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Abstract

Vocal cloning poses unprecedented threats to the music industry, enabling unau-
thorized reproduction of artists’ vocal characteristics in songs. We introduce My
Music My Choice (MMMC), a lightweight adversarial protection framework de-
signed to proactively defend against vocal cloning in musical contexts. MMMC
generates imperceptibly modified audio that preserves original vocals while sig-
nificantly degrading the output of generative AI. MMMC achieves high-quality
protected vocals with 0.944 STOI, reducing cloned output quality to 0.558 STOI.
Our approach demonstrates effective transfer across different musical styles and
maintains protection when vocals are reconstructed into full songs, providing a
practical defense mechanism for artists and music creators.

1 Introduction

The music industry faces an existential threat from sophisticated generative AI methods such as
retrieval-based voice conversion (RVC) and singing voice conversion (SVC) technologies that can
clone any artist’s voice from minimal audio samples. Recent advances achieved near-human quality
in converting singing voices while preserving musical content and pitch information. Unlike speech-
based voice cloning, singing voice conversion must handle complex musical elements including pitch
contours, vibrato, breath control, and harmonic interactions with instrumental backing tracks.

The proliferation of open-source VC tools has democratized vocal cloning capabilities, enabling
unauthorized creation of songs (46), fake collaborations (50), and musical deepfakes (41) that can
damage artists’, publishers’, and distributors’ reputations and economic interests. While detection
methods show promise for identifying synthetic singing voices, retroactive detection may be too late
in the life-cycle of a voice clip reliably fooling both humans and machines (47).

Instead, we explore proactive actions by protecting against replication. Previously, adversarial
prevention techniques are modeled as attacks on speaker verification (22), speech-based interfaces (1),
or speaker embeddings (52), but not on the generative output quality to completely disable such
applications. Current adversarial protection methods designed for speech (52; 32) fail to address
the unique challenges of songs. We present My Music My Choice (MMMC), the first adversarial
protection framework specifically engineered for defending voices in songs against conversion attacks,
empowering artists to have control over their vocals by preventing generative AI replication. MMMC
learns to generate imperceptible adversarial samples while maximizing the degradation of VC quality.

We evaluate our approach attacking two VCs and evaluating both the protected version and the cloned
output by intelligibility, noise, opinion, and perceptual scores; in vocal and song forms. MMMC
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outputs stellar quality songs with 0.912 Short-Time Objective Intelligibility measure (STOI) and
3.882 Mean Opinion Score (MOS), while also deteriorating VC outputs with 0.420 STOI and 2.038
MOS. We perform ablation studies to interpret loss terms and parameters. In a world where celebrities’
explicit requests are denied (18), we hope MMMC will pioneer and democratize this line of defense.

2 Related Work

Voice Cloning: VC is widely used in Singing Voice Synthesis (SVS), Singing Voice Conversion
(SVC) and Text-to-Speech (TTS) systems. Early works use parametric statistical models and spectrum
matching (20; 21) which later paved the way for complex approaches (42; 23). SVC aims to transform
the vocal characteristics of source and target singers while preserving musical content, pitch, and
timing, by combining VITS with content encoders and pitch extraction (44), learning speaker
information by retrieval (39), introducing diffusion models for control (27), using pitch- and singer-
invariant features (9), and leveraging differentiable signal processing (53). The SVC Challenge (15)
established standardized evaluation protocols and revealed current state-of-the-art capabilities.

Protection and Detection: Adversarial attacks are developed to exploit vulnerabilities in automatic
speaker verification (ASV) and speech recognition (ASR) systems (19; 2). Unlike audio deepfakes,
they aim to deceive by injecting imperceptible perturbations, to imitate a target speaker and gain
unauthorized access for ASV (28; 51) and to manipulate audio for misinformation for ASR (1; 34; 29).
SongBsAb (3) combines adversarial perturbations with psycho-acoustic modeling for musical contexts
whereas SingGraph (5) combines music understanding models with linguistic analysis through graph
modeling. However, detection accuracy significantly degrades in the presence of background music.
Speaker verification (11), anti-spoofing (17), liveness detection (55), and deepfake detection (31)
algorithms have also been proposed as retroactive techniques against unauthorized voice cloning.

