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ABSTRACT

Existing learning-based autonomous driving (AD) systems face challenges in
comprehending high-level information, generalizing to rare events, and providing
interpretability. To address these problems, this work employs Large Language
Models (LLMs) as a decision-making component for complex AD scenarios that
require human commonsense understanding. We devise cognitive pathways to en-
able comprehensive reasoning with LLMs, and develop algorithms for translating
LLM decisions into actionable driving commands. Through this approach, LLM
decisions are seamlessly integrated with low-level controllers by guided parameter
matrix adaptation. Extensive experiments demonstrate that our proposed method
not only consistently surpasses baseline approaches in single-vehicle tasks, but
also helps handle complex driving behaviors even multi-vehicle coordination,
thanks to the commonsense reasoning capabilities of LLMs. This paper presents
an initial step toward leveraging LLMs as effective decision-makers for intricate
AD scenarios in terms of safety, efficiency, generalizability, and interoperability.
We aspire for it to serve as inspiration for future research in this field. More demo
videos and codes can be found at our anonymous webpage.

1 INTRODUCTION

Imagine you are behind the wheel, approaching an unsignalized intersection and planning to turn
left, with an oncoming vehicle straight ahead. Human drivers intuitively know that according to
traffic rules, they should slow down and yield, even if it is technically possible to speed through.
However, existing advanced learning-based Autonomous Driving (AD) systems typically require
complex rules or reward function designs to handle such scenarios effectively (Chen et al., 2023;
Kiran et al., 2022). This reliance on predefined rule bases often limits their ability to generalize to
various situations.

Another challenge facing existing learning-based AD systems is the long-tail problem (Buhet et al.,
2019). Both limited datasets and sampling efficiency (Atakishiyev et al., 2023) can present chal-
lenges for existing learning-based AD systems when making decisions in rare real-world driving
scenarios. Chauffeurnet (Bansal et al., 2018) demonstrated such limits where even 30 million state-
action samples were insufficient to learn an optimal policy that mapped bird’s-eye view images
(states) to control (action).

Furthermore, the lack of interpretability (Gohel et al., 2021) is a pressing issue for existing learning-
based AD systems. A mature AD system must possess interpretability to gain recognition within
society and regulatory entities, allowing it to be subject to targeted optimization and iterative im-
provements. Nevertheless, existing learning-based AD systems inherently resemble black boxes,
making it challenging to discern their decision-making processes or understand the rationale behind
their actions (Atakishiyev et al., 2023). This lack of transparency can pose obstacles to the practical
implementation of AD systems.

Considering the aforementioned challenges, a fundamental question arises: Can we equip AD sys-
tems with the capability to think and drive like humans? Our proposed solution involves employing
a Large Language Model (LLM) to serve as the ”brain” of the AD system. Recent introductions of
models like ChatGPT (OpenAI, 2023), have positioned LLMs as early versions of Artificial General
Intelligence (AGI) (Bubeck et al., 2023), owing to their remarkable emergent abilities (Wei et al.,
2022) and innovative techniques such as Instruct Following and In-Context Learning (ICL) (Dong
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Figure 1: Faced with the rare situation where a breakdown vehicle is stopped in the middle of the
road in a roundabout, LLM makes a decision that complies with traffic rules through common sense
reasoning and understanding of high-level information.

et al., 2023). LLMs can think like humans, and reason about new scenarios by combining com-
mon sense, and the visible thinking process makes them strongly interpretable. These features make
LLMs a powerful solution to the problems faced by AD systems described above.

In this paper, we leverage LLM to analyze and reason about various scenarios, enabling it to pro-
vide high-level decisions, and by tuning parameter matrix, we convert high-level decisions into
mathematical representations to guide the bottom-level controller, Model Predictive Control (MPC).
Fig. 1 illustrates the powerful reasoning capabilities of our system for rare and complex scenarios,
demonstrating its superiority in understanding high-level information, commonsense reasoning, and
interpretability. Through quantitative experiments, we showcase that our system significantly sur-
passes existing learning-based and optimization-based methods for single-vehicle decision-making
tasks, with Overall Cost decreasing by 18.1% and 16.4%. Additionally, through qualitative experi-
ments, we demonstrate the impressive capabilities of our system by effectively addressing intricate
tasks, such as multi-vehicle joint control and driving behavior modulation guided by textual input.

The main contributions of this paper are as follows:
(1) We have devised a dedicated chain-of-thought framework for LLMs for driving scenarios, which

divides the analysis and decision-making process into numerous sub-problems, enabling LLMs
to comprehensively engage in logical reasoning and arrive at informed decisions.

(2) We have developed techniques for directing the bottom-level controller using high-level textual
decisions provided by the LLM. This has enabled us to construct a comprehensive AD system
that gives precise driving actions directly based on observational data.

(3) In a groundbreaking achievement, we have conducted quantitative experiments that conclusively
showcase the substantial performance superiority of the AD system enhanced by LLM over
existing methods. Additionally, we showcase our system’s success in complex tasks, including
coordinating multiple vehicles and regulating driving behavior with text-based input.

