xk+1)−f(x⋆)
f(xk)−f(x⋆)

≤ ( 1
K

∑K
k=1

f(xk+1)−f(x⋆)
f(xk)−f(x⋆)

)K

= ( 1
K

∑K
k=1 min{ ĥxk (Pk)∥∇f(xk)∥2

f(xk)−f(x⋆)
, 1})K (22)

≤ ( 1
K

∑K
k=1 min{2Lĥxk(Pk), 1})K (23)

≤ (min{ 2LK
∑K
k=1 ĥxk(Pk), 1})K ,

where (22) plugs in the definition of ĥx; (23) uses L-smoothness and that ĥx is nonnegative. Using Lemma 2.2, we get∑K
k=1 ĥxk(Pk) ≤

∑K
k=1 ĥxk(P ) + ρK for any P ∈ P . Next, we consider the quantity ĥx([∇2f(x⋆)]−1) and deduce that

ĥx([∇2f(x⋆)]−1) = f(x−[∇2f(x⋆)]−1∇f(x))−f(x⋆)
∥∇f(x)∥2

≤
L
2 ∥x−[∇2f(x⋆)]−1∇f(x)−x⋆∥2

∥x−x⋆∥2

∥x−x⋆∥2

∥∇f(x)∥2 (24)

≤ L
2µ2

∥x−[∇2f(x⋆)]−1∇f(x)−x⋆∥2

∥x−x⋆∥2 , (25)

where (24) uses L-smoothness f(x)− f(x⋆) ≤ L
2 ∥x− x

⋆∥2 and (25) uses ∥∇f(x)∥2 ≥ µ2∥x− x⋆∥2. Then,

x− [∇2f(x⋆)]−1∇f(x)− x⋆ = x− x⋆ − [∇2f(x⋆)]−1∇f(x)
= [∇2f(x⋆)]−1[∇2f(x⋆)(x− x⋆)− (∇f(x)−∇f(x⋆))]

since ∇f(x⋆) = 0. Plugging in∇f(x)−∇f(x⋆) =
∫ 1

0
∇2f(x⋆ + t(x− x⋆))(x− x⋆)dt, we deduce that

∥∇2f(x⋆)(x− x⋆)− (∇f(x)−∇f(x⋆))∥ = ∥∇2f(x⋆)(x− x⋆)−
∫ 1

0
∇2f(x⋆ + t(x− x⋆))(x− x⋆)dt∥

= ∥
∫ 1

0
[∇2f(x⋆)−∇2f(x⋆ + t(x− x⋆))](x− x⋆)dt∥

≤
∫ 1

0
tH∥x− x⋆∥2dt = H

2 ∥x− x
⋆∥2, (26)

where (26) uses H-Lipschitz continuity of∇2f(x) and, consequently,

∥x− [∇2f(x⋆)]−1∇f(x)− x⋆∥
= ∥[∇2f(x⋆)]−1[∇2f(x⋆)(x− x⋆)− (∇f(x)−∇f(x⋆))]∥ ≤ H

2µ∥x− x
⋆∥2 (27)

since ∇2f(x⋆) ⪰ µI due to strong convexity. Plugging the relation back, we get

ĥx([∇2f(x⋆)]−1) ≤ L
2µ2

H2

4µ2 ∥x−x⋆∥4

∥x−x⋆∥2 = H2κ
8µ3 ∥x− x⋆∥2. (28)

Since [∇2f(x⋆)]−1 ∈ P by assumption,∑K
k=1 ĥxk(Pk) ≤

∑K
k=1 ĥxk([∇2f(x⋆)]−1) + ρK ≤ H2κ

8µ3

∑K
k=1 ∥xk − x⋆∥2 + ρK ,

and we get
f(xK+1)− f(x⋆) ≤ [f(x1)− f(x⋆)]

(
min

{
H2κ2

4µ2K

∑K
k=1 ∥xk − x⋆∥2 +

2LρK
K , 1

})K
,

which completes the proof.
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C.4. Proof of Lemma 3.1

For brevity let P ⋆ = [∇2f(x⋆)]−1. We have, according to the update of online gradient descent, that,

∥Pk+1 − P ⋆∥2F = ∥ΠP [Pk − η∇ĥxk(Pk)− P ⋆]∥2F
≤ ∥Pk − η∇ĥxk(Pk)− P ⋆∥2F
= ∥Pk − P ⋆∥2F − 2η⟨∇ĥxk(Pk), Pk − P ⋆⟩+ η2∥∇ĥxk(Pk)∥2F
≤ ∥Pk − P ⋆∥2F − 2η[ĥxk(Pk)− ĥxk(P ⋆)] + 2Lη2[ĥxk(Pk)− inf

P∈Rn×n
ĥxk(P )] (29)

= ∥Pk − P ⋆∥2F − 2η[ĥxk(Pk)− ĥxk(P ⋆)] + 2Lη2[ĥxk(Pk)− ĥxk(P ⋆)] + 2Lη2ĥxk(P ⋆) (30)

= ∥Pk − P ⋆∥2F − 2η(1− ηL)[ĥxk(Pk)− ĥxk(P ⋆)] + 2Lη2ĥxk(P ⋆), (31)

where (29) uses L-smoothness and infP∈Rn×n ĥx(P ) = 0 for all x ̸∈ X ⋆; (30) is a simple re-arrangement.

Next we lower bound ĥxk(Pk)− ĥxk(P ⋆). Using strong convexity,

f(xk − Pk∇f(xk))− f(xk − P ⋆∇f(xk))
= f(xk − Pk∇f(xk))− f(x⋆) + f(x⋆)− f(xk − P ⋆∇f(xk))
≥ µ

2 ∥x
k − x⋆ − Pk∇f(xk)∥2 + f(x⋆)− f(xk − P ⋆∇f(xk)), (32)

where (32) uses f(x)− f(x⋆) ≥ µ
2 ∥x− x

⋆∥2. The first term can be bounded as follows:

∥xk − x⋆ − Pk∇f(xk)∥2

= ∥xk − P ⋆∇f(xk)− x⋆ + (P ⋆ − Pk)∇f(xk)∥2

= ∥xk − P ⋆∇f(xk)− x⋆∥2 + 2⟨xk − P ⋆∇f(xk)− x⋆, (P ⋆ − Pk)∇f(xk)⟩+ ∥(P ⋆ − Pk)∇f(xk)∥2

