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ABSTRACT

We study the notion of a generalization bound being uniformly tight, meaning that
the difference between the bound and the population loss is small for all learning
algorithms and all population distributions. Numerous generalization bounds have
been proposed in the literature as potential explanations for the ability of neural
networks to generalize in the overparameterized setting. However, in their paper
“Fantastic Generalization Measures and Where to Find Them,” Jiang et al. (2020)
examine more than a dozen generalization bounds, and show empirically that none
of them are uniformly tight. This raises the question of whether uniformly-tight
generalization bounds are at all possible in the overparameterized setting. We
consider two types of generalization bounds: (1) bounds that may depend on the
training set and the learned hypothesis (e.g., margin bounds). We prove mathemat-
ically that no such bound can be uniformly tight in the overparameterized setting;
(2) bounds that may in addition also depend on the learning algorithm (e.g., sta-
bility bounds). For these bounds, we show a trade-off between the algorithm’s
performance and the bound’s tightness. Namely, if the algorithm achieves good
accuracy on certain distributions, then no generalization bound can be uniformly
tight for it in the overparameterized setting. We explain how these formal results
can, in our view, inform research on generalization bounds for neural networks,
while stressing that other interpretations of these results are also possible.

1 INTRODUCTION

There has been extensive research in recent years aiming to understand generalization in neural
networks. Principled mathematical approaches often focus on proving generalization bounds, which
bound the population risk from above by quantities depending on the training set and the trained
model. Unfortunately, many known bounds of this type are often very weak, or even vacuous1, and
they do not imply performance guarantees that could explain the strong real-world generalization of
neural networks. Incidentally, there might be a good reason for this: in this paper we show that it is
mathematically impossible for certain types of generalization bounds to be tight in a specific sense.

Generalization bounds in the literature often take the following form:

LD(A(S)) < LS(A(S)) +C(A(S), S), (1)

where S is the training set, A(S) is the hypothesis selected by the learning algorithm A, LD and
LS denote the population and empirical risk respectively, C is some measure of complexity, and the
inequality holds with high probability over the choice of S. For example, in their paper “Fantastic
Generalization Measures and Where to Find Them,” Jiang et al. (2020) examine more than a dozen
generalization bounds of this form that have been suggested in the literature.

1A generalization bound is vacuous if it implies a population loss no better than guessing random labels.
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For a generalization bound to be useful, it should ideally be tight, meaning that the difference be-
tween the two sides of Eq. (1) is small with high probability. Moreover, we shall call a bound
uniformly tight (Definition 7) if it is tight for every (distribution, algorithm)-pair.

In order to explain generalization in deep neural networks, it is necessary that the bound be tight in
the overparameterized setting, which roughly means that the number of parameters in the networks
is much larger than the number of examples in the training set (Definition 2; further definitions
appear in Sections 4 to 6). Given that essentially all known generalization bounds do not satisfy
these two criteria, it is natural to ask:

Question 1. Does there exist a generalization bound of the form of Eq. (1) that is uni-
formly tight in the overparameterized setting?

Obviously, one can always bound the population loss using a validation set. However, the upper
bound in Eq. (1) depends only on the hypothesisA(S) and the training set S, so using an additional
validation set does not technically satisfy the requirement of Question 1. Beyond technicalities,
using a validation set is conceptually very different from a generalization bound. Using a validation
set is a post hoc measurement that provides little insight as to why a certain algorithm does or does
not generalize. In contrast, a meaningful generalization bound (like the VC bound2 for example)
provides a scientific theory that predicts the behavior of learning algorithms in a wide range of
conditions, and can inform the design of novel learning systems.

One might imagine that the generalization bounds for neural networks surveyed by Jiang et al.
(2020) are not uniformly tight simply because the analyses in the proofs of these bounds are not
optimal, and that a more careful proof might establish a tighter bound with better constants. Or
perhaps, none of these measures yield uniformly-tight bounds for large neural networks, but in the
future researchers might devise better complexity measures of the form of Eq. (1) that do. We show
that obtaining a bound of the form of Eq. (1) that is uniformly tight requires more assumptions than
are typically found in the current literature.

2 OUR CONTRIBUTIONS

Following is an overview of our contributions, which are also summarized in Table 1. Our results
are stated using a notion of estimability, which is presented informally in Eq. (2) below (for formal
definitions, see Definitions 3 and 4). All proofs appear in the appendices.

2.1 DISTRIBUTION- AND ALGORITHM-INDEPENDENT GENERALIZATION BOUNDS

One central message of this paper is that the answer to Question 1 is negative. The conclusion
we draw from this and further analysis is that generalization bounds can be uniformly tight in the
overparameterized setting, but only under suitable assumptions on the population distribution or the
learning algorithm. Arguably, many bounds in the literature are presented without assumptions of
the type we show are necessary for uniform tightness — so their tightness for any specific use case
is not guaranteed.

To reason about Question 1, we introduce the notion of estimability. Informally, a hypothesis class
H is estimable with accuracy ε if there exists an estimator E such that for every algorithm A and
everyH-realizable distribution D, the inequality

∣LD(A(S)) −E(A(S), S)∣ < ε (2)

holds with high probability over the choice of S (see Definition 3). An immediate (but conceptually
important) observation is that, in the realizable case, a uniformly tight generalization bound like
Eq. (1) exists if and only if H is estimable (Claim 1). Furthermore, if H is not estimable then there
exists no uniformly tight bound as in Eq. (1) also for learning in the agnostic (non-realizable) setting.

2The VC bound does not satisfy Question 1 because it is vacuous in the overparameterized setting.
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Our negative results for the realizable setting are stronger than (i.e., they imply) negative results for
the agnostic setting.3

Algorithm-Independent
Distribution-Independent

Algorithm-Dependent
Distribution-Independent

Algorithm-Dependent
Distribution-Dependent

#
Bounds not uniformly tight

Learnability

Estimability

1

1

Estimability-learnability
trade-off (see Figure 1)

!
Bounds can be tight

Theorem 1: In the overparameter-
ized setting, any bound is not tight
for a large fraction of (algorithm,
distribution) combinations.

Theorem 2 (quantitative result):
For sample size n ≤ d/2, classes
with VC dimension d are not es-
timable for at least 49% of (algo-
rithm, distribution) combinations.

Theorem 3: In the overparameterized
setting, for any specific algorithm there
is a trade-off between population loss
and estimability.

Theorems 4 and 5 (quantitative results):
A learning algorithm cannot simultane-
ously perform well over the class of lin-
ear functions and be estimable.

We suggest that future work focus
on generalization bounds for spe-
cific combinations of algorithms
and distributions.

Table 1: An overview: when can generalization bounds be tight in the overparameterized setting?

Our first result shows that no hypothesis classH is estimable in the overparameterized setting:
Theorem (Informal Version of Theorem 2). Let H be a hypothesis class. If H has VC dimension
d and the size of the training set is at most d/2, then every estimator E satisfying Eq. (2) has
ε ≥ 1/8 − o(1).
We emphasize that the lower bound ε ≥ 1/8 − o(1) in Theorem 2 does not hold merely for a single
‘pathological’ hard distribution. Rather, it holds for many ERMs over a sizable fraction of all H-
realizable distributions.

We believe Theorem 2 is worthy of attention because it precludes uniform tightness in the overpa-
rameterized setting for any generalization bound that depends solely on the training set, the learned
hypothesis, and the hypothesis class. Determining which bounds in the literature on neural networks
fall within this category is a matter of some debate. This category may arguably include some subset
of the following bounds: VC bounds (Bartlett et al., 2019), Rademacher bounds (Bartlett & Mendel-
son, 2002), bounds based on the spectral norm (Pitas et al., 2017), Frobenius norm (Neyshabur et al.,
2015b), path-norm (Neyshabur et al., 2015b), Fisher-Rao norm (Liang et al., 2019), as well as PAC-
Bayes-flatness and sharpness-flatness measures (e.g., see the appendices of Jiang et al. (2020) and
Dziugaite et al. (2020)), and some compression bounds like Arora et al. (2018). For further details
on the aforementioned bounds, see Appendix B.1. We take an expansive position, arguing that the
abovementioned bounds, when applied to large neural networks, fall within the framework of The-
orem 2, and therefore are not uniformly tight; however, we acknowledge that other scholarly views
(mentioned in Section 7) also have merit, and the reader is encouraged to form an independent
opinion on this matter.

2.2 ALGORITHM-DEPENDENT GENERALIZATION BOUNDS

An important facet of generalization not addressed by the formalism of Eq. (1) involves the choice
of the training algorithm. The bound in Eq. (1) depends only on the training set S and the selected
hypothesis A(S), and therefore it cannot capture certain beneficial aspects of the training algo-
rithm. As a simple example, consider the case of a constant algorithm, that ignores the input S and
3If a bound cannot be uniformly tight even just with respect to realizable distributions, then it definitely cannot
be uniformly tight with respect to all distributions (both realizable and not) in the more general agnostic setting.
See Appendix E for further details.
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always outputs a specific fixed hypothesis h0 ∈ H. For such an algorithm, choosing E such that
E(A(S), S) = LS(h0) yields an excellent estimator of the population loss.4

Similarly, in the context of neural networks, it is possible that certain training algorithms like SGD
perform ‘implicit regularization’, or satisfy various stability properties, etc. Therefore there might
exist generalization bounds that are tight specifically for these algorithms. The work of Hardt et al.
(2016) is a prominent example. We formalize this notion by considering generalization bounds of
the form

LD(A(S)) < LS(A(S)) +C(A, S), (3)

where the complexity C depends also on the algorithm A.5 Eq. (3) leads to the following question:

Question 2. For which algorithms does there exist a generalization bound of the form of
Eq. (3) that is tight for all population distributions in every overparameterized setting?

Question 2 prompts us to define algorithm-dependent estimability (Definition 4) which is analogous
to estimability (Eq. (2) and Definition 3), but involves an estimator E(A, S) that depends also on
the learning algorithm. Our second result establishes a trade-off between learning performance and
estimability:

Theorem (Informal Version of Theorem 3). LetH ⊆ YX be a hypothesis class that is rich enough
in a certain technical sense.6 Then, for any learning algorithm A, at least one of the following
conditions does not hold:

1. A learns a subsetH0 ⊆H with certain properties.6

2. A is algorithm-dependent estimable.

Theorem 3 states that if an algorithm learns well enough in the sense of Item 1, then the algorithm
is not estimable, and this implies that there exists no generalization bound for that algorithm that is
tight across all population distributions.

Learnability

Estimability

1

1

Figure 1: Illustration of the trade-off
implied by Theorem 3. ‘1’ represents
perfect learning of H0 and perfect es-
timation of A’s accuracy. An algorithm
cannot simultaneously perform well and
be certain that it does so.

Theorem 3 hinges on the algorithm satisfying Item 1 for
a suitable choice of H and H0. We emphasize that it
is known that this assumption can indeed be satisfied
for some large neural network architectures when trained
with SGD. For instance, the class of parity functions7 is
one suitable choice for H. It is well known that even
a simple fully-connected neural network is expressive
enough to represent this class (e.g., Lemma 2 in Nachum
& Yehudayoff, 2020). Furthermore, there exist specific
network architectures that can provably learn a suitable
subset H0 of the class of parities using SGD (e.g., Theo-
rem 1 in Abbe & Sandon, 2020).

To illustrate the utility of Theorem 3, in Section 6.1 we
conduct a detailed mathematical study of classes H that
are suitable for use in the theorem, and of the quantitative
limitations on the tightness of generalization bounds that
these classes entail. Specifically, we show that an algo-
rithm that can learn a suitable subset of the class of parity
functions is not estimable with ε = 1/4 (see Theorem 5).
More generally, we consider the class of linear functions over finite fields, which is a generalization
of parities, and show even stronger results. For example, for a field of size 11 (which corresponds

4This estimator works only for the constant algorithm that outputs h0, so its existence does not contradict
Theorem 2.