2 RELATED WORK

Self-driving Autonomy. Autonomous vehicles are governed by two primary paradigms: modu-
lar (Thrun et al., 2006; Daudelin et al., 2018) and end-to-end (Casas et al., 2021; Hu et al., 2023;
Sadat et al., 2020; Tampuu et al., 2020). The modular approach involves a layered system of in-
terconnected components responsible for different sub-tasks, including perception (Li et al., 2023;
2022b; Yin et al., 2021), planning (Kelly & Nagy, 2003; Zhang et al., 2022), and control (Peng
et al., 2018; Johnson & Moradi, 2005). This design offers advantages such as modularity and ver-
satility, but it comes with challenges related to tuning the pipeline and managing error propagation.
In contrast, end-to-end autonomy directly translates sensor inputs into planner or controller com-
mands. These methods are typically easier to develop but lack interpretability, making it challeng-
ing to diagnose errors, ensure safety, and incorporate traffic rules (Gohel et al., 2021). Nevertheless,
recent progress in end-to-end learnable pipeline autonomy has shown promise by leveraging the
strengths of both paradigms (Hu et al., 2023; Casas et al., 2021). Despite significant advancements
in these self-driving paradigms, they often prove brittle when dealing with long-tail data or out-of-
distribution scenarios encountered in real-world environments (Kong et al., 2023). This presents
safety challenges in the context of autonomous driving.
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Advanced tasks with Large Language Models. The success of Large Language Models (LLM)
is undoubtedly exciting as it demonstrates the extent to which machines can learn human knowl-
edge. Recent efforts in LLM have shown impressive performance in zero-shot prompting and com-
plex reasoning (Bian et al., 2023; Nay, 2022; Chowdhery et al., 2022; Ouyang et al., 2022; Chung
et al., 2022), embodied agent research (Wang et al., 2023a; Zhu et al., 2023; Vemprala et al., 2023;
Driess et al., 2023; Yao et al., 2022) and addressing key transportation problems (Zheng et al.,
2023), demonstrating its great ability to handle advanced tasks. In advanced tasks with LLMs,
the translation of natural language input into actionable results is crucial. One prominent task is
language-to-actions mapping, which has seen early approaches leveraging frameworks like tempo-
ral logic (Kress-Gazit et al., 2008) and motion primitive learning (Matuszek et al., 2013), evolving
towards more recent end-to-end models for instruction-following in navigation (Ku et al., 2020)
and manipulation tasks, employing latent embeddings of language commands (Jang et al., 2021;
Mees et al., 2023; Lynch et al., 2022). Another critical dimension is language-to-code generation,
extensively explored in contexts ranging from coding competitions (Li et al., 2022a) to instruction-
following tasks (Liang et al., 2022). Moreover, the translation of natural language instructions into
rewards has found applications in robotic domains, often requiring domain-specific reward mod-
els (Lin et al., 2022; Goyal et al., 2019; Nair et al., 2022). Kwon et al. (2023); Hu & Sadigh (2023)
propose the use of LLMs for assigning reward values during Reinforcement Learning (RL) train-
ing. Additionally, incorporating iterative human feedback has been explored in correcting plans,
with approaches employing semantic parsers (Broad et al., 2017) or trajectory optimization meth-
ods (Sharma et al., 2022). These various dimensions underscore the versatility and growing impor-
tance of LLMs in bridging the gap between natural language understanding and actionable outcomes
in a wide range of applications.

Recent research has integrated LLMs into AD systems (Fu et al., 2023). However, in this work, the
high-level safety judgments and decision-making processes rely on fixed rules rather than harnessing
the full potential of LLMs’ advanced reasoning capabilities, and the systems are currently limited to
straightforward highway lane-changing scenarios. We aim to develop an AD system where LLMs
play a central role in high-level decision-making. We extend their application to more intricate sce-
narios, such as navigating intersections and roundabouts, providing an initial step towards unlocking
LLMs’ effectiveness as decision-makers for complex AD scenarios.

3 METHOD

We develop an AD system with LLM as the core of high-level decision-making, as shown in
Fig. 2(a). The LLM initiates a dialogue based on the provided prompt, continuously gathering
information from the environment, engaging in reasoning, and rendering judgments. As illustrated
in the center of Fig. 2(a), from left to right, the LLM proceeds sequentially: 1) identifies the ve-
hicles requiring attention, 2)evaluates the situation, and 3) offers action guidance. Then the sys-
tem transforms these three high-level textual decisions into mathematical representations, namely
the observation matrix, weight matrix, and action bias. These elements serve as directives for the
bottom-level controller, the MPC, instructing it on specific driving actions to be taken.

Taking the case of a left turn at an intersection as an example, in Fig. 2(b) we show how the three
high-level textual decisions described above can be converted into the mathematical representations
needed for MPC. The LLM selects ‘vehicle 26’, and we create a corresponding vector using the
MPC’s observation operator and zero out other elements in the observation matrix to focus solely on
‘vehicle 26’. According to the waiting situation at the intersection that the LLM signals, we adjust
the weight matrix to prioritize deceleration instructions over trajectory following, which prompts
the MPC to decelerate promptly in alignment with the LLM’s directive. We directly convert LLM’s
action guidance into action bias through predefined rules. Guided by the mathematical form of the
above three aspects, the MPC completes the driving action of stopping and yielding.

3.1 BACKGROUND

The MPC solves a finite-time open-loop optimization problem online at each moment, based on
the current measurement information obtained, and applies the first element of the resulting control
sequence with the lowest cost to the controlled vehicle.
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(a) (b)

Figure 2: (a) Pipeline of our system with LLM as the core of high-level decision-making. (b) The
LLM textual high-level decisions are converted into mathematical representations that guide the
MPC to give specific driving actions. Take the case of a left turn at an intersection as an example.

In this work, we define the cost function of MPC in the context of Markov Decision Process (MDP),
which is commonly used to formulate vehicle control problems: (S,A,C, P, p0), where S is the
state space, A is the action space, C : S × A 7→ R is the cost function, P : S × A 7→ S is the
dynamics equation, and p0 is the initial state distribution. Given a cost function C, the MPC finds a
sequence of actions a1:H = a1, . . . ,aH that minimizes the expected accumulated cost J(a1:H) =∑H

t=1 C(st,at). The cost function takes the following form:

C(s,a) =

M∑
i=0

wi · ni
(
ri(s,a, ψi)

)
, (1)

where w ∈ R+ is a non-negative weight, n(·) : R → R+ is a twice-differentiable norm that takes its
minimum at 0, r ∈ R is a residual term that achieves optimality when r = 0, and ψi is the parameters
of the ith residual term. For example, if we want the vehicle to adopt the desired acceleration, we
may design a residual term racc(acc, ψ) = acc−ψ, where the cost parameter ψ denotes the desired
acceleration, and use the ℓ2 norm to construct the final reward function: Cacc = w|racc|2. Due to
the complexity of driving scenarios, designing a set of weights and residual terms that are applicable
to all driving scenarios is almost impossible (Askari et al., 2022). In this work, we use a generic
and simple set of residual terms that include action biases to tune the control behavior, and design
multiple sets of weight matrixes based on the certainty that the MPC should perform the action
biases. We use the power of LLM to give action bias and select weight matrices for driving in
complex scenarios.

3.2 CHAIN-OF-THOUGHT

We employ LangChain (Chase, 2023) as a framework to manage the LLM and establish a structured
thought process for the LLM. This is achieved by defining a set of tools and specifying the sequence
in which they should be utilized. To begin, we introduce these designated tools in a prompt at
the outset of the conversation. Subsequently, during the course of the dialogue, the LLM actively
invokes these tools to acquire pertinent information and guidance for its ongoing decision-making
process. The LLM follows these guidelines to determine its next course of action until it successfully
addresses the entire problem.

As an illustrative example, let’s consider the three core tools depicted in Fig. 3. Each of these
tools serves the dual purpose of providing the LLM with the relevant information and reasoning
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Figure 3: Prompts for the three core tools we have defined. Each tool’s prompt contains both
information and guidelines to help LLM complete reasoning and judgment and begin the next step.

guidelines necessary to complete a specific reasoning step, while also directing the LLM on what
actions it should take next.