≥ 1
2∥(P

⋆ − Pk)∇f(xk)∥2 − ∥xk − P ⋆∇f(xk)− x⋆∥2,

where we use the inequality 2⟨a, b⟩ ≥ −θ∥a∥2 − θ−1∥b∥2 with θ = 2. Plugging the relation back into (32) and dividing
both sides by ∥∇f(xk)∥2,

ĥxk(Pk)− ĥxk(P ⋆) = f(xk−Pk∇f(xk))−f(x⋆)+f(x⋆)−f(xk−P⋆∇f(xk))
∥∇f(xk)∥2

≥ µ
4 ∥(P

⋆ − Pk) ∇f(xk)
∥∇f(xk)∥∥

2 − µ
2
∥xk−P⋆∇f(xk)−x⋆∥2

∥∇f(xk)∥2 + f(x⋆)−f(xk−P⋆∇f(xk))
∥∇f(xk)∥2

= µ
4 ∥(P

⋆ − Pk) ∇f(xk)
∥∇f(xk)∥∥

2 − µ
2
∥xk−P⋆∇f(xk)−x⋆∥2

∥∇f(xk)∥2 − ĥxk(P ⋆) (33)

≥ µ
4 ∥(P

⋆ − Pk) ∇f(xk)
∥∇f(xk)∥∥

2 − H2

8µ
∥xk−x⋆∥4

∥∇f(xk)∥2 − ĥxk(P ⋆) (34)

≥ µ
4 ∥(P

⋆ − Pk) ∇f(xk)
∥∇f(xk)∥∥

2 − H2κ
8µ3 ∥xk − x⋆∥2 − ĥxk(P ⋆), (35)

where (33) uses the definition of ĥxk ; (34) applies the relation ∥x−P ⋆∇f(x)−x⋆∥ ≤ H
2µ∥x−x

⋆∥2 from (27); (35) again
uses the fact ∥∇f(x)∥2 ≥ µ2∥x− x⋆∥2. Putting the relations back into (31) and assuming η ≤ 1

2L ,

∥Pk+1 − P ⋆∥2F
≤ ∥Pk − P ⋆∥2F −

µ(η−Lη2)
2 ∥(Pk − P ⋆) ∇f(xk)

∥∇f(xk)∥∥
2

+ H2κ(η−Lη2)
4µ3 ∥xk − x⋆∥2 + 2(η − Lη2)ĥxk(P ⋆) + 2Lη2ĥxk(P ⋆)

= ∥Pk − P ⋆∥2F −
µ(η−Lη2)

2 ∥(Pk − P ⋆) ∇f(xk)
∥∇f(xk)∥∥

2 + H2κ(η−Lη2)
4µ3 ∥xk − x⋆∥2 + 2ηĥxk(P ⋆)

≤ ∥Pk − P ⋆∥2F −
µ(η−Lη2)

2 ∥(Pk − P ⋆) ∇f(xk)
∥∇f(xk)∥∥

2 + H2κ(η−Lη2)
4µ3 ∥xk − x⋆∥2 + 2ηH

2κ
8µ3 ∥xk − x⋆∥2 (36)

= ∥Pk − P ⋆∥2F −
µ(η−Lη2)

2 ∥(Pk − P ⋆) ∇f(xk)
∥∇f(xk)∥∥

2 + (2η − Lη2)H
2κ

4µ3 ∥xk − x⋆∥2,

where (36) uses the relation (28) and this completes the proof.
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C.5. Proof of Theorem 3.4

The proof of Theorem 3.4 relies on the following auxiliary results.

Lemma C.1. Under A1 to A4, hx(P )− infQ∈Rn×n hx(Q) ≤ 1
2µ (LD + 1)2.

Proof. Note that hx(P ) =
f(x−P∇f(x))−f(x)

∥∇f(x)∥2 ≥ f(x⋆)−f(x)
∥∇f(x)∥2 for all P ∈ P , we deduce that

hx(P )− inf
Q∈Rn×n

hx(Q) ≤ f(x−P∇f(x))−f(x)
∥∇f(x)∥2 − f(x⋆)−f(x)

∥∇f(x)∥2 (37)

= f(x−P∇f(x))−f(x⋆)
∥∇f(x)∥2

≤ 1
2µ

∥∇f(x−P∇f(x))∥2

∥∇f(x)∥2 (38)

≤ 1
2µ

[∥∇f(x)∥+∥P∥·∥∇f(x)∥]2
∥∇f(x)∥2 (39)

≤ 1
2µ (LD + 1)2, (40)

where (37) applies hx(P ) ≥ f(x⋆)−f(x)
∥∇f(x)∥2 ; (38) uses f(x) − f(x⋆) ≤ 1

2µ∥∇f(x)∥
2; (39) uses L-smoothness and (40) uses

∥P∥ ≤ D.

Then we show that HDM converges even when η is a constant that does not depend on K.

Lemma C.2. Under A1 to A4, Algorithm 1 with ηk ≡ η ∈ (0, 1
2L(LD+1)2κ ] satisfies

• limk→∞ ∥xk − x⋆∥ = 0.

• limK→∞
∑K
k=1 ∥xk − x⋆∥2 <∞.

Proof. Using the online gradient descent update, we have

∥Pk+1 − P∥2F ≤ ∥Pk − η∇hxk(Pk)− P∥2F
= ∥Pk − P∥2F − 2η⟨∇hxk(Pk), Pk − P ⟩+ η2∥∇hxk(Pk)∥2F
≤ ∥Pk − P∥2F − 2η[hxk(Pk)− hxk(P )] + 2Lη2[hxk(Pk)− inf

P∈Rn×n
hxk(P )] (41)

= ∥Pk − P∥2F − 2ηhxk(Pk) + 2ηhxk(P ) + 2Lη2[hxk(Pk)− inf
P∈Rn×n

hxk(P )],

where (41) follows from convexity hxk(P ) ≥ hxk(Pk) + ⟨∇hxk(Pk), P − Pk⟩ and L-smoothness of hx(P ). Next, we
invoke the upperbound on hxk(Pk)− infQ∈Rn×n hxk(Q) from Lemma C.1:

2Lη2[hxk(Pk)− inf
P∈Rn×n

hxk(P )] ≤ 2L
2µ (LD + 1)2η2 = κ(LD + 1)2η2.

and deduce that

2ηhxk(Pk) ≤ 2ηhxk(P ) + ∥Pk − P∥2F − ∥Pk+1 − P∥2F + 2Lη2[hxk(Pk)− inf
P∈Rn×n

hxk(P )]

≤ 2ηhxk(P ) + ∥Pk − P∥2F − ∥Pk+1 − P∥2F + η2κ(LD + 1)2.

