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Abstract
Protein structure prediction has been revolution-
ized by AlphaFold, yet a key limitation remains:
its inability to characterize the multiple confor-
mations of fold-switching proteins. Current ap-
proaches to address this limitation within the
AlphaFold framework rely on subsampling the
multiple sequence alignment (MSA) input, ei-
ther through random sampling or clustering, but
these methods are statistically inefficient and fail
to utilize coevolutionary information between
residues. We introduce SMICE, a sequential sam-
pling framework that systematically explores the
MSA space by incorporating residue-specific fre-
quencies and coevolutionary patterns inferred via
Markov random fields. On a benchmark set of
92 fold-switching proteins, SMICE outperforms
existing methods and substantially improves struc-
tural diversity.

1. Introduction
It is fair to say that AlphaFold (Jumper et al., 2021) has
revolutionized the task of protein structure prediction from
sequences. While AlphaFold has received incremental up-
dates since its inception (Baek et al., 2021; Mirdita et al.,
2022; Abramson et al., 2024) and continues to be ubiquitous
for structure prediction of single protein sequences, it is
still challenging to adequately characterize distinct confor-
mational states for a given protein. Proteins are dynamic
and change in response to their environment and/or binding
partners (Bu & Callaway, 2011); however, each entry in the
Protein Data Bank (PDB, Berman et al., 2000) only provides
a static experimentally-determined structure for a given se-
quence. Laboratory techniques to capture protein dynam-
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ics are not readily available, and this limitation extends
to AlphaFold, which is trained under the one-sequence-to-
one-structure paradigm. When predicting the structures of
fold-switching proteins, which have at least two distinct yet
stable structures, AlphaFold by default can only predict one
of the structures (Chakravarty & Porter, 2022).

This limitation has inspired studies into how AlphaFold can
be enhanced to provide predictions that capture all possi-
ble foldings for a protein sequence. These efforts largely
revolve around modifying AlphaFold inputs, most notably
in the form of the multiple sequence alignment (MSA). A
MSA consists of a list of protein sequences that are evo-
lutionarily or structurally related to the target sequence,
usually retrieved by querying large databases of known pro-
tein sequences (Johnson et al., 2010; Remmert et al., 2012;
Steinegger & Söding, 2017). With a well-constructed MSA,
AlphaFold is generally regarded to be more accurate than
protein language model-based folding algorithms that oper-
ate on the input sequence only, e.g., the ESM family (Hayes
et al., 2025) and OmegaFold (Wu et al., 2022). Existing ap-
proaches to diversify AlphaFold’s predictions have focused
on subsampling the full MSA (or generating multiple shal-
low MSAs) to generate structures from a larger conforma-
tional space. These include random sampling (Del Alamo
et al., 2022; Monteiro da Silva et al., 2024), which draw
fixed-size random subsets from the full MSA, and clustering
(Wayment-Steele et al., 2024), where similar sequences are
grouped into clusters that are used as input MSAs.

However, these approaches have two main weaknesses.
First, from a statistical perspective, they fail to explore the
space of MSA subsets in an effective or unbiased manner.
The ideal case for fully leveraging prediction diversity via
MSA subsampling would be to exhaustively enumerate all
possible subsets, ranging from subsets consisting of diverse
sequences to subsets with highly homogeneous sequences,
along with intermediate combinations. Clustering meth-
ods are inherently biased as they only sample those subsets
with highly homogeneous sequences. In contrast, random
sampling, though theoretically unbiased, suffers from low
sampling efficiency and fails to use any sequence informa-
tion within the MSA. Second, existing approaches treat each
residue in the sequence independently: they compare the
amino acid types for each residue (and disregard the inter-
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Figure 1. Flowchart of SMICE. (A) MSA subsets are drawn from the full MSA using sequential sampling, which are initialized by
modeling MSA subsets with different amino acid proportions. (B) Structure predictions are made on the MSA subsets with AlphaFold.
(C) Representative predicted structures and their corresponding MSA subsets are extracted via coreset selection on the structures’ contact
maps. (D) For each representative MSA subset, we estimate its coevolutionary information using a Markov random field (MRF) model.
(E) Additional MSA subsets are generated via enhanced sampling, which utilize the differences in coevolutionary information embedded
within the representative MSA subsets.

