
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fast Inference of Removal-Based Node Influence
Anonymous Author(s)

Submission Id: 434
∗

ABSTRACT
Graph neural networks (GNNs) have been widely utilized to cap-

ture the underlying information propagation patterns in graph-

structured data. While remarkable performance has been achieved

in extensive classification tasks, there comes a new trending topic

of identifying influential nodes on graphs. This paper investigates a

new yet practical problem of evaluating the influence of node exis-

tence itself, which aims to efficiently measure the overall changes in

the outputs of a trained GNN model caused by removing a node. A

realistic example is, “Under a task of predicting Twitter accounts’ po-

larity, had a particular account not appeared, how might others’ po-

larity be changed?”. A straightforward way to obtain the node influ-

ence is to alternately calculate the influence of removing each node,

which is reliable but time-consuming. The related lines of work,

such as graph adversarial attack and counterfactual explanation,

cannot directly satisfy our needs since they typically suffer from low

efficiency on large graphs. Besides, they cannot individually evalu-

ate the removal influence of each node. To upgrade the efficiency,

we design an efficient algorithm, NOde-Removal-based fAst GNN
inference (NORA), which uses the gradient of the neural networks

to approximate the node-removal results. It only costs one forward

propagation and one backpropagation to approximate the influence

score for all nodes. Extensive experiments are conducted on six

benchmark datasets, where NORA exceeds the compared methods.

Our code is available at https://anonymous.4open.science/r/NORA.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Informa-
tion systems→ Social networks.

KEYWORDS
node influence evaluation, graph neural network, network analysis

1 INTRODUCTION
In recent years, the booming development of big data has brought

about many relational data, that can be naturally represented as

graphs. Evaluating node influence and identifying influential nodes

on a graph has become a trending and beneficial topic [14]. It

can help with viral advertising [9, 24, 37], online news dissemina-

tion [11, 25], police breaking down a criminal network [7], pan-

demic control [13, 54], etc. A lot of research on the “influence maxi-

mization” problem [16, 18, 23, 26, 28, 29, 44, 48, 50, 53, 62] focus on

identifying influential nodes whose triggered influence spreading

range can be maximized. These works can answer the question:

“Which Twitter accounts post information that can spread to the

greatest amount of audiences?”

Yet, another question is under-explored: “If a Twitter account had

never appeared, how could other Twitter users’ opinions/interactions

(e.g. following, retweeting, and replying) have been?”, such as the

example we illustrate in Figure 1. Actually, studying the influence

Before: After:

follow

unfollow

Figure 1: An example of a possible node-removal scenario on
a social network. Red versus Blue represents two different
opinions. Color shade represents how firm a user’s stance is.

of node removal can benefit many real-world applications includ-

ing finding the bottlenecks and improving the infrastructure net-

work robustness [6, 27], modeling how vaccination can decrease

virus spreading [3, 13, 54] and figuring out the top scientists con-

tribute to knowledge spreading based on a science co-authorship

network [1, 3, 22]. A lot of research on the “network dismantling”

problem[30, 35, 38–40, 58, 63] have studied the structural influ-

ence of node removal. However, the task-specific influence of node

removal considering both attributes and structures has been under-

explored. Therefore, we focus on measuring the influence of node

existence itself by evaluating the task-specific influence of node

removal.

Graph neural networks (GNNs) are among the most powerful

graph representation learning tools. Different from research on the

“influence maximization” problem that uses a propagation model to

simulate node influence spreading range, we use GNNs as a surro-

gate to capture the information propagation patterns. Propagation

models cannot evaluate the influence of node removal, but it is

not the case for GNNs. Based on the message-passing nature of

GNN [10], we assume that a trained GNN model can capture the

propagation patterns of a graph. After removing a node, we can use

a pre-trained GNN’s new outputs to simulate the scenario if that

removed node had not existed based on the learned propagation

patterns. For node classification task, it simulates what other node

labels could have been; for link prediction task, what the connec-

tions could have been; for graph classification task, what the graph

label could have been. We calculate the influence of node removal

as the total variation distance between the original outputs and new

outputs of the trained GNN model, which is illustrated in Figure 2.

We aim to calculate the influence score for each node. How-

ever, brutal-force direct calculation is very time-consuming, so we

demand an efficient method. Our method that changes GNN pre-

dictions by changing its input graph structure is similar to some

common practice in graph adversarial attack and graph counter-

factual explanation, though we aim at a different problem setting.

Graph adversarial attack aims to maximally undermine GNNmodel

performance or change GNN predictions by inducing unnoticeable

perturbations. The perturbations mainly include modifying node

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GNN modelGraph G
node i

labels

training loss

back propagate

prediction

Graph G-vi pre-trained GNN model
updated prediction

keep parameters
unchanged

remove node i
Node

In�uence
F(vi)

Figure 2: Our schema of evaluating node influence based on
node removal. The GNN model is trained on the original
graph, then we remove a node and apply the trained GNN to
the new graph structure. We measure the total variation dis-
tance between the originally predicted and newly predicted
distributions of node/edge/graph classes.

features [33, 67, 69], injecting new nodes [5, 8, 19, 45, 47, 52, 66],

or modifying edges [51, 57, 64, 68]. To the best of our knowledge,

none of the adversarial attack methods utilizes node removal, since

it is impractical in real-world attacking scenarios.

Graph counterfactual explanation aims to explain a GNN’s pre-

diction of a target node/edge/graph by finding the minimum per-

turbation on the input graph that can change the prediction of the

target [43]. They do utilize node removal [17, 34, 41, 46, 55, 60, 61].

However, directly using these methods to evaluate node influence

confronts two difficulties. First, we evaluate the influence of re-

moving a particular node on all other nodes/edges, while graph

counterfactual explanation evaluates the influence of removing

many nodes and edges on a single target. Second, graph counterfac-

tual explanation strategies are not typically good at scaling up to

handle large graphs. Most of the existing graph-level classification

datasets contain a lot of small graphs, such as molecules. For node

classification and link prediction tasks, some models only need to

consider the computation graph of a targeted node/edge, which is

also small. Most of the existing works mentioned above only con-

duct experiments on graphs with less than 4,000 nodes. LARA [41]

designs a scalable model to predict the influence of surrounding

nodes on the target node, but it requires the time consuming label-

ing of the ground truth, thus it is efficient in space but not in time.

Our method is much faster.

