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Abstract

Taxonomic classification in biodiversity research involves organizing biological1

specimens into structured hierarchies based on evidence, which can come from2

multiple modalities such as images and genetic information. We investigate whether3

hyperbolic networks can provide a better embedding space for such hierarchical4

models. Our method embeds multimodal inputs into a shared hyperbolic space5

using contrastive and a novel stacked entailment-based objective. Experiments on6

the BIOSCAN-1M dataset show that hyperbolic embedding achieves competitive7

performance with Euclidean baselines, and outperforms all other models on unseen8

species classification using DNA barcodes. However, fine-grained classification and9

open-world generalization remain challenging. Our framework offers a structure-10

aware foundation for biodiversity modelling, with potential applications to species11

discovery, ecological monitoring, and conservation efforts.12

1 Introduction13

Specimen identification is an essential step for monitoring and mitigating biodiversity loss, requiring14

accurate classification of organisms within the taxonomic hierarchy across diverse ecosystems. DNA15

barcodes [10, 2] provide a way to classify specimens to known taxa or identify them as novel to16

science, but classification to the species level remains challenging, especially when barcodes are17

unavailable. To tackle this, CLIBD [8] showed that using contrastive learning to align DNA barcode18

embeddings to image embeddings can improve classification at the species level even when restricted19

to only using images for inference.20

However, a key limitation of CLIBD [8] and other recent biodiversity-focused multimodal meth-21

ods [19] is that they do not utilize the known taxonomic hierarchy of the input data. Motivated by22

the effectiveness of hyperbolic embeddings for capturing hierarchical relationships [3], we explore23

whether embeddings in hyperbolic space can provide more accurate fine-grained classification. Our24

model takes inputs from multiple modalities—DNA barcodes, specimen images, and hierarchical25

taxonomic labels—and is trained to co-align their embeddings into a shared hyperbolic space to26

promote taxonomic alignment across modalities.27

Our experimental results show that our hyperbolic multimodal learning framework achieves strong28

performance in taxonomic classification and retrieval, especially at higher taxonomic ranks. The29

approach consistently matches or outperforms Euclidean baselines. However, all methods—including30

ours—face challenges in fine-grained species classification, particularly for previously unseen taxa.31

These results highlight both the potential of hyperbolic learning for hierarchical biological data, and32

the ongoing difficulty of open-world classification for biodiversity.33

2 Related Work34

Recent multimodal contrastive methods typically use Euclidean spaces, including general vision-35

language frameworks such as CLIP [17] and SigLIP [22], as well as biodiversity-specific models36

like BioCLIP [19, 9] and CLIBD [8], which embed images, text, and DNA into a shared Eu-37



clidean space. In contrast, hyperbolic representation learning [15, 14, 6] encodes hierarchical38

structures more effectively, with recent extensions to fully hyperbolic models [21]. Hyperbolic39

multimodal works such as MERU [3] and HyCoCLIP [16] demonstrate improved structural align-40

ment for vision-language tasks. Our approach differs by grounding hyperbolic multimodal learning41

in biologically salient modalities (DNA and taxonomy) and enforcing rank-wise consistency via42

stacked entailment loss. A more detailed discussion of related work is provided in Appendix A.43

TOrder

TFamily

TGenus
TSpecies

D

T'Genus

T'Species

D'

I'

I

Image DNA Text

Positive entailment loss
Negative entailment loss

b) Entailment loss (EL) c) Stacked entailment loss (SEL)

I

D

a) Contrastive loss (CL)

I

I

D

D

Positive contrastive loss
Negative contrastive loss

TFull

TFull
TFull

Figure 1: (a) Contrastive loss: instance-level alignment
between modalities. (b) Entailment loss: enforces hier-
archy within the text modality using entailment cones.
(c) Stacked entailment loss: combines EL and cross-
modal constraints by aligning image and DNA embed-
dings to multiple levels of the text hierarchy.
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3 Approach45

We propose a multimodal representation46

learning framework that unifies specimen47

DNA barcodes, images, and taxonomic la-48

bels into a shared hyperbolic embedding49

space. By leveraging hyperbolic geometry,50

we aim to preserve hierarchical taxonomic51

relationships, improving classification ac-52

curacy and representation quality across53

the hierarchy.54

Our framework employs three specialized55

encoders to process each of the data modal-56

ities: an image encoder extracts visual fea-57

tures, a DNA encoder encodes genetic se-58

quences, and a text encoder captures se-59

mantic information from taxonomic labels60

of varying depth. These encoders indepen-61

dently map their inputs into a common em-62

bedding space, in which contrastive learn-63

ing aligns multimodal representations for downstream tasks. We expand on CLIBD [8] by lifting the64

embeddings into hyperbolic space, and evaluate on the BIOSCAN-1M dataset [7].65

3.1 Input and Output Specification66

During training, we jointly optimize the encoders using triplets of aligned data—specimen image,67