Adversarial Audio Defense: As generative models empower large-scale replication of unauthorized
content;adversarial protection approaches are proposed for faces (25; 7), bodies (8), artistic styles (40),
or any visual content (36) against generative AI misuse. In audio domain, adversarial methods are
used as defenses, to mask the identity of the speaker (6; 33; 32; 10); to imperceptibly push the speaker
embedding (52; 45; 14); to watermark samples (37; 26); and to clean (48), mark (16), and block (49)
possibly malicious audio. Attacking only the speaker embedding, in turn, contributes to the same
problem, only with someone else’s identity. Physical-world attacks, ensemble attack strategies, and
AI-induced distortions pose significant challenges to current protection methods (54). To effectively
provide a proactive solution,output should be nullified, similar to the motivation of (36) in visual
domain. Successively, both adversarial attacks and audio deepfakes can be prevented.

3 My Music My Choice

VC approaches contain common modules for source separation, vocoder, synthesizer, pitch extraction,
or encoder. While attacking these separately can degrade performance, some may cancel adversarial
changes or there may be alternatives for a single module. For such, we design MMMC to attack VC
systems in an end-to-end manner.Given an attack model X(S, v) = v′ with speaker embedding S
and voice input v, the output v′ is assumed to have good quality and characteristics of speaker S
(Fig. 1, top left). We model MMMC as a protector model P to corrupt these expectations as,

P (v,X) = v+ such that v+ ∼ v and X(_, v+) ̸= X(_, v) (1)

Fig. 1 depicts this threat model, where v, v′, v+, v− represent input (black), converted input (black
with speaker), protected (green), and broken (red) voices. MMMC is designed as a plug-and-play
black-box attack on any VC, where the attack model is kept frozen with no access to gradients.

Figure 1: Overview. (Left)
Attack model imitates a voice
(black). With MMMC (green),
it produces distorted audio
(red). MMMC model (mid)
and loss terms (right) are de-
picted to relate with vocal I/O.
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3.1 Architecture

MMMC employs a U-Net architecture (38) operating directly on waveforms ω, composing vocals v =
{ω0, . . . , ω|v|/|ω|} to handle complex spectro-temporal patterns in singing voices. The architecture
consists of down/upsampling blocks with skip connections, enabling hierarchical learning of fine-
grained vocal details. As opposed to complicated architectures operating on lossy representations
such as Mel filters or spectrogram images, a simple yet efficient model provides enough flexibility.
MMMC’s architecture (Fig. 1 (mid)) consists of M = 12 downsampling blocks that extract higher
level features at coarser time scales. Each contains 1D convs with a kernel size K = 15, operating
in half time scale of the previous block’s input. Then, these features are combined with the locally
computed high resolution features in M = 12 upsampling blocks operating in double time scale.

3.2 Training Objective

To abide by the design in Eqn. 1, we combine several loss terms in one multi-objective loss as
L = αrLr + αpLp + αdLd + αoLo where α∗ weights balance loss terms. We minimize this
objective, thus, all loss terms are designed to be decreasing. We denote modified versions with
superscripts for all, such as P (v) = v+, X(_, v) = v′, X(_, v+) = v−.

Reconstruction Loss: To preserve voice quality during protection, we define a reconstruction loss
Lr as the MSE between input (ω∗) and protected (ω+

∗ ) wave forms.

Lr =
1

|v|

|v|∑
i=0

||ωi − ω+
i ||

2 where v = {ω0, . . . , ω|v|} (2)

Perceptual Loss: Lp keeps v+ perceptually unchanged from v while flexing structural deviation
from Lr. We utilize PESQ (12) as Lp = 0.2(0.5 + PESQ(v, v+)), normalized to [0, 1].

Distortion Loss: Ld maximizes degradation of v− through inverted MSE, measuring dissimilarity
between v+ and v−. Unlike Lr, we formulate this term to inversely contribute to overall loss.

D =
1

|v+|

|v+|∑
i=0

||ω+
i − ω−

i ||
2 and Ld =

1

log(1 +D + ϵ)
(3)

Opinion Loss: Lo targets degrading semantic properties of v−. To accomplish this ill-defined task,
we minimize Mean Opinion Score (MOS) as Lo = (1− 0.2(MOS(v+, v−))), normalized to [1, 0],
predicted by (30). While Ld pushes for structural dissimilarity, Lo pushes for unintelligible outputs.

3.3 Training & Testing

We use MUSDB18 (35), providing 150 music tracks (10+ hours) across diverse genres. This dataset
allows us to test the performance on actual songs, its effects on both the singer performance and
listening quality, edge cases where regular speech does not cover, and on both isolated vocal protection
and full song reconstruction scenarios. We use So-VITS-SVC (44) and RVC (39) as our primary
attack models due to their SOTA performance and adoption. We train for 20 epochs using Adam,
80/20 train/test split, with αr = 0.29, αd = 0.02, αp = 0.29, and αo = 0.65, optimized for musical
vocal characteristics. One epoch takes approximately 15 minutes. We use three setups to train, 1
2080TI, 6 A100s, and 8 V100s; with corresponding batch sizes and LRs of (16, 0.001) for RVC, (32,
0.01) for So-VITS, and (256, 0.01) for RVC. GPU memory is mostly spent on MOS queries.