The node influence measurement problem we proposed has not

been studied yet, and related lines of work cannot directly satisfy

our demands. To efficiently calculate the node influence score, we

use the gradient to approximate the influence based on the first-

order derivatives and heuristics. We propose the algorithm, NOde-
Removal-based fAst GNN Inference (NORA), that only needs one

forward propagation and one backpropagation to approximate the

removal influence for all nodes. Since we are studying a new prob-

lem without mature baselines, we adapt two approaches in graph

counterfactual explanation as supplementary baselines to this prob-

lem. We conduct extensive experiments on six datasets. The ex-

perimental results demonstrate the effectiveness and efficiency of

NORA. To sum up, this paper makes the following contributions:

• We propose a novel perspective of evaluating node influence

based on node removal and a pre-trained GNN.

• We propose an efficient and effective algorithm, NORA, to ap-

proximate the removal influence for all nodes.

• Experimental results on six datasets demonstrate that NORA

outperforms the baselines on performance and efficiency.

2 RELATEDWORK
2.1 Graph Adversarial Attack
Graph adversarial attack aims to undermine GNN performance or

change GNN predictions by imposing a small perturbation to the

graph within a limited budget. Zügner et al. [67, 69] started the race

of graph adversarial attacks. Pioneering works are mainly based

on modifying node features [33, 67, 69] and perturbing edges [51,

57, 64, 68], including adding, removing, and rewiring edges. Some

recent works [5, 8, 19, 20, 45, 47, 52, 66] study the node injection

attack, which injects some nodes into the graph and connects them

with some existing nodes. Among them, Chen et al. [5] prove that

the node injection attack can theoretically cause more damage

than the graph modification attack with less or equal modifica-

tion budget. G-NIA model [47] sets a strong limitation that the

attacker can only inject one node with one edge, and it achieves

more than 90% successful rate in the single-target attack on Reddit

and ogbn-products datasets. They demonstrate the strong potential

of altering nodes’ existence. To the best of our knowledge, none of

the adversarial attack methods considers node removal, since it is

impractical in real-world applications. Nonetheless, as our target

is to analyze node influence instead of attacking, node removal is

worth exploring.

2.2 Graph Counterfactual Explanation
Graph counterfactual explanation explains why a GNNmodel gives

a particular result. Such as, to explain the GNN prediction of a target

node in the node classification task, a target edge in the link pre-

diction task, or a target graph in the graph classification task. The

explanation is provided by finding the minimum perturbation on

the input graph that can change the prediction of the target. There

are some methods [2, 31, 32, 59] based purely on edge removal.

Some methods utilize both node removal and edge removal by op-

timizing mask matrices [46, 55], predicting node influence with

neural network [41], applying graph generation models [34, 60], or

searching for an optimal neighbor graph [17, 61]. As analyzed in

Section 1, thesemethods are not directly applicable to evaluating the

proposed node influence, so we adapt two famous methods as sup-

plementary baselines to this novel problem. CF-GNNExplainer [31]

optimizes a real-value mask matrix that multiplies the adjacency

matrix during training, and elements in the mask matrix must be

within range [0, 1]. During inference, elements below 0.5 indicate

edge removal. We adapt it to also consider node removal with a

node mask matrix. Optimizing the mask matrix is a very common

practice [2, 46, 55, 59], so we use CF-GNNExplainer as a baseline.

As discussed in Section 1, most graph explanation methods are

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

not scalable. To solve the problem, a recent work, LARA [41], uses

a GNN to predict node influence, whose parameter size does not

grow with the input graph size. We adapt it as our second baseline.

2.3 Network Dismantling
Network dismantling studies the structural influence of node re-

moval on unattributed graphs. It aims to maximally decrease net-

work connectivity by analyzing by removing influential nodes. The

influence is usually evaluated by the network connectivity, such

as the size of the largest connected component, efficiency (i.e. the

average of the reciprocals of shortest path lengths of all node pairs),

etc [36]. Betweenness centrality is one of the most widely-used

methods in the network dismantling problem setting to measure

node influence [30, 35, 38, 39, 58]. It is the ratio of shortest paths

that pass through a node among all shortest paths between all node

pairs. We use it as a simple baseline in our experiments.

3 PROBLEM DEFINITION
3.1 Notations
A graph 𝐺 = (𝑉 , 𝐸) consists of 𝑁 nodes 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑁 } and
edges 𝐸 = {𝑒𝑖 𝑗 | 𝑗 ∈ N (𝑖)}, where N(𝑖) denotes the neighbor nodes
of 𝑣𝑖 (without 𝑣𝑖), and 𝑒𝑖 𝑗 denotes the edge from 𝑣𝑖 to 𝑣 𝑗 . ˆN(𝑖)
denotes neighbor nodes of 𝑣𝑖 plus 𝑣𝑖 itself. 𝐴 denotes the adjacency

matrix. Each node 𝑣𝑖 is associated with a feature vector 𝑥𝑖 ∈ R𝑑 ,
and a label 𝑦𝑖 ∈ R if node classification task is applicable. We

denote the degree of 𝑣𝑖 as 𝑑𝑖 = |N (𝑖) |. When we remove node 𝑣𝑟
(𝑟 ∈ {1, 2, . . . , 𝑁 }) and all edges connected with 𝑣𝑟 , from graph 𝐺 ,

we denote the new graph as𝐺−𝑣𝑟 . 𝑔𝜃 denotes a trained GNN model.

We denote as 𝑣𝑟 the target node to analyze removal influence, and

F𝑔𝜃 (𝑣𝑟) denotes the proposed influence.

Graph neural networks (GNNs) generally follow the message-

passing framework [10]. A GNN model consists of multiple graph

convolutional layers. In a typical graph convolutional layer, a node

updates its representation by aggregating its neighbor nodes’ rep-

resentations:

ℎ
(𝑙)
𝑖

= 𝑈𝑙 (ℎ
(𝑙−1)
𝑖

,AGG(
∑︁

𝑗∈N(𝑖)
MSG𝑙 (ℎ

(𝑙−1)
𝑗

, ℎ
(𝑙−1)
𝑖

))), (1)

where ℎ
(𝑙)
𝑖

denotes the node 𝑣𝑖 ’s representation after passing the

𝑙-th layer (𝑙 ∈ 1, 2, . . .), and ℎ
(0)
𝑖

denotes the input features.MSG𝑙

is the message function, AGG is the aggregation function, and𝑈𝑙
is the update function.