Next, we divide both sides of the inequality by 2η and

hxk(Pk) ≤ hxk(P ) +
∥Pk−P∥2

F−∥Pk+1−P∥2
F

2η + ηκ(LD+1)2

2 .

Telescoping the relation and using diam(P) ≤ D, we get∑K
k=1 hxk(Pk) ≤

∑K
k=1 hxk(P ) + D2

2η + ηκ(LD+1)2

2 K
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Taking P = (1/L)I and taking average,
∑K
k=1 hxk(P ) ≤ − 1

2LK and

1
K

∑K
k=1 hxk(Pk) ≤ − 1

2L + D2

2ηK + ηκ(LD+1)2

2 = − 1
4L + D2

2ηK + ηκ(LD+1)2

2 − 1
4L

With η ≤ 1
2L(LD+1)2κ , we have ηκ(LD+1)2

2 − 1
4L ≤ 0 and

1
K

∑K
k=1 hxk(Pk) ≤ − 1

4L + D2L(LD+1)2κ
K .

Using the reduction Lemma 2.4, we get, for any k ≥ 1 (since η does not depend on the iteration number),

f(xk+1)− f(x⋆) ≤ [f(x1)− f(x⋆)](1− 2µmax{ 1
4L −

D2L(LD+1)2κ
k , 0})k

and there exists some K0 such that for all k ≥ K0, that [f(xk)− f(x⋆)](1− 1
4κ )

k ≤ [f(x1)− f(x⋆)] since

lim
k→∞

1− 2µmax{ 1
4L −

2D2L(LD+1)2κ
k , 0} = 1− 1

2κ < 1− 1
4κ .

This proves the first relation limk→∞ ∥xk − x⋆∥ = 0 since ∥x− x⋆∥2 ≤ 2
µ [f(x)− f(x

⋆)] and the second relation follows
directly from ∑∞

k=1 ∥xk − x⋆∥2 =
∑K0

k=1 ∥xk − x⋆∥2 +
∑∞
k=K0+1 ∥xk − x⋆∥2 (42)

≤
∑K0

k=1 ∥xk − x⋆∥2 +
∑∞
k=K0+1

2
µ [f(x

1)− f(x⋆)](1− 1
4κ )

−k <∞. (43)

Now we are ready to prove Theorem 3.4, and we start by stating the precise definition of a uniformly independent sequence.
Definition C.1 (Uniformly linearly indepdendent sequence (Conn et al., 1991)). A sequence of unit-norm vectors
{gk}, gk ∈ Rn, ∥gk∥ = 1 is uniformly linearly independent if there exists a constant c > 0,K0 ≥ 0 and m ≥ n
such that for each k ≥ K0, one can choose n distinct indices

k ≤ k1 < · · · < kn ≤ k +m

with σmin([g
k1 , . . . , gkn ]) ≥ c.

We prove by contradiction. For brevity we denote gk := ∇f(xk)
∥∇f(xk)∥ and ek := ∥Pk−P ⋆∥2F . Recall that P ⋆ = [∇2f(x⋆)]−1.

First, using Lemma C.2, for any ε > 0, there exists some index K1 such that for all k ≥ K1 we have ∥xk − x⋆∥2 ≤ ε and
that

∑∞
k=1 ∥xk − x⋆∥2 is bounded. Then we show that limk→∞ ∥∇hxk(Pk)∥F = 0 using (31): after re-arrangement, for

any K ≥ 1, ∑K
k=1 ĥxk(Pk) ≤ 2η

2η(1−ηL)
∑K
k=1 ĥxk(P ⋆) + 1

2η(1−ηL)∥P1 − P ⋆∥2F
≤ 2η

2η(1−ηL)
H2κ
8µ3

∑K
k=1 ∥xk − x⋆∥2 +

1
2η(1−ηL)∥P1 − P ⋆∥2F . (44)

≤ 2η
2η(1−ηL)

H2κ
8µ3

∑∞
k=1 ∥xk − x⋆∥2 +

1
2η(1−ηL)∥P1 − P ⋆∥2F ,

where (44) applies (28). Since
∑∞
k=1 ∥xk−x⋆∥2 is bounded and ĥx(P ) is nonnegative, we must have limk→∞ ĥxk(Pk) =

0. Further notice that ∥∇ĥxk(Pk)∥2F ≤ 2Lĥxk(Pk), it implies limk→∞
∑K
k=1 ∥∇hxk(Pk)∥2F < ∞, giving

limk→∞ ∥∇hxk(Pk)∥F = 0 and limk→∞ Pk = P̄ also exists. Now suppose by contradiction that ∥P̄ − P ⋆∥F = θ > 0.
Then there exists some K2 > 0 such that for all k ≥ K2, ∥Pk − P̄∥F ≤ ε. For k ≥ max{K0,K1,K2} + 1, we invoke
Lemma 3.1 with η ∈ (0, 1

2L ] to get

∥Pk+1 − P ⋆∥2F ≤ ∥Pk − P ⋆∥2F − α1∥(Pk − P ⋆)gk∥2 + α2ε

= ∥Pk − P ⋆∥2F − α1∥(Pk − P̄ + P̄ − P ⋆)gk∥2 + α2ε

≤ ∥Pk − P ⋆∥2F − α1

2 ∥(P̄ − P
⋆)gk∥2 + 3α1∥(Pk − P̄ )gk∥2 + α2ε

≤ ∥Pk − P ⋆∥2F − α1

2 ∥(P̄ − P
⋆)gk∥2 + 3α1ε

2 + α2ε (45)

= ∥Pk − P ⋆∥2F − α1

2 tr(gk(gk)⊤, (P̄ − P ⋆)⊤(P̄ − P ⋆)) + 3α1ε
2 + α2ε, (46)
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where α1 = µ(η−Lη2)
2 > 0, α2 = 1

4 (2η − Lη
2)H2κµ−3, and (45) uses the fact that ∥Pk − P ⋆∥F ≤ ε.