5In Eq. (3) C receives a complete description of the algorithm A, whereas in Eq. (1) it received A(S), which
is the algorithm’s output. Specifically, in Eq. (3), if A is deterministic then C can compute the value A(S)
using the inputs A and S.

6The precise details are specified in the formal version of Theorem 3.
7Namely, the class of functions that are an XOR of a fixed subset of the input bits.
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to a multiclass classification task with 11 labels), we show that an algorithm that learns a suitable
subclass is not estimable with ε = 0.45.

3 RELATED WORK

Here we address two works that also study cases where generalization bounds are vacuous. For
further related works, see Appendix B.

The main theorems in Nagarajan & Kolter (2019c) (Theorem 3.1) and in Bartlett & Long (2021)
(Theorem 1) preclude the existence of tight algorithm-dependent generalization bounds in the over-
parameterized setting. They show this only for bounds based on uniform convergence and for a lin-
ear classifier (a single neuron). Also, Theorem 3.1 and Theorem 1 in Nagarajan & Kolter (2019c);
Bartlett & Long (2021) consider the failure over a specific kind of distribution (Gaussian) and spe-
cific type of SGD algorithm, and in the proof of Theorem 1, the authors use a different distribution
for every sample.

While those results are technically incomparable to ours, our results are more general and stronger
in important ways: we show limitations for any kind of algorithm-dependent generalization bound,
for many algorithms, and for any architecture in the overparameterized setting while using the same
distribution across all sample sizes, with concrete quantitative implications (see Section 6.1).

4 PRELIMINARIES

For our standard learning theory notation, see Appendix A.

Definition 1 (learnability). Let H be a hypothesis class and let D = {Di}Ti=1 a set of H-realizable
distributions. (H,D) is (α,β,n)-learnable if there exists a (possibly randomized) algorithmA such
that LDI

(A(S)) < α with probability at least 1 − β over I ∼ U([T ]) and S ∼ Dn
I . We say that such

an algorithm (α,β,n)-learns (H,D).

Learning with neural networks is often considered an example of an overparameterized setting: in
most practical scenarios, the number of parameters of the network greatly exceeds the number of
data points n in the training set. Hence, for any given dataset of size n, there exist many different
sets of weights (or hypotheses) that fit the data. This implies that in the absence of assumptions on
the population distribution, the network will overfit in many scenarios. Since we study a general
learning setting (the hypothesis class is not necessarily parametrized), we take the above implication
as our definition of an overparameterized setting:
Definition 2 (overparameterized setting). Let H be a hypothesis class, let n,T ∈ N, let α,β ≥ 0,
and let D = {Di}Ti=1 be a finite collection of H-realizable distributions. We say that (H,D) is an
(α,β,n)-overparameterized setting if (H,D) is not (α,β,n)-learnable.

For a detailed discussion of how this definition compares to some common notions of overparam-
terization, see Appendix D.

5 BOUNDS THAT ARE ALGORITHM- AND DISTRIBUTION-INDEPENDENT
CANNOT BE UNIFORMLY TIGHT

To answer Question 1, we introduce the following framework:
Definition 3 (estimability). A hypothesis class H ⊆ YX is (ϵ, δ, n)-estimable with respect to a loss
function ℓ if there exists a function E ∶ H × S → R such that for all algorithms A ∶ (X ×Y)n → H
and allH-realizable distributions D over X ×Y it holds that

∣E(A(S), S) −LD(A(S))∣ < ϵ

with probability at least 1 − δ over S ∼ Dn. We call such E an (ϵ, δ, n)-estimator ofH.

Note that given an algorithm-independent and distribution-independent bound C, it is not hard to
construct a single (algorithm, distribution) pair that makes it vacuous. To illustrate this, consider
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the ERM defined as AC(S) ∶= argminh∈H∶LS(h)=0C(h,S). Assume for simplicity that C is a
generalization bound such that Eq. (1) holds with probability 1 for every H-realizable distribution
D with labeling function hD. Then, with probability 1 over S ∼ Dn, LD(AC(S)) < LS(AC(S)) +
C(AC(S), S) ≤ C(hD, S), where the first inequality is Eq. (1) and the second follows from the
construction of AC .

Now assume that the setting is overparameterized (say with large α and β for a fixed n), i.e., no
algorithm can learn (with error α) the ground-truth labeling with probability at least 1−β jointly over
the uniform choice of the distributions, and n samples from the chosen distribution. This implies that
for every algorithm A, there exists at least one distribution D′ such that with probability at least β,
A fails to learn when S ∼ (D′)n. Hence there exists a realizable distribution D′ with deterministic
labeling function hD′ such that, w.h.p., LD′(AC(S)) > α, which implies by the previous inequality
that C(hD′ , S) > α w.h.p. But then it holds w.h.p. that C(hD′ , S) > α≫ 0 = LD′(hD′) −LS(hD′).
Hence the bound is w.h.p. not α-tight for the pair (Ah

D
′
,D′), where Ah

D
′

is the constant algorithm
that always outputs hD′ .

The argument above considers the binary classification setting with the 0 − 1 loss and shows lack
of tightness for a single (algorithm, distribution) pair. In the next theorem, we consider arbitrary
hypotheses classes (not necessarily binary) and show that any estimator is not tight for a large
fraction of possible (algorithm, distribution) pairs.

Theorem 1. Let H be a hypothesis class, ℓ be the 0 − 1 loss, D = {Di}Ti=1 be a finite collection
of H-realizable distributions each associated with a hypothesis hi, and (H,D) an (α,β,n) over-
parameterized setting. For any h ∈ H, let Ah be an ERM algorithm that outputs h for any input
sample S consistent with h. Then, there exists a distribution DERM over ERMH (the set of all
deterministic ERM algorithms over H) such that for any estimator E of H and for any ϵ, γ ∈ [0,1]
at least one of the following conditions does not hold:

1. With probability at least 1 − γ over I ∼ U([T ]) and S ∼ Dn
I ,

∣E (AhI
(S), S) −LDI

(AhI
(S))∣ < ϵ.

2. With probability at least 1 − β + γ over I ∼ U([T ]), S ∼ Dn
I , and AERM ∼ DERM ,

∣E (AERM(S), S) −LDI
(AERM(S))∣ < α − ϵ.

In particular,H is not (α/2, β/2, n)-estimable.

Theorem 2 below is an application of Theorem 1 for VC classes. Theorem 2 shows that when
Theorem 1 is applied, we get substantial numerical values which highlight Theorem 1 prevalence.
Theorem 2. Let H be a hypothesis class of VC dimension d ≫ 1, and ℓ be the 0 − 1 loss. Let
X ⊂ X be a set of size d shattered by HX = {hi}2

d

i=1 ⊂ H and let {Di}2
d

i=1 be the set of realizable
distributions that correspond to HX , where for all i the marginal of Di on X is uniform over X .
Let ERMHX

be the set of all deterministic ERM algorithms forHX . For any h ∈HX , let Ah be an
ERM algorithm that outputs h for any input sample S consistent with h. Then, for any estimator E
ofH, at least one of the following conditions does not hold:

1. With probability at least 1/2 over I ∼ U([2d]) and S ∼ Dn
I ,

∣E (AhI
(S), S) −LDI

(AhI
(S))∣ < d − n

4d
.

2. With probability at least 1/2−o(1) over I ∼ U([2d]), S ∼ Dn
I , andAERM ∼ U(ERMHX

),

∣E (AERM(S), S) −LDI
(AERM(S))∣ <

d − n
4d
− o(1),

where U(ERMHX
) denotes the uniform distribution over ERMHX

.

In particular, H is not (d−n
4d
− o(1),1/2 − o(1), n)-estimable for any n ≤ d/2. The notation o(1)

denotes quantities that vanish as d goes to infinity.
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Theorem 2 states that any estimator E fails to predict the performance of many ERM algorithms over
many scenarios. If Item 1 does not hold, then E fails to estimate the success of algorithms Ah in a
situation where they perform very well (since by definition LDI

(AhI
(S)) = 0), despite the fact that

these are very simple algorithms. If Item 2 does not hold, then E fails to estimate the performance of
many ERM algorithms across many distributions, namely, on roughly 50% of (ERM, distribution)
pairs.

5.1 DISCUSSION OF THEOREM 2

Theorem 2 shows that bounds that depend solely on the training set, the learned hypothesis, and
the hypothesis class cannot be uniformly tight in the overparameterized setting. More broadly,
Jiang et al. (2020) showed empirically that many published generalization bounds are in fact not
tight. This is an empirical fact that calls for an explanation. Theorem 2 implies that algorithm-
independent bounds being not-tight must be a very common phenomenon, in the sense that any
algorithm-independent bound that is tight on (a specific set of) simple cases, must be far from tight
for many natural algorithms and distributions. Thus, Theorem 2 can at least partially explain the em-
pirical findings of Jiang et al. (2020). To clarify, Theorem 2 does not imply that any specific bound
is not tight for a specific (algorithm, distribution) pair, but it qualitatively matches the observation
that lack of tightness is ubiquitous among algorithm-independent bounds.

Many published generalization bounds are stated and proved without explicit restrictions on the set
of distributions or algorithms. Hence, these bounds are valid upper bounds on the population loss
in all scenarios. Due to the limitations on estimability shown in Theorem 2, these bounds cannot
fully distinguish between distributions for which the algorithm performs well and distributions for
which it does not. Therefore, such bounds have no other option but to predict a large population
error (making them loose for some cases in which the population error is not as large).

We emphasize that Theorem 2 shows that VC classes are not estimable, and hence do not admit tight
generalization bounds, not merely over some pathological distribution, but in a fairly simple setting.
Let us elaborate: take a dataset of natural images N (e.g., MNIST, CIFAR, etc.) and consider the
uniform distribution over this set with a sample size n = ∣N ∣/2. This is a simple setting; we merely
consider a small set of natural images. Still, Theorem 2 shows that without any assumption on the
relation between the images and their labels, any estimator would not perform better than a random
guess. That is, any estimator will fail over many ERMs (Item 1 and Item 2 in the theorem) with
probability 1/2 over I ∼ U([2d]) and S ∼ Dn

I to produce an estimate of the true error with an
accuracy of 1/8. Hence, distribution-independent bounds can be loose even in a simple setting.

6 ALGORITHM-DEPENDENT BOUNDS ARE LIMITED BY A
LEARNABILITY-ESTIMABILITY TRADE-OFF

To prove Theorem 2, we used constant algorithms, that is, algorithms that output the same hypothe-
ses regardless of the input S. The true error of such algorithms is easy to estimate using the empirical
error (by Hoeffding’s inequality). Thus, it might be that adding the algorithm we use as a parameter
for the estimator E might help. For example, Theorem 2 implies that sharpness-based measures
cannot precisely estimate the accuracy of a neural network for all algorithms. Yet, these measures
might be a good estimator when specifically considering SGD from random initialization.
Definition 4 (algorithm-dependent estimability). A hypotheses class and a collection of algorithms
(H,A) is (ϵ, δ, n)-estimable with respect to a loss function ℓ if there exists a function E ∶ A×S → R
such that for all algorithms A ∈ A and all realizable distributions D over X ×Y it holds

∣E(A, S) −LD(A(S))∣ < ϵ
with probability at least 1− δ over S ∼ Dn. We call such E an algorithm-dependent estimator ofH.
If (H,{A}) is (ϵ, δ, n)-estimable, we say A is (ϵ, δ, n)-estimable with respect toH and loss ℓ.