DNA barcode, and hierarchical taxonomic labels (e.g., “Order: Diptera; Family: Syrphidae; Genus:68

Episyrphus; Species: Episyrphus balteatus”)—so that their embeddings are both cross-modally69

aligned and geometrically consistent with the taxonomic hierarchy. This objective supports flexible70

inference with any subset of modalities while preserving multi-level taxonomic relationships in the71

learned space. At inference time, the model supports both uni- and cross-modal retrieval, allowing72

it to taxonomically classify specimens using any available combination of images, DNA barcodes73

and taxonomic labels. This enables robust downstream use in biodiversity monitoring and taxonomic74

classification, even with missing or noisy modalities.75

3.2 Encoders76

We adapt the experimental setup from Gong et al. [8], using pretrained ViT-B/16, BERT-Small,77

and BarcodeBERT encoders for image, text, and DNA barcode modalities. Each encoder produces78

Euclidean embeddings, which are then projected into a Lorentzian hyperbolic space with curvature c,79

via an exponential mapping centred at the origin. We refer the reader to Desai et al. [3] for details.80

The shared space enables contrastive alignment across modalities while preserving the hierarchical81

taxonomic structure.82

3.3 Stacked Entailment Loss83

To better leverage the inherent structure of the biological taxonomy, we propose a hierarchical84

learning objective termed stacked entailment loss (SEL). This mechanism is designed to explicitly85

enforce geometric relationships between taxonomic ranks—order, family, genus, and species—within86

hyperbolic space (see Figure 1). The design is inspired by compositional entailment mechanisms87

introduced in prior work [16], but adapted to reflect the nested and non-overlapping nature of88

biological hierarchies.89
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The core idea is to constrain the embeddings of lower-level taxa (e.g., genus) to lie within an90

entailment cone of their parent nodes (e.g., family). This entailment constraint is applied between91

each consecutive pair of levels in the hierarchy to ensure each child node is within the space “above”92

its parent, using a margin-based loss. Additionally, we introduce a negative entailment loss term93

which ensures each child node is not within the space “above” nodes from the preceding layer that94

are not its parent.95

Given a batch B = {(xi, yi, ci)}Bi=1, where xi and yi are embeddings and ci the class, we define96

positive pairs P = {(i, j) : ci = cj} and negative pairs N = {(i, j) : ci ̸= cj}. The corresponding97

entailment losses are:98

L+
ent =

1

|P|
∑

(i,j)∈P

max (0, ext(xi, yj)− aper(xi)) (1)

L−
ent =

1

|N |
∑

(i,j)∈N

max (0, aper(xi)− ext(xi, yj) +m) (2)

where ext(x, y) denotes the exterior angle between x and y in hyperbolic space, aper(x) is the cone99

aperture of x, and m is the margin for negative pairs. The positive and negative entailment loss100

are then combined into: Lent = 1/2
(
L+

ent + L−
ent
)
. Unlike flat contrastive objectives, which treat all101

positive pairs equally, the stacked entailment loss introduces a directional notion of containment102

in the taxonomic hierarchy (from parent to child), ensuring that more specific taxa (fine-grained103

nodes) are properly nested under their broader ancestors in the hyperbolic hierarchy. The overall104

stacked-entailment loss consists of two parts: LSEL = LSEL-intra + LSEL-inter. The first component,105

intra-modal entailment loss, enforces hierarchy among taxonomic labels. Let the taxonomy have106

R levels (e.g., order, family, genus, species), indexed r = 1, 2, . . . , R from root to leaf. Tr is the107

embedding at rank r, and 1r an indicator function for the availability of the label at rank r. Then we108

construct the intra-modal stacked entailment loss,109

LSEL-intra =
1∑R

r=2 1r

R∑
r=2

1r × Lent(Tr, Tr−1). (3)

Secondly, we introduce an inter-modal entailment loss that bridges taxonomic labels with other110

modalities:111

LSEL-inter =
1

3

(
Lent(I, TR′) + Lent(D,TR′) + Lent(I,D)

