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ABSTRACT
Graph neural networks (GNNs) have been widely utilized to cap-

ture the underlying information propagation patterns in graph-

structured data. While remarkable performance has been achieved

in extensive classification tasks, there comes a new trending topic

of identifying influential nodes on graphs. This paper investigates a

new yet practical problem of evaluating the influence of node exis-

tence itself, which aims to efficiently measure the overall changes in

the outputs of a trained GNN model caused by removing a node. A

realistic example is, “Under a task of predicting Twitter accounts’ po-

larity, had a particular account not appeared, how might others’ po-

larity be changed?”. A straightforward way to obtain the node influ-

ence is to alternately calculate the influence of removing each node,

which is reliable but time-consuming. The related lines of work,

such as graph adversarial attack and counterfactual explanation,

cannot directly satisfy our needs since they typically suffer from low

efficiency on large graphs. Besides, they cannot individually evalu-

ate the removal influence of each node. To upgrade the efficiency,

we design an efficient algorithm, NOde-Removal-based fAst GNN
inference (NORA), which uses the gradient of the neural networks

to approximate the node-removal results. It only costs one forward

propagation and one backpropagation to approximate the influence

score for all nodes. Extensive experiments are conducted on six

benchmark datasets, where NORA exceeds the compared methods.

Our code is available at https://anonymous.4open.science/r/NORA.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Informa-
tion systems→ Social networks.

KEYWORDS
node influence evaluation, graph neural network, network analysis

1 INTRODUCTION
In recent years, the booming development of big data has brought

about many relational data, that can be naturally represented as

graphs. Evaluating node influence and identifying influential nodes

on a graph has become a trending and beneficial topic [14]. It

can help with viral advertising [9, 24, 37], online news dissemina-

tion [11, 25], police breaking down a criminal network [7], pan-

demic control [13, 54], etc. A lot of research on the “influence maxi-

mization” problem [16, 18, 23, 26, 28, 29, 44, 48, 50, 53, 62] focus on

identifying influential nodes whose triggered influence spreading

range can be maximized. These works can answer the question:

“Which Twitter accounts post information that can spread to the

greatest amount of audiences?”

Yet, another question is under-explored: “If a Twitter account had

never appeared, how could other Twitter users’ opinions/interactions

(e.g. following, retweeting, and replying) have been?”, such as the

example we illustrate in Figure 1. Actually, studying the influence

Before: After:

follow

unfollow

Figure 1: An example of a possible node-removal scenario on
a social network. Red versus Blue represents two different
opinions. Color shade represents how firm a user’s stance is.

of node removal can benefit many real-world applications includ-

ing finding the bottlenecks and improving the infrastructure net-

work robustness [6, 27], modeling how vaccination can decrease

virus spreading [3, 13, 54] and figuring out the top scientists con-

tribute to knowledge spreading based on a science co-authorship

network [1, 3, 22]. A lot of research on the “network dismantling”

problem[30, 35, 38–40, 58, 63] have studied the structural influ-

ence of node removal. However, the task-specific influence of node

removal considering both attributes and structures has been under-

explored. Therefore, we focus on measuring the influence of node

existence itself by evaluating the task-specific influence of node

removal.

Graph neural networks (GNNs) are among the most powerful

graph representation learning tools. Different from research on the

“influence maximization” problem that uses a propagation model to

simulate node influence spreading range, we use GNNs as a surro-

gate to capture the information propagation patterns. Propagation

models cannot evaluate the influence of node removal, but it is

not the case for GNNs. Based on the message-passing nature of

GNN [10], we assume that a trained GNN model can capture the

propagation patterns of a graph. After removing a node, we can use

a pre-trained GNN’s new outputs to simulate the scenario if that

removed node had not existed based on the learned propagation

patterns. For node classification task, it simulates what other node

labels could have been; for link prediction task, what the connec-

tions could have been; for graph classification task, what the graph

label could have been. We calculate the influence of node removal

as the total variation distance between the original outputs and new

outputs of the trained GNN model, which is illustrated in Figure 2.

We aim to calculate the influence score for each node. How-

ever, brutal-force direct calculation is very time-consuming, so we

demand an efficient method. Our method that changes GNN pre-

dictions by changing its input graph structure is similar to some

common practice in graph adversarial attack and graph counter-

factual explanation, though we aim at a different problem setting.

Graph adversarial attack aims to maximally undermine GNNmodel

performance or change GNN predictions by inducing unnoticeable

perturbations. The perturbations mainly include modifying node

1
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Figure 2: Our schema of evaluating node influence based on
node removal. The GNN model is trained on the original
graph, then we remove a node and apply the trained GNN to
the new graph structure. We measure the total variation dis-
tance between the originally predicted and newly predicted
distributions of node/edge/graph classes.

features [33, 67, 69], injecting new nodes [5, 8, 19, 45, 47, 52, 66],

or modifying edges [51, 57, 64, 68]. To the best of our knowledge,

none of the adversarial attack methods utilizes node removal, since

it is impractical in real-world attacking scenarios.

Graph counterfactual explanation aims to explain a GNN’s pre-

diction of a target node/edge/graph by finding the minimum per-

turbation on the input graph that can change the prediction of the

target [43]. They do utilize node removal [17, 34, 41, 46, 55, 60, 61].

However, directly using these methods to evaluate node influence

confronts two difficulties. First, we evaluate the influence of re-

moving a particular node on all other nodes/edges, while graph

counterfactual explanation evaluates the influence of removing

many nodes and edges on a single target. Second, graph counterfac-

tual explanation strategies are not typically good at scaling up to

handle large graphs. Most of the existing graph-level classification

datasets contain a lot of small graphs, such as molecules. For node

classification and link prediction tasks, some models only need to

consider the computation graph of a targeted node/edge, which is

also small. Most of the existing works mentioned above only con-

duct experiments on graphs with less than 4,000 nodes. LARA [41]

designs a scalable model to predict the influence of surrounding

nodes on the target node, but it requires the time consuming label-

ing of the ground truth, thus it is efficient in space but not in time.

Our method is much faster.

The node influence measurement problem we proposed has not

been studied yet, and related lines of work cannot directly satisfy

our demands. To efficiently calculate the node influence score, we

use the gradient to approximate the influence based on the first-

order derivatives and heuristics. We propose the algorithm, NOde-
Removal-based fAst GNN Inference (NORA), that only needs one

forward propagation and one backpropagation to approximate the

removal influence for all nodes. Since we are studying a new prob-

lem without mature baselines, we adapt two approaches in graph

counterfactual explanation as supplementary baselines to this prob-

lem. We conduct extensive experiments on six datasets. The ex-

perimental results demonstrate the effectiveness and efficiency of

NORA. To sum up, this paper makes the following contributions:

• We propose a novel perspective of evaluating node influence

based on node removal and a pre-trained GNN.

• We propose an efficient and effective algorithm, NORA, to ap-

proximate the removal influence for all nodes.

• Experimental results on six datasets demonstrate that NORA

outperforms the baselines on performance and efficiency.

2 RELATEDWORK
2.1 Graph Adversarial Attack
Graph adversarial attack aims to undermine GNN performance or

change GNN predictions by imposing a small perturbation to the

graph within a limited budget. Zügner et al. [67, 69] started the race

of graph adversarial attacks. Pioneering works are mainly based

on modifying node features [33, 67, 69] and perturbing edges [51,

57, 64, 68], including adding, removing, and rewiring edges. Some

recent works [5, 8, 19, 20, 45, 47, 52, 66] study the node injection

attack, which injects some nodes into the graph and connects them

with some existing nodes. Among them, Chen et al. [5] prove that

the node injection attack can theoretically cause more damage

than the graph modification attack with less or equal modifica-

tion budget. G-NIA model [47] sets a strong limitation that the

attacker can only inject one node with one edge, and it achieves

more than 90% successful rate in the single-target attack on Reddit

and ogbn-products datasets. They demonstrate the strong potential

of altering nodes’ existence. To the best of our knowledge, none of

the adversarial attack methods considers node removal, since it is

impractical in real-world applications. Nonetheless, as our target

is to analyze node influence instead of attacking, node removal is

worth exploring.