The function E is now provided with a complete description of the algorithm used to generate
a hypothesis. Yet, the following theorem provides a more subtle negative answer to Question 2
compared to Theorem 2. Learnability and estimability are mutually exclusive.
Theorem 3. Let H = H0 ∪H1 be a hypothesis class, let ℓ be a loss function, and let T = T0 + T1

be integers. Let D = {Di}Ti=1 be a set of H-realizable distributions such that D0 = {Di}T0

i=1 is
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realizable overH0, and D1 = {Di}Ti=T0+1 is realizable overH1. Assume that (H,D) is an (α,β,n)-
overparameterized setting, and furthermore assume:

dTV (S0, S1) ≤ 1 − γ, where S0 ∼ Dn
I0

, and S1 ∼ Dn
I1

, I0 ∼ U([T0]) and I1 ∼ T0 + U([T1]).

Let η = γ
2
− 1−β T

T1
+δ(1+T0

T1
)

2
. Then, for any learning algorithmA (possibly randomized), at least one

of the following conditions does not hold:

1. A (ϵ, δ, n)-learnsH0.

2. A is (α−ϵ
2
, η, n)-estimable with respect toH and loss ℓ.

In particular, for any estimator E it holds ∣E(A, S) −LDI
(A(S))∣ > α−ϵ

2
with probability of at least

η over I ∼ U([T ]) and S ∼ Dn
I .

As a concrete realization of Theorem 3 with a simple set of parameters, we refer the reader to
Theorem 4 in Section 6.1 where we consider multiclass classification with q labels and the 0−1 loss.
We show that many algorithms are not (1/2 − o(1),1/2 − o(1), n)-estimable where o(1) is with
respect to q, and already for q = 11, we get (0.45,0.4, n). Note that (0.5,0.5, n) is the performance
of a random estimator that outputs a random estimation uniformly at random from [0,1].
In the overparameterized setting, no algorithm can achieve low loss for all distributions D. In this
scenario, Theorem 3 shows that if a learning algorithm has a bias towards some part of the hypothesis
class, that is, it learns the distributions in D0 well (a bias towards H0), then it is necessarily not
estimable, even when using complete knowledge of the algorithm being used. So the theorem shows
a trade-off between learnability and estimabilty. To see more carefully why, consider the parameters
α,β, γ, T, T0, T1 to be fixed, as they are not part of the algorithm A in question but parameters of
the overparameterized setting at hand. Then, we observe an affine relation between the accuracy
parameter ϵ and the accuracy parameter for estimating A. An affine relation also holds between the
confidence parameter δ and the confidence parameter for estimatingA. This is depicted in Figure 1.
In conclusion, an algorithm cannot perform well and be certain of it when it does.

In the following section, we illustrate Theorem 3 and show that it applies to a natural setting that
includes neural networks.

6.1 QUANTITATIVE LIMITATIONS FOR ALGORITHM-DEPENDENT BOUNDS

To illustrate our results, we conclude our paper with a case study of the hypothesis class of linear
functionals Linq (d) over the vector space Fd

q where Fq is the finite field with q elements, with q
prime. For example, Lin2(d) consists of all parity functions with input size d.

Linq (d) ≡ (Fd
q)
∗ ∶= {fa ∶ Fd

q → Fq ∶ a ∈ Fd
q , fa(x) =

d

∑
i=1

ai ⋅ xi mod q}

An important property of this class is presented in the following lemma: each two distinct functions
in the class differ exactly on a q−1

q
fraction of elements in Fd

q .

Lemma 1. Each two distinct functions f, h ∈ Linq(d) agree on a fraction 1/q of the space and the
0 − 1 risk of the function h over samples from Df = f ◇ U(Fd

q) is given by

LDf
(h) = {0 h = f

1 − 1/q h ≠ f .

For this class, we consider the following set of algorithms:
Definition 5. Let X = Fd

q , Y = Fq , andH = Linq (d). We say a learning algorithmA ∶ (X ×Y)∗ →
H (possibly randomized) is an ERM algorithm with a linear bias if for every sample size n ≤ d,
we can associate (A, n) with a linear subspace Hn ⊂ H of dimension n such that if ∣S∣ = n and
S is consistent with some function in Hn, then A(S) ∈ Hn. We denote by Alin the set of all ERM
algorithms with a linear bias.
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Such choice of algorithms is natural with respect to Theorem 3. They perform well on distributions
that are associated with their linear bias. Such algorithms are not estimable, as the following theorem
shows. For brevity, we let F (q, n) denote a certain function computed from the rank distribution of
a matrix composed of i.i.d. discrete random variables (see the appendix for a precise statement).
Theorem 4. For every A ∈ Alin and every n ≤ d − 1, A is not (1/2 − 1/2q, η, n)-estimable with
respect to Linq (d) and the 0 − 1 loss where η = F (q, n). In particular, for q > 10, it holds that
η > 0.4, and generally, η = 1/2 − 1/q + o(1/q).

Theorem 4 shows that already for multiclass classification with q = 11 labels (comparable to the ten
labels of MNIST and CIFAR datasets), with probability at most 0.6 we estimate the performance
of an algorithm with an accuracy of 10/22 ≈ 0.45. This is not much better than a random guess that
estimates with an accuracy of 0.45 with probability 0.5. This holds since the loss of any algorithm
in Alin is either 0 or 1 − 1/q ≈ 0.9, as Lemma 1 shows. So, we can always flip a coin, declare either
0 or 0.9, and be correct with probability 0.5. Finally, as q grows, our estimation can truly only be as
good as a random guess.

When we consider the case of q = 2 (parity functions) for Theorem 4, we get that the algorithms
we consider are only (1/4,0.025)-not estimable. To stengthen our results, the following theorem
provides a separate analysis that includes a different technique from Theorem 3 and that works
specifically for q = 2.
Theorem 5. For everyA ∈ Alin (possibly randomized) and every n ≤ d−1,A is not (0.25,0.14, n)-
estimable with respect to Lin2 (d) and the 0− 1 loss. More so, for every deterministicA ∈ Alin and
every 6 ≤ n ≤ d, A is not (0.25,0.32, n)-estimable with respect to Lin2 (d) and the 0 − 1 loss.

It might appear that Theorems 4 and 5 are unrelated to practical overparameterized models because
their setting is too artificial. However, as mentioned above, neural network can represent parities
(e.g., Lemma 2 in Nachum & Yehudayoff, 2020) and, in some specific cases, can learn parities
using SGD (Abbe & Sandon, 2020). Hence, these theorems are relevant at least to some neural
networks.

7 CONCLUSIONS

We have proved mathematically that specific types of generalization bounds are subject to specific
limitation in a precise formal sense. The interpretation of these formal results, and the extent to
which they apply to existing generalization bounds in the literature on large neural networks, is a
matter of some debate. It is possible to argue that our results do not apply to various generalization
bounds in the literature, e.g., because our definition of an overparameterized setting doesn’t hold in
cases of interest, because those bounds do not satisfy our definitions of distribution-independence or
algorithm-independence, or for other reasons. Alternatively, one could argue that uniform-tightness
is not an important property for a generalization bound, and that for specific practical cases of
interest, it is easy to tell empirically whether a bound is tight or not when applying it to a trained
model. Below we outline our view, but we also acknowledge that a variety of scholarly positions
exist. We encourage the reader to develop an independent opinion on this matter.

In our view, Theorems 2 and 3 point to two possibilities for obtaining uniformly tight generalization
bounds in overparameterized settings. The first option is that when stating a generalization bound,
the statement explicitly specifies a set of ‘nice’ or ‘natural’ population distributions for which the
bound is tight. Thus, the ‘bad’ population distributions on which the bound is not tight are clearly
excluded from the set of distributions for which the bound is intended to work. The second op-
tion for obtaining a tight generalization bound is to make explicit assumptions about the learning
algorithm, which in particular imply that for any choice of classes H,H0 suitable for Theorem 3,
the algorithm cannot learn H0. We suggest that every proposal of a generalization bound for the
overparameterized setting explicitly include one of these two types of assumptions. Otherwise, if
the setting is overparameterized, there provably exist pairs of learning algorithms and population
distributions for which the bound applies and is valid, but is not tight. See Appendix C for further
illustrations.

Explicitly stating the assumptions underlying generalization bounds is not only necessary for the
bounds to be uniformly tight in the overparameterized setting, but can also promote more clarity
within the scientific community, and guide future research.
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Rényi-, f-divergences and maximal leakage. IEEE Transactions on Information Theory, 67(8):
4986–5004, 2021. doi: 10.1109/TIT.2021.3085190.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neu-
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A NOTATION

Following is a summary of the standard learning theory notation used in this paper.

X the set of possible inputs (the domain)
Y the set of possible labels
D a distribution over X ×Y
DX the marginal distribution of D on X
D a set of distributions over X ×Y

H ⊆ YX a hypotheses class
S = ((x1, y1) , ..., (xn, yn)) ∼ Dn an i.i.d. sample or a training set

(X ×Y)∗ = ∪∞k=1(X ×Y)k the set off all possible finite samples
A ∶ (X ×Y)∗ → YX a learning algorithm (possibly randomized)

A a set of learning algorithms
ℓ ∶H ×X ×Y → R a loss function

ℓ0−1 (h,x, y) = 1h(x)≠y the 0-1 loss function
LS (h) ∶= 1

n ∑
n
i=1 ℓ(h,xi, yi) the empirical loss of h on the sample S

LD (h) ∶= E(x,y)∼Dℓ(h,x, y) the population loss of h with respect to distribution D
f ◇DX the distribution of the random variable (X,f(X))

where X ∼ DX
U(Ω) the uniform distribution over a set Ω
[m] the set {1,2, . . . ,m}
Fq the finite field with q elements, where q is prime

Linq (d) the set of all linear functionals over Fd
q

Rq(n1, n2, r) the probability of an n1 times n2 random matrix with
entries drawn i.i.d. uniformly at random from Fq to
have rank r (see Lemma 2)

[nk]q the Gaussian coefficient∏k−1
i=0

qn−i−1
qk−i−1

For simplicity, all spaces we consider are finite.

Definition 6. A distributionD is realizable with respect to a hypothesis classH if there exists h ∈H
such that LD(h) = 0.

Note: in the case of a random algorithm A, we define LD (A(S)) ∶= Eh∼Q(S)LD (h) where Q(S)
is the posterior distribution over YX that A outputs. This fits the PAC-Bayes framework that upper
bounds this quantity.

B FURTHER RELATED WORKS

B.1 EXAMPLES OF GENERALIZATION BOUNDS THAT ARE DISTRIBUTION-INDEPENDENT
AND ALGORITHM-INDEPENDENT

Our definition of an estimator E captures the formalism of generalization bounds that are
distribution-independent and algorithm-independent. Following are some bounds from the litera-
ture that, in our view, satisfy these independence requirements.
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1. VC bounds: Vapnik & Chervonenkis (1971); Bartlett et al. (1998; 2019). For a classH of
VC dimension d, the complexity measure is Θ (d+log(1/δ)

n
). The complexity term depends

solely on the hypothesis class (for fixed ϵ, δ, and n).

2. Rademacher bounds: Mohri et al. (2012). RadH(S) = 1
n
Eσsupf∈H∑n

i=1 σif(xi) where

σ ∼ U{±1}n. This yields the complexity measure 2 ⋅ RadH(S) + 4
√

2 ln(2/δ)
n

. The com-
plexity term measures how rich the hypothesis classH is with respect to S.

