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Abstract

We introduce Relational Representation Learning (RRL), a unifying paradigm
casting representation learning as a graph estimation problem. Instead of treat-
ing samples in isolation, RRL defines learning objectives through a relational
graph encoding pairwise relationships between data points. An encoder learns
by estimating this graph from embeddings and minimizing its discrepancy with
a specified target graph. This perspective reveals that self-, semi-, and super-
vised learning can all be recovered as special cases of RRL, providing a single
formalism that consolidates diverse pretraining objectives into a unified mathe-
matical object. This view offers a principled lens for analyzing empirical ob-
servations in self-supervised learning, such as slow convergence, performance,
and the projector—backbone accuracy gap. Our experiments show that increas-
ing relational richness within the graph improves convergence speed and down-
stream performance, while clarifying the role of auxiliary projection heads. Code:
https://github.com/rbalestr-lab/ssl-graphs
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Figure 1: Relational Representation Learning (RRL). Given inputs X and side information, a target
graph G is designed to specify pairwise sample relationships. The encoder learns by using its
embeddings Z to estimate a relation graph G and compares it to G with the loss £. Minimizing
£(G’, G) encourages embeddings to capture the specified inter-sample relationships.

1 Introduction

Deep learning has historically focused on the dependency between samples X and targets Y. In
contrast, classical methods like kernel approaches (e.g., t-SNE [17]) or spectral embeddings (e.g.,
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Figure 2: Relational graph associated with different representation learning paradigms. For simplicity,
only binary pairwise relations are shown: black squares indicate a relation, white squares indicate
none. (left) Supervised Learning target graph G and (center) Semi-Supervised Learning partial-
target graph Gisen;, relationships are determined based on shared class membership. Each graph uses
12 samples spread across 3 classes (cat, bus, fruit). (right) Self-Supervised Learning view graph G'ssi.
only views originating from the same sample share a relationship.

ISOMAP [29], Laplacian Eigenmaps [5]) rely on similarity matrices rather than targets. These
methods, however, require a meaningful input-space metric, which is often hard to define and
computationally costly. Foundation models address these limitations by learning representations from
massive datasets, capturing rich relational structures without handcrafted metrics. Training them has
become central to modern Al but each generation requires ad-hoc design choices, massive budgets,
and opaque strategies for integrating modalities. Yet the diversity of approaches and rapid pace of
development often hinders analysis and understanding. A unifying perspective on representation
learning could support systematic comparison, clarify when current training tricks are effective, and
advance Al research toward autonomous and reliable models [23].

Main contributions. We introduce Relational Representation Learning (RRL), a training paradigm
unifying self-, semi-, and supervised learning that learns by predicting inter-sample relationships
through their shared use of a relational graph rather than isolated features (fig. 1). Section 2
formalizes RRL and provides examples of SSL objectives under relational graphs, while Section 3
studies prominent Self-Supervised Learning (SSL) objectives in terms of losses over relational graphs,
uncovering explicit links between graph quality and convergence speed, downstream performance,
and the projector accuracy gap [6, 4].

2 RRL: Relationship Graphs Unify Representation Learning

We formalize RRL as a weighted graph G = (V, £), with V being the set of nodes representing data
samples X = [zy,...,zn]T € RV*D where |V| = N, and £ the set of weighted edges connecting
samples based on the strength of their relationships. For the remainder of this manuscript, we consider
a graph through its symmetric adjacency matrix G € (RT)V*¥ with (G); ; > 0 iff samples x; and
a; are known to share a relationship, (4, j) € £.

Building on this, our paradigm casts representation learning as a graph estimation problem, where
the model fy : R” +— RX, commonly a Deep Network, learns by estimating the graph G of
relationships between samples from its embedding Z £ [fs(x1), . .., fo(xn)]T, and compares it to
a specified target relational graph G, shown in fig. 1. The flexibility of our framework comes from
1) the design of G and 2) the loss function L(G, G), allowing it to incorporate many existing deep
learning methods. By constructing the target relational graph from different sources, we can recover
familiar paradigms (supervised, semi-supervised, and self-supervised), offering a unified perspective
on representation learning through relational graphs.