)
(4)

where I and D are the embeddings of images and DNA barcodes respectively, and TR′ refers to112

the deepest available taxonomic label (i.e., TSpecies if species is known, TGenus if species isn’t known113

but genus is, etc.). This term ensures that modality-specific inputs are not only aligned with the114

correct label, but also geometrically nested within the same hierarchical space. Since there can be115

multiple specimens with the same DNA barcode, and the same specimen can have different images,116

we consider the barcode to be more abstract than the image and also include an entailment loss term117

from barcode to image in the inter-modality objective.118

In summary, our stacked entailment loss unifies taxonomic ordering and modality alignment, and119

embeds hierarchical structure into model training. This enables better generalization, especially120

with incomplete labels or unseen species. By explicitly modelling the hierarchical containment of121

taxonomic levels, our approach enables independent retrieval and prediction at any rank (e.g., order,122

family, genus, or species), facilitating multi-level querying and evaluation directly within the learned123

representation. This stands in contrast to CLIBD, which produces predictions at all levels jointly We124

also extend the stacked entailment loss with two variants.125

• Image-DNA contrastive loss: By adding a contrastive loss term based on the negative Lorentz126

distance between image and DNA embeddings, we encourage stronger cross-modal alignment and127

can improve the accuracy of image-to-DNA retrieval.128

• Full-text supervision: We introduce an extra language input by concatenating taxonomic labels129

from all four ranks (order, family, genus, species), as is used in CLIBD. The full text is also used130

for contrastive alignment to the image and DNA embeddings.131

4 Experiments132

We compare our hyperbolic SEL strategy against baselines on the BIOSCAN-1M dataset across three133

retrieval tasks (DNA-to-DNA, Image-to-Image, and Image-to-DNA) evaluated at four taxonomic134
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Table 1: Macro top-1 accuracy (%) comparison of different training objectives across taxonomic
levels on BIOSCAN-1M. CL: contrastive loss. EL: entailment loss; SEL: stacked entailment loss;
We evaluate uni- and multi-modal retrieval tasks including DNA-to-DNA, Image-to-Image, and
Image-to-DNA. Accuracy is reported on both seen and unseen taxa, along with their harmonic mean
(H.M.). Each method is further characterized by the configuration of entailment loss used (EL config.),
whether full taxonomic text embedding is included utilized during training (Full Text), and the choice
of embedding space (Euclidean: Rn, or Lorentzian-hyperbolic: Hn

L). All models are trained on
the train_seen split of CLIBD and evaluated on the test split. Best results are shown in bold;
second-best are underlined.

DNA-to-DNA Image-to-Image Image-to-DNA

Rank Method EL config. Full Text Space Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order