3. Norm-based and margin-based bounds: Liang et al. (2017); Neyshabur et al. (2015a);
Nagarajan & Kolter (2019b); Pitas et al. (2017); Bartlett & Mendelson (2002); Bartlett
et al. (2017); Neyshabur et al. (2019); Golowich et al. (2018); Neyshabur et al. (2018;
2015c). Norm-based bounds typically consist of a complexity term that depends on the
algorithm’s output. For example, ∑L

i=1 ∣Wi∣2F is the sum of the Frobenius norms of all
the neural network layers. Margin-based bounds quantify a measure of separation for the
induced representation of the training set.

4. PAC-Bayes with a fixed prior: McAllester (1999). This yields the complexity measure√
D(Q∣∣P )+ln(n/δ)

2(n−1) where P is a fixed distribution (prior) over the hypothesis class and Q

is the output distribution of a randomized algorithm.

5. Sharpness-based measures: Nagarajan & Kolter (2019a); Neyshabur et al. (2017); Keskar
et al. (2017). These measures (inspired by the PAC-Bayes framework) quantify how flat
the solution generated by the algorithm is with respect to the empirical loss. For example,
1/σ2 where σ = max{α ∶ EW∼N (w,αI)LS(fW (x)) < 0.05}, w is a weight vector of the
algorithm’s output, W is a random perturbation of w, and fW is the hypothesis realized by
the network’s architecture with respect to W . C depends both on A(S) and S. Such mea-
sures received considerable attention as candidates to explain neural network generalization
(see Dziugaite et al. 2020).

In all these bounds, the explicit expression in the bound depends solely on the hypothesis class,
the selected hypothesis, and the training set. They do not explicitly depend on any property of the
learning algorithm or the population distribution. Hence, in our view, they are subject to Theorems 1
and 2.

B.2 EXAMPLES OF GENERALIZATION BOUNDS THAT ARE DISTRIBUTION-INDEPENDENT
AND ALGORITHM-DEPENDENT

The following two works present algorithm-dependent bounds.

Zhang et al. (2023): The paper studies convex optimization, so the results can hold only for a single
neuron. Nevertheless, although it gives matching lower and upper bounds, the bounds match only
asymptotically when n is very large so the scenario is far away from the overparameterized regime
(which is the focus of interest for neural networks).

Nikolakakis et al. (2023): The paper suggests a new generalization bound that is an algorithm-
dependent bound that does not include any distributional assumptions (it is distribution-
independent).

In our view, Theorem 3 implies that these bounds cannot be tight for all population distributions.

B.3 EXAMPLES OF GENERALIZATION BOUNDS THAT ARE DISTRIBUTION-DEPENDENT AND
ALGORITHM-DEPENDENT

The following are information-theoretic generalization bounds that are both algorithm and
distribution-dependent (which we advocate for in this paper). However, bounds are sometimes hard
to approximate numerically in a tight manner (for example the bound in Theorem 1 in Xu & Ra-
ginsky (2017)). On a high level, such bounds are part of the PAC Bayes framework; see proof 4
for Theorem 8 in Bassily et al. (2018), which is equivalent to Theorem 1 in Xu & Raginsky (2017).
Unfortunately, when the PAC-Bayes/information-theoretic bounds can be approximated in a tight
manner such as in Issa et al. (2019); Esposito et al. (2021); Harutyunyan et al. (2021); Hellström
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& Durisi (2022); Wang & Mao (2023); Dziugaite et al. (2021); Haghifam et al. (2022); Issa et al.
(2023), they do not reveal what properties of the pair (distribution, algorithm) allowed for such
success of learning and estimation (so the utility they offer is similar to that of a validation set).

C EXAMPLE APPLICATIONS

Understanding how our formal results relate to generalization bounds in the literature on large neural
networks, and to their use in practical settings, is a nontrivial question. In this appendix we illustrate
our position via two examples, but we also recognize that other positions are possible.

C.1 MARGIN BOUNDS

There are many margin- and norm-based bounds in the literature (see Appendix B.1). We start
with a toy example, illustrating why these bounds are not uniformly tight, and why we believe that
Theorem 2 applies to these types of bounds.

For simplicity, let the domain X = {x ∈ Rd ∶ ∥x∥2 = 1} be the unit sphere in Rd, and consider a
half-space classifier with hypothesis classH = {hw ∶ w ∈ X}, where hw(x) = sign(⟨w,x⟩).
For a fixed sample size n, consider a margin bound of the form f = f(γ), where γ is the minimum
distance of a point in the training set from the learned decision boundary. f(γ) is an upper bound
on the difference between the population and empirical losses. f(γ) is small only if γ is large. We
will show that f is not uniformly tight.

Indeed, consider a population distribution D that has a uniform marginal on the domain X , with
labels that are generated by a specific half-space h∗ ∈ H. Consider an algorithm A that has a bias
towards h∗, in the sense that it will output h∗ whenever the training set is consistent with h∗.

In this case, given samples from D, with probability 1, A will output h∗. Hence, the population loss
and the empirical loss are the same (they are both exactly 0). Because the marginal of the population
distribution on the domain is uniform, the population margin is 0, and therefore the empirical margin
γ will be close to 0 (even for a sample size n that is small compared to the dimension d). Thus, f(γ)
is large, but the generalization gap is 0. Hence, the bound f(γ) is not tight for the pair (D,A).
Note that f(γ) is a quantity that depends only on the selected hypothesis and on the training set.
Namely, this is a distribution- and algorithm-independent bound. Hence, Theorem 2 implies a
stronger limitation, in the sense that it shows that there exist many (distribution, algorithm) pairs
for which the bound is not tight, not just a single pair. The same holds for bounds of the form
f(∥W ∥, γ), where ∥W ∥ is some norm-like function of the parameters of the learned classfier.

C.2 PAC-BAYES BOUNDS

The contributions of this paper can be illustrated by applying them, for example, to the landmark
work of Dziugaite & Roy (2017). They presented PAC-Bayes bounds for neural networks that were
the first generalization bounds to be non-vacuous in some real-world overparameterized settings.
However, that paper did not state formal assumptions on the set of population distributions or the
set of algorithms to which it is intended to apply. Therefore, our results imply the following for any
fixed choice of a countable collection of priors as in the bound of Dziugaite & Roy (2017). First, by
Theorem 2, the bounds is not tight for roughly half of all (distribution, algorithm) pairs. Second, by
Theorem 3, for any specific learning algorithm, if the algorithm can learn a suitable set of functions
H0, then the bound is not tight on a sizable collection of population distributions.

One way to understand the forgoing example is that the non-vacuous numerical bound presented for
the MNIST dataset by Dziugaite & Roy (2017) relies on implicit assumptions about the algorithm
and the population distribution (for other tasks different priors would be required), such as: ‘the
population distribution satisfies that with high probability, SGD (on the specific network architecture
of interest) finds a flat global minimum point (with respect to the empirical loss) in the parameter
space not too far away from the initialization point.’ Or alternatively, ‘SGD (on the specific network
architecture of interest) cannot learn any collection of functions H0 that is suitable for Theorem 3.’
Laid out explicitly in this manner, it becomes clear that these assumptions are not obviously true.
This invites further research to understand for which population distributions and algorithms the
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assumptions hold, and whether there might exist more natural and compelling assumptions that
suffice for obtaining bounds of comparable tightness.

D ON DEFINITIONS OF OVERPARAMETERIZATION

There are a number of definitions of overparameterization that are common in the machine learn-
ing literature, but there does not appear to be a single formal definition that is universally agreed
upon. One contribution of this paper is that we offer an alternative formal definition of overparam-
eterization that is close to well-known notions, and also enables proving meaningful mathematical
theorems. In this appendix we discuss our definition and its connections to some common defini-
tions.

Following are three common definitions. In these definitions, there is a learning task in which a
machine learning system (e.g., a neural network) is trained using a training set of n labeled samples.
The hypothesis classH is the collection of classification functions that the machine learning system
can represent. We state these definition informally, in the sense some value is required to be large
without specifying exact quantities.

Definition A. The number of independently-tunable parameters in the machine learning system
is significantly larger than the number of samples in the training set. Namely,H = {hw ∶ w ∈ Rk}
and k ≫ n.
Definition B. The learning system can interpolate arbitrary data. Namely, H can realize any
labeling for any distinct x1, . . . , xm, for some m≫ n.
Definition C. The size of the training set is smaller than the VC dimension, namely, VC(H)≫ n.

For convenience, our definition of overparameterization is restated here. As before, one should think
ofH as the collection of classification functions that are realizable by a learning system of interest.
Definition 2 (Restated). Let H be a hypothesis class, let n,T ∈ N, let α,β ≥ 0, and let D =
{Di}Ti=1 be a finite collection of H-realizable distributions. We say that (H,D) is an (α,β,n)-
overparameterized setting if (H,D) is not (α,β,n)-learnable (as in Definition 1).

Our definition is more general than Definitions A, B and C in that our definition is (typically) im-
plied by the other definitions. This means that when we prove that a bound cannot be tight in the
overparameterized setting according to our definition, that in particular implies that it cannot be
tight in any setting that is overparameterized according to the other definitions. This makes our
impossibility results stronger.

The implications hold as follows:

• Definition A Ô⇒ Definition C. This implication holds for many neural networks. It is
well-known that large neural networks have large VC dimension. For instance, Theorem
1 in Maass (1994) states that under mild assumptions, any neural network with at least
3 layers has VC dimension linear in the number of edges in the network. Maass (1994)
showed this for networks with threshold activation functions and binary inputs, and Bartlett
et al. (1998) note that “It is easy to show that these results imply similar lower bounds” for
networks with ReLU activation. A similar result holds also for networks with 2 layers
(Sakurai, 1993).

• Definition B Ô⇒ Definition C. If a classH can realize any labeling for some x1, . . . , xm

then the VC ofH is at least m.
• Definition C Ô⇒ Definition 2. This implication is Item 2 in the proof of Theorem 2 on

page 21.

Our definition does not merely generalize the common definitions listed above — it generalizes them
in a desirable way. Definitions B and C pertains to a case where the hypothesis class can express
every possible labeling of the training set or of a shattered set. However, this seems a bit rigid.
What if the network or hypothesis class can express every labeling except one? Or can express most
but not all labelings? Intuitively, the network is still very much overparameterized, even if there
are some specific choices of labelings that it cannot express. The essence of overparameterization
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is that the network can express too many of the possible labelings — not necessarily every single
one of them. What is ‘too many’? Our answer, as captured in Definition 2, is that a network
is overparameterized (can express ‘too many’ labelings) if it can typically express many different
labelings that are consistent with the training set but disagree on the test set, leading to poor expected
performance on the test set.

In conclusion, Definition 2 is natural, impossibility results for Definition 2 imply impossibility re-
sults for the other definitions, and Definition 2 generalizes the other definitions in a desirable way.

We end with two additional remarks concerning definitions of overparmetrization.

1. Note that Definition A also has the weakness that it is sometimes possible to parameterize
the same hypothesis class with varying numbers of parameters. For instance, a 1-layer
fully-connected network with linear activations and a multi-layer fully-connected network
with linear activations represent the same hypothesis class (both networks simply multiply
the input vector by a matrix), but the number of parameters can be very different between
these two networks.

2. A curious reader might wonder why we do not use the definition of PAC learning in Defi-
nition 2. That is, why not say that H is an (α,β,n)-overparameterized setting if H is not
(α,β,n)-PAC-learnable. Working with such a definition will yield quantitatively weaker
results. For example, an analogue of Theorem 1 (that uses the aforementioned definition)
will still prove that VC classes are not estimable, so any estimator fails for at least one
combination of an algorithm and a distribution; our definition yields the stronger result of
Theorem 1, that the failure of each estimator is across many combinations of algorithms
and distributions.