2.1 A Unified View of Representation Learning

In supervised classification, the targets explicitly specify the shared relationship between a subset
of samples, namely their class membership. Consequently, supervised learning can be viewed as
RRL with the following target relational graph G®'?) = Y'Y T, where Y € RV*® is the one-hot
target matrix for C' classes and [N samples, with Y;; = 1 if sample ¢ belongs to class j and 0
otherwise. Semi-supervised learning is a special case of supervised learning, using only a subset
of the data with available targets. It can thus be framed with the same target graph construction
as G, but replacing Y with a partial one-hot matrix Y obtained from the available targets,
where Y; = 0 if sample ¢ has no associated target. We denote this semi-supervised partial-target
graph as GO = YY . Unlike these approaches, self-supervised learning does not rely on
human-annotated targets, but instead generates targets via various data augmentations. A sample
X; is transformed into V' views (typically V' = 2), all preserving the input semantics, yielding
X = [®},...,2),..., &%, ..., Z%] € RNV*D  The corresponding target graph is then defined as
Ggf;l) = 1qvi=li/v]y = IN ® lyxy, where i, j € [NV], 1g denotes the indicator function of
event F, ® the Kronecker product, and 1y v a V' x V matrix full of ones. In simple terms, GG
connects sample views originating from the same underlying sample, making it very sparse. All the
graphs are illustrated in fig. 2.

2.2 Reframing SSL Objectives under Relational Graphs

To demonstrate the practical utility of this unified perspective, we now show how existing SSL
methods can be recast within the RRL framework. We reformulate the objectives of SimCLR [9]
and W-MSE [13] as functions of a relational graph G. We select these methods because (i) they
are well-established and (ii) they represent the two dominant paradigms in self-supervised learning:
contrastive and non-contrastive. Moreover, we provide additional graph formulations of established
learning objectives in appendix D.

The relational formulation of the SimCLR objective given a target graph G can be written as

Lsimcir = = Y1ty S50 (G 10g(G(Z))ig, G(Z)i; 2 2PEE)—— 22 2 (1)
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The relational formulation of the W-MSE objective given a target relational graph G can be written as

Lw-MSE = Zf\il Z;\le (G)i; 2] 2;, where 2; are whitened and/or 5-normalized features. (2)

3 RRL Explains Self-Supervised Learning Oddities

With our unified formulation, many self-supervised learning (SSL) phenomena, such as slow conver-
gence, performance, and the projector—backbone accuracy gap, emerge naturally and can be explained
in a principled way. In this section, we demonstrate how altering the structure of G provides a
powerful tool for analysis. Using the relational formulations of SimCLR and W-MSE (section 2.2),
we investigate: (i) the interplay between the relational richness of the target graph and properties such
as convergence speed, downstream performance, and robustness; and (ii) the rationale behind the
projector network, including the persistent accuracy gap between projector and backbone embeddings,
an elusive phenomenon in the SSL literature. We provide implementation details in appendix B.

3.1 Interplay Between Graph Structure and SSL Properties

A major advantage of RRL is that it can analyze how implicit graph structure impacts SSL perfor-
mance. The following sections analyze this impact across several key aspects. Additionally, we
hypothesize the existence of a fundamental exploration/exploitation trade-off based on G structure,
shaping learning properties. We further discuss this tradeoff in appendix C.

Convergence Speed & Performance. SSL requires significantly longer training to converge
compared to supervised learning, which we attribute to the sparsity of G (fig. 3). Supervised learning
relies on a coarse-grained graph defined by class membership, collapsing all samples in a class and
allowing rapid convergence. In contrast, SSL performs instance discrimination on a fine-grained
graph linking only augmented views of the same sample. This higher complexity slows convergence
but encourages the model to learn robust, sample-specific features rather than coarse class semantics.
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Figure 3: SSL linear probe accuracy of various relational graph richness. Reported results on CIFAR-
100 for SimCLR and W-MSE using ResNet-18 as backbone. A richer relational graph increases
performance.
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Figure 4: Sensitivity of relational graphs to corrupted edges on CIFAR-100 (ResNet-18). Contour
plots show accuracy after 1000 epochs as a function of the True Positive Rate (TPR, the fraction of
true edges recovered) and False Positive Rate (FPR, the fraction of false edges added) for SimCLR
(left) and W-MSE (right). Accuracy is very sensitive to FPR: even a few incorrect links (e.g., “cat” to
“truck”) can harm representation quality.