CLIBD – ✓ Rn 89.1 87.8 88.4 99.5 66.4 79.6 98.7 49.5 65.9
CL – ✓ Hn

L 89.1 85.6 87.3 98.5 61.2 75.5 89.1 47.8 62.2
EL+CL Pos. ✓ Hn

L 88.6 86.5 87.5 98.6 56.9 72.1 77.8 48.4 59.7
SEL Pos.+Neg. ✗ Hn

L 88.4 90.8 89.6 79.3 62.3 69.8 98.7 48.9 65.4
SEL+CL Pos.+Neg. ✗ Hn

L 88.7 86.3 87.5 99.4 65.9 79.3 78.6 48.2 59.7
SEL+CL Pos.+Neg. ✓ Hn

L 88.9 88.2 88.5 99.0 60.9 75.4 78.6 48.9 60.3

Family

CLIBD – ✓ Rn 90.8 75.8 82.6 89.2 52.2 65.9 83.6 19.3 31.4
CL – ✓ Hn

L 90.3 76.6 82.9 83.9 48.5 61.4 79.6 18.8 30.4
EL+CL Pos. ✓ Hn

L 89.3 74.9 81.4 81.9 37.6 51.5 76.7 16.8 27.6
SEL Pos.+Neg. ✗ Hn

L 86.8 78.8 82.6 79.0 41.8 54.7 78.9 18.4 29.9
SEL+CL Pos.+Neg. ✗ Hn

L 89.0 76.9 82.5 79.6 46.6 58.8 78.7 17.3 28.4
SEL+CL Pos.+Neg. ✓ Hn

L 91.2 77.0 83.6 82.4 41.5 55.2 78.1 17.4 28.4

Genus

CLIBD – ✓ Rn 85.2 64.3 73.3 71.3 35.0 47.0 70.8 7.1 12.9
CL – ✓ Hn

L 86.4 64.9 74.1 65.6 32.4 43.4 66.9 6.5 11.8
EL+CL Pos. ✓ Hn

L 84.7 63.1 72.3 63.0 22.8 33.5 64.2 6.6 11.9
SEL Pos.+Neg. ✗ Hn

L 82.7 65.9 73.4 62.1 29.2 39.7 63.1 6.6 12.0
SEL+CL Pos.+Neg. ✗ Hn

L 83.6 66.9 74.3 63.3 33.1 43.5 67.6 6.4 11.7
SEL+CL Pos.+Neg. ✓ Hn

L 85.8 64.8 73.9 64.8 27.5 38.6 64.8 6.2 11.4

Species

CLIBD – ✓ Rn 81.8 60.6 69.7 55.1 24.3 33.7 55.8 0.7 1.4
CL – ✓ Hn

L 84.4 61.8 71.4 48.2 22.6 30.8 53.7 0.9 1.7
EL+CL Pos. ✓ Hn

L 82.5 60.1 69.6 45.4 14.3 21.8 50.5 0.9 1.8
SEL Pos.+Neg. ✗ Hn

L 79.5 62.3 69.9 45.5 20.0 27.8 52.0 1.1 2.1
SEL+CL Pos.+Neg. ✗ Hn

L 80.5 63.2 70.8 46.8 22.8 30.7 54.2 0.7 1.4
SEL+CL Pos.+Neg. ✓ Hn

L 82.6 62.0 70.8 47.8 19.0 27.2 51.4 1.0 2.1

levels (order, family, genus, and species). For more details of the experimental setup and training135

configuration, please refer to Appendix C. We investigate how well training with contrastive loss (CL)136

in the hyperbolic space performs compared with training in Euclidean space (CLIBD [8]). We then137

compare different ways of training in hyperbolic space, comparing a strategy similar to MERU [3]138

with entailment loss and contrastive losses (EL + CL) to different variants of SEL. Table 3 reports139

macro Top-1 accuracy for seen and unseen taxa, as well as their harmonic mean.140

Across all retrieval tasks, models achieve high accuracy at the coarsest levels, but this falls off141

substantially as ranks become more fine-grained, especially for image-based retrieval. We note142

that hyperbolic models consistently achieve results that are comparable to the Euclidean CLIBD143

baseline across all ranks and retrieval settings. SEL methods consistently perform best at unseen144

DNA retrieval, whereas the Euclidean model performs best at image retrieval. Comparing EL+CL to145

SEL+CL (both with full text), we find that SEL+CL always dominates the former, showing the utility146

of the stacked entailment over single-layer entailment. Comparing SEL+CL with and without full147

text, we find full text supervision improves unimodal seen taxa retrieval, but decreases unseen taxa148

and cross-modal performance.149

5 Discussion150

Our experiments demonstrate that hyperbolic learning can effectively capture hierarchical structure in151

biological data and provides performance competitive with established Euclidean methods. However,152

neither framework fully overcomes the persistent challenge of fine-grained, open-world species153

identification.154

Improving classification at fine-grained taxonomic ranks and for novel, unseen taxa remains a key155

direction for future work. Potential strategies include addressing class imbalance, enhancing data156

augmentation, or leveraging more advanced hierarchical or uncertainty-aware methods.157
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Appendix235

In this appendix, we provide an extended discussion of related work (appendix A), details of our236

model (appendix B), experiment setup (appendix C), and additional results (appendix D).237

A Extended Related Work238

In this section, we provide a more detailed overview of related research beyond the brief summary in239

the main text.240

Euclidean Multimodal Learning is the norm for recent advances in the multimodal contrastive241

learning domain, both in general vision-language frameworks such as CLIP [17] and SigLIP [22]242

and domain-specific ones, including those for biodiversity applications [19, 9, 8]. These biodiversity243

models embed images, textual data, and optionally DNA barcodes into a shared Euclidean embedding244

space using modality-specific encoders and contrastive losses. CLIBD [8] in particular demonstrates245

zero-shot classification on BIOSCAN-1M [7], achieving superior accuracy to unimodal baselines.246