E EQUIVALENCE BETWEEN ESTIMABILITY AND EXISTENCE OF TIGHT
GENERALIZATION BOUNDS

Definition 7 (Uniformly tight generalization bound). Let X and Y be sets, let H ⊆ YX , let ϵ, δ > 0
and let n ∈ N. Let C ∶ H × (X ×Y)n → R be a measure of complexity as in Eq. (1). We say that C
yields an (ϵ, δ, n)-uniformly tight generalization bound for H if for every algorithm A that always
outputs a hypothesis fromH and for everyH-realizable distribution D,

PS∼Dn[LS(A(S)) +C(A(S), S) − ϵ ≤ LD(A(S)) ≤ LS(A(S)) +C(A(S), S)] ≥ 1 − δ. (4)

Definition 7 captures generalization bounds that are tight in the realizable setting. More generally,
we are interested in generalization bounds that are tight in the more realistic agnostic setting. How-
ever, because we are interested in showing that certain types of generalization bounds cannot be
tight, it suffices to show that they cannot be tight in the realizable case, as in Definition 7.

We now show an equivalence (up to a factor of 2) between estimability (Definition 3) and the exis-
tence of uniformly tight generalization bounds (Definition 7). From this equivalence, to show that
certain generalization bounds cannot be tight, it suffices to show that a class is not estimable.

Claim 1. Let X and Y be sets, letH ⊆ YX , let ϵ, δ > 0 and let n ∈ N.

1. If there exists C ∶ H×(X ×Y)n → R that yields an (ϵ, δ, n)-uniformly tight generalization
bound forH thenH is (ϵ, δ, n)-estimable.

2. IfH is (ϵ, δ, n)-estimable then there exists C ∶ H × (X ×Y)n → R that yields a (2ϵ, δ, n)-
uniformly tight generalization bound forH.

Proof. For Item 1, let C ∶ H × (X ×Y)n → R be a measure of complexity that yields an (ϵ, δ, n)-
uniformly tight generalization bound forH. LetA be an algorithm that always outputs a hypothesis
in H and let D be an H-realizable distribution. Then Eq. (4) holds. Define E ∶ H × (X ×Y)n → R
by

E(h,S) = LS(h) +C(h,S).
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Plugging the definition of E into Eq. (4) yields

PS∼Dn[∣LD(A(S)) −E(A(S), S)∣ ≤ ϵ] ≥ 1 − δ. (5)

This shows thatH is (ϵ, δ, n)-estimable.

For Item 2, assume thatH is (ϵ, δ, n)-estimable and let E be an estimator that witnesses this. Let A
be an algorithm that always outputs a hypothesis inH and let D be anH-realizable distribution. By
choice of E , Eq. (5) holds. Define C ∶ H × (X ×Y)n → R by

C(h,S) = E(h,S) −LS(h) + ϵ.
Plugging C into Eq. (5) yields that with probability at leat 1 − δ over the sample S ∼ Dn,

LD(A(S)) ≤ E(A(S), S) + ϵ = LS(h) +C(h,S)
and also

LD(A(S)) ≥ E(A(S), S) − ϵ = LS(h) +C(h,S) − 2ϵ.
Hence, C yields a (2ϵ, δ, n)-uniformly tight generalization bound forH.

F PROOFS OF THEOREM 1 AND THEOREM 2

Theorem 2 is a corollary of the more general Theorem 1 which shows that in the overparameterized
setting, any estimator of the true loss will fail over many combinations of ERM algorithms and
distributions.

Before the proof we present the type of distributions over ERM algorithms Theorem 1 applies for.

We remind the reader that an ERM algorithm is a function A ∶ (X ×Y)∗ → YX whose output is
any consistent function with the sample S that belongs toH.

Definition 8 (Bayes-like Random ERM). Let H be a hypothesis class and D = {Di}Ti=1 a set of
distributions. We say that the distribution DERM over ERM algorithms is Bayes-like if for any
fixed S it holds that

PDERM
(AERM(S) = h) =

∑i∶ hi=h PDi(S)
∑T

j=1 PDj(S)

where hi is the labeling function associated with the distribution Di. If AERM ∼ DERM , we say
AERM is Bayes-like Random ERM .

Reminder: All spaces we consider in the paper are finite so the definition of Bayes-like Random
ERM is a well-defined random variable over a finite sample space.

Clearly, any algorithm A chosen with non-zero probability over DERM is an ERM algorithm.

Theorem 1. Let H be a hypothesis class, ℓ be the 0 − 1 loss, D = {Di}Ti=1 be a finite collection
of H-realizable distributions each associated with a hypothesis hi, and (H,D) an (α,β,n) over-
parameterized setting. For any h ∈ HX , let Ah be an ERM algorithm that outputs h for any input
sample S consistent with h. Then, for any Bayes-like distribution DERM over ERM algorithms
and any estimator E ofH at least one of the following conditions does not hold:

1. With probability at least 1 − γ over I ∼ U([T ]) and S ∼ Dn
I ,

∣E (AhI
(S), S) −LDI

(AhI
(S))∣ < ϵ.

2. With probability at least 1 − β + γ over I ∼ U([T ]), S ∼ Dn
I , and AERM ∼ DERM ,

∣E (AERM(S), S) −LDI
(AERM(S))∣ < α − ϵ,

.

In particular,H is not (α/2, β/2, n)-estimable.
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Proof. To see whyH is not (α/2, β/2, n)-estimable if item 1 or item 2 do not hold, choose γ ∶= β/2
and ϵ ∶= α/2.

If item 1 does not hold, it means there exists an algorithm Ahi and a distribution Di such that

∣E (Ahi(S), S) −LDi(Ah(S))∣ ≥ ϵ

with probability greater than β/2 over Di soH is not (α/2, β/2, n)-estimable.

If item 2 does not hold, it means there exists an ERM algorithm AERM and a distribution Di such
that

∣E (AERM(S), S) −LDi(Ah(S))∣ ≥ α − ϵ

with probability greater than β/2 over Di soH is not (α/2, β/2, n)-estimable.

Let AERM ∼ DERM be a Bayes-like Random ERM . The key ingredient in our proof is to show
that the following two probability measures P1 and P2 over (X ×Y)n ×H are equal so P1(S,h) =
P2(S,h) for every pair (S,h) ∈ (X ×Y)n ×H.

1. P1: the pair (SI , hI) is generated by choosing an index I ∼ U[T ], then SI ∼ DI , and hI is
the labeling function associated with DI .

2. P2: the pair (SI ,AERM(SI)) is generated by choosing an index I ∼ U[T ], then SI ∼ DI ,
and AERM ∼ DERM independently.

Equalities (4) - (8) and equalities (9) - (14) show that P1 and P2 are indeed equal.

P1(S,h) =
T

∑
i=1

P (I = i) ⋅ P (S∣I = i) ⋅ P (hI = h∣I = i, S) (6)

=
T

∑
i=1

P (I = i) ⋅ P (S∣I = i) ⋅ P (hI = h∣I = i) (7)

= 1

T

T

∑
i=1

P (S∣I = i) ⋅ P (hI = h∣I = i) (8)

= 1

T
∑

i∶ hi=h
P (S∣I = i) (9)

= 1

T
∑

i∶ hi=h
PDi(S) (10)

The first equality holds by law of total probability, the second equality holds since hI is independent
of I given S, the third equality holds since I is uniformly distributed, the fourth equality holds since
P (hI = h∣I = i) is either 1 or 0, and the fifth equality holds by the definition of Di.
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P2(S,h) =
T

∑
j=1

P (I = j) ⋅ P (S∣I = j) ⋅ P (AERM(S) = h∣I = j, S) (11)

=
T

∑
i=1

P (I = j) ⋅ P (S∣I = j) ⋅ P (AERM(S) = h∣S) (12)

= 1

T

T

∑
j=1

P (S∣I = j) ⋅ P (AERM(S) = h∣S) (13)

= 1

T

T

∑
j=1

P (S∣I = j) ⋅ ∑i∶ hi=h PDi(S)
∑T

i=1 PDj(S)
(14)

= 1

T

∑i∶ hi=h PDi(S)
∑T

i=1 PDj(S)

T

∑
j=1

PDi(S) (15)

= 1

T
∑

i∶ hi=h
PDi(S) (16)

The first equality holds by law of total probability, the second equality holds since AERM(S) is
independent of I given S, the third equality holds since I is uniformly distributed, the fourth equality
holds by the definition of the distribution DERM , and the fifth and sixth equalities are trivial.

Assume item 1 in the theorem holds: ∣E (AhI
(S), S) −LDI

(AhI
(S))∣ < ϵ with probability 1 − γ

over I ∼ U[T ] and S ∼ DI . Since LDI
(AhI

(S)) = 0, we have that E (AhI
(S), S) < ϵ with

probability 1 − γ over I ∼ U[T ] and S ∼ DI .

So, on the one hand, we have
E (h,S) < ϵ

with probability 1 − γ over the probability measure P1.

Since we are in an (α,β,n)-overparameterized setting, then for any algorithm A we have that
LDI
(A(S)) > α with probability at least β over I ∼ U[T ] and S ∼ DI .

So, on the other hand, we have
LDI
(AERM(S)) > α

with probability of at least β over I ∼ U[T ], S ∼ DI , and AERM ∼ DERM .

Since P1 = P2 we can combine the two statements above about P1 and P2 and have by the union
bound that

∣E (AERM(S), S) −LDI
(AERM(S))∣ > α − ϵ,

holds with probability of at least β − γ over I ∼ U[T ], S ∼ DI , and AERM ∼ DERM . So item 2 in
the theorem cannot hold which concludes the proof.

We now use Theorem 1 and the definition of a Bayes-like random ERM to prove Theorem 2.

Theorem 2. Let H be a hypothesis class of VC dimension d ≫ 1, and ℓ be the 0 − 1 loss. Let
X ⊂ X be a set of size d shattered by HX = {hi}2

d

i=1 ⊂ H and let {Di}2
d

i=1 be the set of realizable
distributions that correspond to HX , where for all i the marginal of Di on X is uniform over X .
Let ERMHX

be the set of all deterministic ERM algorithms forHX . For any h ∈HX , let Ah be an
ERM algorithm that outputs h for any input sample S consistent with h. Then, for any estimator E
ofH, at least one of the following conditions does not hold:

1. With probability at least 1/2 over I ∼ U([2d]) and S ∼ Dn
I ,

∣E (AhI
(S), S) −LDI

(AhI
(S))∣ < d − n

4d
.
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2. With probability at least 1/2−o(1) over I ∼ U([2d]), S ∼ Dn
I , andAERM ∼ U(ERMHX

),

∣E (AERM(S), S) −LDI
(AERM(S))∣ <

d − n
4d
− o(1),

where U(ERMHX
) denotes the uniform distribution over ERMHX

.

In particular, H is not (d−n
4d
− o(1),1/2 − o(1), n)-estimable for any n ≤ d/2. The notation o(1)

denotes quantities that vanish as d goes to infinity.

Proof. The proof is an application of Theorem 1 with the following two items:

1. DERM = U[ERMHX
] is a Bayes-like distribution over ERM algorithms for {Di}2

d

i=1,.

2. For any algorithm A, with probability 1 − o(1) over I ∼ U([2d]) and S ∼ Dn
I , it holds that

LDI
(A(S)) > d − n

2d
− o(1).

To apply Theorem 1 we have from Item 2 that α = d−n
2d
− o(1) and β = 1 − o(1) for any n ≤ d/2.

Proof for Item 1:

On the one hand, PDERM
(AERM(S) = h) = 1

∣{h∶ h is consistent with S}∣ for h that is consistent with S

and PDERM
(AERM(S) = h) = 0 otherwise. This follows from the definition of U[ERMHX

].