Telescoping (46) for the next m+ 1 iterations, we deduce that

ek+m+1 = ∥Pk+m+1 − P ⋆∥2F
≤ ∥Pk − P ⋆∥2F − α1

2

∑m
j=0 tr(g

k+j(gk+j)⊤, (P̄ − P ⋆)⊤(P̄ − P ⋆)) + (3α1ε
2 + α2ε)(m+ 1)

= ek − α1

2 tr(
∑m
j=0 g

k+j(gk+j)⊤, (P̄ − P ⋆)⊤(P̄ − P ⋆)) + (3α1ε
2 + α2ε)(m+ 1)

and using the independent sequence assumption, we can pick k1, . . . , kn such that

σmin([g
k1 , . . . , gkn ]) ≥ c

and
∑m
j=0 g

k+j(gk+j)⊤ ⪰
∑n
i=1 g

ki(gki)⊤ ⪰ c2I . Hence

tr(
∑m
j=0 g

k+j(gk+j)⊤, (P̄ − P ⋆)⊤(P̄ − P ⋆)) ≥ c2 tr((P̄ − P ⋆)⊤(P̄ − P ⋆)) = c2∥P̄ − P ⋆∥2F = c2θ2

and ek+m+1 ≤ ek− α1c
2θ2

2 +(3α1ε
2+α2ε)(m+1). Since ε is arbitrary, we can repeat the same argument till ek+m+1 < 0,

which leads to contradiction unless θ = 0. This completes the proof.

D. Proof of Results in Section 4
D.1. HDM + Heavy-ball Momentum (HDM-HB)

Algorithm 2 uses the following heavy-ball feedback function to guide the online learning for (Pk, Bk):

hx,x−(P,B) := ψ(x+,x)−ψ(x,x−)
∥∇f(x)∥2+ τ

2 ∥x−x−∥2 =
[f(x+)+ω

2 ∥x+−x∥2]−[f(x)+ω
2 ∥x−x−∥2]

∥∇f(x)∥2+ τ
2 ∥x−x−∥2 ,

where ω > 0, τ > 0, x+ = x − P∇f(x) + B(x − x−), and ψ(x, x−) = f(x) + ω
2 ∥x − x

−∥2. To show that online
learning can be applied to hx,x−(P,B) with regret guarantees, we need to verify the convexity and Lipschitz continuity of
hx,x−(P,B) with respect to the norm defined by

∥(P,B)∥ :=
√
∥P∥2F + ∥B∥2F . (47)

Lemma D.1. Under A1, A3, and A5, the heavy-ball feedback function hx,x−(P,B) is jointly convex in (P,B) and c-
Lipschitz with respect to the norm defined in (47), where c :=

√
2(1 + 2

τ )[1 + 2(1 + 2
τ )D(L+ ω)].

Proof. Denote x+(P,B) := x− P∇f(x) +B(x− x−). Recall that the feedback function is

hx,x−(P,B) =
[f(x+(P,β))+ω

2 ∥x+(P,β)−x∥2]−[f(x)+ω
2 ∥x−x−∥2]

∥∇f(x)∥2+ τ
2 ∥x−x−∥2 .

Since x+(P,B) is affine in (P,B) and f is convex, the term f(x+(P, β)) + ω
2 ∥x

+(P, β) − x∥2 is jointly convex as a
function of (P,B). The other terms in the feedback function hx,x−(P,B) are constants, so hx,x−(P,B) is also jointly
convex in (P,B).

To prove the Lipschitz continuity of hx,x−(P,B), it suffices to show that the gradients of hx,x−(P,B) are bounded. The
gradients of hx,x−(P,B) with respect to P and B are

∇Phx,x−(P,B) = [−∇f(x+(P,B))+ωP∇f(x)−ωB(x−x−)]∇f(x)⊤
∥∇f(x)∥2+ τ

2 ∥x−x−∥2 ,

∇Bhx,x−(P,B) = [∇f(x+(P,B))−ωP∇f(x)+ωB(x−x−)](x−x−)⊤

∥∇f(x)∥2+ τ
2 ∥x−x−∥2 .

Using the fact ∥ab⊤∥F = ∥a∥ · ∥b∥, the gradients have norms

∥∇Phx,x−(P,B)∥F = ∥∇f(x+(P,B))−ωP∇f(x)+ωB(x−x−)∥∥∇f(x)∥
∥∇f(x)∥2+ τ

2 ∥x−x−∥2 , (48)

∥∇Bhx,x−(P,B)∥F = ∥∇f(x+(P,B))−ωP∇f(x)+ωB(x−x−)∥∥x−x−∥
∥∇f(x)∥2+ τ

2 ∥x−x−∥2 . (49)
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Using A1, we have the Lipschitz continuity of∇f(x) and thus

∥∇f(x+(P,B))− ωP∇f(x) + ωB(x− x−)∥
≤ ∥∇f(x+(P,B))−∇f(x)∥+ ∥(I − ωP )∇f(x)∥+ ω∥B∥∥x− x−∥
≤ L∥P∇f(x)−B(x− x−)∥+ (1 + ω∥P∥)∥∇f(x)∥+ ω∥B∥∥x− x−∥
≤ LD(∥∇f(x)∥+ ∥x− x−∥) + (1 + ωD)∥∇f(x)∥+ ωD∥x− x−∥
= (1 + LD + ωD)∥∇f(x)∥+ (ω + L)D∥x− x−∥. (50)

Now, we bound the norms in (48)–(49) by the case analysis.

Case 1. If τ2∥x− x
−∥2 ≤ ∥∇f(x)∥2, then together with (50), we have

max{∥∇Phx,x−(P,B)∥F , ∥∇Bhx,x−(P,B)∥F } ≤ [(1+LD+ωD)∥∇f(x)∥+(ω+L)D∥x−x−∥] max{
√
2τ−1,1}∥∇f(x)∥

∥∇f(x)∥2

≤ max{
√
2τ−1, 1}[(1 + LD + ωD) +

√
2D(ω+L)√

τ
]

= max{
√
2τ−1, 1}(1 +D(L+ ω)(1 +

√
2τ−1)).

Case 2. If τ2∥x− x
−∥2 ≥ ∥∇f(x)∥2, then

max{∥∇Phx,x−(P,B)∥F , ∥∇Bhx,x−(P,B)∥F } ≤
[(1+LD+ωD)∥∇f(x)∥+(ω+L)D∥x−x−∥] max{

√
τ
2 ,1}∥x−x

−∥
τ
2 ∥x−x−∥2

≤ max{
√
τ/2, 1}[

√
2(1+LD+ωD)√

τ
+ 2D(ω+L)

τ ]

=
√
2τ−1 max{

√
2τ−1, 1}(1 +D(L+ ω)(1 +

√
2τ−1)).

Combining the two cases, we have

max{∥∇Phx,x−(P,B)∥F , ∥∇Bhx,x−(P,B)∥F } ≤ max{ 2τ , 1}(1 +D(L+ ω)(1 +
√
2τ−1))

≤ (1 + 2
τ )[1 + 2(1 + 2

τ )D(L+ ω)].

Then the gradient of hx,x−(P,B) under the norm defined in (47) is bounded by the constant c :=
√
2(1 + 2

τ )[1 + 2(1 +
2
τ )D(L+ ω)].