actions between different residues) to guide the selection
of MSA subsets. Coevolutionary information in the MSA,
which refers to the statistical dependence between two (po-
tentially far apart) residue positions in the MSA (Morcos
et al., 2014), is believed to play an important role in how Al-
phaFold makes predictions (Roney & Ovchinnikov, 2022).
Emerging evidence also suggests that the prediction of mul-
tiple conformations through MSA subsampling arises from
selecting subsets that contain distinct coevolutionary infor-
mation patterns (Wayment-Steele et al., 2024). However,
subsampling strategies based solely on marginal statistics
(e.g., amino acid frequencies of each residue) or sequence
similarity may fail to capture the dependence between dif-
ferent residues or generate MSA subsets with diverse coevo-
lutionary information.

To address the aforementioned limitations, we propose
an iterative sampling method SMICE (Sampling MSA
Iteratively with CoEvolution information), which formally
embeds MSA subsampling into generative probabilistic

models. It is constructed as a sequential sampling proce-
dure that incorporates the coevolutionary information into
the sampling criterion, as shown in Figure 1. To begin,
we sequentially sample sequences based on each residue’s
marginal frequencies using varying hyperparameter config-
urations, which ensure high diversity across all sampled
subsets. Subsequently, we use the sampled MSA subsets
to generate an initial set of structure predictions using Al-
phaFold. To further increase the diversity of MSA subsets’
coevolutionary information, we extract the structurally dis-
tinct predictions and analyze the coevolutionary informa-
tion from each corresponding MSA subset using a Markov
random field (MRF) model (Kamisetty et al., 2013). This
approach efficiently captures variations in coevolutionary
information that contribute to the structural diversity of the
predictions. The fitted MRF models then guide the gen-
eration of new MSA subsets with increasingly diverse co-
evolutionary information. Subsequently, we use AlphaFold
to predict structures for all sampled MSA subsets. This
process is iterated to generate the final structure predictions.
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We demonstrate the performance of SMICE on a bench-
mark set of 92 fold-switching proteins from Chakravarty
et al. (2024), where each protein has two distinct confor-
mations. First, we identified several cases where SMICE
successfully predicted both conformations, while clustering
and random sampling failed to capture at least one confor-
mation. Second, in the analysis of all the fold-switching
proteins, SMICE consistently outperforms other methods in
predicting both conformations while maintaining high pre-
diction fidelity across most cases. Our method substantially
expands the capabilities of MSA subsampling and provides
a reliable solution for predicting multiple conformations for
the fold-switching proteins.

2. Related Research
Several reports of successful MSA subsampling for predict-
ing protein conformations (da Silva et al., 2023; Herrington
et al., 2023) have motivated extensive research into its un-
derlying mechanisms and limitations (Chakravarty et al.,
2024; Bryant & Noé, 2024; Schafer et al., 2025). Schafer
& Porter (2023) found that MSAs of the fold-switching
proteins contain different evolutionary information for both
foldings. This observation aligns with findings that MSA
subsets making distinct predictions are found to contain sub-
stantial differences in both marginal amino acid proportions
at individual residues and coevolutionary information be-
tween residue pairs (Wayment-Steele et al., 2024). However,
it remains unclear whether the success arises from captur-
ing different evolutionary information in the MSA subsets
or simply from memorizing different sequences within the
MSA subsets (Chakravarty et al., 2024). Given the black-
box nature of AlphaFold, which makes it difficult to directly
examine these factors, a cautious approach is to generate
MSA subsets that are as diverse as possible in terms of
evolutionary information, thereby increasing prediction di-
versity and minimizing the risk of overlooking potential
causes behind the success. To the best of our knowledge,
no prior work has explicitly incorporated coevolutionary
information in MSA subset generation.

Besides MSA ablation via subsampling the MSA, alternative
approaches have been proposed. Stein & Mchaourab (2022)
applies point mutations to the MSA on the predicted contact
points. Jing et al. (2024) proposes training a flow-matching
variant of AlphaFold, which achieves higher diversity in its
predictions compared with simple MSA subsampling.