On the other hand, for any fixed h we have the quantity
∑i∶ hi=h

PDi
(S)

∑T
j=1 PDj

(S) . The summands in the

denominator are non-zero only for indices that correspond to functions hi that are consistent with
S. All such summands are equal since we have the same underlying distribution over the space X .
Since all the functions {hi}2

d

i=1 are different, the sum in the numerator contains one summand which
equals any other summand in the denominator if h is consistent with S and equals 0 otherwise.

Combining the two statements above completes the proof:

PDERM
(AERM(S) = h) =

∑i∶ hi=h PDi(S)
∑T

j=1 PDj(S)
.

Proof for Item 2:

LetA be an ERM algorithm. We note that for every realizable S overHX that consists of m distinct
data points we have

EILDI
(A(S)) = d −m

2d
. (17)

where I ∼ U[2d].
More so, for a fixed S that consist of m distinct data points, LDI

(A(S)) is a random variable which
is a sum of d −m i.i.d. Bernoulli random variables with parameter 1/2 that is divided by d. By
Hoeffding’s inequality,

P(LDI
(A(S)) < d −m

2d
− d0.6

d
) < exp(− 2d

1.2

d −m) < exp(−2d
0.2),

which implies that for any S with ∣S∣ = n it holds that

P(LDI
(A(S)) < d − n

2d
− o(1)) < o(1)
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Then, with probability 1 − o(1) over I ∼ U([2d]) and S ∼ Dn
I , it holds that

LDI
(A(S)) > d − n

2d
− o(1).

G PROOF OF THEOREM 3

We start with a remark.

Remark. The converse of Theorem 3 is false. Over the same overparameterized setting as in The-
orem 3, an algorithm can simultaneously not learn H0 well and be not estimable. To see why,
consider binary classification with the 0 − 1 loss and take any algorithm A that (ϵ, δ)-learns H0

and define Aneg(S) = A(S) where h is the hypothesis with opposite labels to h. Aneg does not
(1 − ϵ,1 − δ, n)-learn H0 and by the same arguments as in Theorem 3, we get that it is also not

(α−ϵ
2
, γ
2
− 1−β T

T1
+δ(1+T0

T1
)

2
, n)-estimable.

Proof of Theorem 3. If (H,D) is an (α,β,n)-over parametrized setting and A (ϵ, δ, n)-learns
(H,D0), thenA does not (α,1 − βT

T1
+ δT0

T1
, n)-learn (H,D1). This stems from the following steps.

β ≤ ES,I1LDI
(A(S))≥α

= T0

T
ES,I01LDI0

(A(S))≥α +
T1

T
ES,I11LDI1

(A(S))≥α

≤ T0

T
ES,I01LDI0

(A(S))≥ϵ +
T1

T
ES,I11LDI1

(A(S))≥α

≤ T0

T
δ + T1

T
ES,I11LDI1

(A(S))≥α

= T0

T
δ + T1

T
P (LDI1

(A(S)) ≥ α)

The first inequality holds by the definition of the overparameterized setting. The first equality from
the law of total expectation. The second inequality holds because decreasing α to ϵ only increase
the probability that the indicator function outputs 1. The third inequality holds since A (ϵ, δ, n)-
learns (H,D0). The second equality holds since the expectation of the indicator function equals the
probability for the event the indicator function underscores to happen.

This yields that with probability at least βT
T1
− δT0

T1
over I1 ∼ T0 +U[T1] and S ∼ Dn

I1

LDI1
(A(S)) ≥ α.

Now we show that A is not (α−ϵ
2
, η, n)-estimable with respect to H and loss ℓ. For that end, we

use Theorem 1 in Angel & Spinka (2021). We denote as ω the coupling between S0 ∼ Dn
I0

and
S1 ∼ Dn

I1
. We have that with probability γ over ω, S0 = S1. Now, for any estimator E , we get our

claim through the following steps where B = {S0 = S1, LDI0
(A(S0)) < ϵ,LDI1

(A(S1)) > α}.
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E
ω
[1∣E(A,S0)−LDI0

(A(S0))∣≥α−ϵ
2

+ 1∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

] =

P(B) E
ω∣B
[1∣E(A,S0)−LDI0

(A(S0))∣≥α−ϵ
2

+ 1∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

] +

P(Bc) E
ω∣Bc
[1∣E(A,S0)−LDI0

(A(S0))∣≥α−ϵ
2

+ 1∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

] ≥

P(B) E
ω∣B
[1∣E(A,S0)−LDI0

(A(S0))∣≥α−ϵ
2

+ 1∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

] ≥

P(S0 = S1, LDI0
(A(S0)) < ϵ,LDI1

(A(S1)) ≥ α) ≥

γ − δ − (1 − βT

T1
+ δT0

T1
) =

2η

The first equality holds by the law of total expectation for any event B. The first inequality holds
since the expectations are over non-negative random variables. The second inequality holds since
we assigned B = {S0 = S1, LDI0

(A(S0)) < ϵ,LDI1
(A(S1)) > α} and when B occurs for we have

E(A, S0) = E(A, S1) and any such assignment of E(A, S0) forces at least one of the indicator
functions to take value 1. The third inequality holds by the union bound.

The proof now concludes since

EI0,S01∣E(A,S0)−LDI0
(A(S0))∣≥α−ϵ

2

= Eω1∣E(A,S0)−LDI0
(A(S0))∣≥α−ϵ

2

and

EI1,S11∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

= Eω1∣E(A,S1)−LDI1
(A(S1))∣≥α−ϵ

2

so at least one of the following items holds:

• With probability at least η over I0 and S0 it holds that

∣E(A, S0) −LDI0
(A(S0))∣ ≥

α − ϵ
2

.

• With probability at least η over I1 and S1 it holds that

∣E(A, S1) −LDI1
(A(S1))∣ ≥

α − ϵ
2

.

H FINITE FIELDS AND LIMITATIONS ON ESTIMABILITY IN MULTICLASS
CLASSIFICATION

Let us first revise Def. 5 from the main text, since it is a preliminary for the proofs to follow:

Definition 5. Let X = Fd
q , Y = Fq , andH = Linq (d). We say a learning algorithmA ∶ (X ×Y)∗ →

H (possibly randomized) is an ERM algorithm with a linear bias if for every sample size n ≤ d,
we can associate (A, n) with a linear subspace Hn ⊂ H of dimension n such that if ∣S∣ = n and
S is consistent with some function in Hn, then A(S) ∈ Hn. We denote by Alin the set of all ERM
algorithms with a linear bias.

We restate the definition of linear functions and add further definitions:

Definition 9.
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• Let q be prime and denote by Fq the finite field with q elements. The hypothesis class of
linear functionals Linq (d) over the vector space Fd

q is defined as

Linq (d) ≡ (Fd
q)
∗ ∶= {fa ∶ Fd

q → Fq ∶ a ∈ Fd
q , fa(x) =

d

∑
i=1

ai ⋅ xi mod q} .

• We partition Linq(d) into the linear subspaces Linq,i(d) ∶= {fa ∈ Linq(d) ∶ a1 = i} with
∣Linq,i(d)∣ = qd−1 and Linq,i(d,n) ∶= {fa ∈ Linq(d) ∶ (a1 = i)∧(∀j ∈ [n + 2, . . . , d] ∶ aj =
0)}, where i ∈ {0, . . . q − 1} and ∣Linq,i(d,n)∣ = qn.

• We denote by X ∈ Fn×d
q the matrix obtained by stacking the inputs {xi}ni=1 as rows.

• We denote by ei the canonical basis vector with entry 1 in position i and 0 everywhere else.

• Further, we denote by Ai ⊂ Alin the class of ERMs that are biased towards Linq,i(d,n). In
more detail: whenever A ∈ Ai receives a sample S of size n and there exist hypotheses in
Linq,i(d,n) consistent with the labels of S, A outputs one of them. Otherwise A outputs
an arbitrary hypothesis from Linq(d,n).

H.1 PROOF OF LEMMA 1

Lemma 1. Each two distinct functions f, h ∈ Linq(d) agree on a fraction 1/q of the space and the
0 − 1 risk of the function h over samples from Df = f ◇ U(Fd

q) is given by

LDf
(h) = {0 h = f

1 − 1/q h ≠ f .

Proof. Denote the coefficient vectors of f, h by af , ah, respectively. Moreover, denote by Xa ⊆ X
the subset of the domain on which f and h agree, i.e., the fraction over which they agree is ∣Xa∣/∣X ∣.
Then, for any given input x ∈ Fd

q , f(x) = h(x) if and only if c ⋅ x = 0 mod q where c ∶= af − ah
mod q.

Now assume w.l.o.g. that the respective last entries of ah and af are distinct (if not, perform an
appropriate permutation). Then, the first d − 1 entries of x can be chosen arbitrarily and there are
qd−1 distinct such choices. Thereafter, the last entry xd is fixed to be cd ⋅ xd = q − ∑d−1

i=1 ci ⋅ xi

mod q. Note that for q prime such an xd ∈ Fq always exists and is unique. In summary, we have
that ∣Xa∣ = qd−1 which together with ∣X ∣ = qd gives the first desired claim.

The second claim then simply follows from observing that x ∼ U(X ) together with the fact that we
are using the 0 − 1 loss.

H.2 LEMMA 2

Lemma 2. The probability that an n1 × n2 matrix with coefficients drawn i.i.d. from U({0, . . . , q −
1}) has rank r is given by

Rq(n1, n2, r) = [n2
r ]q

r

∑
l=0
(−1)r−l[rl]qq

n1(l−n2)+(r−l2
) (18)

where [nk]q ∶=∏
k−1
i=0

qn−i−1
qk−i−1 denote the so-called Gaussian coefficients.

In particular, the probability that an n1 ×n2 matrix with coefficients drawn i.i.d. from U({0, . . . , q−
1}) has full rank is given by

Rq(n1, n2, c1) =
c1−1
∏
k=0
(1 − qk−c2). (19)

where c1 ∶=min{n1, n2} and c2 ∶=max{n1, n2}
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Proof. The first statement is a Corollary of (Blake & Studholme, 2006, Corollary 2.2).

The second statement can be inferred from the first, but also follows directly from the following
simple iterative construction: assume w.l.o.g. that n1 ≤ n2. Then, at each time t = 0, . . . n1 − 1 we
add one row to the matrix. Assuming that each entry of the matrix is sampled i.i.d. uniformly at
random, the probability that at time t the new row is linearly independent of all previous rows is
then given by 1 − qt−n2 since there are qt possible linear combinations of t rows, and there are qn2

vectors of length n2 in total.

H.3 LEMMA 3

Lemma 3. Denote by X− ∈ Fn×n+1
q the matrix obtained from X ∈ Fn×d

q by dropping all but the first
n + 1 columns. Denote k ∶= rank(X−) and assume that the labels y of the samples S = (X,y) are
generated by some f ∈ Linq,i(d,n), i.e., y = f(X) where f ∶ Fn×d

q → Fn
q is understood to be applied

row-wise. Then,

• If the vector e1 is spanned by the rows of X−, there exist qn+1−k functions in Linq,i(d,n)
consistent with S and no consistent function in all other classes Linq,j(d,n), j ≠ i.

• If the vector e1 is not spanned by the rows of X−, there exist qn−k functions consistent with
S in each Linq,j(d,n), j ∈ {0, . . . , q − 1}.