Moreover, these tools enable us to revamp the way we deliver scenario information. Instead of over-
whelming the LLM with all the scenario details at once, we provide only the relevant information
needed for each decision step in the LLM’s thought process, as depicted in Fig. 3. This approach
represents a strategic shift that tackles a significant challenge faced by the LLM when dealing with
complex and extensive data. It ensures that information is organized for simplicity and necessity,
leading to a substantial improvement in the LLM’s ability to reason and exercise judgment.

3.3 ATTENTION ALLOCATION

The ability to effectively distribute attention while driving reflects a human-like thought process. In
this context, we task the LLM with systematically assessing information pertaining to surrounding
vehicles, one at a time. Its objective is to discern the intentions of these vehicles and, ultimately,
determine if they pose any conflicts with the movements of the ego vehicle. Specifically, At time t,
for each element of surrounding vehicles Vt = {V t

1 , V
t
2 , . . .}, we have:

Iti = LLM(St
i , S

t−1
i , . . . , St−10

i , envt), (2)

M t
i = LLM(St

i , I
t
i , env

t), (3)

where envt is the scene road information, St
i is the state of V t

i obtained from the environment, Iti
is the intention of V t

i , and M t
i is 0 or 1, indicating whether the V t

i is considered by the LLM to be
of concern. Subsequently, we create an observation matrix for the MPC exclusively based on the
vehicles identified by the LLM:

obsti = MPCobs(S
t
i , I

t
i , env

t) ∗M t
i , (4)

where obsti is row i of the MPC observation matrix, MPCobs is the operator for MPC to compute
the observation matrix. This ensures that the MPC focuses solely on these selected vehicles.

3.4 SITUATION AWARENESS AND ACTION GUIDANCE

Situation awareness stands as a pivotal high-level decision-making process in driving, encompassing
a profound understanding of the scenario at hand, along with common-sense reasoning. Within
this framework, we tasked the LLM with the responsibility of selecting one specific situation from
among several options, leveraging the information gleaned during the attention allocation process
outlined in Section 3.3, as well as the results of the LLM’s reasoned judgments. We define the
feature F t

i = {St
i , I

t
i , M

t
i } to characterize the information associated with V t

i , then we have:

Xt = LLM(F t
1 , . . . , F

t
k, env

t), (5)

where k is the number of surrounding vehicles selected by LLM, and Xt is the selected situation.
The judgment of Xt serves as a mechanism to tune the weight matrix of the MPC. For each pre-
defined situation, we have established a corresponding weight matrix W t. Subsequently, the LLM
provided guidance concerning acceleration and steering based on its chosen situation:

At = LLM(F t
1 , . . . , F

t
k, env

t, Xt), (6)
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Table 1: Evaluation on single-vehicle decision-making. SI refers to signalized intersection, USI
refers to unsignalized intersection, and EOA refers to emergency obstacle avoidance. For all the
metrics, the lower the better.

Scenario Method Collision Fail Inefficiency Time Penalty Overall Cost
Acc Dist

SI
RL 6 0 34.1 14.1 3.78 3.38 60.2

MPC 2 4 25.5 17.7 3.14 3.05 56.3
Ours 0 0 13.9 25.7 1.31 1.20 44.8

USI
RL 9 0 67.5 29.4 5.27 3.22 92.0

MPC 2 4 74.0 30.7 4.30 2.55 87.2
Ours 0 1 33.7 42.2 1.94 0.98 67.0

Lane
RL 0 0 2.27 6.8 0.15 0.09 8.71

MPC 0 0 4.14 6.8 0.20 0.08 9.41
Ours 0 0 1.13 6.7 0.08 0.03 7.63

Roundabout
RL 5 0 29.3 30.3 1.64 0.71 50.8

MPC 1 3 29.3 30.4 1.61 0.68 50.6
Ours 0 0 26.8 31.9 1.51 0.65 50.8

EOA
RL 11 0 32.3 16.9 2.99 1.96 51.3

MPC 8 4 33.4 17.3 3.34 2.06 54.3
Ours 3 2 28.8 16.7 2.60 1.79 47.3

where At is action guidance. The At influences the adjustment of the MPC’s action bias, with costs
decreasing as the vehicle’s actions align more closely with the provided guidance:

rbias(bias, ψ) = bias− ψ, (7)
Cbias = wbias|rbias|2, (8)

where bias is acceleration or steering. It’s worth noting that our set of predefined situations, though
limited in number, are abstract and broad enough to encompass a wide range of driving scenarios,
as they do not represent specific scenarios, but rather the certainty that the MPC should perform the
action biases. We substantiate the effectiveness of this approach through experimental validation in
Section 4.1.

3.5 MULTI-VEHICLE JOINT CONTROL

Multi-vehicle joint control is an important solution for improving transportation efficiency and
safety. However, both centralized and distributed approaches are often overly reliant on environ-
mental prior and fail to exhibit good performance when the traffic model is unknown (Wang et al.,
2023b). To address this problem, we propose a solution. Each vehicle is individually controlled by
a distributed LLM, with one central LLM acting as the ”brain” of the fleet for multi-vehicle commu-
nication and coordination. Each distributed LLM reports the situation it is into the central LLM and
receives commands to control the ego vehicle; the central LLM judges and gives the coordination
commands based on the environmental information and the reports from the distributed LLMs.

4 EXPERIMENTS

Our approach was applied to both single-vehicle decision-making and multi-vehicle joint control
tasks. The scenario maps and traffic flows were generated using the IdSim (Liu et al., 2021).

In the context of single-vehicle decision-making, we conducted evaluations over three different
approaches: Reinforcement Learning-Based Planning (RL) (Guan et al., 2023; Ren et al., 2022),
Model Predictive Control (MPC) (Guan et al., 2023), and our system, MPC with LLM’s High-Level
Decision-Making Guidelines (LLM+MPC). Among them, RL was trained and validated in a wide
range of complex traffic scenarios, and MPC was finely tuned and validated in real-vehicle experi-
ments. Each of these approaches was tested across diverse scenarios, including signalized intersec-
tions, unsignalized intersections, driveways, emergency avoidance, and roundabouts. We selected
25 complex and challenging cases for each scenario type to comprehensively assess system perfor-
mance. Evaluation metrics are detailed in Appendix A. Furthermore, We have also demonstrated the
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Figure 4: The ego vehicle is traveling straight through an unsignalized intersection. The red vehi-
cle(s) in the last row is the one(s) selected by the LLM as needing attention. This example demon-
strates LLM’s understanding and reasoning about high-level information, proving the validity of the
chain-of-thought we devised.

great potential of our system in driving behavior modulation guided by textual input, demonstrating
its excellent understanding of high-level information.