The next lemma bounds the potential at the last iterate xK+1 from Algorithm 2 in terms of the sum of feedback functions
hxk,xk−1(Pk, Bk).

Lemma D.2. The sequence {xk} generated from Algorithm 2 satisfies

f(xK+1)− f(x⋆) + ω
2 ∥x

K+1 − xK∥2 ≤ f(x1)−f(x⋆)

1+
∑K

k=1 max{−h
xk,xk−1 (Pk,Bk),0}V

, (51)

where V := min
{ f(x1)−f(x⋆)

4∆2 , τ4ω
}

and ∆ := maxx∈Lf(x1)
minx⋆∈X⋆ ∥x− x⋆∥.

Proof. The null step guarantees

ψ(xk+1,xk)−ψ(xk,xk−1)
∥∇f(xk)∥2+ τ

2 ∥xk−xk−1∥2 = min{hxk,xk−1(Pk, Bk), 0}.
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Using the initial condition x1 = x0, we have

ψ(xK+1, xK)− f(x⋆) = 1
1

ψ(xK+1,xK)−f(x⋆)

=
1∑K

k=1
1

ψ(xk+1,xk)−f(x⋆)
− 1

ψ(xk,xk−1)−f(x⋆)
+ 1

ψ(x1,x0)−f(x⋆)

=
1∑K

k=1
ψ(xk,xk−1)−ψ(xk+1,xk)

[ψ(xk+1,xk)−f(x⋆)][ψ(xk,xk−1)−f(x⋆)]
+ 1

ψ(x1,x0)−f(x⋆)

=
1∑K

k=1

max{−h
xk,xk−1 (Pk,Bk),0}[∥∇f(xk)∥2+ τ

2 ∥xk−xk−1∥2]

[ψ(xk+1,xk)−f(x⋆)][ψ(xk,xk−1)−f(x⋆)]
+ 1

f(x1)−f(x⋆)

. (52)

Then, by monotonicity, ∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[ψ(xk+1,xk)−f(x⋆)][ψ(xk,xk−1)−f(x⋆)]
≥ ∥∇f(xk)∥2+ τ

2 ∥x
k−xk−1∥2

[ψ(xk,xk−1)−f(x⋆)]2
.

Now we do case analysis to bound

∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[ψ(xk,xk−1)−f(x⋆)]2
=

∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[f(xk)+ω
2 ∥xk−xk−1∥2−f(x⋆)]2

Case 1. If ω2 ∥x
k − xk−1∥2 ≤ f(xk)− f(x⋆), then

∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[f(xk)+ω
2 ∥xk−xk−1∥2−f(x⋆)]2

≥ ∥∇f(xk)∥2

4[f(xk)−f(x⋆)]2
≥ 1

4∆2 ,

where ∆ := maxx∈Lf(x1)
minx⋆∈X⋆ ∥x− x⋆∥.

Case 2. If ω2 ∥x
k − xk−1∥2 ≥ f(xk)− f(x⋆), then τ

2∥x
k − xk−1∥2 ≥ τ

ω [f(x
k)− f(x⋆)] and

∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[f(xk)+ω
2 ∥xk−xk−1∥2−f(x⋆)]2

≥
τ
2 ∥x

k−xk−1∥2

ω2∥xk−xk−1∥4 = τ
2ω2

1
∥xk−xk−1∥2 ≥ τ

4ω
1

f(x1)−f(x⋆) .

since ω
2 ∥x

k − xk−1∥2 ≤ ψ(xk, xk−1)− f(x⋆) ≤ ψ(x1, x0)− f(x⋆) = f(x1)− f(x⋆).

In both cases, we have ∥∇f(xk)∥2+ τ
2 ∥x

k−xk−1∥2

[ψ(xk,xk−1)−f(x⋆)]2
≥ min{ 1

4∆2 ,
τ
4ω

1
f(x1)−f(x⋆)} = V

f(x1)−f(x⋆) , where the constant V is
defined in the lemma. Finally, plugging in the definition of ψ, (52) gives

f(xK+1)− f(x⋆) + ω
2 ∥x

K+1 − xK∥2 ≤ f(x1)−f(x⋆)

1+
∑K

k=1 max{−h
xk,xk−1 (Pk,Bk),0}V

.

The next lemma shows that there exist hindsight P̄ , B̄ such that hx,x−(P̄ , B̄) ≤ −θ < 0 for some θ.
Lemma D.3. Let ω = 3L and τ = 16L2. Then for any x, x− ̸∈ X ⋆, we have hx,x−( 1

4LI,
1
2I) ≤ −

1
8L . In particular, if

1
4LI ∈ P , 1

2I ∈ B, and {xk}Kk=1 ∩ X ⋆ = ∅, then

γ⋆K := − min
(P,B)∈P×B

1
K

∑K
k=1 hxk,xk−1(P,B) ≥ 1

8L .

Proof. When P = αI and B = βI for some α, β > 0, the classical analysis for the heavy-ball momentum (Danilova
et al., 2020) gives

f(x+) + 1−αL
2α ∥x

+ − x∥2 ≤ f(x) + β2

2α∥x− x
−∥2 − α

2 ∥∇f(x)∥
2.

Let α = 1
4L and β = 1

2 , we have

f(x+) + 3L
2 ∥x

+ − x∥2 ≤ f(x) + L
2 ∥x− x

−∥2 − 1
8L∥∇f(x)∥

2

= f(x) + 3L
2 ∥x− x

−∥2 − 1
8L∥∇f(x)∥

2 − L∥x− x−∥2

= f(x) + 3L
2 ∥x− x

−∥2 − 1
8L [∥∇f(x)∥

2 + 8L2∥x− x−∥2]
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and re-arranging the terms, we get

f(x+)+ 3L
2 ∥x+−x∥2−[f(x)+ 3L

2 ∥x−x−∥2]

∥∇f(x)∥2+8L2∥x−x−∥2 ≤ − 1
8L

and this completes the proof.

D.1.1. PROOF OF THEOREM 4.1

By Lemma D.1, the heavy-ball feedback is convex and Lipschitz, and thus the same proof of Lemma 2.2 guarantees that
online gradient descent

(Pk+1, Bk+1) = ΠP×B[(Pk, Bk)− η∇hxk,xk−1(Pk, Bk)]

(with ηp = ηb = η) gives the regret bound

1
K

∑K
k=1−hxk,xk−1(Pk, Bk) ≥ γ⋆K −

ρK
K

for some sublinear regret ρK = O(
√
K) and the constant γ⋆K as defined in Lemma D.3. Using the inequality

1
K

∑K
k=1 max{−hxk,xk−1(Pk, Bk), 0} ≥ max

{
1
K

∑K
k=1−hxk,xk−1(Pk, Bk), 0

}
≥ max{γ⋆K −

ρK
K , 0},

the desired result follows directly from (51) in Lemma D.2.