3.2 Problem Definition
In order to evaluate the change of node removal, we use GNN

models as a surrogate to predict the scenario where the removed

node does not exist based on the existing propagation patterns.

GNN models typically make prediction on a node label, edge exis-

tence, or graph class, via transforming its output to a vector, which

denotes the probability of different classes or options. In general,

we measure the change of prediction by the ℓ1-norm of the differ-

ence between the original and updated probability vectors. The

difference can equally capture the prediction change for every class.

For graph classification, we directly use the prediction change. For

step 1: remove message to neighbors

step 2: change aggregation terms

step 3: change neighbors’ embeddings
 a�ect other parts of the graph

Figure 3: The influence calculation decomposition of our
method.

node classification and link prediction, we evaluate the sum of the

prediction change of all remaining nodes/edges.

Definition 1. (Node Influence in Node Classification Task)
Given a node classification model 𝑔𝜃 trained on graph𝐺 , we denote

its prediction of node 𝑣𝑖 as 𝑔𝜃 (𝐺)𝑖 . The influence of removing node

𝑣𝑟 ∈ 𝑉 is calculated as:

F𝑔𝜃 (𝑣𝑟) =
𝑁∑︁

𝑖=1,𝑖≠𝑟

| |𝑓 (𝑔𝜃 (𝐺)𝑖) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟)𝑖) | |1 , (2)

where 𝑓 (·) is the optional MLP layers and softmax layer that trans-

form a GNN’s output to the probabilistic vector.

Definition 2. (Node Influence in Link Prediction Task) Given
a link prediction model 𝑔𝜃 trained on graph 𝐺 , we denote its pre-

diction of edge 𝑒𝑖 𝑗 as 𝑔𝜃 (𝐺)𝑒𝑖 𝑗 . We use 𝐷𝑒 to denote the whole link

prediction set, and 𝐷𝑟 to denote edges that link 𝑣𝑟 . The influence

of removing node 𝑣𝑟 ∈ 𝑉 is calculated as:

F𝑔𝜃 (𝑣𝑟) =
∑︁

𝑒𝑖 𝑗 ∈𝐷𝑒−𝐷𝑟

| |𝑓 (𝑔𝜃 (𝐺)𝑒𝑖 𝑗) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟)𝑒𝑖 𝑗) | |1 , (3)

The definition can be similarly generalized to the graph classifi-

cation task, where we simply take | |𝑓 (𝑔𝜃 (𝐺)) − 𝑓 (𝑔𝜃 (𝐺−𝑣𝑟)) | |1.
The ground truth is generated by the brute-force algorithm,

where we alternatively remove each node from the original graph

one at a time, and calculate the node influence. Iterating through all

nodes causes short efficiency. One intuitive way for acceleration is

neighborhood sampling. If the GNN has 𝑙 layers, removing a node

will only affect the outputs of its 𝑙-hop neighborhood, and com-

puting their new outputs will only require a 2𝑙-hop neighborhood.

However, it is still time-consuming, especially on dense-connected

graphs, (e.g., ogbn-arxiv and two Twitter datasets in our experi-

ments) where 2𝑙-hop neighborhoods might already contain most of

the nodes. Therefore, we need to look for an efficient and effective

method to calculate the influence score.

4 METHODS
To upgrade the efficiency, we propose Node-Removal-based Fast
GNN Inference (NORA) algorithm. In general, we approximate

the influence of the single-node-removal process by decomposing

the calculation process into three parts, which correspond to three

parts of changes caused by the node removal. Figure 3 illustrates

the three parts. We will describe our approximation algorithm in

detail in the following subsections.

4.1 Influence Score Calculation Decomposition
The general idea of NORA is that we approximate the influence of

node removal via first-order derivatives. We only need the gradient

information from one backpropagation to approximately calculate

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the influence scores for all nodes.Our method could be applied

to node classification and link prediction tasks, and can also be

extended to the graph classification task. In general, our method

could be adapted to various downstream tasks of a GNN model.

Equation 1 illustrates a message-passing GNN layer. A typical

parameterization of it is:

ℎ
(𝑙)
𝑖

= 𝜎 (𝑊 (𝑙)
𝑢 (𝑊 (𝑙)

𝑠 ℎ
(𝑙−1)
𝑖

+
∑︁

𝑗∈𝑁 (𝑖)
𝛼 𝑗𝑖𝑊

(𝑙)
𝑚 ℎ

(𝑙−1)
𝑗

)), (4)

where 𝜎 denotes the activation function, 𝑊
(𝑙)
𝑢 , 𝑊

(𝑙)
𝑠 , and 𝑊

(𝑙)
𝑚

are model parameters. 𝛼 𝑗𝑖 is the edge normalization of messages

coming from 𝑣𝑖 ’s neighbors and is usually related to node degree

or attention mechanism, e.g., 𝛼 𝑗𝑖 = 1/
√︁
|𝑁 (𝑖) | |𝑁 (𝑗) | in GCN [21].

Suppose the GNNmodel has 𝐿 layers, the last layer output𝑔𝜃 (𝐺)𝑖 =
ℎ
(𝐿)
𝑖

∈ 𝑅𝑐 is the predicted class probability, where 𝑐 is the number

of classes.

We cannot directly calculate the first-order derivatives based on

Equation 2, since there is a 1-norm. However, intuitively, removing

a node usually causes consistent change to the class of other nodes,

e.g., raising the probability of a particular class for all nodes. There-

fore, we can rewrite the formula. We denote as 𝑓𝑟 =
∑𝑁
𝑖=1,𝑖≠𝑟 ℎ

(𝐿)
𝑖

the sum of all node predictions except for node 𝑣𝑟 , and we denote

as 𝛿 𝑓𝑟 the change of 𝑓𝑟 when removing node 𝑣𝑟 .

Lemma 1. If removing 𝑣𝑟 consistently changes the class distribution
of other nodes, the influence defined in Equation 2 equals:

| |
𝑁∑︁

𝑖=1,𝑖≠𝑟

𝑔𝜃 (𝐺)𝑖 −
𝑁∑︁

𝑖=1,𝑖≠𝑟

𝑔𝜃 (𝐺−𝑣𝑟)𝑖 | |1 = | |𝛿 𝑓𝑟 | |1

= | |
∑︁
𝑖≠𝑟

𝛿ℎ
(𝐿)
𝑖

| |1 = | |
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝛿ℎ
(𝐿)
𝑖

| |1 . (5)

Though the second line contains the derivative symbol, it is

strictly equal because
𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

= 1. We write it in this form because

we want to keep a uniform form with later formulas. We can extend

this form from the last layer’s formula to the frontmost layer. Here

we analyze how to extend it from the 𝐿-th layer to the (𝐿 − 1)-th
layer. Since the 1-norm is difficult to compute, we first ignore it and

just approximate 𝛿 𝑓𝑟 .