Sensitivity Analysis. While deep learning is known for its robustness to target noise [26], it is
unclear how the latter could hinder representation learning in RRL. We examine RRL’s sensitivity
to noise by introducing faulty relationships into G during training and measuring performance
degradation. We report our results in fig. 4. We find a pronounced noise sensitivity in sparse-relation
regimes such as SSL, regardless of the algorithm. Contrastive learning method (SimCLR) can account
for more noise than the Non-Contrastive method (W-MSE).

3.2 The Projector—Backbone Accuracy Gap

Current SSL methods use an auxiliary projector network atop the backbone, discarded after training.
While the projector improves performance, it creates the so-called “projector-backbone accuracy gap”
(fig. 5): backbone embeddings often outperform the projector on downstream tasks [14—16, 32]. We
propose a complementary explanation: the projector compensates for the sparsity of G, enriching
relational information during training. Empirically, the gap decreases as the number of relations
increases, supporting this interpretation (see ablation in appendix F).
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4 Conclusion

This work introduces Relational Representation Learning (RRL), a new paradigm that reframes
representation learning as a graph matching task. This paradigm opens several promising directions.
Future work could explore online estimation of relation graphs directly from embeddings, enabling
adaptive and self-improving training. The graph formalism also suggests a natural path for multimodal
representation learning, allowing seamless integration across modalities. Finally, theoretical analysis
of relational graph properties may provide new guarantees and insights for large-scale models, helping
improve reliability and understanding before deployment.
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A Related work

Unifying Representation Learning. Numerous studies have sought to unify the diverse approaches
in representation learning. Within self-supervised learning (SSL), Garrido et al. [14] investigated the
duality between contrastive and non-contrastive methods, showing that their performance differences
can largely be attributed to parameter choices. More recently, Huh et al. [ 18] proposed a scaling-based
perspective in which representational alignment emerges naturally with increasing model and dataset
size. In parallel, Balestriero et al. [4] compiled a comprehensive overview of techniques and tricks
that practitioners rely on across SSL methods. While valuable, these efforts remain largely confined
to SSL-specific settings, leaving open the broader question of how to unify representation learning
across domains.

Inter-sample Graph. Building on these unifying perspectives, recent work has explored inter-
sample relational structures to further enhance SSL. Several recent SSL approaches can be interpreted
as performing implicit online graph estimation. For example, Dwibedi et al. [12], Koohpayegani et al.
[20], Lebailly et al. [22] exploit nearest neighbors in the embedding space to replace augmentation
views, thereby enriching the default G®*)) structure with additional relationships that improve training.
A complementary line of work explicitly incorporates relational graphs into SSL. Sobal et al. [28]
leverage LLLM-generated pseudo-targets to construct inter-sample relations for SImCLR, showing
promising gains despite the method’s robustness to noisy edges. Cabannes et al. [7] formulate SSL
as an active learning problem over graphs, studying how selective sampling affects representation
quality. Finally, Balestriero and LeCun [3] unify classical SSL methods (SimCLR, VICReg, Barlow
Twins) with spectral embedding algorithms, such as Laplacian Eigenmaps [5] and ISOMAP [29],
highlighting the deep connection between self-supervised objectives and graph-based representation
learning.

B Experimental Details

All models use a ResNet-18 backbone with a two-layer MLP projector. Our implementation builds
on the solo-learn codebase [10], and we adopt the best hyperparameters from that work. We
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trained for 400 epochs on CIFAR-10 and CIFAR-100 [21], and for 1000 epochs on ImageNet-100
[11]. All reported accuracies are validation accuracies, computed using an online linear probe on the
embeddings.