D.2. HDM + Nesterov Momentum (HDM-AGD)

D.2.1. HDM WITH NESTEROV MOMENTUM

In smooth convex optimization, accelerated gradient descent (AGD) achieves the convergence rateO( L
K2 ) (Nesterov, 1983):

yk = xk + (1− Ak

Ak+1
)(zk − xk)

xk+1 = yk − 1
L∇f(y

k) (53)

zk+1 = zk + Ak+1−Ak

L ∇f(yk),

where {Ak} is a pre-specified sequence. To apply HDM, we can replace the gradient descent step (53) by hypergradient
descent: xk+1 = yk − Pk∇f(yk) and Pk+1 = ΠP [Pk − η∇hyk(Pk)]. That is, we only accelerate the gradient descent
step in AGD. Algorithm 4 provides a realization of the HDM-AGD based on a monotone variant of AGD (d’Aspremont et al.,
2021). The convergence of HDM-AGD is established in Theorem D.1, the proof of which is deferred to Appendix D.2.3.

Algorithm 4 HDM with Nesterov momentum
input starting point x1, z1, η > 0, θ ∈ [ 12 , LD), A0 = 0
for k = 1, 2,... do

Ak+1 = (Ak+1 −Ak)2

yk = xk + (1− Ak

Ak+1
)(zk − xk)

xk+1 = argmin
x∈{yk− 1

L∇f(yk),yk−Pk∇f(yk),xk}
f(x)

Pk+1 = ΠP [Pk − η∇hyk(Pk)]
vk = max{ 1

2max{−h
yk (Pk),1/(2L)} ,

L
2θ}

zk+1 = zk + (Ak+1−Ak)
vk

∇f(yk)
end
output xK+1

Theorem D.1. Assume A1 and A3. Suppose AGD starts from (x′, z′) and runs for K iterations to output x̂. Then Algo-
rithm 4 starting from (x1, z1) = (x̂, z′) and θ ∈ [ 12 , LD) satisfies

f(xK+1)− f(x⋆) ≤
[

1
2θ + (8− 4

θ )(
LD−ω⋆

K

LD−θ )
] 2L∥z′−x⋆∥2

K2 +O( ρKK3 ),

where ω⋆K = −minP∈P
L
K

∑K
k=1 hyk(P ) depends on the iteration trajectory {xk}k≤K .
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The parameter θ serves as a smooth interpolation between HDM and HDM-AGD: when θ = 1/2, Theorem D.1 recovers the
convergence rate of vanilla AGD; when θ > 1/2 and ω⋆K → LD, we expect HDM-AGD to yield faster convergence. As
suggested by Figure 3b, HDM-AGD achieves faster convergence than AGD.
Remark 2. To mitigate the effect of regret, Algorithm 4 needs a warm start from vanilla AGD. However, experiments
suggest that it is unnecessary in practice, and we leave an improved analysis to future work.
Remark 3. For strongly convex problems, we can combine Theorem D.1 with a standard restart argument (d’Aspremont
et al., 2021; Roulet and d’Aspremont, 2017) and achieve a similar trajectory-based linear convergence rate.

D.2.2. AUXILIARY RESULTS

Lemma D.4. Suppose a nonnegative sequence {Ak} satisfiesAk+1 = (Ak+1−Ak)2 andA0 = 0, thenAk+1−Ak ≤ k+1
for all k ≥ 1.

Proof. We prove by induction. The induction hypothesis is Ak+1 −Ak ≤ k + 1.

Base case. For k = 1, A2 −A1 =
√
5+1
2 < 2 and the relation holds.

Inductive step. Suppose Ak+1 −Ak ≤ k. Using Ak+2 = Ak+1 +
1
2

(
1 +

√
4Ak+1 + 1

)
, we deduce that

Ak+2 −Ak+1 = 1
2 (1 +

√
4Ak+1 + 1)

= 1
2 (1 +

√
4(Ak+1 −Ak)2 + 1)

≤ 1
2 (1 + 2(Ak+1 −Ak) + 1) (54)

≤ 1 +Ak+1 −Ak
≤ k + 2, (55)

where (54) uses
√
a+ b ≤

√
a +
√
b and (55) uses the induction hypothesis Ak+1 − Ak ≤ k + 1. By the principle of

mathematical induction, this completes the proof.

Lemma D.5 ((d’Aspremont et al., 2021)). Under the same conditions as Lemma D.4, Ak ≥ k2

4 for all k ≥ 1.

D.2.3. PROOF OF THEOREM D.1

Using the definition hy(P ) =
f(y−P∇f(y))−f(y)

∥∇f(y)∥2 and the x-update in Algorithm 4:

xk+1 = argmin
x∈{yk− 1

L∇f(yk),yk−Pk∇f(yk),xk}
f(x),

we have the following two inequalities:

f(xk+1)− f(yk) ≤ min{hyk(Pk),− 1
2L}∥∇f(y

k)∥2 (56)

f(xk+1) ≤ f(xk). (57)

In other words, with vk = max{− 1
2min{h

yk (Pk),−1/(2L)} ,
L
2θ}, we have

f(yk)− 1
2vk
∥∇f(yk)∥2 ≥ f(xk+1) (58)

and using zk+1 = zk + (Ak+1−Ak)
vk

∇f(yk), by algebraic rearrangement

vk
2 ∥z

k+1 − x⋆∥2 (59)

= vk
2 ∥z

k − x⋆ + (Ak+1−Ak)
vk

∇f(yk)∥2

= vk
2 ∥z

k − x⋆∥2 − (Ak+1 −Ak)⟨∇f(yk), zk − x⋆⟩+ 1
2vk

(Ak+1 −Ak)2∥∇f(yk)∥2. (60)
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Next, we apply convexity and have

f(x⋆) ≥ f(yk) + ⟨∇f(yk), x⋆ − yk⟩ (61)

f(xk) ≥ f(yk) + ⟨∇f(yk), xk − yk⟩ (62)

Taking a weighted summation between (58), (61) and (62), we deduce that

0 ≥ (Ak+1 −Ak)[f(yk) + ⟨∇f(yk), x⋆ − yk⟩ − f(x⋆)] +Ak[f(y
k) + ⟨∇f(yk), xk − yk⟩ − f(xk)]