In a typical GNN layer in Equation 4, the model parameters

are fixed during inference, but 𝛼 𝑗𝑖 and ℎ
(𝐿−1)
𝑗

might change due

to removing 𝑣𝑟 . Therefore, we can approximate 𝛿ℎ
(𝐿)
𝑖

with the

first-order derivatives:

𝛿ℎ
(𝐿)
𝑖

≈ −𝐼 (𝑣𝑟 ∈ 𝑁 (𝑖))
𝜕ℎ

(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟

+
∑︁

𝑗∈�̂� (𝑖), 𝑗≠𝑟
(
𝜕ℎ

(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
𝛿𝛼 𝑗𝑖 +

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

), (6)

where 𝐼 (.) is the indicator function. Then by combining the above

formula with the definition of 𝛿 𝑓𝑟 , we can derive the following

formula.

Lemma 2. We can approximate 𝛿 𝑓𝑟 for the GNN model described
in Equation 4 with a second-order error term as:

𝛿 𝑓𝑟 ≈ −
∑︁

𝑖∈𝑁 (𝑟)

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 +

∑︁
𝑖≠𝑟

∑︁
𝑗∈�̂� (𝑖), 𝑗≠𝑟

(𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
𝛿𝛼 𝑗𝑖) +

∑︁
𝑖≠𝑟

∑︁
𝑗∈�̂� (𝑖), 𝑗≠𝑟

(𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

) . (7)

The error term is in the second order because we are using the

first-order derivatives to approximate. We now decompose the cal-

culation into three terms, divided by “+” in the above formula. The

first term measures the direct influence of the disappearance of 𝑣𝑟 ’s

latent representations, which decreases an input to its neighbor

node; The second term measures the change of its neighbor’s edge

normalization term 𝛼 𝑗𝑖 ; and the third term measures the change

of other nodes’ latent representations, which will influence fur-

ther neighbors. The three terms correspond to the three kinds of

influence in Figure 3.

4.2 Approximation of Each Decomposed Term
Term 1: Direct impact to the neighbors. For clarity, the first
term refers to the portion between the first minus sign and the first

plus sign in Equation 7. To begin with, by applying the chain rule,

the first term equals to:

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 − 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 . (8)

The derived equation consists of two parts. The form of the first

part is simpler and more convenient to handle, so we want to

eliminate the second part and only keep the first part. We do this

by approximating the ratio of the second part to the first part.

Here we make a rough assumption that every node is equal, which

means they have the same number of neighbors, the same node

representation, and the same gradient. We denote the change of

node representation, 𝛿ℎ
(𝐿−1)
𝑗

,∀𝑗 ∈ 𝑉 , as 𝛿ℎ. We denote the gradient

coming from a neighbor node as 𝑔, and the gradient coming from

the higher-layer representation of a node itself as 𝛽𝑔. 𝛽 is typically

higher than 1, because self-loop and residual connection make the

gradient coming from the higher-layer representation of a node

itself larger than the gradient from the higher-layer representation

of neighbor nodes. Therefore, the first part of Equation 8 is (𝑑𝑟 +
𝛽)𝑔𝛿ℎ, and the second part is 𝛽𝑔𝛿ℎ. Based on their ratio, and by

rewriting the enumeration variable 𝑗 as 𝑖 , we derive the following

equation.

Lemma 3. If every node in the graph has equal structures and
attributes, the first term of Equation 7 equals:

𝑑𝑟

𝑑𝑟 + 𝛽

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 . (9)

In our experiments, we find that the most effective way of calcu-

lating
𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

ℎ
(𝐿−1)
𝑟 is to change it to | | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ℎ (𝐿−1)𝑟 | |2. ◦means

element-wise product between the two same-dimensional vectors,

and | |.| |2 means the 2-norm.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Term 2: Aggregation term change.. In the second term of Equa-

tion 7,
𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕𝛼 𝑗𝑖
=

𝜕𝑓𝑟
𝜕𝛼 𝑗𝑖

. We have tried using
𝜕𝑓𝑟
𝜕𝛼 𝑗𝑖

but it didn’t

perform well, so we only consider approximating 𝛿𝛼 𝑗𝑖 . Then we

analyze 𝛿𝛼 𝑗𝑖 . Unlike the first term, 𝛿𝛼 𝑗𝑖 greatly depends on the de-

sign of the specific GNN model. Some GNN models, e.g., GCN [21]

and GraphSAGE [12], only use structural information like node

degree, while some models, e.g., GAT [49] and DrGCN [65], uses

the attention mechanism. To reach a flexible and universally adapt-

able approximation, we use structural measurement. We consider

two widely-used GNNs: GCN [21] and GraphSAGE [12]. The edge

normalization of GCN is 𝛼 𝑗𝑖 = 1/
√︁
|𝑁 (𝑖) | |𝑁 (𝑗) |, and that of Graph-

SAGE is 𝛼 𝑗𝑖 = 1/|𝑁 (𝑖) |. If neither 𝑣𝑖 nor 𝑣 𝑗 is 𝑣𝑟 ’s neighbor, 𝛼 𝑗𝑖 of
GCN and GraphSAGE does not change.