In the realm of multi-vehicle joint control, our method’s capabilities were put to the test in intricate
gaming scenarios. Notably, we evaluated its performance in complex situations like narrow lane
meetings, showcasing its adaptability and effectiveness in challenging environments.

4.1 SINGLE-VEHICLE DECISION-MAKING

The quantitative results of single-vehicle decision-making are shown in Table 1. It’s important
to highlight that our system achieves overall cost reductions across four scenario types, reflecting
improved driving behavior. In non-emergency situations, we observe minimal fail occurrences and
no collisions, underlining the safety of our approach. Additionally, in emergency scenarios, our
method significantly lowers the accident rate, indicating its effectiveness in obstacle avoidance.

Specifically, in intersections, our focus is primarily on left-turn situations, where ego vehicle in-
herently possesses a lower right-of-way status, necessitating a deliberate choice to slow down and
yield in accordance with established traffic rules. In left-turning within the intersections scenarios
and roundabouts scenarios, although our approach may result in a slight increase in elapsed time, it
yields substantial benefits in terms of enhanced traffic flow efficiency and reduced safety penalties.
This outcome underscores our method’s commitment to adopting safer and more reasonable driving
behaviors that align with the principles of traffic regulations. In lanes, our approach excels in all
metrics, indicating a more sensible approach to overtaking and lane changes. Finally, in emergency
situations, our method demonstrates its effectiveness by reducing accident rates and enhancing over-
all performance.

Attention Allocation. Fig. 4 illustrates a scenario where the ego vehicle is proceeding straight
through an unsignalized intersection. In this situation, the MPC incorporates all surrounding vehi-
cles into its observation matrix for prediction and trajectory planning. However, it becomes evident
from the outcomes that the MPC fails to accurately discern that ”vehicle 32” has a lower right-of-
way priority, erroneously decelerates and maneuvers to avoid it. In contrast, our approach, which
employs LLM’s reasoning, effectively comprehends the intention of ”vehicle 32.” As a result, it con-
centrates its attention solely on the foremost vehicle that could impact the ego vehicle’s motion and
appropriately follows it as it navigates the intersection. This example serves as a compelling demon-
stration of how the LLM in our approach adeptly comprehends the traffic scenario and discerns the
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Table 2: Ablation experiments. OM refers to observation matrix; WM refers to weight matrix, and
AB refers to action bias.

Scenario OM WM&AB Collision Fail Inefficiency Time Penalty Overall Cost
Acc Dist

USI

× × 2 4 74.0 30.7 4.30 2.55 87.2
✓ × 2 3 69.8 28.7 3.95 2.32 81.0
× ✓ 0 2 42.0 44.0 2.37 1.21 74.5
✓ ✓ 0 1 33.7 42.2 1.94 0.98 67.0

Roundabout

× × 1 3 29.3 30.4 1.61 0.68 50.6
✓ × 1 3 29.4 30.3 1.61 0.69 50.6
× ✓ 0 0 27.8 30.9 1.53 0.67 50.2
✓ ✓ 0 0 26.8 31.9 1.51 0.65 50.8

(a) Multi-vehicle joint control (b) Textual guidance for complex scenarios

Figure 5: (a) The convoy is in a meeting situation. This example demonstrates that the high-level
decision-making of the central LLM and the fine-grained control of the distributed LLMs collaborate
to accomplish high-quality multi-vehicle cooperative control. (b) LLM changes lanes to avoid road
construction under textual guidance.

intentions of other vehicles. This enables it to make more informed decisions about allocating at-
tention and, consequently, facilitates more efficient and rational driving behavior.

Situation Awareness and Action Guidance. In the scenario depicted in Fig. 4, a crucial factor to
consider is that the ego vehicle, despite being hindered by the slower-moving vehicle ahead, is obli-
gated by traffic regulations not to perform overtaking maneuvers within the intersection. However,
the RL opts to overtake the leading vehicle from the right side immediately within the intersection.
This decision stems from the inherent limitations of learning-based approaches, which often strug-
gle to grasp high-level information such as traffic regulations. Their primary focus tends to be on
achieving a certain level of efficiency and safety in driving. In contrast, our approach, as indicated
in the dialogue box on the right, showcases the LLM’s capacity to accurately comprehend the ego
vehicle’s situation. It makes a reasoned choice to follow the vehicle ahead through the intersection
before considering an overtaking maneuver, which aligns with traffic regulations. This example
underscores the LLM’s proficiency in reasoning about complex traffic scenarios and assessing its
own circumstances. As a result, it produces decisions that closely mimic human thinking, guided by
higher-level information like traffic regulations and common sense.

Ablations. We conducted ablation experiments in two typical driving scenarios, unsignalized in-
tersections, and roundabouts, and the outcomes are presented in Table 2. When solely employing
the LLM’s Attention Allocation capability, nearly all metrics exhibited improvement compared to
the baseline MPC. This improvement stemmed from the system’s ability to disregard irrelevant
surrounding vehicles, leading to more effective decision-making. On the other hand, when utiliz-
ing only the LLM Situation Awareness and Action Guidance features, all metrics, except for time,
demonstrated substantial enhancement compared to the baseline MPC. This highlights the pivotal
role played by our system’s comprehension of high-level information in decision-making.

4.2 MULTI-VEHICLE JOINT CONTROL

We have assessed the effectiveness of our approach through a specific scenario involving a narrow
road encounter, as depicted in Fig. 5(a). In this scenario, two distributed LLMs concurrently report
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Figure 6: The ego vehicle is traveling in lane, the front vehicle is slow, and the ego vehicle overtaking
would be low risk. This example demonstrates the ease and effectiveness of LLM in driving style
adjustment.

that they are in a meeting situation. The central LLM, informed by the scenario details and the
self-assessment of each distributed LLM, issues instructions. One vehicle is instructed to decelerate
and wait, while the other is advised to slow down and proceed, thus facilitating communication and
coordination within the convoy. Subsequently, each distributed LLM adjusts the control of its re-
spective vehicle in accordance with this convoy-level decision. This example vividly illustrates how
our system combines the strengths of both centralized and distributed methodologies. The central
LLM acts as the ”brain” for convoy communication and coordination, while distributed LLMs can
intelligently manage their respective vehicles based on decisions made at the convoy level.