3. Method
As shown in Figure 1, the pipeline of our method consists
of the following steps. First, we create MSA subsets via
a sequential sampling strategy. Then, we select the repre-
sentative MSA subsets among all MSA subsets via coreset

selection based on their predicted structures. After this, we
estimate the coevolutionary information for each represen-
tative MSA subset to guide the generation of new subsets.
This process is iterated to generate the final structure predic-
tions. We present the details of each step in the following.

3.1. Sequential Sampling on the Full MSA

In this section, we develop a sequential sampling method
to create MSA subsets with diverse marginal statistics,
i.e., the amino acid frequencies of each residue. Let
M = {Y1, . . . ,Yn} denote the set of sequences in the full
MSA for the target sequence, where Yi, a L × 22 binary
matrix, is the one-hot encoding of the ith sequence. The 22
categories include the 20 standard amino acids, one for un-
known amino acid types, and one for gaps in the alignment.
Suppose we start with a small MSA subset A ⊂ M. To
preserve consistent evolutionary information, our sequential
sampling strategy randomly draws a new (i.e., unsampled
in the current MSA subset) sequence Ỹ with an acceptance
probability proportional to its similarity to the current MSA
subset A. To achieve this, we design the sampling probabil-
ity of Ỹ based on how its inclusion changes the amino acid
proportions at all residues of A.

Let pl be the length-22 vector of probabilities for the differ-
ent amino acid types at the lth residue position, l = 1, . . . , L.
For an initialization of A starting from ∅, we estimate
{pl}Ll=1 using a Bayesian approach with a prior distribution
specified by a L× 22 matrix Π, where the lth row of Π is
the prior vector for the lth residue position. Specifically, we
model that pl independently follows a Dirichlet distribution,

pl ∼ Dirichlet(τΠTel), (1)

where τ > 0 controls the strength of the prior and el is the
lth unit vector so that ΠTel gives the lth row of Π.

Given the current MSA subset A and the prior distribution
of {pl}Ll=1 in Eq.(1), the maximum a posteriori (MAP)
estimate of pl is

p̂l(A,Π) =
(
∑

Y∈A Y + τΠ)Tel

|A|+ τ
. (2)

Notice that in the early stages of sequential sampling, the
MAP estimate is dominated by Π. By assigning high sam-
pling probability to sequences that make small changes to
the MAP estimates, sequences that closely match Π will
be more favored. This allows us to generate MSA subsets
covering different local regions in the sequence space by
varying the choices of Π. The details of setting τ and Π are
provided in Appendix B.

To decide whether to accept a candidate sequence Ỹ, we
first calculate the L1 norm of the MAP estimate’s change
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by including Ỹ vs. not including it,

∆l(Ỹ,A,Π) := |p̂l(A,Π)− p̂l(A ∪ {Ỹ},Π)|1

=
|p̂l(A,Π)− ỸTel|1
|A|+ τ + 1

. (3)

To measure the overall change of the MAP estimate of
{pl}Ll=1, we consider two sources of heterogeneity across
all residues: (1) different residues have different levels of
evolutionary conservation, and (2) residues with many gaps
may provide less reliable information. To address them, we
rescale the changes for each residue through

Ql(Ỹ,A,Π) = wl
∆l(Ỹ,A,Π)√

V ar(∆l(Ỹ,A,Π))
, (4)

where V ar(∆l(Ỹ,A,Π)) is computed by assuming the
marginal distribution of the lth row of Ỹ is the one-trial
multinomial distribution with probability vector p̂l(A,Π),
and wl is the proportion of gaps in the lth position for the
full MSA. Appendix A provides the details of Eq.(4).

We now calculate the acceptance probability of the randomly
drawn candidate sequence Ỹ given the current MSA subset
A through

min

{
1, exp{−λ

L

L∑
l=1

Ql(Ỹ,A,Π)}/C

}
, (5)

where C is a tuning parameter controlling the overall sam-
ple size, and λ ≥ 0 controls the homogeneity level in the
sampled MSA subsets. When λ is larger, only sequences
resulting in small changes to the MAP estimate are likely
to be accepted. This leads to highly homogeneous subsets
where sampled sequences are tightly clustered. In contrast,
a small λ allows for greater diversity in the sampled MSA
subsets. In the limiting case of λ = 0, the sequential sam-
pling strategy reduces to uniform random sampling. For
broader exploration, we recommend sampling with multiple
λ values (see Appendix B).