If 𝑣𝑖 or 𝑣 𝑗 is a neighbor of 𝑣𝑟 , we combine the fashion of GCN and

GraphSAGE to approximate 𝛿𝛼 𝑗𝑖 . We denote the degree of node 𝑣𝑖
as 𝑑𝑖 = |𝑁 (𝑖) |. Suppose 𝑣𝑖 is 𝑣𝑟 ’s neighbor, and 𝑣 𝑗 is 𝑣𝑖 ’s neighbor,
we approximate 𝛿𝛼 𝑗𝑖 by ˆ𝛿𝛼 𝑗𝑖 :

ˆ𝛿𝛼 𝑗𝑖 = [𝑘1 (
1

√
𝑑𝑖 − 1

− 1

√
𝑑𝑖
) + (1 − 𝑘1) (

1

𝑑𝑖 − 1

− 1

𝑑𝑖
)]

[𝑘2
1√︁
𝑑 𝑗

+ (1 − 𝑘2)
1

𝑑 𝑗
], (10)

where 𝑘1 and 𝑘2 are hyper-parameters ranging in [0,1]. An inter-

esting intuition is that there exist hyper-parameters 𝑘1 and 𝑘2 that

make
ˆ𝛿𝛼 𝑗𝑖 equal to 𝛿𝛼 𝑗𝑖 for GCN. Based on

ˆ𝛿𝛼 𝑗𝑖 , we approximate

the second term as:

𝛿𝑇𝑜𝑝𝑜𝑟 =
∑︁

𝑖∈𝑁 (𝑟)

∑︁
𝑗∈𝑁 (𝑖)

ˆ𝛿𝛼 𝑗𝑖 . (11)

Term 3: Hidden representation change. Using the chain rule

to analyze
𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

, we can simplify the third term. The third term

in Equation 7 equals Equation 12, which can be further equally

transformed into Equation 13.

∑︁
𝑗≠𝑟

(𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

− 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑗

)𝛿ℎ (𝐿−1)
𝑗

(12)

=
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

−
∑︁

𝑗∈𝑁 (𝑟)

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿)
𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

. (13)

Similar to the simplification process of the first term, here we also

arrive at a formula with two parts. The form of the first part is more

convenient to handle, and it takes the same form as Equation 5,

so we want to eliminate the second part and only keep the first

part. We make the same rough assumption that every node is equal.

Equation 8 as below. We denote the average node degree as 𝑑 . Using

the notations from the simplification process of the first term, we

can approximate the first part of the third term (Equation 12) as

(𝑁 − 1) (𝑑 + 𝛽)𝑔𝛿ℎ, and the second part as 𝑑𝑔𝛿ℎ. Based on their

ratio, and by rewriting the enumeration variable 𝑗 as 𝑖 , we derive

the following equation.

Lemma 4. If every node in the graph has equal structures and
attributes, the third term of Equation 7 equals:

(
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽)). (14)

We use this equation to approximate the third term. Its algebraic

form is similar to Equation 5, so the third term can successfully

extend the formula to previous layers.

4.3 Combined Derivation
By combining the approximations of three terms together, we get:

𝛿 𝑓𝑟 ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽)) + 𝛿𝑡𝑜𝑝𝑜𝑟

− 𝑑𝑟

𝑑𝑟 + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 . (15)

Now we successfully extend the original formula to a fronter layer.

By repeating this process, we can approximate 𝛿 𝑓𝑟 by the gradient

from every layer. Our original goal in Equation 5 is the 1-norm of

𝛿 𝑓𝑟 . However, it is difficult to approximate via gradient. Instead, we

calculate the sum of the square of each element in 𝛿 𝑓𝑟 , which is

highly positively correlated with its 1-norm. Based on the first-order

derivative, we approximate it as:

(| |𝛿 𝑓𝑟 | |2)2 ≈ 𝑓𝑟 · 𝛿 𝑓𝑟 , (16)

where · is the dot product. Based on it and by extending Equation 15
to all previous layers, we derive:

F𝑔𝜃 (𝑣𝑟) ≈ 𝑓𝑟 {
𝐿−1∑︁
𝑖=0

[(𝑠 (1 − 𝑑

(𝑁 − 1) (𝑑 + 𝛽)))
(𝐿−1−𝑖) 𝑑𝑟

𝑑𝑟 + 𝛽

| | 𝜕𝑓𝑟

𝜕ℎ
(𝑖)
𝑟

◦ ℎ (𝑖)𝑟 | |2] + 𝑘3 · 𝐿 · 𝛿𝑇𝑜𝑝𝑜𝑟 }. (17)

In the formula, ℎ
(0)
𝑖

is the input feature of 𝑣𝑖 . Since our derivation

is from the back layer to the front layer, approximation error might

accumulate. To eliminate this issue, we add an additional decay term

𝑠 to reduce the weight of fronter layers. 𝑠 usually falls in [0.9, 1.0].
Since each layer generates a 𝛿𝑇𝑜𝑝𝑜𝑟 term, we multiply it by the

number of layers 𝐿.

However, Equation 17 is still not efficient. It needs to backpropa-

gate 𝑓𝑟 to acquire the approximation for node 𝑣𝑟 , but we want to

simultaneously generate the approximation results for all nodes.

In the standard way, when we are backpropagating 𝑓𝑟 , we set the

loss of every node 𝑣𝑖 ∈ 𝑉 as 𝑓𝑟 , so that we can accurately get
𝜕𝑓𝑟

𝜕ℎ
(𝑖)
𝑟

.

To upgrade the efficiency, We relax this restriction and set the loss

of node 𝑣𝑖 ∈ 𝑉 as 𝑓𝑖 , allowing for each node to backpropagate a

different loss. In this way, we can backpropagate them simultane-

ously. When we are approximating the influence of removing node

𝑣𝑟 , we not only base on 𝑓𝑟 but also on 𝑓𝑖 , 𝑖 ≠ 𝑟 , so it downgrades

the performance. However, 𝑓𝑟 still has a dominant influence on the

gradient of 𝑣𝑟 ’s hidden representations, because self-loop and resid-

ual connections are stronger than normal edges. The experimental

results show a satisfactory performance, so the accuracy drop is

tolerable, with a huge gain in time efficiency. In this way, we can

generate the approximation for all nodes simultaneously. It only

takes a few seconds to complete the computation.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Complexity Comparision.

Type Time Space

brute-force 𝑂 (𝐿𝑁 2ℎ2 + 𝐿𝑁𝑀ℎ) 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ)
NORA 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ) 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ)

The approximation of the link prediction task is similar. We just

replace 𝑓𝑟 with the sum of edge predictions which are not connected

with 𝑣𝑟 . The other processes during derivation are the same.

4.4 Complexity Analysis
Here we analyze the time and space complexity of the ground truth

and the proposed method. We use 𝑁 to denote the number of nodes,

𝑀 to denote the number of edges, 𝐿 to represent the number of

the GNN’s layers, ℎ to represent the hidden size of the GNN model,

and 𝑑 to represent the average node degree. In most cases, the

adjacency matrix is sparsely stored, and in this situation, according

to Paper [4], the time complexity of the forward propagation or

backpropagation of a common message-passing GNN model is

𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ), and the space complexity is 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).
Based on it, we list the time and space complexities in Table 1.