Hyperbolic Representation Learning is an approach that utilizes hyperbolic geometry to encode247

features into a hierarchical representation space [14]. Unlike Euclidean space, hyperbolic spaces grow248

exponentially, matching the way the number of nodes in a hierarchy can grow exponentially with249

the depth. This makes it particularly well-suited for representing taxonomies, as visually illustrated250

in Figure ??, where the hyperbolic layout more clearly preserves hierarchical depth and separation.251

Nickel and Kiela [15] showed that taxonomic relationships in language can be effectively captured252

using hyperbolic embeddings. Recently, hyperbolic visual representation learning has been applied253

to vision tasks such as image retrieval [11] and image segmentation [6]. While the majority of254

these works use hyperbolic geometry only at the last layer, recent advances have been made towards255

developing fully hyperbolic models, e.g., Poincaré ResNet [21].256

Hyperbolic Multimodal Learning combines multimodal learning and the use of hyperbolic ge-257

ometry to co-align embeddings from different modalities in a hierarchical representation space.258

Liu et al. [13] showed how to align images and text embeddings in a Poincaré hyperbolic space,259

while MERU [3] uses contrastive learning to align images and text in Lorentzian space. Following260

MERU, HyCoCLIP [16] incorporated compositional constraints to strengthen fine-grained alignment261

between parts and wholes in visual concepts. These works show hyperbolic geometry can enhance262

the structural consistency and interpretability of multimodal models, particularly in settings with263

implicit or weakly defined hierarchies.264

Our method differs from prior work in three key ways. First, rather than focusing on vision-language,265

we incorporate biologically grounded modalities—DNA barcodes and taxonomic labels—that are266

more salient for species-level classification. Second, we leverage explicit taxonomic hierarchies267

to guide representation learning rather than relying on implicit hierarchical signals such as caption268

specificity or object part composition. Third, our stacked entailment loss enforces consistency across269

hierarchical ranks.270

B Model Details271

B.1 Overall Architecture272

Our framework comprises three modality-specific encoders, following the setup used in CLIBD [8]:273

• Image encoder: We employ a ViT-B1 backbone, initialized with ImageNet-21k pretraining274

and further tuned on ImageNet-1k [5].275

• DNA encoder: BarcodeBERT [1] with 5-mer tokenization, pretrained via masked language276

modeling on 893 k DNA barcode sequences [4]. This corpus is related to but does not277

overlap with BIOSCAN-1M, making it suitable for unbiased evaluation.278

• Text encoder: A pretrained BERT-Small model [20] is used to embed taxonomic labels at279

different ranks.280

1Implemented using vit_base_patch16_224 from the timm library.
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Each encoder produces Euclidean embeddings of size d = 768, which are mapped to a Lorentzian281

hyperbolic space Hn
L (with curvature c > 0) via an exponential map described in Section B.2.282

B.2 Hyperbolic Projection and Distances283

Following MERU [3], we project encoder outputs (Euclidean vectors) onto the Lorentzian hyperboloid284

using the exponential map. Here, c > 0 denotes the curvature of the hyperbolic space Hd
c ; smaller285

values of c correspond to a “flatter” geometry, while larger values lead to more strongly curved286

spaces.287

The general exponential map from a tangent vector v ∈ TpHd
c , where TpHd

c denotes the tangent space288

at point p in the Lorentz model of Hd
c , to the manifold is given by:289

expp(v) = cosh
(√

c ∥v∥L
)
p+

sinh
(√

c ∥v∥L
)

√
c ∥v∥L

v.

Hyperbolic distances are computed via:290

dH(x, y) =
1√
c
cosh−1

(
− ⟨x, y⟩L

)
.

B.3 Entailment Cones291

The half-aperture angle of the cone centred at u is:292

α(u) = sin−1

(
K

∥u∥H

)
,

where K = 2rmin/
√
c. Here rmin is a small constant 0.1, which is used to set boundary conditions293

near the origin and prevent α(u) from diverging when ∥u∥E is small.294

B.4 Input Text Construction295

Taxonomic labels are encoded per rank using the BERT-Small tokenizer [20]. Full-text inputs296

concatenate all ranks with spaces as separators (see Table 2).297

Table 2: Example of taxonomic labels and their full-text concatenation.
Rank Label
Order Hymenoptera
Family Formicidae
Genus Myrmica
Species Myrmica specioides
Full-text Hymenoptera Formicidae Myrmica Myrmica specioides

B.5 Training Details298

We train on the train_seen split (36k samples) of BIOSCAN-1M. The batch size is 2000 for299