4.3 TEXT-MODULATED DRIVING BEHAVIOR

Driving style adjustment. In real-world driving scenarios, users often desire the ability to effort-
lessly customize the driving behavior of AD systems to align with their preferences for efficiency
and comfort. However, for learning-based or optimization-based AD systems, achieving this level of
intuitive and reliable customization requires complex rule or reward function designs (Chang et al.,
2023). In contrast, our approach simplifies the process by merely providing textual descriptions to
the LLM through a dedicated interface. Fig. 6 exemplifies this feature. When there is low risk of
overtaking, LLM instructed to drive aggressively will make reasonable overtaking decisions, while
those directed to drive conservatively will opt to slow down and follow the vehicle in front of it.
This example effectively illustrates how our approach excels at comprehending the user’s abstract
and non-intuitive requirements, easily delivering the expected driving behavior.

Textual guidance for complex scenarios. Certain complex transportation scenarios, such as road
construction and other uncommon situations, pose significant challenges for many existing AD sys-
tems (Chen et al., 2023). However, these scenarios are typically straightforward for humans to
identify and understand. To address this issue, our approach enables users or utilizes high-precision
maps to provide textual instructions that guide the AD system’s decision-making process. As de-
picted in Fig. 5(b), we conducted an experiment involving a road construction scenario. Upon re-
ceiving textual guidelines, our approach successfully recognized the situation and gave appropriate
driving behavior.

5 CONCLUSION

This paper demonstrates that LLMs can effectively serve as the core high-level decision-making
component of AD systems. Our approach combining LLMs and MPC substantially outperforms
existing methods on key metrics and handles complex real-world driving scenarios. The reasoning
skills and interpretability of LLMs help overcome limitations of current learning-based AD systems
regarding adaptability and transparency. This paper makes a compelling case for LLMs as a trans-
formative solution to enable human-like performance in diverse driving scenarios. Our approach
provides an initial step for developing safe, efficient, generalizable, and interpretable LLM-based
AD systems. We aspire for it to serve as inspiration for future research in this domain.
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A METRICS

We use the metrics below to measure the safety and efficiency of driving behavior.

Number of failure/collision cases: We keep a tally of failure cases. A case is marked as a failure if
the ego vehicle cannot reach its target area within a designated 200-second time frame. For clarity,
when the ego vehicle travels within a lane, the target area is defined as the end of that lane. When it
navigates through an intersection or roundabout, the target area is set as the beginning of the target
lane. Collision cases are tracked separately.

Inefficiency: To gauge the efficiency of traffic flow, we calculate the average difference between the
ego vehicle’s maximum and current speeds:

ξ =
1

N

N∑
i=1

(vmax
i − vi). (9)

Our assessment focuses solely on the lead vehicle within each convoy, as it is the one directly
influenced by the ego vehicle’s driving behavior. Vehicles affected by red lights are excluded from
this calculation.

Time: We directly record the time the ego vehicle takes to reach its target area. This metric serves
as an indicator of the ego vehicle’s driving efficiency.

Penalty: The penalty metric is employed to assess the safety of the ego vehicle’s driving behavior.
It’s computed based on the distance between the target vehicle and the ego vehicle, as well as the
deceleration of the target vehicle. Smaller distances and higher decelerations indicate more unsafe
driving behavior, thus contributing to a higher penalty:

Pdec = wdec

N∑
i=1

fdec(deci − dec0), (10)

Pdist = wdist

N∑
i=1

fdist(dist0 − disti, deci − dec0), (11)

fdec(x) =

{
0 if x ≤ 0,

x if x > 0,
fdist(x, y) =

{
0 if y ≤ 0,

x if y > 0,
(12)

where dec refers to decceleration, dist refers to distance, wdec = 100, wdist = 1, dec0 = 1m/s2,
and dist0 = 50m.This penalty is calculated for each vehicle, similar to the Efficiency metric, and
then aggregated to derive the final penalty score.

Cost: To provide an overall evaluation, we apply weighted values to the above metrics so that the
values of each item are close to each other:

Cost = 30 ∗ ξ + t+ 50 ∗ Pdec + 5 ∗ Pdist. (13)

This comprehensive cost assessment enables us to holistically evaluate the performance of our au-
tonomous vehicle system.
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B DECISION-MAKING PROCESS

(a) Scenario (b) Driving behavior of LLM+MPC

Figure 7: Pink one is the ego vehicle, green ones are the vehicles within the perception range of the
ego vehicle, blue ones are the vehicles outside the perception range of the ego vehicle, and red one
is the vehicle chosen by the LLM.

The complete decision-making process of LLM is shown in the text box below. Faced with the
scenario in Fig. 7(a), LLM+MPC gives the driving actions shown in Fig. 7(b).

Prompt:
You, the ’ego’ car, are now driving a car.
The situation and action you chose LAST time step were ‘CROSS NORMAL‘ and
‘SLIGHTLY LEFT SLOWER‘.

The information about ego vehicle is as follows:
The speed of the ego vehicle is 8.0m/s. There is no traffic light in front of the ego vehicle.
The ego vehicle is making a left turn in the intersection.
The ego vehicle is coming from lane -17 4. The start of lane -17 4 is on ego vehicle’s
counterclockwise rotation of 168 degrees, 16.4m away, its direction is ego vehicle rotated
clockwise by 18 degrees. lane -17 4 is for left turns ONLY.
The ego vehicle is heading onto road 3. The start of road 3 is on ego vehicle’s coun-
terclockwise rotation of 43 degrees, 25.1m away, its direction is ego vehicle rotated
counterclockwise by 78 degrees.
If ignoring any surrounding traffic participants but respecting traffic lights, the ego vehicle
will pass these given waypoints:
waypoint 0: it is on ego vehicle’s counterclockwise rotation of 23 degrees, 9.6m away.
waypoint 1: it is on ego vehicle’s counterclockwise rotation of 44 degrees, 18.3m away.