2.2 Graph Counterfactual Explanation
Graph counterfactual explanation explains why a GNNmodel gives

a particular result. Such as, to explain the GNN prediction of a target

node in the node classification task, a target edge in the link pre-

diction task, or a target graph in the graph classification task. The

explanation is provided by finding the minimum perturbation on

the input graph that can change the prediction of the target. There

are some methods [2, 31, 32, 59] based purely on edge removal.

Some methods utilize both node removal and edge removal by op-

timizing mask matrices [46, 55], predicting node influence with

neural network [41], applying graph generation models [34, 60], or

searching for an optimal neighbor graph [17, 61]. As analyzed in

Section 1, thesemethods are not directly applicable to evaluating the

proposed node influence, so we adapt two famous methods as sup-

plementary baselines to this novel problem. CF-GNNExplainer [31]

optimizes a real-value mask matrix that multiplies the adjacency

matrix during training, and elements in the mask matrix must be

within range [0, 1]. During inference, elements below 0.5 indicate

edge removal. We adapt it to also consider node removal with a

node mask matrix. Optimizing the mask matrix is a very common

practice [2, 46, 55, 59], so we use CF-GNNExplainer as a baseline.

As discussed in Section 1, most graph explanation methods are

2
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not scalable. To solve the problem, a recent work, LARA [41], uses

a GNN to predict node influence, whose parameter size does not

grow with the input graph size. We adapt it as our second baseline.

2.3 Network Dismantling
Network dismantling studies the structural influence of node re-

moval on unattributed graphs. It aims to maximally decrease net-

work connectivity by analyzing by removing influential nodes. The

influence is usually evaluated by the network connectivity, such

as the size of the largest connected component, efficiency (i.e. the

average of the reciprocals of shortest path lengths of all node pairs),

etc [36]. Betweenness centrality is one of the most widely-used

methods in the network dismantling problem setting to measure

node influence [30, 35, 38, 39, 58]. It is the ratio of shortest paths

that pass through a node among all shortest paths between all node

pairs. We use it as a simple baseline in our experiments.

3 PROBLEM DEFINITION
3.1 Notations
A graph 𝐺 = (𝑉 , 𝐸) consists of 𝑁 nodes 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑁 } and
edges 𝐸 = {𝑒𝑖 𝑗 | 𝑗 ∈ N (𝑖)}, where N(𝑖) denotes the neighbor nodes
of 𝑣𝑖 (without 𝑣𝑖 ), and 𝑒𝑖 𝑗 denotes the edge from 𝑣𝑖 to 𝑣 𝑗 . ˆN(𝑖)
denotes neighbor nodes of 𝑣𝑖 plus 𝑣𝑖 itself. 𝐴 denotes the adjacency

matrix. Each node 𝑣𝑖 is associated with a feature vector 𝑥𝑖 ∈ R𝑑 ,
and a label 𝑦𝑖 ∈ R if node classification task is applicable. We

denote the degree of 𝑣𝑖 as 𝑑𝑖 = |N (𝑖) |. When we remove node 𝑣𝑟
(𝑟 ∈ {1, 2, . . . , 𝑁 }) and all edges connected with 𝑣𝑟 , from graph 𝐺 ,

we denote the new graph as𝐺−𝑣𝑟 . 𝑔𝜃 denotes a trained GNN model.

We denote as 𝑣𝑟 the target node to analyze removal influence, and

F𝑔𝜃 (𝑣𝑟 ) denotes the proposed influence.

Graph neural networks (GNNs) generally follow the message-

passing framework [10]. A GNN model consists of multiple graph

convolutional layers. In a typical graph convolutional layer, a node

updates its representation by aggregating its neighbor nodes’ rep-

resentations:

ℎ
(𝑙 )
𝑖

= 𝑈𝑙 (ℎ
(𝑙−1)
𝑖

,AGG(
∑︁

𝑗∈N(𝑖 )
MSG𝑙 (ℎ

(𝑙−1)
𝑗

, ℎ
(𝑙−1)
𝑖

))), (1)

where ℎ
(𝑙 )
𝑖

denotes the node 𝑣𝑖 ’s representation after passing the

𝑙-th layer (𝑙 ∈ 1, 2, . . .), and ℎ
(0)
𝑖

denotes the input features.MSG𝑙

is the message function, AGG is the aggregation function, and𝑈𝑙
is the update function.

3.2 Problem Definition
In order to evaluate the change of node removal, we use GNN

models as a surrogate to predict the scenario where the removed

node does not exist based on the existing propagation patterns.

GNN models typically make prediction on a node label, edge exis-

tence, or graph class, via transforming its output to a vector, which

denotes the probability of different classes or options. In general,

we measure the change of prediction by the ℓ1-norm of the differ-

ence between the original and updated probability vectors. The

difference can equally capture the prediction change for every class.

For graph classification, we directly use the prediction change. For

step 1: remove message to neighbors

step 2: change aggregation terms

step 3: change neighbors’ embeddings
              a�ect other parts of the graph

Figure 3: The influence calculation decomposition of our
method.

node classification and link prediction, we evaluate the sum of the

prediction change of all remaining nodes/edges.

Definition 1. (Node Influence in Node Classification Task)
Given a node classification model 𝑔𝜃 trained on graph𝐺 , we denote

its prediction of node 𝑣𝑖 as 𝑔𝜃 (𝐺)𝑖 . The influence of removing node

𝑣𝑟 ∈ 𝑉 is calculated as:

F𝑔𝜃 (𝑣𝑟 ) =
𝑁∑︁

𝑖=1,𝑖≠𝑟

| |𝑓 (𝑔𝜃 (𝐺)𝑖 ) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟 )𝑖 ) | |1 , (2)

where 𝑓 (·) is the optional MLP layers and softmax layer that trans-

form a GNN’s output to the probabilistic vector.

Definition 2. (Node Influence in Link Prediction Task) Given
a link prediction model 𝑔𝜃 trained on graph 𝐺 , we denote its pre-

diction of edge 𝑒𝑖 𝑗 as 𝑔𝜃 (𝐺)𝑒𝑖 𝑗 . We use 𝐷𝑒 to denote the whole link

prediction set, and 𝐷𝑟 to denote edges that link 𝑣𝑟 . The influence

of removing node 𝑣𝑟 ∈ 𝑉 is calculated as:

F𝑔𝜃 (𝑣𝑟 ) =
∑︁

𝑒𝑖 𝑗 ∈𝐷𝑒−𝐷𝑟

| |𝑓 (𝑔𝜃 (𝐺)𝑒𝑖 𝑗 ) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟 )𝑒𝑖 𝑗 ) | |1 , (3)

The definition can be similarly generalized to the graph classifi-

cation task, where we simply take | |𝑓 (𝑔𝜃 (𝐺)) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟 )) | |1.
The ground truth is generated by the brute-force algorithm,

where we alternatively remove each node from the original graph

one at a time, and calculate the node influence. Iterating through all

nodes causes short efficiency. One intuitive way for acceleration is

neighborhood sampling. If the GNN has 𝑙 layers, removing a node

will only affect the outputs of its 𝑙-hop neighborhood, and com-

puting their new outputs will only require a 2𝑙-hop neighborhood.