CL-only runs and 1520 for SEL runs across 4×A100 (80GB). Optimization is with Adam (β1 = 0.9,300

β2 = 0.98, weight decay 1e−4), with a one-cycle LR schedule (1e−6 to 5e−5). Mixed precision is301

used. All negatives come from in-batch sampling; for entailment loss, negatives are taxonomy-aware.302

C Experiment Setup303

To validate our method. We use the Euclidean-space CLIBD model [8] as a baseline, and adapt304

the CLIBD training pipeline to use hyperbolic-space based on the MERU framework [3]. We305

experimented with different combinations of loss functions, including entailment loss, stacked306

entailment loss, and contrastive loss. Experiments were conducted on four NVIDIA A100 GPUs307

(80GB VRAM each). We use a batch size of 2000 (4 × 500), except for experiments using stacked308

entailment, which could only fit a batch size of 1520 (4 × 380). All models were trained for 50309

8



Table 3: Micro top-1 accuracy (%) comparison of different training objectives across taxonomic
levels on BIOSCAN-1M. CL: contrastive loss. EL: entailment loss; SEL: stacked entailment loss;
We evaluate uni- and multi-modal retrieval tasks including DNA-to-DNA, Image-to-Image, and
Image-to-DNA. Accuracy is reported on both seen and unseen taxa, along with their harmonic mean
(H.M.). Each method is further characterized by the configuration of entailment loss used (EL config.),
whether full taxonomic text embedding is included utilized during training (Full Text), and the choice
of embedding space (Euclidean: Rn, or Lorentzian-hyperbolic: Hn

L). All models are trained on
the train_seen split of CLIBD and evaluated on the test split. Best results are shown in bold;
second-best are underlined.

DNA-to-DNA Image-to-Image Image-to-DNA

Rank Method EL Settings Full Text Space Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order