C Discussion

No Universal Relational Graph. There is no universal relational graph capable of solving every
task as the optimal structure of such a graph depends entirely on the specific objective at hand. For
example, addressing the CIFAR-10 classification problem requires collapsing samples from the same
class together. Although effective for this task, this objective inherently produces representations
that perform poorly on out-of-distribution datasets, with no way to reverse the collapse once learned.
Consequently, a more “general” graph, i.e., one that imposes fewer constraints on the samples to
be collapsed together, will tend to contain fewer edges, preserving greater flexibility in the learned
representations. This is precisely the case for the relational graph that models self-supervised learning,
which satisfies these looser constraints, and thereby produces features that generalize more effectively
than those learned through supervised methods, albeit at the cost of slower convergence.

Exploitation vs Exploration trade-off. Based on our observations, we conjecture the existence
of a fundamental exploration—exploitation trade-off governed by the informational content encoded
in the graph, measured, for instance, via a graph sparsity coefficient. A very sparse (or “general”)
graph imposes few constraints on which samples must be related, thus preserving flexibility for
representation learning. In this regime, the model can rely more on its own inductive biases to discover
useful features. In contrast, a dense (or “rich”) graph, i.e., one that encodes many relationships,
provides strong priors but limits the space of possible representations, pushing the model to exploit
the information already present in the graph.

In this sense, exploitation corresponds to the use of inductive biases present in the data (and partially
in the model) to solve the representation learning task, while exploration relies on the model’s own
inductive biases to uncover novel patterns not explicitly encoded in the graph. A metaphor for this
distinction is the perception of flowers by a bee: equipped with ultraviolet vision, it can group flowers
in ways that differ fundamentally from human classifications, revealing relationships invisible to
us. More grounded in the Al research landscape, the shift from AlphaGo to AlphaZero reflects this
trade-off. AlphaGo was primarily learned by exploiting inductive biases embedded in labeled expert
human games. AlphaZero, by contrast, discarded human supervision entirely, exploring the strategy
space through self-play and ultimately achieving superhuman performance.

Practical Scalability of RRL. Kernel and spectral embedding methods face a well-known scal-
ability limitation, as they require computing and storing an N X N matrix, where NV is the size of
the dataset. At first glance, one might argue that our approach suffers from the same drawback,
potentially limiting the practicality of RRL. In practice, however, it is sufficient to maintain only an
n X n relational matrix, where n is the mini-batch size. The resulting computational and memory
overhead is negligible compared to the requirements of modern network architectures for forward
and backward passes.

D More Relational Objectives

In this section, we derive the relational formulation of several more prominent objectives spanning
Supervised, Semi-Supervised, and Self-Supervised Learning. A key advantage of RRL is its broad
applicability, as it naturally accommodates both classical methods and recent advances, providing a
unified mathematical foundation for diverse representation learning approaches.

D.1 Supervised Learning

SupCon. [19]

Assuming G € {0,1}V*¥ is hard target similarity matrix.
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D.2 Semi-Supervised Learning

SuNCET. [I]

Assuming G € {0, 1}¥*¥ is hard target similarity matrix.
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Lsuncer = — Zlog((G)L; G(Z)i) ®)

D.3 Self-Supervised Learning
DINOv2. [25]

Original DINO v2. DINOV2 [25] formalized their ssl objective as the composition of three terms,
two losses and one regularizer:

Lpivov2 = Lpmo + ALisot + A2 Lkoleo (6)
where A\, Ao € R are importance weight for secondary loss and regularizer term.

* DINO Loss. The original DINO loss term is a soft-clustering loss that promotes alignment
between teacher and student cluster predictions. The cluster assigment distribution vector
p; is obtained after applying de-centering and/or softmax operations on the embedding z;.

N d
-1 cls cls
LpiNvo = N Z Z f,lz,g log( pelz j) @)

* iBOT Loss. To make training more difficult. Some student patches are randomly masked
during training. The iBOT loss [33] is a patch-level objective applied only to masked
patches representation. It promotes similar soft-clustering between masked student patches
representation and their corresponding representation from the teacher. iBOT loss aim to
make the student model able to predict what should be present inside masked patches by
predicting its cluster.

uMw

N d
Ligor = N Z Z ! s.i j)]li,p 8)

with P is the number of patches and the indicator function where 1; ;, = 1 if student sample
7 has its patch p masked.

* KoLeo Regularizer. Kozachenko-Leonenko (KoLeo) Regularizer [27] encourages nor-
malized embeddings to spread uniformly by maximizing the log distance between each
embeddings and its closest neighbor in the batch.