However, it is still time-consuming, especially on dense-connected

graphs, (e.g., ogbn-arxiv and two Twitter datasets in our experi-

ments) where 2𝑙-hop neighborhoods might already contain most of

the nodes. Therefore, we need to look for an efficient and effective

method to calculate the influence score.

4 METHODS
To upgrade the efficiency, we propose Node-Removal-based Fast
GNN Inference (NORA) algorithm. In general, we approximate

the influence of the single-node-removal process by decomposing

the calculation process into three parts, which correspond to three

parts of changes caused by the node removal. Figure 3 illustrates

the three parts. We will describe our approximation algorithm in

detail in the following subsections.

4.1 Influence Score Calculation Decomposition
The general idea of NORA is that we approximate the influence of

node removal via first-order derivatives. We only need the gradient

information from one backpropagation to approximately calculate

3
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the influence scores for all nodes.Our method could be applied

to node classification and link prediction tasks, and can also be

extended to the graph classification task. In general, our method

could be adapted to various downstream tasks of a GNN model.

Equation 1 illustrates a message-passing GNN layer. A typical

parameterization of it is:

ℎ
(𝑙 )
𝑖

= 𝜎 (𝑊 (𝑙 )
𝑢 (𝑊 (𝑙 )

𝑠 ℎ
(𝑙−1)
𝑖

+
∑︁

𝑗∈𝑁 (𝑖 )
𝛼 𝑗𝑖𝑊

(𝑙 )
𝑚 ℎ

(𝑙−1)
𝑗

)), (4)

where 𝜎 denotes the activation function, 𝑊
(𝑙 )
𝑢 , 𝑊

(𝑙 )
𝑠 , and 𝑊

(𝑙 )
𝑚

are model parameters. 𝛼 𝑗𝑖 is the edge normalization of messages

coming from 𝑣𝑖 ’s neighbors and is usually related to node degree

or attention mechanism, e.g., 𝛼 𝑗𝑖 = 1/
√︁
|𝑁 (𝑖) | |𝑁 ( 𝑗) | in GCN [21].

Suppose the GNNmodel has 𝐿 layers, the last layer output𝑔𝜃 (𝐺)𝑖 =
ℎ
(𝐿)
𝑖

∈ 𝑅𝑐 is the predicted class probability, where 𝑐 is the number

of classes.

We cannot directly calculate the first-order derivatives based on

Equation 2, since there is a 1-norm. However, intuitively, removing

a node usually causes consistent change to the class of other nodes,

e.g., raising the probability of a particular class for all nodes. There-

fore, we can rewrite the formula. We denote as 𝑓𝑟 =
∑𝑁
𝑖=1,𝑖≠𝑟 ℎ

(𝐿)
𝑖

the sum of all node predictions except for node 𝑣𝑟 , and we denote

as 𝛿 𝑓𝑟 the change of 𝑓𝑟 when removing node 𝑣𝑟 .

Lemma 1. If removing 𝑣𝑟 consistently changes the class distribution
of other nodes, the influence defined in Equation 2 equals:

| |
𝑁∑︁

𝑖=1,𝑖≠𝑟

𝑔𝜃 (𝐺)𝑖 −
𝑁∑︁

𝑖=1,𝑖≠𝑟

𝑔𝜃 (𝐺−𝑣𝑟 )𝑖 | |1 = | |𝛿 𝑓𝑟 | |1

= | |
∑︁
𝑖≠𝑟

𝛿ℎ
(𝐿)
𝑖

| |1 = | |
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝛿ℎ
(𝐿)
𝑖

| |1 . (5)

Though the second line contains the derivative symbol, it is

strictly equal because
𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

= 1. We write it in this form because

we want to keep a uniform form with later formulas. We can extend

this form from the last layer’s formula to the frontmost layer. Here

we analyze how to extend it from the 𝐿-th layer to the (𝐿 − 1)-th
layer. Since the 1-norm is difficult to compute, we first ignore it and

just approximate 𝛿 𝑓𝑟 .

In a typical GNN layer in Equation 4, the model parameters

are fixed during inference, but 𝛼 𝑗𝑖 and ℎ
(𝐿−1)
𝑗

might change due

to removing 𝑣𝑟 . Therefore, we can approximate 𝛿ℎ
(𝐿)
𝑖

with the

first-order derivatives:

𝛿ℎ
(𝐿)
𝑖

≈ −𝐼 (𝑣𝑟 ∈ 𝑁 (𝑖))
𝜕ℎ

(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟

+
∑︁

𝑗∈�̂� (𝑖 ), 𝑗≠𝑟
(
𝜕ℎ

(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
𝛿𝛼 𝑗𝑖 +

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

), (6)

where 𝐼 (.) is the indicator function. Then by combining the above

formula with the definition of 𝛿 𝑓𝑟 , we can derive the following

formula.

Lemma 2. We can approximate 𝛿 𝑓𝑟 for the GNN model described
in Equation 4 with a second-order error term as:

𝛿 𝑓𝑟 ≈ −
∑︁

𝑖∈𝑁 (𝑟 )

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 +

∑︁
𝑖≠𝑟

∑︁
𝑗∈�̂� (𝑖 ), 𝑗≠𝑟

( 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
𝛿𝛼 𝑗𝑖 ) +

∑︁
𝑖≠𝑟

∑︁
𝑗∈�̂� (𝑖 ), 𝑗≠𝑟

( 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

) . (7)

The error term is in the second order because we are using the

first-order derivatives to approximate. We now decompose the cal-

culation into three terms, divided by “+” in the above formula. The

first term measures the direct influence of the disappearance of 𝑣𝑟 ’s

latent representations, which decreases an input to its neighbor

node; The second term measures the change of its neighbor’s edge

normalization term 𝛼 𝑗𝑖 ; and the third term measures the change

of other nodes’ latent representations, which will influence fur-

ther neighbors. The three terms correspond to the three kinds of

influence in Figure 3.

4.2 Approximation of Each Decomposed Term
Term 1: Direct impact to the neighbors. For clarity, the first
term refers to the portion between the first minus sign and the first

plus sign in Equation 7. To begin with, by applying the chain rule,

the first term equals to:

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 − 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 . (8)

The derived equation consists of two parts. The form of the first

part is simpler and more convenient to handle, so we want to

eliminate the second part and only keep the first part. We do this

by approximating the ratio of the second part to the first part.

Here we make a rough assumption that every node is equal, which

means they have the same number of neighbors, the same node

representation, and the same gradient. We denote the change of

node representation, 𝛿ℎ
(𝐿−1)
𝑗

,∀𝑗 ∈ 𝑉 , as 𝛿ℎ. We denote the gradient

coming from a neighbor node as 𝑔, and the gradient coming from

the higher-layer representation of a node itself as 𝛽𝑔. 𝛽 is typically

higher than 1, because self-loop and residual connection make the

gradient coming from the higher-layer representation of a node

itself larger than the gradient from the higher-layer representation

of neighbor nodes. Therefore, the first part of Equation 8 is (𝑑𝑟 +
𝛽)𝑔𝛿ℎ, and the second part is 𝛽𝑔𝛿ℎ. Based on their ratio, and by

rewriting the enumeration variable 𝑗 as 𝑖 , we derive the following

equation.