After we query all the sequences, or the size of the MSA
subset A reaches the preset maximum size, we use A as the
input MSA for AlphaFold. By repeating this procedure mul-
tiple times with varying choices of the hyperparameters Π
and λ, we induce a set of MSA subsets and its corresponding
AlphaFold predicted conformations.

3.2. Selection of Representative MSA Subsets

From the sequentially sampled MSA subsets, we now use
coreset selection to select the most representative subsets
based on their predicted structures. Given the predicted
conformations obtained in the previous step, we expect that

the distinct structures predicted also exhibit distinct evolu-
tionary information in their corresponding MSA subsets.
Thus, extracting representative structures and their MSA
subsets could provide valuable information for generating
new MSA subsets that lead to more diverse structures.

Specifically, we first straighten the L × L contact map
matrices of all the predicted structures into vectors, and
principal component analysis (PCA) is applied to obtain
low-dimensional representations of the contact map. The
number of PCs is selected to explain at least 90% of the total
variance. We then apply coreset selection (Feldman, 2020)
on the PCA coordinates to extract K distinct structures1 (see
Appendix B for the details of the coreset selection). Finally,
for each of the K structures, we identify its corresponding
MSA subset; these K MSA subsets will be used to extract
the coevolutionary information.

3.3. Enhanced Sampling using Coevolutionary
Information

By analyzing differences in coevolutionary information
across representative MSA subsets, we develop an enhanced
sampling strategy to generate more diverse samples. A
commonly used statistical model for analyzing the coevolu-
tionary information of the MSA is the Markov random field
(MRF) model (Kamisetty et al., 2013) with the parameter
Θ =

{
{Vl}Ll=1, {Wl,m}L1≤l<m≤L

}
,

PMRF (Y|Θ) ∝ exp

(
L∑

l=1

eTl Y

[
Vl +

L∑
m>l

Wl,mYTem

])
,

(6)
where Vl is a 22-dimensional vector capturing the marginal
effect of the amino acid type at the lth residue and Wl,m is
a 22 × 22 matrix capturing the pairwise interaction effect
between the mth and lth residues.

Sampling MSA subsets with diverse coevolutionary infor-
mation can enable AlphaFold to more effectively explore
the conformational space. To leverage this coevolutionary
information efficiently, we first estimate the MRF model
for each of the representative MSA subsets extracted in the
previous steps using GREMLIN (Kamisetty et al., 2013),
see Appendix B for more details. Suppose there are K MSA
subsets, so that the MRF model is estimated K times. Then,
for each pair of estimated MRF models, denoting the pa-
rameters by Θ and Θ′, we calculate the probability ratio
PMRF (Yi|Θ)/PMRF (Yi|Θ′) across all sequences in the
full MSA. A high ratio indicates that a sequence is more
consistent with the coevolutionary information captured by

1Note that AlphaFold is an ensemble model with five different
sets of model weights, i.e., each MSA input generates five different
structure predictions by AlphaFold. Therefore, the extraction of
representative MSA subsets and all subsequent steps are performed
independently for each of the five weight sets of AlphaFold.
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Figure 2. Visualization of a fold-switching protein with two conformations (3zwgN and 4tsyD) and the top predictions for each conforma-
tion by the three methods.

Θ compared to Θ′. By pooling sequences with high prob-
ability ratios into a new MSA subset, we may strengthen
their shared coevolutionary information. Finally, for each
pair of estimated MRF models, we rank all sequences by
their computed probability ratios and select the top N se-
quences, where N is a predetermined subset size. These N
sequences are used as one input MSA subset for AlphaFold
to generate new predictions (see Appendix B for the details
of setting N ). Since there are K(K − 1) such ordered pairs,
this procedure generates K(K − 1) MSA subsets.

The three steps (detailed in Sections 3.1 to 3.3) are iterated
in SMICE a few times (usually two or three rounds) to
obtain the final structure predictions.

4. Experiments on the fold-switching proteins
We examine the performance of our methodology on a set
of 92 fold-switching proteins in Chakravarty et al. (2024).
Each protein has two conformations, and the residues cor-
responding to the fold-switching region (fsr) have been
previously identified. To assess prediction accuracy, we
computed TMscore, a widely-used metric for evaluating the
structural similarity between two structures, for a combined
region that includes the fsr and its neighboring segment
of half the fsr’s length2. The cases where the full MSA
contains fewer than 20 sequences are removed. We com-
pared SMICE with AF-Cluster and random sampling. The
implementation details are provided in Appendix C.