The intersection has 8 roads.
The information of roads is as follows (where the direction of the road/lane is meant to be
the direction in which the vehicles on the road are permitted to travel):
Start of road -17 is on ego vehicle’s clockwise rotation of 168 degrees, 18.8m away, its
direction is ego vehicle rotated clockwise by 18 degrees. road -17 contains three lanes:
lane -17 2, lane -17 3, lane -17 4.
Start of road -3 is on ego vehicle’s counterclockwise rotation of 90 degrees, 21.1m away,
its direction is ego vehicle rotated clockwise by 101 degrees. road -3 contains three lanes:
lane -3 2, lane -3 3, lane -3 4.
Start of road -7 is on ego vehicle’s clockwise rotation of 74 degrees, 24.3m away, its
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direction is ego vehicle rotated counterclockwise by 69 degrees. road -7 contains three
lanes: lane -7 2, lane -7 3, lane -7 4.
Start of road -9 is on ego vehicle’s counterclockwise rotation of 8 degrees, 25.9m away, its
direction is ego vehicle rotated counterclockwise by 169 degrees. road -9 contains three
lanes: lane -9 2, lane -9 3, lane -9 4.
Start of road 17 is on ego vehicle’s counterclockwise rotation of 131 degrees, 18.8m away,
its direction is ego vehicle rotated counterclockwise by 161 degrees. road 17 contains three
lanes: lane 17 2, lane 17 3, lane 17 4.
Start of road 3 is on ego vehicle’s counterclockwise rotation of 43 degrees, 25.1m away,
its direction is ego vehicle rotated counterclockwise by 78 degrees. road 3 contains three
lanes: lane 3 2, lane 3 3, lane 3 4.
Start of road 7 is on ego vehicle’s clockwise rotation of 122 degrees, 20.1m away, its
direction is ego vehicle rotated clockwise by 110 degrees. road 7 contains three lanes:
lane 7 2, lane 7 3, lane 7 4.
Start of road 9 is on ego vehicle’s clockwise rotation of 33 degrees, 26.4m away, its
direction is ego vehicle rotated clockwise by 10 degrees. road 9 contains three lanes:
lane 9 2, lane 9 3, lane 9 4.

Please select traffic participants who affect the movement of ego vehicle and record
them, then determine the situation you’re in, and finally give action guidance for the ego
vehicle.
Follow these steps:
1. Get the information of ONE specific traffic participant.
2. After get the information of that traffic participant, determine whether or not it will affect
the movement of the ego vehicle and give reasons.
3. Use tool ‘Record Judgments‘ to record the judgement.
4. Please COMPLETE the three steps for ONE traffic participant BEFORE focusing on
the next traffic participant. Repeat the above three steps until you have checked all traffic
participants.
5. After you have checked all traffic participants, analyze the possible situations you might
be in and select ONE from them, and use ‘Record Situation‘ to record it.
6. Analyze the possible actions and select ONE from them, and use ‘Record Action‘ to
record it.
7. Output the final answer.
Before giving your final answer, MAKE SURE you have completed all of the above steps.

The final answer should contain the following four parts:
1. Select traffic participants who affect the movement of ego vehicle.
2. The situation you’re in. Make sure you’ve used tool ‘Get Possible Situations‘ to get the
possible situations, from which the situation you answer must be selected.
3. Action to be taken by the ego vehicle. Make sure you’ve used tool ‘Get Available
Actions‘ to get the available actions, from which the action you answer must be selected.
4. Your explanation about your decision on the above three things.

Here is an example of using a tool:
...
Thought: To determine which traffic participants affect the movement of the ego vehicle, I
need to get the IDs of all traffic participants and analyze their states.

Action:
“‘
{
”action”: ”Get IDs of all Traffic Participants”,
”action input”: ”ego”
}
“‘
...

16



Under review as a conference paper at ICLR 2024

After this, you need to wait for the answer before taking the next step.

Remember the conversations you’ve had and DONOT repeat them.
Let’s think step by step. Remember to use the proper tools mentioned in the tool list ONCE
a time. FOLLOW THE TOOLS’ GUIDELINES FOR YOUR NEXT STEP!
DONOT give the final answer now untill you are asked to! The final answer should be in
the following format:
...
Final Answer:
”participants”:{”vehicles who affect the movement of ego vehicle, a list of their ids”},
”situation”:{the situation you’re in, ONE of the possible situations that tools give you},
”action”:{”action to be taken by the ego vehicle, ONE of the available actions”}
...
END EACH OF YOUR ANSWERS WITH THE USE OF ONE TOOL, unless you are
asked to give the final answer.
When you are asked to use a tool, you MUST use it at the end of the next answer!
First use tool ‘Get IDs of all Traffic Participants‘!

LLM:
To determine which traffic participants affect the movement of the ego vehicle, I need to get
the IDs of all traffic participants and analyze their states.
Action:
“‘
{
”action”: ”Get IDs of all Traffic Participants”,
”action input”: ”ego”
}
“‘

Prompt:
There are 1 traffic participants:
‘vehicle 15‘.
DONOT use this tool again!
Now use tool ‘Get Information about Traffic Participant‘ with input ‘vehicle 15‘ to get its
information.

LLM:
To determine whether or not the traffic participant with ID ‘vehicle 15‘ will affect the
movement of the ego vehicle, I need to get its information and analyze its state.
Action:
“‘

”action”: ”Get Information about Traffic Participant”,
”action input”: ”vehicle 15”

“‘

Prompt:
The information about vehicle 15 is: vehicle 15 is on ego vehicle’s counterclockwise
rotation of 3 degrees, 19.7m away˙
The absolute velocity of vehicle 15 is 4.0m/s and the direction is ego vehicle rotated
counterclockwise by 169 degrees. The direction is roughly towards the ego vehicle. The
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velocity of vehicle 15 relative to ego vehicle is 11.9m/s and the direction is ego vehicle
rotated counterclockwise by 176 degrees.
vehicle 15 came from lane -9 3. Start of lane -9 3 is on ego vehicle’s counterclockwise
rotation of 0 degrees, 24.9m away, its direction is ego vehicle rotated counterclockwise by
169 degrees. lane -9 3 is straight ahead ONLY.
In last 10 time steps (1 time step is 0.1 second), the position and absolute velocity of
vehicle 15 is as follows:
t=-1, vehicle 15 is on ego vehicle’s counterclockwise rotation of 2.7 degrees, 20.1m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-2, vehicle 15 is on ego vehicle’s counterclockwise rotation of 2.5 degrees, 20.5m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-3, vehicle 15 is on ego vehicle’s counterclockwise rotation of 2.2 degrees, 20.9m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-4, vehicle 15 is on ego vehicle’s counterclockwise rotation of 2.0 degrees, 21.3m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-5, vehicle 15 is on ego vehicle’s counterclockwise rotation of 1.7 degrees, 21.6m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-6, vehicle 15 is on ego vehicle’s counterclockwise rotation of 1.5 degrees, 22.0m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-7, vehicle 15 is on ego vehicle’s counterclockwise rotation of 1.3 degrees, 22.4m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-8, vehicle 15 is on ego vehicle’s counterclockwise rotation of 1.1 degrees, 22.8m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-9, vehicle 15 is on ego vehicle’s counterclockwise rotation of 0.8 degrees, 23.2m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.
t=-10, vehicle 15 is on ego vehicle’s counterclockwise rotation of 0.7 degrees, 23.6m away.
Its absolute velocity is 4.0m/s and the direction is ego vehicle rotated counterclockwise by
169 degrees.