Lemma 3. If every node in the graph has equal structures and
attributes, the first term of Equation 7 equals:

𝑑𝑟

𝑑𝑟 + 𝛽

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 . (9)

In our experiments, we find that the most effective way of calcu-

lating
𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 is to change it to | | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ℎ (𝐿−1)𝑟 | |2. ◦means

element-wise product between the two same-dimensional vectors,

and | |.| |2 means the 2-norm.
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Term 2: Aggregation term change.. In the second term of Equa-

tion 7,
𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
=

𝜕𝑓𝑟
𝜕𝛼 𝑗𝑖

. We have tried using
𝜕𝑓𝑟
𝜕𝛼 𝑗𝑖

but it didn’t

perform well, so we only consider approximating 𝛿𝛼 𝑗𝑖 . Then we

analyze 𝛿𝛼 𝑗𝑖 . Unlike the first term, 𝛿𝛼 𝑗𝑖 greatly depends on the de-

sign of the specific GNN model. Some GNN models, e.g., GCN [21]

and GraphSAGE [12], only use structural information like node

degree, while some models, e.g., GAT [49] and DrGCN [65], uses

the attention mechanism. To reach a flexible and universally adapt-

able approximation, we use structural measurement. We consider

two widely-used GNNs: GCN [21] and GraphSAGE [12]. The edge

normalization of GCN is 𝛼 𝑗𝑖 = 1/
√︁
|𝑁 (𝑖) | |𝑁 ( 𝑗) |, and that of Graph-

SAGE is 𝛼 𝑗𝑖 = 1/|𝑁 (𝑖) |. If neither 𝑣𝑖 nor 𝑣 𝑗 is 𝑣𝑟 ’s neighbor, 𝛼 𝑗𝑖 of
GCN and GraphSAGE does not change.

If 𝑣𝑖 or 𝑣 𝑗 is a neighbor of 𝑣𝑟 , we combine the fashion of GCN and

GraphSAGE to approximate 𝛿𝛼 𝑗𝑖 . We denote the degree of node 𝑣𝑖
as 𝑑𝑖 = |𝑁 (𝑖) |. Suppose 𝑣𝑖 is 𝑣𝑟 ’s neighbor, and 𝑣 𝑗 is 𝑣𝑖 ’s neighbor,
we approximate 𝛿𝛼 𝑗𝑖 by ˆ𝛿𝛼 𝑗𝑖 :

ˆ𝛿𝛼 𝑗𝑖 = [𝑘1 (
1

√
𝑑𝑖 − 1

− 1

√
𝑑𝑖
) + (1 − 𝑘1) (

1

𝑑𝑖 − 1

− 1

𝑑𝑖
)]

[𝑘2
1√︁
𝑑 𝑗

+ (1 − 𝑘2)
1

𝑑 𝑗
], (10)

where 𝑘1 and 𝑘2 are hyper-parameters ranging in [0,1]. An inter-

esting intuition is that there exist hyper-parameters 𝑘1 and 𝑘2 that

make
ˆ𝛿𝛼 𝑗𝑖 equal to 𝛿𝛼 𝑗𝑖 for GCN. Based on

ˆ𝛿𝛼 𝑗𝑖 , we approximate

the second term as:

𝛿𝑇𝑜𝑝𝑜𝑟 =
∑︁

𝑖∈𝑁 (𝑟 )

∑︁
𝑗∈𝑁 (𝑖 )

ˆ𝛿𝛼 𝑗𝑖 . (11)

Term 3: Hidden representation change. Using the chain rule

to analyze
𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

, we can simplify the third term. The third term

in Equation 7 equals Equation 12, which can be further equally

transformed into Equation 13.

∑︁
𝑗≠𝑟

( 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

− 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑗

)𝛿ℎ (𝐿−1)
𝑗

(12)

=
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

−
∑︁

𝑗∈𝑁 (𝑟 )

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

. (13)

Similar to the simplification process of the first term, here we also

arrive at a formula with two parts. The form of the first part is more

convenient to handle, and it takes the same form as Equation 5,

so we want to eliminate the second part and only keep the first

part. We make the same rough assumption that every node is equal.

Equation 8 as below. We denote the average node degree as 𝑑 . Using

the notations from the simplification process of the first term, we

can approximate the first part of the third term (Equation 12) as

(𝑁 − 1) (𝑑 + 𝛽)𝑔𝛿ℎ, and the second part as 𝑑𝑔𝛿ℎ. Based on their

ratio, and by rewriting the enumeration variable 𝑗 as 𝑖 , we derive

the following equation.

Lemma 4. If every node in the graph has equal structures and
attributes, the third term of Equation 7 equals:

(
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽) ). (14)

We use this equation to approximate the third term. Its algebraic

form is similar to Equation 5, so the third term can successfully

extend the formula to previous layers.

4.3 Combined Derivation
By combining the approximations of three terms together, we get:

𝛿 𝑓𝑟 ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽) ) + 𝛿𝑡𝑜𝑝𝑜𝑟

− 𝑑𝑟

𝑑𝑟 + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 . (15)

Now we successfully extend the original formula to a fronter layer.

By repeating this process, we can approximate 𝛿 𝑓𝑟 by the gradient

from every layer. Our original goal in Equation 5 is the 1-norm of

𝛿 𝑓𝑟 . However, it is difficult to approximate via gradient. Instead, we

calculate the sum of the square of each element in 𝛿 𝑓𝑟 , which is

highly positively correlated with its 1-norm. Based on the first-order

derivative, we approximate it as:

( | |𝛿 𝑓𝑟 | |2)2 ≈ 𝑓𝑟 · 𝛿 𝑓𝑟 , (16)

where · is the dot product. Based on it and by extending Equation 15
to all previous layers, we derive:

F𝑔𝜃 (𝑣𝑟 ) ≈ 𝑓𝑟 {
𝐿−1∑︁
𝑖=0

[(𝑠 (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽) ))
(𝐿−1−𝑖 ) 𝑑𝑟

𝑑𝑟 + 𝛽

| | 𝜕𝑓𝑟

𝜕ℎ
(𝑖 )
𝑟

◦ ℎ (𝑖 )𝑟 | |2] + 𝑘3 · 𝐿 · 𝛿𝑇𝑜𝑝𝑜𝑟 }. (17)

In the formula, ℎ
(0)
𝑖

is the input feature of 𝑣𝑖 . Since our derivation

is from the back layer to the front layer, approximation error might

accumulate. To eliminate this issue, we add an additional decay term

𝑠 to reduce the weight of fronter layers. 𝑠 usually falls in [0.9, 1.0].
Since each layer generates a 𝛿𝑇𝑜𝑝𝑜𝑟 term, we multiply it by the

number of layers 𝐿.

However, Equation 17 is still not efficient. It needs to backpropa-

gate 𝑓𝑟 to acquire the approximation for node 𝑣𝑟 , but we want to

simultaneously generate the approximation results for all nodes.

In the standard way, when we are backpropagating 𝑓𝑟 , we set the

loss of every node 𝑣𝑖 ∈ 𝑉 as 𝑓𝑟 , so that we can accurately get
𝜕𝑓𝑟

𝜕ℎ
(𝑖 )
𝑟

.

To upgrade the efficiency, We relax this restriction and set the loss

of node 𝑣𝑖 ∈ 𝑉 as 𝑓𝑖 , allowing for each node to backpropagate a

different loss. In this way, we can backpropagate them simultane-

ously. When we are approximating the influence of removing node

𝑣𝑟 , we not only base on 𝑓𝑟 but also on 𝑓𝑖 , 𝑖 ≠ 𝑟 , so it downgrades

the performance. However, 𝑓𝑟 still has a dominant influence on the

gradient of 𝑣𝑟 ’s hidden representations, because self-loop and resid-

ual connections are stronger than normal edges. The experimental

results show a satisfactory performance, so the accuracy drop is

tolerable, with a huge gain in time efficiency. In this way, we can

generate the approximation for all nodes simultaneously. It only

takes a few seconds to complete the computation.
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Table 1: Complexity Comparision.

Type Time Space

brute-force 𝑂 (𝐿𝑁 2ℎ2 + 𝐿𝑁𝑀ℎ) 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ)
NORA 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ) 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ)

The approximation of the link prediction task is similar. We just

replace 𝑓𝑟 with the sum of edge predictions which are not connected

with 𝑣𝑟 . The other processes during derivation are the same.