2As noted by Chakravarty et al. (2024), whole-protein TM-
scores tend to overestimate prediction accuracy for fsr’s. Moreover,
we found that TMscores computed solely on the fsr often fail to
distinguish conformations resulting from hinge motions (Bryant &
Noé, 2024), where the global fold remains largely unchanged but
relative orientations between regions shift.

4.1. Illustrative Examples

To highlight the advances of SMICE, we begin by presenting
the results for three illustrative fold-switching proteins, each
with two distinct conformations (PDB IDs: 3zwgN/4tsyD,
2c1vB/2c1uC, and 3hdeA/3hdefA).

Results are shown in Figure 3, with each row corresponding
to one fold-switching protein. The left panel in each row
presents the results from SMICE, the middle panel shows
the results from AF-Cluster, and the right panel shows the
results from random sampling. In each scatter plot, the
TMscores of the predicted structures to the two known con-
formations are plotted on the x and y axes, respectively.
Since AF-Cluster generates a variable number of predic-
tions (depending on the number of clusters), to ensure a fair
comparison, we resample the same number of predictions as
AF-Cluster from the prediction sets of our proposed method.
Similarly, we repeat random sampling to generate the same
number of MSA subsets as AF-Cluster.

We found that MSA subsets generated by SMICE have pre-
dictions with higher TMscore for both conformations across
all three cases. In contrast, MSA subsets from AF-Cluster
failed to make accurate predictions for the alternative confor-
mation 3zwgN (Figure 3A) and 2c1uC (Figure 3B), while
random sampling failed for all three cases. Furthermore, AF-
Cluster makes less reliable predictions (i.e., in regions of the
conformational space not close to either fold) compared to
SMICE. For example, AF-Cluster makes significantly larger
proportions of predictions with both TMscores lower than
0.6 in case 3 compared to SMICE, as shown in Figure 3(C).

For the fold-switching protein with conformations repre-
sented by 3zwgN and 4tsyD, Figure 2 visualizes the struc-
tures corresponding to the best predictions generated by
the three methods. The top and bottom rows display the
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Figure 3. TMscores of the AlphaFold prediction on the MSA sub-
sets supplied by SMICE, AF-Cluster, and random sampling on
three fold-switching proteins. The results from SMICE are shown
in red. The results from MSA subsets obtained via sequence clus-
tering in AF-Cluster are shown in blue, while those from random
sampling are shown in black. The black vertical and horizontal
lines represent the TMscores between the two conformations of
the fold-switching proteins. (A) 3zwgN/4tsyD (B) 2c1vB/2c1uC
(C) 3hdeA/3hdefA.

structures with the highest TMscores to Fold1 (3zwgN) and
Fold2 (4tsyD), respectively; only SMICE was able to gener-
ate a structure that resembles Fold2.

Additional examples are provided in Appendix D.

4.2. Comparison with Other Methods

We next provide a comprehensive comparison against AF-
cluster and random sampling on the full set of proteins.

First, taking each set of predictions generated for a given
fold-switching protein, we check if the structures (1) predict
Fold13, (2) predict Fold2, or (3) fail to predict either fold.
To measure these, we compare the TMscores of both folds
against a predefined threshold: a prediction is considered to
successfully predict Fold1 if TMscore1 (TMscore to Fold1)
exceeds both TMscore2 (TMscore to Fold2) and the thresh-
old, to successfully predict Fold2 if TMscore2 exceeds both
TMscore1 and the threshold, and as a failure if neither TM-
score1 nor TMscore2 surpasses the threshold. By varying
the threshold, we calculate the proportions of predictions of
these three cases across different levels of prediction con-
fidence for each competing method. Intuitively, only those

3For each pair of conformational structures, we use the Fold1
and Fold2 defined by Chakravarty et al. (2024), where Fold2 is
more challenging to predict and usually exhibits lower TMscores
compared to Fold1.