We list the detailed computation of these time and space com-

plexity in the appendix A.2. As shown in Table 1, NORA cost sig-

nificantly less time than the brute-force method, and basically the

same space complexity as the brute-force method. Therefore, it is

generalizable to very large real-world graphs when considering

time. For example, it takes about 41 hours to generate the ground

truth influence scores for DrGAT model on the ogbn-arxiv dataset,

but it only takes a few seconds by NORA. When considering space,

since they have the same space complexity as the GNN model, the

bottleneck is the GNN’s space consumption.

5 EXPERIMENTS
5.1 Baseline Adaption
Since there is no mature baseline for this new problem we propose,

we adapt two methods from graph counterfactual explanation as

baselines.

CF-GNNExplainer. CF-GNNExplainer [31] is a famous graph

counterfactual explanation method. Its basic idea is to multiply

the adjacency matrix with a mask matrix. It optimizes the mask

matrix to drive the GNN prediction away from its original predic-

tion. After training, a smaller element in the mask matrix indicates

a more influential edge. We adapt it to evaluate node influence.

We optimize a node mask 𝑀 ∈ 𝑅 |𝑉 |
, and its elements are limited

in the range [0, 1]. In every GNN layer, we multiply node embed-

dings by𝑀 before the message passing. After training, we evaluate

influence as the distance between node mask and 1. Following CF-

GNNExplainer, our loss function consists of a prediction loss term

that drives the new prediction away from the original prediction

and a regularization term that drives the value in the mask to be

close to 1 (otherwise removing all nodes might be the best solution).

The loss function is:

𝐿𝑜𝑠𝑠 = −
𝑁∑︁
𝑖=1

| |𝑔𝜃 (𝑉 , 𝐸)𝑖 − 𝑔𝜃 (𝑉 ;𝐸 ◦𝑀)𝑖 | |1 + ||𝑀 | |1, (18)

Table 2: Dataset statistics.

Dataset #Nodes #Edges #Features #Classes Homo/Hetero

Cora 2,708 5,429 1,433 7 homogeneous

CiteSeer 3,327 4,732 3,703 6 homogeneous

PubMed 19,717 44,338 500 3 homogeneous

ogbn-arxiv 169,343 1,166,243 128 40 homogeneous

P50 5,435 1,593,721 - 2 heterogeneous

P_20_50 12,103 1,976,985 - 2 heterogeneous

LARA. LARA [41] is a recent work that greatly improves scalability

by applying a GCN model to predict the edge influence. The GCN

model generates a source embedding, 𝑝𝑖 , and a target embedding, 𝑡𝑖
for every node 𝑣𝑖 ∈ 𝑉 . It predicts the influence of 𝑣𝑖 on 𝑣 𝑗 by 𝑝𝑖 · 𝑡 𝑗 ,
where · is the dot product. We approximate the influence of node

removal as the sum of its influence on its neighbors:

F𝑔𝜃 (𝑣𝑟) ≈
∑︁

𝑖∈𝑁 (𝑟)
𝑝𝑟 · 𝑡𝑖 . (19)

Besides, we also try to directly predict the node influence score

with the GCN model, but it is not as effective as first generating

node embeddings and calculating link influence.

5.2 Experiment Settings
Datasets. To comprehensively evaluate NORA in different scenarios,

we conduct experiments on six datasets and two tasks. The datasets

include four widely-applied benchmark citation networks (Cora,

CiteSeer, and PubMed [42], and ogbn-arxiv [15]) and two social

networks. Nodes on the four citation networks are papers, and

undirected edges represent citations. The original task is to predict

the research field of each paper. We also add a link prediction

task to verify NORA’s capacity in different settings. We follow the

same data split ratio as the original link prediction task on the

two social networks. The two social networks are heterogeneous

Twitter datasets constructed by a previous study [56]. Nodes are

users, and directed edges represent one of five Twitter actions or

their counterparts (e.g., be followed): follow, retweet, like, reply,

and mention. It originally contains two tasks. The first task is to

predict the political leaning of each user. The second task is to

predict whether there is a specific type of link from one user to

another. Table 2 lists the dataset statistics.

An issue is that the trained GNN model is biased to the training-

set nodes/edges. To fairly evaluate the influence of every node, we

run each experiment 5 times and cycle the data split of nodes and

edges by 20% per time, giving every node an equal chance to show

up in training, validation, or test sets. For the link prediction task,

we also cycle the link data split. After evaluation, we take the mean

of the 5 results as the node influence score.

GNN Models.We select representative GNN models. On the citation

datasets, we use three commonly used GNNs, GCN [21], Graph-

SAGE [12], and GAT [49]. As the ogbn-arxiv dataset is a heated

benchmark, we use the SOTA model on its leaderboard at the time

we started this project, DrGAT [65], to replace the vanilla GAT. Dr-

GAT is an improved variant of GAT, which is further equipped with

a dimensional reweighting mechanism. Since the Twitter datasets

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Approximation method performance and efficiency. We use GCN for Cora, CiteSeer, PubMed, and ogbn-arxiv datasets,
and TIMME model for P50 and P_20_50.