_1 N
Ekoleo - W ; log(dl) (9)

cls

where d; = min;; [|255° — 25'7||2. Note that each z; is /2 normalized.



Graph DINO v2. The original DINOv2 loss can be rewritten in a more general way by modeling
sample relationships inside the batch itself. This can be done through a similarity graph G €
{0, 1}V %N where (G);; = 1 if sample i and j are semantically related, e.g. through shared target.

LGraphpinov2 = Lpino + ALigot + A2 Lioleo (10)
where
NN
Lpmo = N Z Z Z(G)wpflzsk log(Pgljsk) (1)
i=1j=1k=1
GNP
Ligor = &= Z Z Z P}, log(Ph,; )iy (12)
i=1 p=1j=1

with P is the number of patches and the indicator function where 1; ;, = 1 if student sample ¢ has its
patch p masked.

1 N N
Lioleo = 57 >0 log(ds ;) (13)
i=1 j=1
and
R : cls _ cls 14
d%] ¢%3=0| S,1 || ( )

SimDINOv2. [31]

Original SimDINO v2. The original loss formulation of SimDINOv2 [31] is defined as

LsimpNvov2 = Lalign + ALrate (15)
where Lyjign = %\\21 — 25||? enforces similarity between positive examples and L. regularizes

embeddings to be compact (i.e. low-dimensional) and information-efficient by removing noise
redundancy. L, leverage the explicit coding rate regularization,

R.(Z) = %logdet <I + iCov(Z)) , (16)

Graph SimDINO v2. Assuming /N sample embeddings, each composed of P patches of d features,
ie. Z € RVxXPxd Tphe graph formulation of SimDINOV?2 loss Lsimpino can be written as:

ﬁSimDINO = »Calign + »CiBOT + »Crate an
with

N N
Latign = Z > (@)ylzes -z I3 (18)

i=1 j=1

N P
Ligor = N ZZ fz,. - Zf,i,.”%]li-,p (19)

A d cls
Liate = -3 logdet | I + —QCOV(GZt ) (20)
€
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where Z,, Z; € RV*P*4 are the batched patch sequences embeddings from student and teacher
branch respectively. Additionally, Z<** € RV >4 is the concatenation of all c1s patches extracted

from Z, ie. Z® = [25% 25 ... 2$}°]T. Similarly, ZP € RV*? is the concatenation of all
patches p extracted from batched sequences Z € RV*P*d je ZP = 2] 20 ... 28 ]7. Finally,

1, is the indicator function with 1; , = 1 if the patch p from sample ¢ is masked in the student
branch.

NNCLR. [12]

L explsim(g(z).2,)/7)
b = exp(sim(q(z:), 20)/7) D

q(z;) == argming, ., [lg; — zill2

E Derivation of the Supervised Learning Relational Graph

In this section, we provide a theoretical justification for why the supervised learning relational graph
takes the form G = Y 7Y, where Y € RV *¢ is the one-hot target matrix. This result emerges
naturally from the solution to linear regression when cast as a projection operator.

Proposition 1. Consider the supervised learning problem where we seek to predict targets Y from
embeddings Z. The optimal linear predictor in terms of mean squared error leads to a relational
graph of the form G =Y TY .

Proof. Consider the linear regression problem of predicting the one-hot target matrix Y € RV*¢
from embeddings Z € RV*K:

min [[Y — ZW|[% (22)
where W € REXC is the weight matrix and || - || » denotes the Frobenius norm.
The optimal solution is given by:
W*=(Z"2)"'Z"Y (23)
The predictions are then:
Y =2ZW*=Z(Z"2)"'Z"Y = P;Y (24)

where Pz = Z(Z 7 Z)~'Z7 is the projection matrix onto the column space of Z.