Figure 4. Comparison results of SMICE against AF-Cluster and
Random Sampling on the proportions of predicting Fold1, the
proportion of predicting Fold2, and the minimum proportions
of predicting two folds. For varying TM-score thresholds, we
compute the median of the proportions across all fold-switching
proteins. Different methods are colored differently

prediction sets with high proportions for both predicting
Fold1 and Fold2 can be considered as successful. Therefore,
we use the minimum of the two prediction proportions as a
performance metric, representing the ability to predict both
folds simultaneously.

In Figure 4, we summarize the results across all fold-
switching proteins with the median of the prediction propor-
tions for Fold1, the prediction proportions for Fold2, and
the minimum proportions for predicting both folds. The
plotted curves represent the median of the proportions over
the 92 fold-switching proteins, as a function of the TMscore
threshold. It is seen that SMICE consistently outperforms
AF-Cluster and random sampling, achieving the highest pre-
diction proportions for both folds and the highest minimum
success rates across nearly all thresholds and quantiles. An
interesting finding is that random sampling performs com-
parably or slightly better than SMICE in predicting Fold1.
This may be due to the random sampling’s tendency to gener-
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ate MSA subsets that share similar evolutionary information
with the full MSAs, leading to their predictions being closer
to the more easily predictable Fold1 conformation.

We then compare the best prediction result for each method
on each fold-switching protein. For each fold-switching
protein, we compute three metrics on its prediction sets:
(1) max-TMscore1, i.e., the maximum TMscore to Fold1;
(2) max-TMscore2, i.e., the maximum TMscore to Fold2;
(3) minimax-TMscore, i.e., the minimum of max-TMscore1
and max-TMscore2, reflecting the worst-case prediction gap
for either conformation. A high minimax-TMscore means
that both folds are accurately predicted.

For a fair comparison, we repeatedly resample the same
number of predictions as AF-Cluster from the prediction sets
of SMICE and random sampling 500 times, and calculate
the averaged metrics across all repetitions.

Figure 5. Comparing the results of SMICE against AF-Cluster
and Random Sampling. Each point represents one fold-switching
protein. Points above the 45◦ dashed line indicate cases where
SMICE achieves higher scores than the competing methods.

The results comparing SMICE against AF-Cluster and ran-
dom sampling are shown in Figure 5. The rows display
the three evaluation metrics: (A) max-TMscore1, (B) max-
TMscore2, (C) minimax-TMscore. In each row, the left

panel shows the comparison between SMICE and AF-
Cluster, while the right panel shows the comparison with
random sampling. We found that SMICE outperforms AF-
Cluster in capturing both conformations in most cases, as
shown in Figure 5. Random sampling performs comparably
to SMICE for predicting Fold1 (structures that are easier to
predict using AlphaFold without subsampling), while it is
outperformed by SMICE in predicting Fold2. This result is
consistent with the finding in Figure 4.

5. Conclusion
Our work addresses a critical limitation of AlphaFold in
predicting the multiple conformations of fold-switching pro-
teins. We reformulate MSA subsampling as a probabilistic,
coevolutionary information-aware procedure. By varying
hyperparameters that control sequence homogeneity and
initializations, we avoid the redundancy of random sam-
pling and the biases toward sampling highly homogeneous
sequences of clustering. We also explicitly account for co-
evolutionary information by modeling residue dependence,
further increasing the diversity of coevolutionary informa-
tion in the MSA subsets. These properties ensure a signifi-
cant improvement in the diversity and accuracy of predicted
conformations compared to existing methods. While we
focus on fold-switching proteins, our framework could be
potentially generalized to other problems, e.g., predicting
the dynamic conformations of intrinsic dynamic proteins
(IDPs).
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A. Mathematical Details
By assuming the marginal distribution of the lth row of Ỹ is the one-trial multinomial distribution with probability vector as
p̂l(A,Π), we have

E[∆l(Ỹ,A,Π)] =
E|p̂l(A,Π)−YTel|1

|A|+ τ + 1
= 2

22∑
a=1

pl,a(1− pl,a)

|A|+ τ + 1
,

V ar[∆l(Ỹ,A,Π)] = 4

22∑
a=1

pl,a(1− pl,a)
2

(|A|+ τ + 1)2
− E2[∆l(Ỹ,A,Π)],

where pl,a is the ath entry of p̂l(A,Π).