4.4 Complexity Analysis
Here we analyze the time and space complexity of the ground truth

and the proposed method. We use 𝑁 to denote the number of nodes,

𝑀 to denote the number of edges, 𝐿 to represent the number of

the GNN’s layers, ℎ to represent the hidden size of the GNN model,

and 𝑑 to represent the average node degree. In most cases, the

adjacency matrix is sparsely stored, and in this situation, according

to Paper [4], the time complexity of the forward propagation or

backpropagation of a common message-passing GNN model is

𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ), and the space complexity is 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).
Based on it, we list the time and space complexities in Table 1.

We list the detailed computation of these time and space com-

plexity in the appendix A.2. As shown in Table 1, NORA cost sig-

nificantly less time than the brute-force method, and basically the

same space complexity as the brute-force method. Therefore, it is

generalizable to very large real-world graphs when considering

time. For example, it takes about 41 hours to generate the ground

truth influence scores for DrGAT model on the ogbn-arxiv dataset,

but it only takes a few seconds by NORA. When considering space,

since they have the same space complexity as the GNN model, the

bottleneck is the GNN’s space consumption.

5 EXPERIMENTS
5.1 Baseline Adaption
Since there is no mature baseline for this new problem we propose,

we adapt two methods from graph counterfactual explanation as

baselines.

CF-GNNExplainer. CF-GNNExplainer [31] is a famous graph

counterfactual explanation method. Its basic idea is to multiply

the adjacency matrix with a mask matrix. It optimizes the mask

matrix to drive the GNN prediction away from its original predic-

tion. After training, a smaller element in the mask matrix indicates

a more influential edge. We adapt it to evaluate node influence.

We optimize a node mask 𝑀 ∈ 𝑅 |𝑉 |
, and its elements are limited

in the range [0, 1]. In every GNN layer, we multiply node embed-

dings by𝑀 before the message passing. After training, we evaluate

influence as the distance between node mask and 1. Following CF-

GNNExplainer, our loss function consists of a prediction loss term

that drives the new prediction away from the original prediction

and a regularization term that drives the value in the mask to be

close to 1 (otherwise removing all nodes might be the best solution).

The loss function is:

𝐿𝑜𝑠𝑠 = −
𝑁∑︁
𝑖=1

| |𝑔𝜃 (𝑉 , 𝐸)𝑖 − 𝑔𝜃 (𝑉 ;𝐸 ◦𝑀)𝑖 | |1 + ||𝑀 | |1, (18)

Table 2: Dataset statistics.

Dataset #Nodes #Edges #Features #Classes Homo/Hetero

Cora 2,708 5,429 1,433 7 homogeneous

CiteSeer 3,327 4,732 3,703 6 homogeneous

PubMed 19,717 44,338 500 3 homogeneous

ogbn-arxiv 169,343 1,166,243 128 40 homogeneous

P50 5,435 1,593,721 - 2 heterogeneous

P_20_50 12,103 1,976,985 - 2 heterogeneous

LARA. LARA [41] is a recent work that greatly improves scalability

by applying a GCN model to predict the edge influence. The GCN

model generates a source embedding, 𝑝𝑖 , and a target embedding, 𝑡𝑖
for every node 𝑣𝑖 ∈ 𝑉 . It predicts the influence of 𝑣𝑖 on 𝑣 𝑗 by 𝑝𝑖 · 𝑡 𝑗 ,
where · is the dot product. We approximate the influence of node

removal as the sum of its influence on its neighbors:

F𝑔𝜃 (𝑣𝑟 ) ≈
∑︁

𝑖∈𝑁 (𝑟 )
𝑝𝑟 · 𝑡𝑖 . (19)

Besides, we also try to directly predict the node influence score

with the GCN model, but it is not as effective as first generating

node embeddings and calculating link influence.

5.2 Experiment Settings
Datasets. To comprehensively evaluate NORA in different scenarios,

we conduct experiments on six datasets and two tasks. The datasets

include four widely-applied benchmark citation networks (Cora,

CiteSeer, and PubMed [42], and ogbn-arxiv [15]) and two social

networks. Nodes on the four citation networks are papers, and

undirected edges represent citations. The original task is to predict

the research field of each paper. We also add a link prediction

task to verify NORA’s capacity in different settings. We follow the

same data split ratio as the original link prediction task on the

two social networks. The two social networks are heterogeneous

Twitter datasets constructed by a previous study [56]. Nodes are

users, and directed edges represent one of five Twitter actions or

their counterparts (e.g., be followed): follow, retweet, like, reply,

and mention. It originally contains two tasks. The first task is to

predict the political leaning of each user. The second task is to

predict whether there is a specific type of link from one user to

another. Table 2 lists the dataset statistics.

An issue is that the trained GNN model is biased to the training-

set nodes/edges. To fairly evaluate the influence of every node, we

run each experiment 5 times and cycle the data split of nodes and

edges by 20% per time, giving every node an equal chance to show

up in training, validation, or test sets. For the link prediction task,

we also cycle the link data split. After evaluation, we take the mean

of the 5 results as the node influence score.

GNN Models.We select representative GNN models. On the citation

datasets, we use three commonly used GNNs, GCN [21], Graph-

SAGE [12], and GAT [49]. As the ogbn-arxiv dataset is a heated

benchmark, we use the SOTA model on its leaderboard at the time

we started this project, DrGAT [65], to replace the vanilla GAT. Dr-

GAT is an improved variant of GAT, which is further equipped with

a dimensional reweighting mechanism. Since the Twitter datasets
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Table 3: Approximation method performance and efficiency. We use GCN for Cora, CiteSeer, PubMed, and ogbn-arxiv datasets,
and TIMME model for P50 and P_20_50.

Node Classification Link Prediction

Dataset Method top-1 top-5% top-10% Corr Time top-1 top-5% top-10% Corr Time

Cora

Betweenness 100.0% 74.6% 72.9% 0.763 26s 100.0% 79.0% 78.4% 0.864 26s

CF-GNNExplainer’ 65.5% 58.6% 63.0% 0.567 10s 5.8% 21.5% 29.7% 0.052 5.5s

LARA-N 100.0% 90.2% 89.4% 0.815 4.7s 100.0% 92.6% 89.9% 0.770 4.6s

LARA-E 100.0% 90.5% 89.7% 0.831 7.5s 100.0% 93.9% 90.4% 0.878 6.2s

NORA 88.8% 92.6% 91.9% 0.884 11s 100.0% 91.0% 89.0% 0.907 13s

CiteSeer

Betweenness 28.1% 76.1% 76.4% 0.630 26s 17.7% 76.5% 80.4% 0.591 26s

CF-GNNExplainer’ 78.0% 37.4% 38.6% 0.478 9.3s 1.8% 24.4% 31.4% 0.018 6.5s

LARA-N 100.0% 91.2% 88.6% 0.797 6.6s 100.0% 94.5% 90.4% 0.718 7.0s

LARA-E 100.0% 89.8% 85.7% 0.812 6.2s 100.0% 96.0% 94.7% 0.917 7.4s

NORA 100.0% 83.9% 86.6% 0.833 14s 100.0% 95.3% 94.1% 0.822 14s

PubMed

Betweenness 63.3% 76.8% 85.4% 0.528 42min 66.4% 80.1% 86.3% 0.569 42min

CF-GNNExplainer’ 31.3% 71.4% 70.8% 0.509 9.1s 75.1% 20.3% 23.3% 0.230 6.7s

LARA-N 79.6% 90.2% 91.0% 0.799 3.8s 39.1% 88.7% 93.1% 0.837 4.6s

LARA-E 79.6% 91.5% 92.8% 0.836 7.5s 76.4% 96.7% 97.4% 0.923 5.5s

NORA 51.1% 83.2% 88.6% 0.745 19s 100.0% 89.1% 91.4% 0.873 22s

ogbn-arxiv

Betweenness 100.0% 74.4% 77.9% 0.782 ≈140h 100.0% 75.8% 78.9% 0.786 ≈140h
CF-GNNExplainer’ 66.4% 24.8% 32.1% 0.666 19s 0.1% 14.7% 21.6% 0.213 15s