4 Results & Experiments

We quantify MMMC’s success in input preservation (v ∼ v+) and output degradation (v′ ̸= v−)
by four metrics: STOI (43) for intelligibility, SI-SDR (24) for distortion, MOS (30) for subjective
opinion, and PESQ (12) for perceptual quality. MMMC achieves higher scores on the left, and
lower on the right in Tab. 1: high intelligibility (0.912/1.0 STOI), high perceptual quality (3.874/4.5
PESQ), varying energy (SI-SDR), and high subjective quality (3.882/5 MOS) for v+; whereas low
intelligibility (0.420/1.0 STOI), very low perceptual quality (1.079/4.5 PESQ), high distortion (large
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negative SI-SDR) and low subjective quality (2.038/5 MOS) for v−. For reference, 3+ MOS represents
relatively good quality (MOS for TIMIT (13) is measured at 3.45±0.52). Sample spectrograms of
low, random, and high scoring quadruplets of (v, v+, v′, v−) are demonstrated in Fig. 2.

Table 1: MMMC Evaluation. Vocal tracks (first row) and full songs (second row) are successfully
protected with high fidelity on v+ (left half) and high corruption on v− (right half).

v vs. v+ (↑) v′ vs. v− (↓)
STOI PESQ SI-SDR MOS STOI PESQ SI-SDR MOS

Vocals 0.912 3.874 7.347 3.882 0.420 1.079 -26.792 2.038
Reconstructed 0.944 3.765 7.380 3.755 0.558 1.189 -9.631 3.932

We validate MMMC’s protection
on both isolated tracks and full
songs, by placing protected vo-
cals back. Vocals are successfully
preserved in v+s and distorted in
v−s (first row). For full songs,
protection effectiveness persists,
however the presence of instru-
ments partially masks vocal arti-
facts, resulting in higher subjec-
tive quality as expected.
MMMC shows robustness across
diverse styles within MUSDB18,
including pop, rock, and world
music genres; adapting to differ-
ent techniques, from whispered
vocals to powerful belting, with-
out style-specific optimization.

Figure 2: Spectrogram Samples of low (top), random (mid), and
high (bot) scoring quadruplets of (v, v+, v′, v−) values. Similarity
of first two and dissimilarity of last two visually verify results.

In Tab. 2, we modify the multi-objective training loss of MMMC on a speech dataset to include only
the marked terms.Without Lp, perceptual and subjective quality of v+ drops (row 1). Without Lr,
there is significant noise introduced as we lose the signal (row 2). Lo being a semantic corruption
factor over Ld, it helps reduce the intelligibility of v− (row 3). Without Lp, all v+ metrics drop as
the low weight on Lr limits reconstruction to preserve the voice as much as Lp does perceptually.

Table 2: Loss Contributions. We systematically omit loss terms to evaluate and reason their impact.

v vs. v+ (↑) v′ vs. v− (↓)
Lr Ld Lp Lo STOI PESQ SI-SDR MOS STOI PESQ SI-SDR MOS
✓ ✓ 0.975 2.152 15.5091 4.000 0.598 1.050 -21.991 1.788

✓ ✓ 0.998 4.568 -26.429 4.439 0.601 1.050 -22.200 1.809
✓ ✓ ✓ 0.983 3.827 0.132 4.399 0.645 1.068 -30.295 1.626
✓ ✓ ✓ 0.774 1.186 -22.647 4.346 0.543 1.045 -28.226 1.798
✓ ✓ ✓ ✓ 0.989 4.151 4.782 4.398 0.598 1.049 -28.007 1.783

5 Conclusion

In this generative landscape where every song is under constant threat of being stolen, we say “My
Music My Choice” to let everyone protect their audio. We design MMMC as a black-box adversarial
attack on voice cloning, balancing vocal quality with protection effectiveness.We quantitatively
evaluate imperceptibly changed protected songs and disturbingly changed attack model outputs by
four metrics on separated vocals and full songs in diverse genres. In future, we aim to evaluate and
support generalization to other VC methods, quantify robustness, survey human evaluations, analyze
limitations, and design attacks on other common tracks.We would also like our adversarial generation
algorithm utilized for more elaborate uses, such as ownership verification by audio steganography (4)
or multi-modal content protection standards.
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