B. Additional Details of the Methods
B.1. Setting Hyperparameters τ and Π

As mentioned in Section 3, to promote diversity among the sampled MSA subsets, we vary the choices of Π in the prior
distribution of the expected amino acid proportions.

We set these values in a data-driven manner. Specifically, for each sequence Yi ∈ {Y1, . . . ,Yn}, let S(i) represent the
indices of Yi’s N-nearest sequences among the full MSA using the Hamming distance. We compute the average proportions
of amino acids in all residues across Yi’s neighbors, Ȳi =

1
N

∑
j∈S(i) Yj . We then apply K-medoids clustering to these

average amino acid proportions {Ȳi}ni=1 and the resulting cluster centers. These cluster centers are used as K different
choices for Π. In our experiment, we set K = 10. For MSAs with fewer than 100 sequences, we set N = 10, and for those
with more than 100 sequences, we conduct the above procedure for both N = 10 and 30. Finally, we set the strength of the
prior τ as 0.5N .

B.2. Setting Hyperparameters in the Acceptance Probabilities

Since λ controls the homogeneity of the sequences within the sampled MSA subset, using multiple choices of λ
could also lead to diverse MSA subsets in terms of evolutionary information. In particular, we choose λ from
{0, 1, 2, 3}. Moreover, C in Eq.(5) controls the overall acceptance probability. The common choice of C is set as
argmaxY exp{− λ

L

∑L
l=1 Ql(Ỹ,A,Π)} so that the acceptance probability can be no greater than 1.

B.3. Sequential Sampling Algorithm

The details of the sequential sampling algorithm are summarized in Algorithm 1. Notice that we set a maximum subset size
M for efficient computation when the full MSA size is larger. The empirical suggestion of M is as follows: M = 20 if the
full MSA size < 100, M = 100 if the full MSA size ∈ [100, 500], and M = 200 otherwise.

Algorithm 1 Sequential Sampling for MSA Subsets
1: Input: Full MSAM, target maximum subset size M , Π’s configuration set {Π1, . . . ,ΠK}.
2: for each λ ∈ {0, 1, 2, 3} do
3: for each Π ∈ {Π1, . . . ,ΠK} do
4: Initialize A ← ∅
5: while |A| < M do
6: Sample candidate Ỹ: Ỹ ← sample fromM without replacement according to the probability in Eq.(5),
7: A ← A∪ {Ỹ}
8: end while
9: Store A in output collection if |A| > 10

10: end for
11: end for
12: Output: All sampled MSA subsets A
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B.4. Coreset Selection for Extracting Representative Structures

The details of the coreset selection are summarized in Algorithm 2.

Algorithm 2 Coreset Selection
1: Input: The PCA coordinates of the predicted structures’ contact maps {C1, . . . ,CN}, target coreset size K.
2: Initialize coreset C = {argmaxC∈{C1,...,CN}∥C∥2}
3: while |C| < K do
4: C̃← argmaxC∈{C1,...,CN}minC′∈C∥C−C′∥2
5: C ← C ∪ {C̃}
6: end while
7: Output: The selected coreset C and their corresponding MSA subsets.

B.5. Estimating the MRF Model with GREMLIN

Given the MRF model in Eq.(6) and sequences {Ỹi}ni=1, the log-likelihood of Θ is

l(Θ|{Ỹi}ni=1) =

n∑
i=1

L∑
l=1

eTl Ỹi

[
Vl +

L∑
m>l

Wl,mỸT
i em

]
− n log

{∑
Y

exp

(
L∑

l=1

eTl Y

[
Vl +

L∑
m>l

Wl,mYTem

])}
,

(7)
which is highly challenging to maximize directly due to the large number of values of Y in the summation. Given the
high-dimensionality of Vl and Wm,l, the GREMLIN method considers the penalized log pseudo-likelihood,

ppl(Θ|{Ỹi}ni=1) =

n∑
i=1

L∑
l=1

logP (Ỹi,l|Ỹi,−l,Θ)− λ1

L∑
l=1

∥Vl∥22 − λ2

L∑
m=1

L∑
l=1

∥Wl,m∥2F , (8)

where Ỹi,l is the one-hot encoding of the amino acid at position l in the ith sequence, and Ỹi,−l is the one-hot encoding of
the amino acid at all other positions in the ith sequence,

logP (Ỹi,l|Ỹi,−l,Θ) = ỸT
i,lVl +

L∑
m=1,m̸=l

ỸT
i,lWl,mỸi,m − log

∑
yl

exp

ỸT
i,lVl +

L∑
m=1,m ̸=l

yT
l Wl,mym

 ,

where yl is the one-hot encoding of the amino acid type at position l. The GREMLIN method then estimates Θ by
maximizing Eq.(8) with gradient descent using Adam (Kingma, 2014).