LARA-N 100.0% 86.0% 83.5% 0.595 9.1s 100.0% 91.5% 89.4% 0.559 21s

LARA-E 77.4% 53.0% 55.1% 0.506 21s 100.0% 64.4% 65.3% 0.758 39s

NORA 77.4% 86.5% 86.1% 0.900 35s 100.0% 95.6% 94.2% 0.997 31s

P50

Betweenness 100.0% 83.6% 91.8% 0.643 ≈6h 100.0% 72.3% 86.2% 0.644 ≈6h
CF-GNNExplainer’ 100.0% 17.1% 16.0% 0.811 34s 73.1% 95.8% 74.5% 0.666 10min

LARA-N 100.0% 89.4% 92.1% 0.435 10s 100.0% 81.1% 88.2% 0.540 59s

LARA-E 100.0% 90.2% 86.3% 0.877 23s 100.0% 88.2% 90.2% 0.862 68s

NORA 100.0% 98.7% 98.5% 0.956 19s 100.0% 92.3% 91.3% 0.943 24s

P_20_50

Betweenness 98.3% 88.5% 93.5% 0.707 ≈14h 100.0% 89.5% 92.4% 0.838 ≈14h
CF-GNNExplainer’ 66.9% 62.5% 57.4% 0.612 76s 100.0% 21.6% 21.9% 0.789 15min

LARA-N 98.3% 83.6% 91.9% 0.556 13s 100.0% 88.4% 92.4% 0.549 71s

LARA-E 98.3% 93.7% 93.1% 0.968 25s 100.0% 94.2% 93.3% 0.968 84s

NORA 100.0% 98.7% 96.7% 0.979 37s 100.0% 95.5% 95.4% 0.984 42s

are heterogeneous, GCN, GraphSAGE and GAT are no longer use-

ful, we use TIMME model, the GNN proposed in the same paper as

the datasets [56]. It tackles the challenges on the Twitter datasets,

e.g., sparse features, sparse labels, and heterogeneity.

EvaluationMetrics.We compare NORA against the baselinemethods

introduced above. In the following tables, “Betweenness” denotes

the betweenness centrality; “CF-GNNExplainer’” is our adaption

of CF-GNNExplainer. Among the adaptions of LARA, “N” and “E”

represent the node-version and edge-version adaptions. We use two

metrics to evaluate the similarity between approximation results

and the ground truth. The first one is the top-k score, which is

the sum of the influence score of the top k nodes ranked by the

approximation method divided by that ranked by the ground truth.

We evaluate top 1, top 5%, and top 10% nodes. The second metric

is the Pearson correlation coefficient between the ground truth

influence score and the approximated one.

Hyper-parameters.We keep the hyper-parameters for DrGAT and

TIMME models the same as their original settings since they are

already carefully tuned. We search for the best hyper-parameters

for GCN, GraphSAGE, and GAT models. We also tune the hyper-

parameters of each approximation method for each dataset and

model. We list the hyper-parameter details in the appendix.

5.3 Performance Comparison
The main results of the compared methods are recorded in Table 3.

We evaluate the approximation performance of the GCN model on

each citation dataset, since GCN is one of the most commonly used

GNN models. Since GCN is not applicable to the heterogeneous

graph, we use TIMME model on the Twiter datasets. Table 4 shows

the results of more GNN models on the node classification task on

the four citation networks. In the two tables, NORA outperforms

the baseline methods. The betweenness centrality can not take

node attributes into consideration. The CF-GNNExplaner’ method
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Table 4: Further Verification on More GNNs on the node
classification task.

Dataset GNN Method top-5% top-10% Corr

Cora

GraphSAGE

LARA-E 84.3% 77.9% 0.819

NORA 85.8% 82.0% 0.839

GAT

LARA-E 84.8% 83.6% 0.792
NORA 76.7% 78.3% 0.774

CiteSeer

GraphSAGE

LARA-E 73.4% 72.6% 0.714

NORA 84.1% 86.0% 0.799

GAT

LARA-E 80.7% 76.9% 0.782
NORA 79.5% 78.3% 0.746

PubMed

GraphSAGE

LARA-E 85.1% 90.3% 0.785

NORA 84.9% 91.0% 0.792

GAT

LARA-E 84.3% 87.6% 0.794

NORA 92.1% 93.7% 0.915

ogbn-arxiv

GraphSAGE

LARA-E 39.6% 43.0% -0.007

NORA 92.6% 90.8% 0.961

DrGAT

LARA-E 97.3% 97.7% 0.895

NORA 98.1% 98.4% 0.924

is useful in its original design, which is to analyze the influence on

a single target node. However, when it considers all nodes or all

edges, different nodes/edges might pick different influential nodes

w.r.t. them, and thus the large mask is difficult to optimize. The

LARA adaptions work best among the baselines, but they require

a lot of labels, which must be generated by the time-consuming

ground truth method. The original paper proposes a neighborhood

sampling strategy to improve efficiency since it only targets one

node, but it is not applicable in our scenario.

When comparing the efficiency, CF-GNNExplainer’, LARA, and

NORA are similar on small graphs. However, when we increase

the graph size, NORA remains the most stable efficiency. Besides,

LARA requires labeling of the ground truth to train the model. The

time in the table does not include the labeling time, but it actually

takes a lot of time. For example, it takes about 41 hours to generate

the ground truth influence scores for the DrGAT model on the

ogbn-arxiv dataset. If LARA requires 20% labeled data to train, it

still needs about 8 hours. Calculating the betweenness centrality

takes the longest time, since it traverses the shortest paths on the

graph. For the ogbn-arxiv dataset, we only sample 10000 nodes

to run the algorithm, and we approximate that it takes about 140

hours according to its time complexity.

5.4 Stability of The Proposed Influence Score
As the novel node-removal approach provides a new perspective

of evaluating node influence, we want to examine whether the real

influence of node removal generated by the brute-force method is

stable across different GNNs and different hyper-parameters. We

conduct experiments on the four citation datasets: Cora, CiteSeer,

PubMed, and ogbn-arxiv. We use the same models as above. We

change a sensitive hyper-parameter, hidden size, to evaluate the

results’ stability. For each model, we use three different hidden sizes:

128, 256, and 512, except for DrGAT on ogbn-arxiv, which only uses

128 and 256 due to memory limitation. For each model and each

dataset, we traverse each two-hidden-size pair and calculate the

Table 5: Stability results. The three column named by a GNN
model shows the correlation coefficient of different results
generated by the same GNN with different hidden sizes. The
rightmost column means the correlation coefficient of dif-
ferent results generated by different GNN models.

Dataset GCN GraphSAGE GAT/DrGAT Inter-model

Cora 0.9956 0.9857 0.9393 0.8765

CiteSeer 0.9968 0.9931 0.9585 0.8167

PubMed 0.9970 0.9963 0.9451 0.8372

ogbn-arxiv 0.9984 0.9979 0.9914 0.9557

Pearson correlation coefficient of each pair’s results, and we report

the mean of them. For each hidden size and each dataset, we also

traverse each two-GNN pair and calculate the Pearson correlation

coefficient of each pair’s results, and we calculate the mean of them.