To minimize the projection error, we want Y to be as close as possible to Y. The optimal case occurs
when the embeddings Z perfectly capture the target structure, i.e., when Y = Y. This requires:

PY =Y 25)

Substituting the loss function with the projection formulation:

L=|Y - PgY|% (26)
=Ti[(Y — PzY) (Y — PzY)] (27)
=Tr[Y'Y] - 2Tx[Y " PzY] + Tt[Y ' P, PzY] (28)

Since Py is a projection matrix, we have P, Pz = Pz. Thus:
L=TiY Y] -Ti[Y ' P;Y] (29)
=Tr[Y " (I — Pz)Y] (30)

To minimize this loss, we need to maximize Tr[Y ' PzY], which encourages the projection Pz to
preserve the structure encoded in Y "Y',
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The matrix Y'Y captures the target relationships:

(YTY),

1[sample i and j have same target], where y; is the i-th row of Y.

(Yi, yj>

Therefore, by learning embeddings Z that minimize the projection error, we are implicitly learning to
preserve the relational structure encoded in G = Y 'Y, which explains why this matrix naturally
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Figure 6: Projector accuracy gap for various percentages of target graph GG") for SimCLR on
CIFAR-100. Increasing the number of relations in the target graph progressively reduces the gap.
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Figure 7: Projector accuracy gap for various percentages of target graph G") for SimCLR on
CIFAR-100. The target graph is constructed from the coarse target set (10-class). Increasing the
number of relations in the target graph progressively reduces the gap.
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Figure 8: Projector-Backbone accuracy delta for various batch sizes and graph percentages of target

graph G) for SimCLR on CIFAR-100. Increasing the batch size as well as the number of relations
in the target graph progressively reduces the gap.

G Online Graph Estimation

RRL accommodates a wide range of strategies for designing the target relational graph G. A
promising approach resides in learning to design G. Recent works, like [28], took a first step in
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that direction by leveraging Large Language Models (LLM) as an oracle to design G by estimating
similarities between data. One could also imagine designing G entirely from the model’s own
representations and using it to guide its learning, a process known as self-distillation. This approach
offers a powerful mechanism, allowing the model to bootstrap its performance by leveraging its
own knowledge. Bootstrapping has already shown promising results in self-supervised learning
(SSL) with methods such as NNCLR, MeanShift, and AdaSim [22], which utilize embedding nearest
neighbors to refine learned representations. These approaches can be viewed as an implicit target
relational graph design method, where the model relies on its own embeddings to infer pairwise
relations and uses them to reinforce its representation learning. Yet, estimating the graph structure
introduces the risk of erroneous pairwise relation predictions. A false positive, such as inferring a link
between a “cat” and a “truck”, can substantially impair representation learning. Section 3.1 unveils a
pronounced sensitivity; an open question is therefore: Under which condition can we use RRL for
self-distillation?

[22] observed the occurrence of representational collapse in self-distillation methods when incorpo-
rating nearest neighbor bootstrapping (NNB). This phenomenon is readily explained: NNB replaces
one of the augmented images by retrieving the best neighbors from a queue of model-produced
embeddings, which are initially of low quality. Early in training, NNB increases the likelihood of
retrieving semantically unrelated samples, introducing harmful false positives, resulting in collapse.
As training progresses, embeddings become more semantically aligned, reducing errors, improving
NNB quality. This directly supports the adaptive strategy proposed by Lebailly et al. [22] based on
latent space quality estimation. This effect arises naturally from the improved quality of the target
relational graph, which in turn strengthens the training signal.

H Limitations of the Paradigm

Throughout this work, we highlighted the generality of the approach and its remarkable ability to
recover many objectives across diverse areas of machine learning, from unsupervised to weakly
and fully supervised settings. However, the graph-based approach is not exhaustive and does not
capture certain important aspects of the studied methods. This is demonstrated in [2], which showed
equivalences between self-supervised learning losses and spectral embedding methods, highlighting
some key differences between the given closed forms and the representations obtained via SSL
training.

First, even though the sample graph indicates which samples are related and which are augmentations
of the same sample, it does not convey the core characteristics of the data augmentation, namely
which features are perturbed and what invariances are enforced. A recent study [24] highlighted the
great impact of choosing the correct augmentation in self-supervised learning. From a theoretical
perspective, [30] showed that the data augmentation needs to be sufficiently aligned with the irrelevant
features in the input data to discard them, with the alignment requirement depending on the family of
method considered: joint embedding vs reconstruction.

Second, our formalism does not model the inductive bias of the network, which is known to play a
key role in the obtained latent representation [8].
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