Node Classification Link Prediction

Dataset Method top-1 top-5% top-10% Corr Time top-1 top-5% top-10% Corr Time

Cora

Betweenness 100.0% 74.6% 72.9% 0.763 26s 100.0% 79.0% 78.4% 0.864 26s

CF-GNNExplainer’ 65.5% 58.6% 63.0% 0.567 10s 5.8% 21.5% 29.7% 0.052 5.5s

LARA-N 100.0% 90.2% 89.4% 0.815 4.7s 100.0% 92.6% 89.9% 0.770 4.6s

LARA-E 100.0% 90.5% 89.7% 0.831 7.5s 100.0% 93.9% 90.4% 0.878 6.2s

NORA 88.8% 92.6% 91.9% 0.884 11s 100.0% 91.0% 89.0% 0.907 13s

CiteSeer

Betweenness 28.1% 76.1% 76.4% 0.630 26s 17.7% 76.5% 80.4% 0.591 26s

CF-GNNExplainer’ 78.0% 37.4% 38.6% 0.478 9.3s 1.8% 24.4% 31.4% 0.018 6.5s

LARA-N 100.0% 91.2% 88.6% 0.797 6.6s 100.0% 94.5% 90.4% 0.718 7.0s

LARA-E 100.0% 89.8% 85.7% 0.812 6.2s 100.0% 96.0% 94.7% 0.917 7.4s

NORA 100.0% 83.9% 86.6% 0.833 14s 100.0% 95.3% 94.1% 0.822 14s

PubMed

Betweenness 63.3% 76.8% 85.4% 0.528 42min 66.4% 80.1% 86.3% 0.569 42min

CF-GNNExplainer’ 31.3% 71.4% 70.8% 0.509 9.1s 75.1% 20.3% 23.3% 0.230 6.7s

LARA-N 79.6% 90.2% 91.0% 0.799 3.8s 39.1% 88.7% 93.1% 0.837 4.6s

LARA-E 79.6% 91.5% 92.8% 0.836 7.5s 76.4% 96.7% 97.4% 0.923 5.5s

NORA 51.1% 83.2% 88.6% 0.745 19s 100.0% 89.1% 91.4% 0.873 22s

ogbn-arxiv

Betweenness 100.0% 74.4% 77.9% 0.782 ≈140h 100.0% 75.8% 78.9% 0.786 ≈140h
CF-GNNExplainer’ 66.4% 24.8% 32.1% 0.666 19s 0.1% 14.7% 21.6% 0.213 15s

LARA-N 100.0% 86.0% 83.5% 0.595 9.1s 100.0% 91.5% 89.4% 0.559 21s

LARA-E 77.4% 53.0% 55.1% 0.506 21s 100.0% 64.4% 65.3% 0.758 39s

NORA 77.4% 86.5% 86.1% 0.900 35s 100.0% 95.6% 94.2% 0.997 31s

P50

Betweenness 100.0% 83.6% 91.8% 0.643 ≈6h 100.0% 72.3% 86.2% 0.644 ≈6h
CF-GNNExplainer’ 100.0% 17.1% 16.0% 0.811 34s 73.1% 95.8% 74.5% 0.666 10min

LARA-N 100.0% 89.4% 92.1% 0.435 10s 100.0% 81.1% 88.2% 0.540 59s

LARA-E 100.0% 90.2% 86.3% 0.877 23s 100.0% 88.2% 90.2% 0.862 68s

NORA 100.0% 98.7% 98.5% 0.956 19s 100.0% 92.3% 91.3% 0.943 24s

P_20_50

Betweenness 98.3% 88.5% 93.5% 0.707 ≈14h 100.0% 89.5% 92.4% 0.838 ≈14h
CF-GNNExplainer’ 66.9% 62.5% 57.4% 0.612 76s 100.0% 21.6% 21.9% 0.789 15min

LARA-N 98.3% 83.6% 91.9% 0.556 13s 100.0% 88.4% 92.4% 0.549 71s

LARA-E 98.3% 93.7% 93.1% 0.968 25s 100.0% 94.2% 93.3% 0.968 84s

NORA 100.0% 98.7% 96.7% 0.979 37s 100.0% 95.5% 95.4% 0.984 42s

are heterogeneous, GCN, GraphSAGE and GAT are no longer use-

ful, we use TIMME model, the GNN proposed in the same paper as

the datasets [56]. It tackles the challenges on the Twitter datasets,

e.g., sparse features, sparse labels, and heterogeneity.

EvaluationMetrics.We compare NORA against the baselinemethods

introduced above. In the following tables, “Betweenness” denotes

the betweenness centrality; “CF-GNNExplainer’” is our adaption

of CF-GNNExplainer. Among the adaptions of LARA, “N” and “E”

represent the node-version and edge-version adaptions. We use two

metrics to evaluate the similarity between approximation results

and the ground truth. The first one is the top-k score, which is

the sum of the influence score of the top k nodes ranked by the

approximation method divided by that ranked by the ground truth.

We evaluate top 1, top 5%, and top 10% nodes. The second metric

is the Pearson correlation coefficient between the ground truth

influence score and the approximated one.

Hyper-parameters.We keep the hyper-parameters for DrGAT and

TIMME models the same as their original settings since they are

already carefully tuned. We search for the best hyper-parameters

for GCN, GraphSAGE, and GAT models. We also tune the hyper-

parameters of each approximation method for each dataset and

model. We list the hyper-parameter details in the appendix.

5.3 Performance Comparison
The main results of the compared methods are recorded in Table 3.

We evaluate the approximation performance of the GCN model on

each citation dataset, since GCN is one of the most commonly used

GNN models. Since GCN is not applicable to the heterogeneous

graph, we use TIMME model on the Twiter datasets. Table 4 shows

the results of more GNN models on the node classification task on

the four citation networks. In the two tables, NORA outperforms

the baseline methods. The betweenness centrality can not take

node attributes into consideration. The CF-GNNExplaner’ method

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Further Verification on More GNNs on the node
classification task.

Dataset GNN Method top-5% top-10% Corr

Cora

GraphSAGE

LARA-E 84.3% 77.9% 0.819

NORA 85.8% 82.0% 0.839

GAT

LARA-E 84.8% 83.6% 0.792
NORA 76.7% 78.3% 0.774

CiteSeer

GraphSAGE

LARA-E 73.4% 72.6% 0.714

NORA 84.1% 86.0% 0.799

GAT

LARA-E 80.7% 76.9% 0.782
NORA 79.5% 78.3% 0.746

PubMed

GraphSAGE

LARA-E 85.1% 90.3% 0.785

NORA 84.9% 91.0% 0.792

GAT

LARA-E 84.3% 87.6% 0.794

NORA 92.1% 93.7% 0.915

ogbn-arxiv

GraphSAGE

LARA-E 39.6% 43.0% -0.007

NORA 92.6% 90.8% 0.961

DrGAT

LARA-E 97.3% 97.7% 0.895

NORA 98.1% 98.4% 0.924

is useful in its original design, which is to analyze the influence on

a single target node. However, when it considers all nodes or all

edges, different nodes/edges might pick different influential nodes

w.r.t. them, and thus the large mask is difficult to optimize. The

LARA adaptions work best among the baselines, but they require

a lot of labels, which must be generated by the time-consuming

ground truth method. The original paper proposes a neighborhood

sampling strategy to improve efficiency since it only targets one

node, but it is not applicable in our scenario.