Then, we further calculate the mean of the different hidden sizes’

results ("Inter-model"). We list the results in Table 5.

From the results, we can observe that the performance gener-

ated by different hidden sizes are very similar. It indicates that the

node-removal approach is stable across different hyper-parameters.

Results generated by different GNN models are also quite similar.

Nevertheless, it is not as similar as that of different hidden sizes. It

indicates that the influence of node removal is still dependent on

the specific GNN model.

6 CONCLUSION
It is important to study node influence and identify influential nodes

on a graph. Existing approaches that capture node influence typi-

cally focus on how a node functions given its existence, but they

ignore the node-removal perspective. We step into this important

yet neglected perspective, which could provide a new perspective

on node influence and benefit real-world applications. We use graph

neural network (GNN) models as a surrogate to learning the under-

lying propagation patterns on a graph. We formalize the problem

by removing a node, re-applying a trained GNN model, and using

the output change to measure the influence.

For detecting the influence of node removal for each node, the

ground-truth method is the brute-force algorithm, which is reli-

able but low in efficiency. To overcome this defect, we analyze how

GNN’s prediction changeswhen a node is removed and approximate

it with gradient information. We propose NOde-Removal-based

fAst GNN inference (NORA). It can efficiently approximate such

change in GNN’s prediction for all nodes by one forward propaga-

tion and one backpropagation. As we are studying a new problem

without mature baselines, we also adapt two methods from graph

counterfactual explanation as baseline methods for comparison. We

conduct extensive experiments on six networks and demonstrate

NORA’s effectiveness. We also verify the transferability of the node

influence score across different models, which indicates that it is

a stable indicator of node influence. This paper mainly focuses on

the approximation and the influence of node removal. We hope this

work can opens up an inspirational new perspective. In the future

work, we would extend our proposed NORA to a broader line of

research fields such as graph-level analysis, molecular property

prediction and link prediction.
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A SUPPLEMENTARY DISCUSSIONS OF
METHODS

Here we provide the supplementary discussions for the “Methods”

section.

A.1 Derivation of NORA
We first focus on the first term. To begin with, we get the following

formula based on the chain rule:

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

=
∑︁

𝑖∈𝑁 ( 𝑗 )
( 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

) + 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑗

𝜕ℎ
(𝐿)
𝑗

𝜕ℎ
(𝐿−1)
𝑗

(20)

To simplify its form,we need to approximate the ratio of
𝜕𝑓𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙−1)
𝑗

to
𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

. We use 𝑑 to represent the average degree. If 𝑣 𝑗 is not 𝑣𝑟 ’s

neighbor, the ratio is zero. If they are neighbors, which is of proba-

bility 𝑑/(𝑁 − 1), we assume that every neighbor of 𝑣 𝑗 contribute

equally to
𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

. And we approximate that 𝑣 𝑗 itself contributes

𝛽 times as its neighbors to the derivative. If we use 𝑑 to represent

the average degree, then for 𝑣 𝑗 being 𝑣𝑟 ’s neighbor, the ratio of

𝜕𝑓𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙−1)
𝑗

to
𝜕𝑓

𝜕ℎ
(𝑙−1)
𝑗

can be approximated as
1

𝑑+𝛽 . Further, we

assume that every node 𝑣 𝑗 functions equally, then we acquire Equa-

tion 21. ∑︁
𝑗≠𝑟

(
∑︁

𝑖∈𝑁 ( 𝑗 ),𝑖≠𝑟
( 𝜕𝑓𝑟

𝜕ℎ
(𝑙 )
𝑖

𝜕ℎ
(𝑙 )
𝑖

𝜕ℎ
(𝑙−1)
𝑗

)𝛿ℎ (𝑙−1)
𝑗

)

=
∑︁
𝑗≠𝑟

( 𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

− 𝜕𝑓𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙 )
𝑟

𝜕ℎ
(𝑙−1)
𝑗

)𝛿ℎ (𝑙−1)
𝑗

(21)

≈ (
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

𝛿ℎ
(𝑙−1)
𝑗

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
) (22)

As shown in the “Methods” section, we derive NORA’s approxi-

mation formula layer by layer and from back to front. We explained

the approximation form on one GNN layer in the “Methods” sec-

tion. Here we show how we derive the final formula, Equation 17.

At first, we start our approximation from the output layer. Let’s

assume we are removing node 𝑣𝑟 and the GNN model has 𝐿 layers.

The approximation begins with:

F𝑔𝜃 (𝑣𝑟 ) ≈ 𝛿 𝑓𝑟 ≈
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝛿ℎ
(𝐿)
𝑖

(23)

Then with the approximation of the three terms introduced in

the “Methods” section, we can transform the above formula to:

F𝑔𝜃 (𝑣𝑟 ) ≈ (
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟 ) |

|�̂� (𝑟 ) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑟

◦ ℎ (𝑙−1)𝑟 | |2

We rewrite 𝑗 with 𝑖 , and then we get:

F𝑔𝜃 (𝑣𝑟 ) ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟 ) |

|�̂� (𝑟 ) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 (24)

The first part of the formula has a similar algebraic form as

Equation 23. We approximate the term

∑
𝑖≠𝑟 (

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) in
the same way, so it extends the formula to previous layers. As the

approximation error might accumulate through layers, we multi-

ply the term by an extra decay weight 𝑠 ∈ [0, 1] to mitigate the

contribution of former layers:

F𝑔𝜃 (𝑣𝑟 ) ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

)𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟 ) |

|�̂� (𝑟 ) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 (25)

We expand the formula to previous layers and approximate pre-

vious layers similarly. When we reach the input layer, we get:

F𝑔𝜃 (𝑣𝑟 ) ≈
𝐿−1∑︁
𝑖=1

(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1−𝑖 ) ·

( |�̂� (𝑘) |
|�̂� (𝑘) | + 𝛽

· | | 𝜕𝑓𝑟

𝜕ℎ
(𝑖 )
𝑟

◦ ℎ (𝑖 )𝑟 | |2 + 𝛿𝑇𝑜𝑝𝑜𝑟 )

+(
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(0)
𝑖

𝛿ℎ
(0)
𝑖

) (𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
))𝐿

+(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1) (𝛿𝑇𝑜𝑝𝑜𝑟 +

|�̂� (𝑟 ) |
|�̂� (𝑟 ) | + 𝛽

| | 𝜕𝑓𝑟

𝜕ℎ
(0)
𝑟

◦ ℎ (0)𝑟 | |2)

(26)

In the formula, ℎ
(0)
𝑖

is the input feature of 𝑣𝑖 . It won’t change,

so 𝛿ℎ
(0)
𝑖

= 0. Since 𝛿𝑇𝑜𝑝𝑜𝑟 is the same in every layer, we extract

it from the summation and assign it a weight 𝑘3. Then we can get

the final formula:

F𝑔𝜃 (𝑣𝑟 ) ≈
𝐿−1∑︁
𝑖=0

(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1−𝑖 ) · |�̂� (𝑘) |

|�̂� (𝑘) | + 𝛽
·

| | 𝜕𝑓𝑟

𝜕ℎ
(𝑖 )
𝑟

◦ ℎ (𝑖 )𝑟 | |2 + 𝑘3 · 𝐿 · 𝛿𝑇𝑜𝑝𝑜𝑟 (27)

A.2 Time and Space Complexity
Here we make a detailed analysis of the methods’ time and space

complexity. 𝑁 denotes the number of nodes,𝑀 denotes the number

of edges, 𝐿 represents the number of the GNN’s layers, ℎ represents

the hidden size of the GNNmodel, and 𝑑 is the average node degree.