+Ak+1[f(x
k+1)− f(yk) + 1

2vk
∥∇f(yk)∥2]

= (Ak+1 −Ak)⟨∇f(yk), x⋆ − yk⟩ − (Ak+1 −Ak)f(x⋆)

+Ak⟨∇f(yk), xk − yk⟩ −Akf(xk) +Ak+1f(x
k+1) + Ak+1

2vk
∥∇f(yk)∥2 (63)

= Ak+1[f(x
k+1)− f(x⋆)]−Ak[f(xk)− f(x⋆)]

+ (Ak+1 −Ak)⟨∇f(yk), x⋆ − yk⟩+Ak⟨∇f(yk), xk − yk⟩+ Ak+1

2vk
∥∇f(yk)∥2 (64)

= Ak+1[f(x
k+1)− f(x⋆)]−Ak[f(xk)− f(x⋆)]

Ak+1⟨∇f(yk), x⋆ − yk⟩+Ak⟨∇f(yk), xk − x⋆⟩+ Ak+1

2vk
∥∇f(yk)∥2,

= Ak+1[f(x
k+1)− f(x⋆)]−Ak[f(xk)− f(x⋆)]

− (Ak+1 −Ak)⟨∇f(yk), zk − x⋆⟩+ Ak+1

2vk
∥∇f(yk)∥2, (65)

where (63) to (64) simply re-arrange the terms and (65) uses the identity yk = xk + (1− Ak

Ak+1
)(zk − xk):

Ak+1⟨∇f(yk), x⋆ − yk⟩+Ak⟨∇f(yk), xk − x⋆⟩ = −(Ak+1 −Ak)⟨∇f(yk), zk − x⋆⟩.

Putting the relations together, we arrive at

Ak+1[f(x
k+1)− f(x⋆)] ≤ Ak[f(xk)− f(x⋆)] + (Ak+1 −Ak)⟨∇f(yk), zk − x⋆⟩ − Ak+1

2vk
∥∇f(yk)∥2.

and adding (60) gives

Ak+1[f(x
k+1)− f(x⋆)] + vk

2 ∥z
k+1 − x⋆∥2

≤ Ak[f(xk)− f(x⋆)] + vk
2 ∥z

k − x⋆∥2 + Ak+1−(Ak+1−Ak)
2

2vk
∥∇f(yk)∥2

= Ak[f(x
k)− f(x⋆)] + vk

2 ∥z
k − x⋆∥2, (66)

where (66) uses the relation Ak+1 − (Ak+1 −Ak)2 = 0.

We are now ready to analyze the acceleration effect of online hypergradient. Recall that we can guarantee

1
K

∑K
k=1 hyk(Pk) ≤− γ

⋆
K + ρK

K , (67)

where γ⋆K := −minP∈P
∑K
k=1 hyk(P ) is expected to be larger than 1/(2L) to improve performance. Recall that γ⋆K :=

ω⋆
K

L , ω⋆K ≥ 0 and note that ω⋆K depends on the iteration trajectory. Moreover, we have, by convexity of f(x),

f(x−P∇f(x))−f(x)
∥∇f(x)∥2 ≥ f(x)−⟨∇f(x),P∇f(x)⟩−f(x)

∥∇f(x)∥2 = − ⟨∇f(x),P∇f(x)⟩
∥∇f(x)∥2 ≥ −D

and γ⋆K ≤ D implies ω⋆K ≤ LD. Define I := {k : hyk(Pk) ≤ − θ
L} for θ ∈ [ 12 , LD). Then, according to (67),

−ω
⋆
K

L + ρK
K ≥

1
K

∑K
k=1 hyk(Pk) =

1
K [

∑
k∈I hyk(Pk) +

∑
k∈Ī hyk(Pk)] ≥

1
K

∑
k∈I hyk(Pk)−

θ
L
K−|I|
K .

Using hyk(Pk) ≥ −D, we get

−D
K |I| ≤

1
K

∑
k∈I hyk(Pk) ≤ −

ω⋆
K

L + θ
L
K−|I|
K + ρK

K .
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Re-arranging the terms,
(−D

K + θ
KL )|I| ≤

θ−ω⋆
K

L + ρK
K .

Using D > θ
L , we get

|I| ≥
θ−ω⋆

K

L + ρK
K

−D
K + θ

KL

=
(θ−ω⋆

K)K+LρK
θ−LD =

(ω⋆
K−θ)K
LD−θ − L

LD−θρK .

We have, if k ∈ I, that using the fact that (66) holds for vk = max{− 1
2min{h

yk (Pk),−1/(2L)} ,
L
2θ} =

L
2θ ,

Ak+1[f(x
k+1)− f(x⋆)] + L

4θ∥z
k+1 − x⋆∥2 ≤ Ak[f(xk)− f(x⋆)] + L

4θ∥z
k − x⋆∥2. (68)

On the other hand, if k ̸∈ I, vk ≤ L and

Ak+1[f(x
k+1)− f(x⋆)] + vk

2 ∥z
k+1 − x⋆∥2 ≤ Ak[f(xk)− f(x⋆)] + vk

2 ∥z
k − x⋆∥2 (69)

and f(xk+1) ≤ f(xk) implies

Ak+1[f(x
k+1)− f(x⋆)] ≤ Ak+1[f(x

k)− f(x⋆)]
≤ Ak[f(xk)− f(x⋆)] + k[f(xk)− f(x⋆)], (70)

where (70) uses the condition that Ak+1 −Ak ≤ k from Lemma D.4.

Taking a weighted summation of (69) and (70), combining (68),

Ak+1[f(x
k+1)− f(x⋆)] + L

4θ∥z
k+1 − x⋆∥2

≤ Ak[f(xk)− f(x⋆)] + L
4θ∥z

k − x⋆∥2 + (1− L
2θvk

)k[f(xk)− f(x⋆)] · I{k ∈ Ī}

≤ Ak[f(xk)− f(x⋆)] + L
4θ∥z

k − x⋆∥2 + (1− 1
2θ )k[f(x

k)− f(x⋆)] · I{k ∈ Ī}.

Telescoping the relation from 1 to K,

AK+1[f(x
K+1)− f(x⋆)] ≤ L

4θ∥z
1 − x⋆∥2 +

∑
k∈Ī(1−

1
2θ )k[f(x

k)− f(x⋆)].