The speed of the ego vehicle is 8.0m/s, it is making a left turn in the cross road.
The ego vehicle came from lane -17 4. Start of lane -17 4 is on ego vehicle’s counterclock-
wise rotation of 168 degrees, 16.4m away, its direction is ego vehicle rotated clockwise by
18 degrees. lane -17 4 is for left turns ONLY.
The ego vehicle is heading onto road 3. Start of road 3 is on ego vehicle’s counterclockwise
rotation of 43 degrees, 25.1m away, its direction is ego vehicle rotated counterclockwise by
78 degrees.
The ego vehicle’s reference trajectory is given by the form of waypoints, i.e., if ignoring
any surrounding traffic participants but respecting traffic lights, the ego vehicle will pass
these given waypoints:
waypoint 0: it is on ego vehicle’s counterclockwise rotation of 23 degrees, 9.6m away.
waypoint 1: it is on ego vehicle’s counterclockwise rotation of 44 degrees, 18.3m away.

First you need to determine the intention of vehicle 15 and give reasons.
You need to follow these steps to give the above judgment:
1. Consider the state of vehicle 15 in lase 10 time steps and now to determine the intention
of vehicle 15. Give reasons.
2. Take the location and orientation of the road network into account. Give the reasons.
3. Summarize the intention of vehicle 15. Do not give reasons here.
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Then you need to determine whether or not vehicle 15 will affect the movement of
the ego vehicle and give reasons.
You need to follow these steps to give the above judgment:
1. Determine whether the position of vehicle 15 is likely to affect the motion of the ego
vehicle along the reference trajectory. Give the reasons.
2. Consider both the velocity and position of vehicle 15 and the velocity of ego vehicle to
determine whether it affects the motion of the ego vehicle along the reference trajectory.
Give the reasons.
3. Take intention of vehicle 15 and ego vehicle into account. Give the reasons.

After the above judgment, use tool ‘Record Judgments‘ to record the judgment with
input ‘vehicle 15,{str},{num}‘, where str is a string no more than five words, and num
is 0 or 1, with 0 representing no and 1 representing yes. str represents the intention of
vehicle 15, and num represents whether or not vehicle 15 will affect the movement of the
ego vehicle.
DONOT use tool ‘Get Information about Traffic Participant‘ UNTILL you have made above
judgments for vehicle 15 and used tool ‘Record Judgments‘ to record the judgment!

LLM:
To determine the intention of vehicle 15, I need to analyze its state and road network.
1. For the last 10 time steps and the present, the direction of vehicle 15’s speed is ego
vehicle rotated counterclockwise by 169 degrees, which has not changed, so the trajectory
is roughly along a straight line. Therefore vehicle 15 is traveling in a straight line.
2. vehicle 15 came from lane -9 3, which is straight ahead only. The direction of lane -9 3
is ego vehicle rotated counterclockwise by 169 degrees, and direction of the velocity of
vehicle 15 is ego vehicle rotated counterclockwise by 169 degrees. vehicle 15 is traveling
roughly in the direction of lane -9 3. Also, start of lane -9 3 is on ego vehicle’s counter-
clockwise rotation of 0 degrees, 24.9m away, and ego vehicle came from lane -17 4 whose
start is on ego vehicle’s counterclockwise rotation of 168 degrees, 16.4m away and direction
is ego vehicle rotated counterclockwise by 78 degrees. lane -9 3 may be the opposite lane
of lane -17 4. Therefore vehicle 15 is a straight ahead vehicle from the opposite lane of the
ego vehicle.
3. To summarize, vehicle 15 is from the opposite lane of the ego vehicle, and its intention
is to go straight.

To determine whether or not vehicle 15 will affect the movement of the ego vehicle,
I need to analyze its position, velocity relative to the ego vehicle, and the intention of
vehicle 15 and ego vehicle.
1. The position of vehicle 15 is on the left front of the ego vehicle. Since the ego vehicle is
making a left turn, the position of vehicle 15 is likely to affect the motion of the ego vehicle
along the reference trajectory. This is because vehicle 15 is in a position where it could
potentially intersect with the path of the ego vehicle.
2. Considering the velocity and position of vehicle 15, as well as the velocity of the ego
vehicle, it is possible that vehicle 15 could affect the motion of the ego vehicle. The
absolute velocity of vehicle 15 is 4.0m/s, and its direction is roughly towards the ego
vehicle. The velocity of vehicle 15 relative to the ego vehicle is 11.9m/s, and its direction is
roughly towards the ego vehicle as well. This indicates that vehicle 15 is moving towards
the ego vehicle at a relatively high speed. Given the relative positions and velocities, there
is a possibility of a collision or interference between the two vehicles.
3. vehicle 15 is from the opposite lane of the ego vehicle, and its intention is to go straight.
So it’s quite possible that it will affect the movement of the ego vehicle.

Now I will use the tool ‘Record Judgments‘ to record the judgment for vehicle 15.
Action:
“‘
{
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”action”: ”Record Judgments”,
”action input”: ”vehicle 15,go straight from opposite lane,1”
}
“‘

Prompt:
You have judged all traffic participants one by one to determine their intentions and whether
they will affect the movement of the ego vehicle. Now use tool ‘Get Possible Situations‘.

LLM:
To determine the possible situations I might be in, I need to use the tool ‘Get Possible
Situations‘.
Action:
“‘
{
”action”: ”Get Possible Situations”,
”action input”: ”ego”
}
“‘

Prompt:
There are 1 traffic participants you need to consider: ‘vehicle 15‘.
The information about vehicle 15 is:
vehicle 15 is on ego vehicle’s counterclockwise rotation of 3 degrees, 19.7m away.
The absolute velocity of vehicle 15 is 4.0m/s and the direction is ego vehicle rotated
counterclockwise by 169 degrees. The direction is roughly towards the ego vehicle.
The velocity of vehicle 15 relative to ego vehicle is 11.9m/s and the direction is ego vehicle
rotated counterclockwise by 176 degrees.
vehicle 15 is coming from lane -9 3. Start of lane -9 3 is on ego vehicle’s counterclockwise
rotation of 0 degrees, 24.9m away, its direction is ego vehicle rotated counterclockwise by
169 degrees. lane -9 3 is straight ahead ONLY.
The intention of vehicle 15 is go straight from opposite lane.