In most cases, the adjacency matrix is sparsely stored, and in this

situation, according to Paper [4], the time complexity of the forward

propagation or backpropagation of a common message-passing

GNN model is𝑂 (𝐿𝑁ℎ2 +𝐿𝑀ℎ), and the space complexity is𝑂 (𝑀 +
11
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𝐿ℎ2 + 𝐿𝑁ℎ). Here we list the time complexity of the ground truth

and NORA:

• Brute-force method (ground truth): it removes the nodes

one by one and does the forward propagation. The average

time complexity of removing a node is 𝑂 (𝑑). Therefore,
the total time complexity is 𝑂 (𝑁 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ + 𝑑)) =

𝑂 (𝐿𝑁 2ℎ2 + 𝐿𝑁𝑀ℎ).
• NORA: NORA first does a forward propagation and a back-

propagation, which costs 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ). In NORA’s for-

mula (Formula 14 in Section 4.1), the part before the plus

sign takes 𝑂 (ℎ) to calculate the 2-norm of the dot product

for each layer and each node, so it totally takes 𝑂 (𝐿𝑁ℎ).
The part after the plus sign needs to calculate 𝛿𝑡𝑜𝑝𝑜𝑟 . Cal-

culating 𝛿𝑡𝑜𝑝𝑜𝑟 makes two aggregations of neighbor in-

formation, each of which takes 𝑂 (𝑀) for all nodes, so

it takes 𝑂 (2𝑀) = 𝑂 (𝑀). Therefore, NORA totally takes

𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ + 𝐿𝑁ℎ +𝑀) = 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ), which is

the same as GNN’s propagation itself.

Here we list the space complexity of the ground truth and NORA

apart from the space complexity of GNN itself, 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).
• Brute-force method: it additionally stores a modified graph,

which costs 𝑂 (𝑀)..
• NORA: it additionally stores the gradients of every hidden

layer and some middle results, which costs 𝑂 (𝑀 + 𝐿𝑁ℎ).
None of these additional space complexity is comparable with

the space complexity of the GNN model, so their space complexity

is still 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).

B HYPER-PARAMETERS
On ogbn-arxiv, P_50, and P_20_50, we use their original data split

ratio. On Cora, CiteSeer, and PubMed, the majority of nodes are

not in any of the training, validation, or test set, so we change the

data split ratio to 5:3:2 to cover all nodes.

B.1 Hyper-Parameters of GNN Models
We have used five GNN models: GCN, GraphSAGE, GAT, DrGAT,

and TIMME. As GCN, GraphSAGE, and GAT are widely-used GNNs

on various datasets, we tune their hyper-parameters and choose a

well-performing setting. For DrGAT on ogbn-arxiv and TIMME on

the two Twitter datasets, we keep them the same as their original

choices. Please refer to DrGAT’s implementation repository
1
and

TIMME’s official repository
2
for more details. On Cora, CiteSeer,

and PubMed datasets, we adapt GCN, GraphSAGE, and GATmodels

from PyG. On ogbn-arxiv dataset, we adapt GCN and GraphSAGE

models from the implementation
3
of OGB team. We adapt DrGAT

from its implementation repository. On the two Twitter datasets,

we adapt TIMME from its official repository. TIMME consists of

multiple tasks, including a node classification task and some auxil-

iary edge prediction tasks, among which we only care about the

node classification task’s output.

Here we describe our hyper-parameter settings of GCN, Graph-

SAGE, and GAT. They have two layers when operating on Cora,

1
https://github.com/anonymousaabc/DRGCN

2
https://github.com/PatriciaXiao/TIMME

3
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/arxiv

CiteSeer, or PubMed, and three layers when operating on ogbn-

arxiv. On Cora, CiteSeer, or PubMed, they are trained with the

early-stopping mechanism. On ogbn-arxiv, GCN and GraphSAGE

are trained with fixed 300 epochs. We save the model at the epoch

where the validation performance reaches the highest. Later we use

that saved model to generate the influence of node removal. The

learning rate is set to 1𝑒 − 2, except for 3𝑒 − 3 when training GAT

on PubMed. Other hyper-parameters are listed in Table 6.

Table 6: Hyper-parameters of GNNmodels. “#epoch" and “pa-
tience" are the maximum number of epochs and the patience
used for early-stopping. “wd” is the weight decay.

Dataset GNN wd hidden dropout #epoch patience

Cora

GCN 1e-4 1024 0.6 50 20

GraphSAGE 1e-4 256 0.9 100 50

GAT 3e-5 1024 0.5 200 100

CiteSeer

GCN 3e-4 1024 0.5 200 50

GraphSAGE 1e-4 128 0.9 100 50

GAT 1e-4 256 0.5 150 70

PubMed

GCN 2e-4 1024 0.5 50 20

GraphSAGE 1e-4 256 0.5 150 70

GAT 4e-4 1024 0.3 150 70

ogbn-arxiv

GCN 0 256 0.5 300 -

GraphSAGE 0 256 0.5 300 -

B.2 Hyper-Parameters of NORA
We need to slightly modify the NORA algorithm on the Twitter

datasets. Since the Twitter datasets are directed graphs and each

edge has a reversed counterpart, we change 𝑁 (𝑖) and �̂� (𝑖) into 𝑣𝑖 ’s
in-neighbors or out-neighbors, instead of containing each neighbor

twice. Similarly, we need to change 𝑑 to the average in-degree or

average out-degree.

NORA has five hyper-parameters in Equation 17: 𝑘1, 𝑘2, 𝑘3, 𝑠

and 𝛽 . We tune them for each dataset and model. Usually, the best

hyper-parameter setting for one metric is not the best for another.

We consider all the metrics when selecting the hyper-parameters.

We also report the highest Pearson correlation coefficient results

with hyper-parameters to maximize this metric. In the experiments

of NORA-t and NORA-n, we use the same hyper-parameters for

NORA on the same GNNmodel and dataset. In the experiments that

don’t consider Precision@k%, we only consider Pearson correlation

coefficient metric, so we use the hyper-parameters that maximize

Pearson correlation coefficient.

𝑘1, 𝑘2, and 𝑠 are limited in range [0, 1]. 𝑠 is usually set to 0.95

or 1. 𝑘3 differs greatly on different models and datasets, since the

scale of NORA-t and NORA-n differs greatly in different situations.

𝛽 typically falls in [2, 30]. The hyper-parameters of NORA that

only considers Pearson correlation coefficient are listed in Table ??.
Experiments of deeper GNNs consider more than 3 layers. Other

experiments only use 2 layers on Cora, CiteSeer, and PubMed;

and 3 layers on ogbn-arxiv. The hyper-parameters that consider

both Precision@k% and Pearson correlation coefficient are listed in

Table 8.
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Table 8: Hyper-parameters of NORA that consider both Pre-
cision@k% and Pearson correlation coefficient.

Dataset GNN 𝑘1 𝑘2 𝑘3 𝑠 𝛽

Cora

GCN 0.9 0.5 20 0.95 6

GraphSAGE 0.6 0.3 100 1.0 6

GAT 0.6 0.6 50 1.0 2

CiteSeer

GCN 0.9 0.8 10 0.95 3

GraphSAGE 1.0 1.0 70 1.0 4

GAT 0.9 0.9 20 0.95 4

PubMed

GCN 0.4 1.0 500 0.95 25

GraphSAGE 0.2 1.0 3000 0.95 20

GAT 0.5 0.4 120 0.95 7

ogbn-arxiv

GCN 1.0 1.0 1.3e4 0.95 6

GraphSAGE 1.0 1.0 2e4 0.95 6

DrGAT 1.0 1.0 1e4 0.95 2

P50 TIMME 0.05 0.07 7e4 1.0 3

P_20_50 TIMME 0.1 0.1 3e4 0.95 4
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