CLIBD - ✓ Rn 99.2 98.2 98.7 99.6 98.3 98.9 99.4 96.4 97.9
CL - ✓ Hn

L 99.1 98.0 98.6 99.4 98.0 98.7 99.5 95.5 97.5
EL+CL Pos. ✓ Hn

L 99.2 97.9 98.6 99.3 97.1 98.2 99.2 95.8 97.4
SEL Pos.+Neg. ✗ Hn

L 99.1 98.2 98.6 99.4 97.7 98.6 99.1 95.0 97.0
SEL+CL Pos.+Neg. ✗ Hn

L 99.1 98.3 98.7 99.4 97.7 98.5 98.9 95.5 97.2
SEL+CL Pos.+Neg. ✓ Hn

L 99.2 98.1 98.6 99.4 97.9 98.6 99.1 96.0 97.5

Family

CLIBD - ✓ Rn 97.5 91.8 94.6 95.4 85.7 90.3 94.8 69.7 80.4
CL - ✓ Hn

L 97.1 91.8 94.4 94.3 84.7 89.2 93.9 68.1 79.0
EL+CL Pos. ✓ Hn

L 97.2 90.6 93.8 93.5 80.3 86.4 93.2 66.4 77.6
SEL Pos.+Neg. ✗ Hn

L 97.0 92.5 94.7 93.4 83.0 87.9 92.5 67.2 77.8
SEL+CL Pos.+Neg. ✗ Hn

L 96.7 92.4 94.5 93.6 83.9 88.5 93.0 67.5 78.2
SEL+CL Pos.+Neg. ✓ Hn

L 97.1 91.3 94.1 94.3 83.3 88.5 93.8 68.6 79.2

Genus

CLIBD - ✓ Rn 94.8 85.1 89.7 88.2 69.0 77.4 87.1 37.1 52.1
CL - ✓ Hn

L 95.3 85.6 90.2 85.6 68.0 75.8 86.0 36.1 50.8
EL+CL Pos. ✓ Hn

L 95.1 84.6 89.5 83.2 60.4 70.0 84.5 34.6 49.1
SEL Pos.+Neg. ✗ Hn

L 94.0 86.1 89.9 83.7 65.7 73.6 83.2 35.3 49.5
SEL+CL Pos.+Neg. ✗ Hn

L 94.2 86.7 90.3 83.8 67.0 74.5 84.4 34.1 48.6
SEL+CL Pos.+Neg. ✓ Hn

L 95.0 85.5 90.0 84.8 65.3 73.8 84.2 35.0 49.4

Species

CLIBD - ✓ Rn 93.0 82.0 87.2 77.4 53.4 63.2 78.3 1.9 3.6
CL - ✓ Hn

L 93.6 82.7 87.8 73.3 52.1 60.9 77.6 2.4 4.6
EL+CL Pos. ✓ Hn

L 93.5 81.6 87.2 69.8 44.5 54.4 75.9 1.5 2.9
SEL Pos.+Neg. ✗ Hn

L 91.8 83.2 87.3 71.8 50.2 59.1 75.2 1.4 2.8
SEL+CL Pos.+Neg. ✗ Hn

L 92.1 83.5 87.6 71.8 51.2 59.8 75.7 1.6 3.1
SEL+CL Pos.+Neg. ✓ Hn

L 93.3 82.7 87.7 72.7 49.4 58.8 75.6 2.0 3.8

epochs with Adam [12]. The learning rate was scheduled using a one-cycle policy [18], ranging from310

1× 10−6 to 5× 10−5. For the contrastive loss, we use a trainable temperature, initialized to 0.07.311

C.1 Metrics and Datasets312

We conduct experiments on the BIOSCAN-1M dataset [7], which provides high-quality images with313

paired DNA barcodes and taxonomic labels for over 1 million insect specimens. For simplicity, we314

train all models on CLIBD’s train_seen split of BIOSCAN-1M (36 k samples), which ensures315

all samples have complete species-level labels. The CLIBD results reported in our experiments are316

likewise obtained by training on this same train_seen split, rather than using a pretrained CLIBD317

model. We leave expanding the experiments to the full BIOSCAN-1M training dataset to future work.318

Similar to CLIBD, we evaluate classification performance across taxonomic ranks and for both seen319

and unseen classes, using class-averaged (macro) top-1 accuracy.320

D Additional results321

In the main paper, we reported the macro averaged accuracy over classes for the different methods.322

Here in Table 3 we report the micro accuracy, averaging over individual instances. Compared to323

the macro accuracy, which treat all classes evenly, the micro accuracy will give more weight to324

classes with more instances. Overall, we see a similar trends in the comparative performance of the325

different methods for both macro and micro averaged results, with the micro averaged accuracy being326

substantially higher (as the macro averaged accuracy is pulled down by rare classes).327
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NeurIPS Paper Checklist328

1. Claims329

Question: Do the main claims made in the abstract and introduction accurately reflect the330

paper’s contributions and scope?331

Answer: [Yes]332

Justification: We introduce a hyperbolic multimodal framework with a stacked entailment333

loss, report overall parity with Euclidean baselines and improved DNA unseen-taxa retrieval,334

and explicitly acknowledge remaining fine-grained/open-world challenges; these statements335

are consistent with our empirical results (e.g., SEL best on unseen DNA; Euclidean strongest336

on image retrieval).337

2. Limitations338

Question: Does the paper discuss the limitations of the work performed by the authors?339

Answer: [Yes]340

Justification: We explicitly acknowledge that fine-grained species classification and open-341

world generalization remain challenging, and we note scope/compute constraints (training342

only on the BIOSCAN-1M train_seen split; reduced batch size for SEL due to memory).343

3. Theory assumptions and proofs344

Question: For each theoretical result, does the paper provide the full set of assumptions and345

a complete (and correct) proof?346

Answer: [NA]347

Justification: We do not present formal theoretical results (no theorems/lemmas). Our348

work defines objectives and geometric mappings (e.g., entailment losses and hyperbolic349

projections) but provides no proofs, as the paper is empirical/methodological.350

4. Experimental result reproducibility351

Question: Does the paper fully disclose all the information needed to reproduce the main ex-352

perimental results of the paper to the extent that it affects the main claims and/or conclusions353

of the paper (regardless of whether the code and data are provided or not)?354

Answer: [Yes]355

Justification: We specify hardware, batch sizes, epochs, optimizer and one-cycle LR, con-356

trastive temperature, dataset split (train_seen, 36k), and evaluation metrics, and we retrain357

CLIBD on the same split—sufficient for reproducing the main results.358

5. Open access to data and code359

Question: Does the paper provide open access to the data and code, with sufficient instruc-360

tions to faithfully reproduce the main experimental results, as described in supplemental361

material?362

Answer: [No]363

Justification: We use the public BIOSCAN-1M dataset for training and evaluation, but the364

manuscript provides no code repository link or anonymized reproduction scripts/instructions.365