The information about ego vehicle is:
The speed of the ego vehicle is 8.0m/s. There is no traffic light in front of the ego vehicle.
The ego vehicle is making a left turn in the crossroad.
The ego vehicle is coming from lane -17 4. Start of lane -17 4 is on ego vehicle’s
counterclockwise rotation of 168 degrees, 16.4m away, its direction is ego vehicle rotated
clockwise by 18 degrees. lane -17 4 is for left turns ONLY.
The ego vehicle is heading onto road 3. Start of road 3 is on ego vehicle’s counterclockwise
rotation of 43 degrees, 25.1m away, its direction is ego vehicle rotated counterclockwise by
78 degrees.
If ignoring any surrounding traffic participants but respecting traffic lights, the ego vehicle
will pass these given waypoints:
waypoint 0: it is on ego vehicle’s counterclockwise rotation of 23 degrees, 9.6m away.
waypoint 1: it is on ego vehicle’s counterclockwise rotation of 44 degrees, 18.3m away.

You can ONLY choose ONE of the following situations:
CROSS NORMAL–this is a normal situation, you only need to follow the reference
trajectory and DONOT need to slow down;
CROSS WAIT–in this case it would be unsafe for you to go through the crossroad without
slowing down, therefore you need to slow down and wait;
CROSS FAST–in this case you need to speed up and rush through the crossroad considering
safety and efficiency;
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‘CROSS NORMAL‘ should be prioritized when you believe it is safe to go through
the crossroad without slowing down.
‘CROSS WAIT‘ is for safety and traffic regulations, prioritize it when you believe it is NOT
safe to go through the crossroad without slowing down.
‘CROSS FAST‘ is for efficiency, please make sure it’s safe!
Note that left-turning vehicles in an intersection must yield to oncoming straight traffic!

DONOT use this tool again and DONOT give the final answer now untill you are
asked to!
Now determine which of the above situations you are in and then use tool ‘Record Situation‘
to record it!

LLM:
To determine the possible situations I might be in, I need to consider the information about
the ego vehicle and the traffic participant vehicle 15. Based on the information provided, I
can analyze the situation and make a decision.

Considering the position, velocity and intention of vehicle 15, as well as the speed
and trajectory of the ego vehicle, I believe the possible situation I am in is CROSS WAIT.
This is because the ego vehicle is turning left in an intersection and vehicle 15 is a straight
ahead vehicle from the opposite lane of the ego vehicle, so the ego vehicle must yield. Also,
there is a possibility of a collision or interference between vehicle 15 and the ego vehicle.
Therefore, it would be unsafe for the ego vehicle to go through the crossroad without
slowing down.

Now I will use the tool ‘Record Situation‘ to record the situation as CROSS WAIT.
Action:
“‘
{
”action”: ”Record Situation”,
”action input”: ”CROSS WAIT”
}
“‘

Prompt:
Now use tool ‘Get Available Actions‘!

LLM:
To determine the available actions for the ego vehicle in the CROSS WAIT situation, I need
to use the tool ‘Get Available Actions‘.
Action:
“‘

”action”: ”Get Available Actions”,
”action input”: ”ego”

“‘

Prompt:
There are 1 traffic participants you need to consider: ‘vehicle 15‘.

The situation you are in is ‘CROSS WAIT‘.
You can ONLY use one of the following actions:
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SLIGHTLY LEFT FASTER–steer left between 3 and 10 degrees, and accelerate the
vehicle;
SHARPLY LEFT FASTER–steer left 10 degrees or more, and accelerate the vehicle;
SLIGHTLY LEFT MAINTAIN–steer left between 3 and 10 degrees with current speed;
SHARPLY LEFT MAINTAIN–steer left 10 degrees or more with current speed;
SLIGHTLY LEFT SLOWER–steer left between 3 and 10 degrees, and decelerate the
vehicle;
SHARPLY LEFT SLOWER–steer left 10 degrees or more, and decelerate the vehicle;
SLIGHTLY RIGHT FASTER–steer right between 3 and 10 degrees, and accelerate the
vehicle;
SHARPLY RIGHT FASTER–steer right 10 degrees or more, and accelerate the vehicle;
SLIGHTLY RIGHT MAINTAIN–steer right between 3 and 10 degrees with current speed;
SHARPLY RIGHT MAINTAIN–steer right 10 degrees or more with current speed;
SLIGHTLY RIGHT SLOWER–steer right between 3 and 10 degrees, and decelerate the
vehicle;
SHARPLY RIGHT SLOWER–steer right 10 degrees or more, and decelerate the vehicle;
IDLE FASTER–steering within 3 degrees to the left or right, and accelerate the vehicle;
IDLE MAINTAIN–steering within 3 degrees to the left or right with current speed;
IDLE SLOWER–steering within 3 degrees to the left or right, and decelerate the vehicle;

Prioritize actions that are more consistent with the reference trajectory (i.e., way-
points of the ego vehicle). Consider other actions ONLY when you believe they will result
in a collision or are unsafe.
Prioritize acceleration and maintaining speed. Consider other deceleration ONLY when you
believe they will result in a collision or are unsafe.
DONOT use this tool again and DONOT give the final answer now untill you are asked to!
Now select ONE action and then use tool ‘Record Action‘ to record it!

LLM:
To determine the available actions for the ego vehicle in the CROSS WAIT situation, I need
to consider the position and velocity of the traffic participant vehicle 15, as well as the
speed and trajectory of the ego vehicle.

I would prioritize actions that are more consistent with the reference trajectory of the ego ve-
hicle, such as SLIGHTLY LEFT MAINTAIN or SLIGHTLY RIGHT SLOWER. Consider-
ing the situation I am in is CROSS WAIT, I should choose SLIGHTLY RIGHT SLOWER.
This actions allow the ego vehicle to slow down and steer slightly to the left, which can help
avoid a potential collision with vehicle 15.

Now I will use the tool ‘Record Action‘ to record the action as
SLIGHTLY LEFT SLOWER.
Action:
“‘
{
”action”: ”Record Action”,
”action input”: ”SLIGHTLY LEFT SLOWER”
}
“‘

Prompt:
Now summerize the final answer!

LLM:
Final Answer:
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{
”participants”: ”vehicle 15”,
”situation”: ”CROSS WAIT”,
”action”: ”SLIGHTLY LEFT SLOWER”
}
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