Using AK+1 ≥ K2

4 from Lemma D.5 and that |Ī| = K − |I| ≤ K − (ω⋆
K−θ)K
LD−θ + LρK

LD−θ ,

f(xK+1)− f(x⋆) ≤ L
4θAK+1

∥z1 − x⋆∥2 + 1
AK+1

(1− 1
2θ )

∑
k∈Ī k[f(x

k)− f(x⋆)]

≤ L
θK2 ∥z1 − x⋆∥2 + 4

K2 (1− 1
2θ )

∑
k∈Ī k[f(x

k)− f(x⋆)]
≤ L

θK2 ∥z1 − x⋆∥2 + 4
K (1− 1

2θ )[f(x
1)− f(x⋆)] · |Ī|

≤ L
θK2 ∥z1 − x⋆∥2 + 4(1− 1

2θ )[f(x
1)− f(x⋆)](1− ω⋆

K−θ
LD−θ +

L
LD−θ

ρK
K ).

Suppose we run accelerated gradient descent from z′ for K iterations and obtain x1.

Plugging in f(x1)− f(x⋆) ≤ 2L
K2 ∥z′ − x⋆∥2 we get, using z1 = z′, that

f(xK+1)− f(x⋆) ≤ L
θK2 ∥z′ − x⋆∥2 + L

θK2 ∥z′ − x⋆∥28(2θ − 1)(1− ω⋆
K−θ

LD−θ ) +O(
ρK
K3 )

= L
θK2 ∥z′ − x⋆∥2 + L

K2 ∥z′ − x⋆∥2(16− 8
θ )
LD−ω⋆

K

LD−θ +O( ρKK3 )

≤ L
θK2 ∥z′ − x⋆∥2 + L

K2 ∥z′ − x⋆∥2(16− 8
θ )
LD−ω⋆

K

LD−θ +O( ρKK3 )

≤ [ 1
2θ + (8− 4

θ )(
LD−ω⋆

K

LD−θ )] 2L∥z
′−x⋆∥2

K2 +O( ρKK3 ).

This completes the proof.
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Table 3: Algorithm benchmark

Algorithm Explanation

GD Vanilla gradient descent
GD-HB (Polyak, 1964) Gradient descent with heavy-ball momentum
AGD-CVX (d’Aspremont et al., 2021) Smooth convex version of accelerated gradient
AGD-SCVX (d’Aspremont et al., 2021) Strongly convex version of accelerated gradient
Adam (Kingma, 2014) Adaptive momentum estimation
AdaGrad (Duchi et al., 2011) Adaptive (sub)gradient method
BFGS (Nocedal and Wright, 1999) BFGS from scipy
L-BFGS-Mk (Nocedal and Wright, 1999) L-BFGS with memory k from scipy (Virtanen et al., 2020)
HDM-Best Practical hypergradient descent method

E. Additional Experiments
E.1. Details of the Algorithms

Table 3 details the algorithms used in our experiments.

E.2. Ablation Study of HDM-Best

This section evaluates the effect of different components in HDM-Best, including null-step and AdaGrad. In particular,
we consider the following versions of HDM-Best

• HDM Raw.
HDM-Best without null step and online gradient descent with constant stepsize is used.

• HDM+Null step.
HDM-Best with null step and online gradient descent with constant stepsize is used.

• HDM+Null step+AdaGrad.
HDM-Best with all the components.
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Figure 6: Ablation on different components of HDM-Best

As Figure 6 shows, both the null step and AdaGrad bring significant speedup and justify our theoretical results.

E.3. Additional Experiments on Support Vector Machine Problems

See Figure 7 and Figure 8.

E.4. Additional Experiments on Logistic Regression Problems

See Figure 9 and Figure 10.
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Figure 7: More experiments on support vector-machine problem
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Figure 8: More experiments on support vector-machine problem

30



Provable and Practical Hypergradient Descent

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

Fu
nc

tio
n 

va
lu

e 
ga

p

a1a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a2a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a3a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a4a

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

G
ra

di
en

t N
or

m

a1a

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

a2a

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

a3a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3 a4a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a5a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a6a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

a7a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4 a8a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a5a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a6a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a7a

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a8a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4 a9a

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

australian_scale

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

fourclass_scale

0 200 400 600 800 1000
Iteration

10
10

10
8

10
6

10
4

10
2

10
0

10
2

10
4

ijcnn1

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

a9a

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

australian_scale

0 200 400 600 800 1000
Iteration

10
5

10
4

10
3

10
2

10
1

10
0

10
1

10
2

fourclass_scale

0 200 400 600 800 1000
Iteration

10
5

10
3

10
1

10
1

10
3

ijcnn1

GD
GD-HB

AGD-CVX
AGD-SCVX

Adam
AdaGrad

BFGS
L-BFGS-M1

L-BFGS-M3
L-BFGS-M5

L-BFGS-M10
HDM-Best

Figure 9: More experiments on logistic regression problem
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Figure 10: More experiments on logistic regression problem
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E.5. Experiments against Additional Benchmark Algorithms

This section compares HDM-Best with the following additional benchmark algorithms:

• GD-LS. Gradient descent with Armijo line-search.
• AGD-CVX-LS. Accelerated gradient descent with Armijo line-search applied to the descent step.
• ADPGD. Adaptive gradient descent without descent in Malitsky and Mishchenko (2020).
• ADPGDACC. ADPGD with acceleration in Malitsky and Mishchenko (2020).

Algorithm Configuration.

• Line-search condition is taken to be standard Armijo rule:

f(x− α∇f(x)) ≤ f(x)− αc∥∇f(x)∥2,

where c = 10−4 and α is obtained using backtracking. Whenever the test passes without backtracking, the initial
backtracking stepsize α0 is updated by α0 ← 1.2α0.

• The λ0 parameter in ADPGD is chosen within the range {0.1/L, 1/L, 10/L, 100/L}.
• ADPGDACC uses the default heuristic parameters provided by Malitsky and Mishchenko (2020).

Results. Table 4 shows the number of problems solved by each additional benchmark algorithms. The numbers in
parentheses indicate the total number of test problems. We observe that although line-search improves the convergence
behavior of the baseline algorithms, the algorithms with a single stepsize seem less competitive with algorithms with
a diagonal preconditioner when a moderate-to-high-accuracy solution is needed. Our requirement ∥∇f(x)∥∞ ≤ 10−4

(which corresponds to function value gap of 10−7 ∼ 10−9) is often too high for typical first-order methods.

Table 4: Number of solved problems for additional benchmark algorithms.

Algorithm/Problem SVM (33) Logistic Regression (33)

GD-LS 9 9
AGD-CVX-LS 10 9

ADPGD 9 9
ADPGDACC 11 11
HDM-Best 32 21
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