6. Experimental setting/details366

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-367

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the368

results?369

Answer: [Yes]370

Justification: We report the dataset split (train_seen, 36k), hardware and batch sizes,371

epochs (50), optimizer and one-cycle LR schedule (ranges specified), contrastive temperature372

init, and metrics; Appendix further lists optimizer hyperparameters, AMP, and in-batch373

(taxonomy-aware) negatives. We believe this is sufficient to understand the results.374

7. Experiment statistical significance375

Question: Does the paper report error bars suitably and correctly defined or other appropriate376

information about the statistical significance of the experiments?377
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Answer: [No]378

Justification: We report point estimates (macro and micro top-1 accuracies) only; no error379

bars, confidence intervals, or multi-seed variance are provided, nor is a significance test380

described.381

8. Experiments compute resources382

Question: For each experiment, does the paper provide sufficient information on the com-383

puter resources (type of compute workers, memory, time of execution) needed to reproduce384

the experiments?385

Answer: [Yes]386

Justification: We work on a public insect dataset (BIOSCAN-1M) with specimen images,387

DNA barcodes, and taxonomic labels—no human subjects or personal data—and conduct388

standard classification/retrieval experiments without sensitive deployments, which conforms389

to the NeurIPS Code of Ethics.390

9. Code of ethics391

Question: Does the research conducted in the paper conform, in every respect, with the392

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?393

Answer: [Yes]394

Justification: We use a public, non-human BIOSCAN-1M dataset and perform standard395

classification/retrieval without PII or human subjects; no high-risk or dual-use concerns.396

10. Broader impacts397

Question: Does the paper discuss both potential positive societal impacts and negative398

societal impacts of the work performed?399

Answer: [No]400

Justification: We articulate positive impacts (e.g., species discovery, biodiversity monitoring)401

but do not explicitly analyze potential negative societal impacts or mitigation strategies.402

11. Safeguards403

Question: Does the paper describe safeguards that have been put in place for responsible404

release of data or models that have a high risk for misuse (e.g., pretrained language models,405

image generators, or scraped datasets)?406

Answer: [NA]407

Justification: We do not release high-risk assets (e.g., large generative models or scraped408

datasets). Our work uses a public insect dataset and trains task-specific classification/retrieval409

models, so special release safeguards are not applicable and thus not described.410

12. Licenses for existing assets411

Question: Are the creators or original owners of assets (e.g., code, data, models), used in412

the paper, properly credited and are the license and terms of use explicitly mentioned and413

properly respected?414

Answer: [No]415

Justification: We credit the main assets via citations (e.g., BIOSCAN-1M dataset; CLIB-416

D/MERU; BarcodeBERT and BERT-Small; ViT from timm), but we do not explicitly state417

the licenses or terms of use for these assets in the manuscript.418

13. New assets419

Question: Are new assets introduced in the paper well documented and is the documentation420

provided alongside the assets?421

Answer: [NA]422

Justification: We do not introduce new public assets (e.g., datasets, pretrained models, or423

benchmarks); experiments use the existing BIOSCAN-1M dataset and in-paper methods424

only, so asset documentation is not applicable.425

14. Crowdsourcing and research with human subjects426
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Question: For crowdsourcing experiments and research with human subjects, does the paper427

include the full text of instructions given to participants and screenshots, if applicable, as428

well as details about compensation (if any)?429

Answer: [NA]430

Justification: We conduct no crowdsourcing or human-subject studies; our experiments431

use BIOSCAN-1M insect images, DNA barcodes, and taxonomic labels, with no human432

participants involved.433

15. Institutional review board (IRB) approvals or equivalent for research with human434

subjects435

Question: Does the paper describe potential risks incurred by study participants, whether436

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)437

approvals (or an equivalent approval/review based on the requirements of your country or438

institution) were obtained?439

Answer: [NA]440

Justification: Our study involves no human participants; experiments use the BIOSCAN-1M441

insect dataset (images, DNA barcodes, taxonomic labels). Therefore IRB considerations are442

not applicable.443

16. Declaration of LLM usage444

Question: Does the paper describe the usage of LLMs if it is an important, original, or445

non-standard component of the core methods in this research? Note that if the LLM is used446

only for writing, editing, or formatting purposes and does not impact the core methodology,447

scientific rigorousness, or originality of the research, declaration is not required.448

Answer: [NA]449

Justification: We did not use an LLM in the core methodology. We only used an LLM450

for grammar/style corrections during writing, which does not affect methods or results;451

therefore, no declaration is required (we disclose this for transparency).452
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