Proof. Let fa be a linear functions parametrized by coefficient vectors a = [a1, . . . , ad]. Further, let
a′ ∈ Fn+1

q denote the truncated coefficient vectors of a over the first n + 1 coordinates. Assume first
that e1 is spanned by the rows of X−. Then, only functions in Linq,i(d,n) can be consistent with
S. This is because a′1 = c⊺ ⋅X− ⋅ a′ = c⊺ ⋅ y is uniquely determined for c ∈ Fn

q if c is chosen such that
it encodes the linear combination of rows of X− that yields e1. The preceding equation hence holds
iff a1 = i due to the assumption that f ∈ Linq,i(d,n). Since the rank of X− is k, its null space has
dimension n + 1 − k and there exist qn+1−k consistent functions in total because X− ⋅ (a + b) = y is
also consistent for all b ∈ null(X−) assuming that the data was generated by fa.

Assume now that the rows of X− do not span e1. Then, we can construct the reduced matrix
Xred ∈ Fk×(n+1)

q and a vector yred ∈ Fk
q by retaining only k = rank(X−) linearly independent rows

of X− and the corresponding entries of y. Note that since the sample S is generated by some
f ∈ Linq,i(d,n), we have that X− ⋅a′ = y if and only if Xred ⋅a′ = yred. Hence it is sufficient to work
with the reduced system of equations in order to check for the consistency of a function fa.

Next, we append above the top of the matrix Xred the row e1 and n − k further canonical basis
vectors ei1 , . . . , ein−k in order to obtain a full rank matrix Xext. This is always possible because e1
is not spanned by assumption and furthermore there always exist at least n + 1 − k canonical basis
vectors which are not spanned by the rows of Xred.

With this setup, one can then obtain for given X and y a function fh ∈ Linq,m(d,n) with m ∈
{0, . . . , q − 1} arbitrary and reduced coefficient vector h′ ∶= [m ĥ⊺]⊺ ∈ Fn+1

q by computing the
unique solution of the fully determined system of equations

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
ei1
⋮

ein−k
Xred

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[m
ĥ
] =
⎡⎢⎢⎢⎢⎣

m
z

yred

⎤⎥⎥⎥⎥⎦
(20)

for z ∈ Fn−k
q arbitrarily chosen. By construction, the function fh with h = [h′,0, . . . ,0]⊺ will then be

in Linq,m(d,n) and be consistent with the sample (X,y). Moreover, since z ∈ Fn−k
q can be chosen

freely, there are qn−k such functions in each class Linq,j(d,n), j ∈ {0, . . . , q − 1}.

H.4 PROOF OF THEOREM 4

We consider the learning settings with realizable distributions over H′ ∶= H0 ∪ H1 where H0 ∶=
Linq,0(d,n) and H1 ∶= Linq,1(d,n). The algorithms we consider come from A0, the class of
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ERMs that are biased toH0 = Linq,0(d,n), that is, if there exists a consistent hypothesis inH0, the
algorithm must choose one such hypothesis. As mentioned previously, it is sufficient to consider
such ERMs in order to show learnability and estimability results over the larger class of linearly
constrained ERMs Alin due to a symmetry argument.

We first show in Lemma 4 that the learnability condition (condition 1 in Theorem 3) holds for H0.
In Lemma 5 we show that attempting to learn aboveH′ corresponds to an overparameterized setting.
It then follows Theorem 4 then follows from an upper bound on the TV-distance which implies that
condition 2 in Theorem 3 cannot hold, i.e., H′ is not estimable. Since Linq(d) ⊇ H′, this directly
implies thatH = Linq(d) is also not estimable with the same parameters.

Lemma 4. Linq,0(d,n) is (0, δ, n)-learnable over D0 = {f ◇ U(X )∣f ∈ Linq,0(d,n)} with any
A ∈ A0 for n ∈ [d − 1] and δ > ∑n−1

k=0 (1 − qk−n) ⋅Rq(n,n, k) where Rq is defined as in Lemma 2.

Proof. For the analysis one can drop the columns 1, n + 2, n + 3, . . . d of X as hypotheses in
Linq,0(d,n) are invariant w.r.t. to these coordinates and it is sufficient for A to only check for
consistency. Thereby we obtain the reduced input matrix X ′ of dimensions n × n.

Clearly, any A ∈ A0 outputs the ground truth hypothesis w.p. 1 as soon as X ′ has full rank. On the
other hand, once X ′ does not have full rank, A might output the wrong hypothesis depending on its
preference, i.e., depending on which of the multiple consistent functions it outputs. It can be easily
verified that any preference (be it deterministic or random) of A amongst consistent hypotheses
leads to the same error probability since the random variable I that selects the labeling function is
uniformly distributed.

Setting ϵ = 0, we get by the law of total probability that Linq,0(d,n) is (0, δ, n)-learnable by any
A ∈ A0 if

δ > P({AERM(S) ≠ f}) (21)

=
n−1
∑
k=0

P({AERM(S) ≠ f}∣{X ′ has rank k}) ⋅ P({X ′ has rank k}) (22)

=
n−1
∑
k=0
(1 − qk−n) ⋅Rq(n,n, k) (23)

where for the last equality we used the following two facts:

Conditioned on the event that rank(X ′) = k, A returns the ground truth with probability qk−n. This
is because Pf({A(S) = f}∣S) is uniform over all f ∈ Linq,0(d,n) consistent with S and since there
are qn−k functions consistent with k linearly independent samples (see the argument in Lemma 3).

For controlling the probability of rank deficiency we used the result stated in Lemma 2.

Lemma 5. Linq,0(d,n) ∪ Linq,1(d,n) is not (α,β,n)-learnable with any A ∈ A0 over D = {f ◇
U(X )∣f ∈ Linq,0(d,n) ∪ Linq,1(d,n)} for n ∈ [d − 1] and any (α,β) such that simultaneously

α < (q − 1)/q and β < 1
2 ∑

n
k=0 ((qk−n − 2qk−n−1) qk−1

qn+1−1 + 2 − q
k−n) ×Rq(n,n + 1, k).

Proof. Note that learnability is trivial for α ≥ (1 − 1/q) = q−1
q

since this is an upper bound for the
risk of linear hypotheses according to Lemma 1. Hence we consider the case α < (q − 1)/q. Then,
by definition, (α,β)-learnability is precluded for any algorithm that outputs a linear hypothesis once
β < P({A(S) ≠ f}) since {A(S) ≠ f} implies LDf

(A(S)) = q−1
q

. In the sequel we aim to derive
P({A(S) ≠ f}) for the case where A ∈ A0.

Denote by X− ∈ Fn×(n+1)
q the matrix obtained by dropping all but the first n + 1 columns

of X . Denoting the events E1 ∶= {A(S) ≠ f}, E2,i ∶= {f ∈ Linq,i(d,n)}, E3 ∶=
{e1 spanned by the rows of X−} and E4,k ∶= {X− has rank k}, we have by the law of total prob-
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ability that for i ∈ {0,1},

P(E1∣E2,i ∩E4,k) = P(E1∣E2,i ∩E3 ∩E4,k)P(E3∣E2,i ∩E4,k) (24)
+ P(E1∣E2,i ∩Ec

3 ∩E4,k)P(Ec
3∣E2,i ∩E4,k) (25)

= P(E1∣E2,i ∩E3 ∩E4,k)P(E3∣E4,k) + P(E1∣E2,i ∩Ec
3 ∩E4,k)P(Ec

3∣E4,k).
(26)

We can quantify the terms appearing above as follows:

P(E1∣E2,i ∩ E3 ∩ E4,k) = 1 − qk−n−1 for i ∈ {0,1} since we know from Lemma 3 that E3 ∩ E4,k

implies that there are qn+1−k consistent functions in Linq,i(d,n). As f is selected uniformly at
random from Linq,i(d,n), the statement follows.

P(E1∣E2,0 ∩ Ec
3 ∩ E4,k) = 1 − qk−n because we know from Lemma 3 that Ec

3 ∩ E4,k implies that
there are qn−k consistent functions in each Linq,i(d,n).
P(E1∣E2,1 ∩Ec

3 ∩E4,k) = 1 since A will almost surely select a hypothesis from Linq,0(d,n) even
though f ∈ Linq,i(d,n) if e1 is not spanned.

P(E3∣E4,k) = 1 − P(Ec
3∣E4,k) = qk−1

qn+1−1 follows from the fact that X− spans some k-dimensional
row space uniformly at random and there are qk − 1 possible non-zero linear combinations of k
linearly independent rows and qn+1 − 1 non-zero vectors of length n + 1.

Combining above facts we have that Linq,0(d,n) ∪Linq,1(d,n) is not (α,β,n)-learnable by A for
α < q−1

q
and

β < P(E1) =
1

∑
i=0

n

∑
k=0

P(E1∣E2,i ∩E4,k)P(E2,i ∩E4,k) (27)

=
1

∑
i=0

P(E2,i)
n

∑
k=0
(P(E1∣E2,i ∩E3 ∩E4,k) ⋅ P(E3∣E4,k) (28)

+ P(E1∣E2,i ∩Ec
3 ∩E4,k) ⋅ P(Ec

3∣E4,k)) ⋅ P(E4,k) (29)

= 1

2

n

∑
k=0
((1 − qk−n−1) ⋅ qk − 1

qn+1 − 1 + (1 − q
k−n) ⋅ (1 − qk − 1

qn+1 − 1) (30)

+ (1 − qk−n−1) ⋅ qk − 1
qn+1 − 1 + (1 −

qk − 1
qn+1 − 1)) ×Rq(n,n + 1, k) (31)

= 1

2

n

∑
k=0
((qk−n − 2qk−n−1) qk − 1

qn+1 − 1 + 2 − q
k−n) ×Rq(n,n + 1, k). (32)

Using Lemmas 4 and 5, we are now ready to prove Theorem 4:

Theorem 4. For every A ∈ Alin and every n ≤ d − 1, A is not ((q − 1)/2q, η, n)-estimable with
respect to Linq (d) and the 0 − 1 loss where η = 1

2 ∑
n
k=0 [(qk−n − 2qk−n−1 − 1) qk−1

qn+1−1 + 2 − q
k−n] ×

Rq(n,n + 1, k) −∑n−1
k=0 (1 − qk−n) ⋅Rq(n,n, k). In particular, for q > 10, it holds that η > 0.4, and

generally, η = 1
2
− 1

q
+ o(1/q).

Proof. For all product distributions appearing in this section assume that DX = U(Fd
q). Let

D = {Di}q
n+1

i=1 be the set of Linq(d,n)-realizable distributions such that D0 = {Di}q
n

i=1 is realiz-

able over Linq,0(d,n), and D1 = {Di}q
n+1

i=qn+1 is realizable over Linq,1(d,n). As we are working
with countable measures,

dTV (S0, S1) =
1

2
∥ P −Q∥1 =

1

2
∑
S

∣P (S) −Q(S)∣ (33)
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where P and Q denote the probability measures associated with the distributions Dn
I0

and Dn
I1

,
respectively, where I0 ∼ U([qn]) and I1 ∼ qn +U([qn]). First, we note that we need only sum over
samples S such that their corresponding input matrices span e1 since Lemma 3 asserts that once e1
is not spanned, the number of consistent functions in both classes is the same. Since the measures
P and Q are uniform both w.r.t. to the inputs and the labeling functions, they both are proportional
to the numbers of consistent functions (each multiplied by the same constant factor). Further, we
know from Lemma 3, that once e1 is spanned, the number of consistent functions in Linq,i(d,n) is
non-zero iff S ∼ f ◇DX with f ∈ Linq,i(d,n). Hence only one of P (S) and Q(S) can be non-zero
at a time. Therefore,

dTV (S0, S1) =
1

2
∑

S∶{e1 spanned}
∣P (S) −Q(S)∣ (34)

= 1

2
( ∑

S∶{e1 spanned}
P (S) + ∑

S∶{e1 spanned}
Q(S)) (35)

= P({e1 spanned}). (36)

According to the definitions in Theorem 3 we can hence pick

γ = 1 − P({e1 spanned}) (37)

= 1 −
n

∑
k=0

qk − 1
qn+1 − 1 ×Rq(n,n + 1, k) (38)

where we used of the fact that P({e1 spanned}∣{rank(X−) = k}) = qk−1
qn+1−1 .