B.6. Enhanced Sampling using Coevolutionary Information

The details of enhanced sampling using coevolutionary information are summarized in Algorithm 3.

C. Experiment Implementation Details
C.1. MSA Generation

MSAs were generated using MMseqs2 (Steinegger & Söding, 2017) implemented in ColabFold (Mirdita et al., 2022) by
querying the UniRef30 database (Suzek et al., 2015) of known sequences. Sequences are filtered to retain only those with
≥ 90% identity to the target sequence. The minimum coverage required for the MSA sequences is 75%. The MSA is
enforced to have at most 4,096 sequences.

C.2. SMICE, AF-Cluster and Random Sampling

As discussed in Appendix B, we consider 80 different hyperparameter configurations for MSA when the number of sequences
exceeds 100, and 40 configurations when it is below 100. These configurations consist of four levels of λ, and 20 choices
of Π for deep MSAs (sequence number ≥ 100) or 10 choices for shallow MSAs (sequence number < 100). For each
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Algorithm 3 Enhanced Sampling using Coevolutionary Information
1: Input: MSA subsets from the sequential samplingA1, . . . ,AN , target iteration times niter, target coreset size K, target

MSA subset size in the enhanced sampling M .
2: Make predictions on the MSA subsets A1, . . . ,AN across all five AlphaFold models
3: for each AlphaFold model do
4: Obtain the PCA coordinates of the predicted structures’ contact maps {C1, . . . ,CN} for the AlphaFold model
5: while iteration number does not exceed niter do
6: Apply Algorithm 2 to {C1, . . . ,CN}, and extract K representative MSA subsets Ã1, . . . , ÃK

7: for k = 1,. . . ,K do
8: Estimate the MRF model’s parameter Θk for the MSA subset Ãk

9: end for
10: for each pair of (j, l) with 1 ≤ j, l ≤ K, j ̸= l do
11: obtain the MSA subset Ăj,l with size M such that every sequence Y̆ ∈ Ăj,l has a larger value of PMRF (Y̆|Θj)

PMRF (Y̆|Θj)

than other sequences
12: end for
13: store all Ăj,l in the set of MSA subsets
14: make predictions on the MSA subsets with AlphaFold
15: Obtain the PCA coordinates of the new predicted structures’ contact maps {C1, . . . ,CN} for the AlphaFold model,

where N = K(K − 1)
16: end while
17: end for
18: Output: The selected coreset C and their corresponding MSA subsets.

configuration, we randomly draw four subsets using sequential sampling. We exclude any MSA subsets containing fewer
than 10 sequences to ensure reliable AlphaFold predictions. Each remaining MSA subset is used to generate structures using
ColabFold v1.5 with default settings, which outputs five predictions per run using AlphaFold2. No template structure is used
in the prediction. The enhanced sampling procedure is iteratively repeated twice (niter = 2), and we set the target coreset
size K in Algorithm 2 as five, the target MSA subset size in the enhanced sampling as M = 20 or = 100 if the full MSA
has more than 100 sequences. This results in 200 predictions for deep MSA cases and 100 predictions for shallow MSA
cases per iteration. In total, we obtain up to 1,800 predictions for deep MSAs and up to 900 predictions for shallow MSAs.

The results of AF-Cluster and random sampling are produced using the default setup of the AF-Cluster pipeline (Wayment-
Steele et al., 2024). In the pipeline, uniform random sampling without placement is run up to 200 times on each MSA with
sample sizes = 10 and 100 (if the full MSA has more than 100 sequences). The predictions are made using ColabFold v1.5
with default settings.
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D. Additional Experiment Results
Figure 6 presents more results demonstrating the diversity and effectiveness of SMICE in conformational sampling compared
with AF-Cluster and random sampling.

Figure 6. Additional examples of fold-switching proteins.
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