Plugging in above γ and values of α,β, δ in accordance to Lemmas 4 and 5 into Theorem 3, we
finally obtain that Linq,0(d,n) ∪ Linq,1(d,n) is not (ν, η, n)-estimable if simultaneously ν < (α −
ϵ)/2 = (q − 1)/2q and

η < γ

2
−
1 + δ − β T

T1
+ δ T0

T1

2
(39)

= γ

2
+ β − δ − 1

2
(40)

= 1

2
⋅ [1 −

n

∑
k=0

qk − 1
qn+1 − 1 ×Rq(n + 1, n, k)] (41)

+ 1

2

n

∑
k=0
[(qk−n − 2qk−n−1) qk − 1

qn+1 − 1 + 2 − q
k−n] ×Rq(n,n + 1, k) (42)

−
n−1
∑
k=0
(1 − qk−n) ⋅Rq(n,n, k) −

1

2
(43)

= 1

2

n

∑
k=0
[(qk−n − 2qk−n−1 − 1) qk − 1

qn+1 − 1 + 2 − q
k−n] ×Rq(n,n + 1, k) (44)

−
n−1
∑
k=0
(1 − qk−n) ⋅Rq(n,n, k) (45)

where we used the fact that T0 = T1 = T /2.

To get the asymptotic result, we make use of the following two bounds:

1/q − o(1/q) ≤ qn − 1
qn+1 − 1 ≤ 1/q (46)

Rq(n,n + 1, n) ≥ 1 − o(1/q). (47)

To see that equation 47 holds, recall from Lemma 2 that Rq(n,n+1, n) = (1−q−n−1) ⋅ . . . ⋅(1−q−2).
Now assume towards induction that the partial product πm ∶=∏m

j=2(1− q−j), m ≥ 2 is in 1−o(1/q).
Then, πm+1 ∈ (1 − o(1/q)) ⋅ (1 − q−m+1) is also in 1 − o(1/q) since q−m+1 ∈ o(1/q). We have for
the base case that π2 = 1 − q−2 is in 1 − o(1/q), hence the claim follows.
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Using above facts we can then lower bound equation 44 − equation 45 by lower bounding the first
sum by only considering the term for which k = n, and upper bounding the sum in equation 45 by
1−Rq(n,n,n) where Rq(n,n,n) ≥ 1−1/q−o(1/q) due to an induction argument similar as above.

Thereby we obtain that equation 44 − equation 45 is lower bounded by

1

2
[(1 − 2/q − 1)(1/q − o(1/q)) + 2 − 1](1 − o(1/q)) − [1 − (1 − 1/q − o(1/q))] (48)

= 1

2
− 1

q
− o(1/q). (49)

We thereby proved non-estimability of algorithms A ∈ A0 with respect to H = Lin(d) and distribu-
tions families D0,D1 (defined at the beginning of the proof).

Finally, we extend this result to the class of all linearly biased ERMs in Alin via the following
reduction:

Remark (Reduction). Without loss of generality, one can focus on the class A0 whenever proving
learnability and estimability results about Alin (see Definition 5). This follows from a reduction of
non-estimability with algorithmsA′ ∈ Alin to non-estimability with algorithmsA ∈ A0 as informally
discussed below.

First note that any linearly constrained ERM A ∈ Alin is implicitly parametrized by some σ ∈
Fd
q/{0} and κ ∈ Fq such that A is biased towards selecting hypotheses fb ∈ Linq(d) such that

∑d
i=1 σi ⋅ bi = κ. For example, in the case of A ∈ A0, we have σ = e1 and κ = 0.

Let us briefly recap the setup in Theorem 4.

• First, we introduced the d dimensional function space Linq(d).

• Based on n, we linearly mapped the space onto the n+1 dimensional subspace Linq(d,n).

• We assumed that A is biased to the n dimensional subspace of functions fa with a1 = 0.

• Finally, we showed learnability (with A) over the subspace H0 = Linq,0(d,n) and non-
learnability over the subspaceH0 ∪H1, whereH1 = Linq,1(d,n).

We now sketch how for arbitrary A′ ∈ Alin with bias coefficients (σ,κ) one can find appropriate
subspaces of Linq(d) that admit essentially the same properties as the ones studied in the proof of
Theorem 4 for A ∈ A0.

For W ⊂ Fd
q some linear subspace define by Linq(W ) the space of linear functions over Fd

q with
coefficients from W . Now consider the following setup: given σ,κ as defined above, project Fd

q onto
an n + 1 dimensional subspace V such that Linq(V ) ⊂ Linq(d) via an appropriate linear map Π
such that σ is not in its kernel. Now define σ′ = Πσ ≠ 0 and letH′0 be the n dimensional subspace of
V consisting of functions fb such that ∑n+1

i=1 σ′i ⋅ bi = κ. Similarly, define H′1 to be the set consisting
of functions fb such that ∑n+1

i=1 σ′i ⋅ bi = κ + 1.

The reduction now boils down to the fact that showing learnability of H′0 and non-learnability
of H′0 ∪ H′1 (together with distribution families D′0,D′1 consisting of distributions with uniform
marginals over Fd

q and labelings from H′0,H′1, respectively) with A′ can be shown analogously
to the setup (A,H0,H1,D0,D1) from Theorem 4 via simple some adaptions of the steps involved in
proving it. In some more (but not full) detail:

• Since the linear spaces Linq(d,n) and Linq(V ) (and their above mentioned subspaces)
have the same cardinalities, it follows that all proofs based solely on counting functions
subject to a fixed number of linear constraints carry over one-to-one.

• Combining linear coefficients of two linear functions fa, fb ∈ Linq(d) trivially yields an-
other linear function fa+b ∈ Linq(d). Hence Lemma 1 applies.
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• Any linear combination (modulo q) of i.i.d. random variables uniform over Fq is again uni-
form. This fact together with our assumption of i.i.d. uniform inputs means that Lemma 2
carries over.

• For deriving the numbers of consistent functions in Lemma 3, we first ’preprocess’ the
inputs via the mapping ΠX with Π as defined above. Recall that in the original setup this
mapping simply amounted to truncating the input vectors.

• One can also easily adapt Lemma 5 since spanning e1 has the same probability as spanning
any arbitrary fixed σ′. The TV distance appearing in the final steps of showing Theorem 4
is the same in both setups for the same reason.

I LIMITATIONS ON ESTIMABILITY IN BINARY CLASSIFICATION

Let us restate Theorem 5 for convenience:

Theorem 5. For everyA ∈ Alin (possibly randomized) and every n ≤ d−1,A is not (0.25,0.14, n)-
estimable with respect to Lin2 (d) and the 0− 1 loss. More so, for every deterministicA ∈ Alin and
every 6 ≤ n ≤ d, A is not (0.25,0.32, n)-estimable with respect to Lin2 (d) and the 0 − 1 loss.

I.1 PROOF OF THEOREM 5 FOR A DETERMINISTIC

Proof. We consider the case q = 2 and examine when estimability is not possible for any algorithm
A ∈ A0 by bounding the accuracy of the optimal estimator E∗. The result once again carries over to
the more general caseA ∈ Alin due the reduction argument described in the remark appearing at the
end of the previous section.

Due to an argument analogous to the one in Lemma 3, we have that for n ≤ d and rank(X) = k,
there are 2d−k consistent functions in Lin2(d). By definition, in order to have (ν, η, n)-estimability,
E∗ can have failure probability at most η(ν, n) for given ν, n.

Since for any given S, f is uniform over all consistent functions in Lin(d), the optimal estimator
E∗ assigns 0 whenever k = n, since in this case any A ∈ A0 outputs the ground truth almost surely.

Moreover, any estimator E∗ that is optimal for a fixed error level ν must necessarily assign a value
cν ∈ (0.5 − ν,0.5] whenever k < n, since then there are multiple consistent functions in Lin2(d),
and simultaneously P({A(S) = h}) ≤ 1

2
for ground truth hypothesis h. To expand on this, note that

if E∗ were to assign any value in [0,0.5 − ν] while there exist m ≥ 2 functions consistent with S,
this would cause the fidelity terms Fi ∶= ∣E∗(A, S)−LDi(A(S))∣ to exceed the threshold ν in m−1
of the instances and only in a single instance fall below ν. This would obviously yield an increased
overall error probability and hence be suboptimal. We can therefore assume w.l.o.g. that E∗ has
cν = 0.5.

Given that ν = 0.25 and n < d, this estimator then fails (i.e. exceeds the error level ν) over {f ◇
U(X )∣f ∈ Lin2,0(d,n) ∪Lin2,1(d,n)} with probability

P({E∗(A, S) ≠ LD(A(S))}) =
1

2

n

∑
k=0
(2k−n−1 ⋅ 2k − 1

2n+1 − 1 + 2
k−n ⋅ (1 − 2k − 1

2n+1 − 1) (50)

+ 2k−n−1 ⋅ 2k − 1
2n+1 − 1) ×R2(n,n + 1, k) (51)

=
n

∑
k=0

2k−n−1 ⋅R2(n,n + 1, k) (52)

where the derivation is analogous to the one of β in Lemma 5.

On the other hand, for n = d, from a similar argument it follows that over {f ◇U(X )∣f ∈ Lin2(d)},
given that rank(X) = k, A picks the ground truth with probability 2k−d and hence E∗ fails with
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probability

P({E∗(A, S) ≠ LD(A(S))}) =
d−1
∑
k=0

2k−d ⋅R2(n,n, k). (53)

Combining equation 52 with equation 53 we obtain that for all n ≤ d, over Lin2(d), the optimal
estimator E∗ fails with probability

P({E∗(A, S) ≠ LD(A(S))}) =
m

∑
k=0

2k−m−1 ⋅R2(n,m + 1, k). (54)

where m ∶= min{n, d − 1}. It can be easily verified that for fixed d, equation 54 is monotonically
decreasing in n. Moreover, when fixing n = d, equation 54 is increasing in d and exceeds 0.32 for
all d ≥ 6.

I.2 PROOF OF THEOREM 5 FOR A RANDOM

Proof. Assume w.l.o.g. that A randomly outputs a consistent function in Lin2,0 whenever possible.
Define E− = {rank(X−) = n} ∩ {e1 not spanned}. Over the class Lin2(d,n), it follows from
equation 46 together with the fact that R2(n,n + 1, n) > 0.57 for all n ≥ 1 that

P(E−) > 0.57 ⋅ 0.5 (55)

where X− denotes the reduced n× (n+1) input matrix (recall that over Lin2(d,n) it is sufficient to
process the first n + 1 coordinates of the inputs). But in this case, there exists exactly one consistent
function in each Lin2,0(d,n) and Lin2,1(d,n). Due to a argument similar to the one presented in the
preceding subsection, we know that upon observing E−, an optimal estimator E∗ of the population
risk assigns 0 since this yields the optimal accuracy. But then, E∗ exceeds the error level ν = 0.25
under the event {h ∈ Lin2,1} for h denoting the ground truth labeling function. Since this event
has probability 0.5, we can conclude that E∗ fails with probability at least 0.57 ⋅ 0.5 ⋅ 0.5 > 0.14.
Since this implies that Lin2,0(d,n) ∪ Lin2,1(d,n) is not (0.25,0.14, n)-estimable, if follows that
the superset Lin2(d) is also not estimable with the same parameters.
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