When comparing the efficiency, CF-GNNExplainer’, LARA, and

NORA are similar on small graphs. However, when we increase

the graph size, NORA remains the most stable efficiency. Besides,

LARA requires labeling of the ground truth to train the model. The

time in the table does not include the labeling time, but it actually

takes a lot of time. For example, it takes about 41 hours to generate

the ground truth influence scores for the DrGAT model on the

ogbn-arxiv dataset. If LARA requires 20% labeled data to train, it

still needs about 8 hours. Calculating the betweenness centrality

takes the longest time, since it traverses the shortest paths on the

graph. For the ogbn-arxiv dataset, we only sample 10000 nodes

to run the algorithm, and we approximate that it takes about 140

hours according to its time complexity.

5.4 Stability of The Proposed Influence Score
As the novel node-removal approach provides a new perspective

of evaluating node influence, we want to examine whether the real

influence of node removal generated by the brute-force method is

stable across different GNNs and different hyper-parameters. We

conduct experiments on the four citation datasets: Cora, CiteSeer,

PubMed, and ogbn-arxiv. We use the same models as above. We

change a sensitive hyper-parameter, hidden size, to evaluate the

results’ stability. For each model, we use three different hidden sizes:

128, 256, and 512, except for DrGAT on ogbn-arxiv, which only uses

128 and 256 due to memory limitation. For each model and each

dataset, we traverse each two-hidden-size pair and calculate the

Table 5: Stability results. The three column named by a GNN
model shows the correlation coefficient of different results
generated by the same GNN with different hidden sizes. The
rightmost column means the correlation coefficient of dif-
ferent results generated by different GNN models.

Dataset GCN GraphSAGE GAT/DrGAT Inter-model

Cora 0.9956 0.9857 0.9393 0.8765

CiteSeer 0.9968 0.9931 0.9585 0.8167

PubMed 0.9970 0.9963 0.9451 0.8372

ogbn-arxiv 0.9984 0.9979 0.9914 0.9557

Pearson correlation coefficient of each pair’s results, and we report

the mean of them. For each hidden size and each dataset, we also

traverse each two-GNN pair and calculate the Pearson correlation

coefficient of each pair’s results, and we calculate the mean of them.

Then, we further calculate the mean of the different hidden sizes’

results ("Inter-model"). We list the results in Table 5.

From the results, we can observe that the performance gener-

ated by different hidden sizes are very similar. It indicates that the

node-removal approach is stable across different hyper-parameters.

Results generated by different GNN models are also quite similar.

Nevertheless, it is not as similar as that of different hidden sizes. It

indicates that the influence of node removal is still dependent on

the specific GNN model.

6 CONCLUSION
It is important to study node influence and identify influential nodes

on a graph. Existing approaches that capture node influence typi-

cally focus on how a node functions given its existence, but they

ignore the node-removal perspective. We step into this important

yet neglected perspective, which could provide a new perspective

on node influence and benefit real-world applications. We use graph

neural network (GNN) models as a surrogate to learning the under-

lying propagation patterns on a graph. We formalize the problem

by removing a node, re-applying a trained GNN model, and using

the output change to measure the influence.

For detecting the influence of node removal for each node, the

ground-truth method is the brute-force algorithm, which is reli-

able but low in efficiency. To overcome this defect, we analyze how

GNN’s prediction changeswhen a node is removed and approximate

it with gradient information. We propose NOde-Removal-based

fAst GNN inference (NORA). It can efficiently approximate such

change in GNN’s prediction for all nodes by one forward propaga-

tion and one backpropagation. As we are studying a new problem

without mature baselines, we also adapt two methods from graph

counterfactual explanation as baseline methods for comparison. We

conduct extensive experiments on six networks and demonstrate

NORA’s effectiveness. We also verify the transferability of the node

influence score across different models, which indicates that it is

a stable indicator of node influence. This paper mainly focuses on

the approximation and the influence of node removal. We hope this

work can opens up an inspirational new perspective. In the future

work, we would extend our proposed NORA to a broader line of

research fields such as graph-level analysis, molecular property

prediction and link prediction.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Sara Ahajjam and Hassan Badir. 2018. Identification of influential spreaders in

complex networks using HybridRank algorithm. Scientific reports 8, 1 (2018),
11932.

[2] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho

Lam, and Yong Zhang. 2021. Robust Counterfactual Explanations on Graph

Neural Networks. CoRR abs/2107.04086 (2021). arXiv:2107.04086 https://arxiv.

org/abs/2107.04086

[3] Michele Bellingeri, Daniele Bevacqua, Francesco Scotognella, Roberto Alfieri,

Quang Nguyen, Daniele Montepietra, and Davide Cassi. 2020. Link and node

removal in real social networks: a review. Frontiers in Physics 8 (2020), 228.
[4] Derrick Blakely, Jack Lanchantin, and Yanjun Qi. 2021. Time and space complex-

ity of graph convolutional networks. Accessed on: Dec 31 (2021).
[5] Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han,

and James Cheng. 2022. Understanding and Improving Graph Injection Attack

by Promoting Unnoticeability. https://doi.org/10.48550/ARXIV.2202.08057

[6] Paolo Crucitti, Vito Latora, and Massimo Marchiori. 2004. A topological anal-

ysis of the Italian electric power grid. Physica A: Statistical mechanics and its
applications 338, 1-2 (2004), 92–97.

[7] Bruno Requião da Cunha and Sebastián Gonçalves. 2018. Topology, robustness,

and structural controllability of the Brazilian Federal Police criminal intelligence

network. Applied network science 3, 1 (2018), 1–20.
[8] Jiazhu Dai, Weifeng Zhu, and Xiangfeng Luo. 2020. A Targeted Universal Attack

on Graph Convolutional Network. CoRR abs/2011.14365 (2020). arXiv:2011.14365

https://arxiv.org/abs/2011.14365

[9] Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of

Customers. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, California) (KDD ’01).
Association for Computing Machinery, New York, NY, USA, 57–66. https:

//doi.org/10.1145/502512.502525

[10] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and

George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry. CoRR
abs/1704.01212 (2017). arXiv:1704.01212 http://arxiv.org/abs/1704.01212

[11] Daniel Gruhl, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins.

2004. Information diffusion through blogspace. In Proceedings of the 13th inter-
national conference on World Wide Web. 491–501.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. CoRR abs/1706.02216 (2017). arXiv:1706.02216

http://arxiv.org/abs/1706.02216

[13] P Holme. 2004. Efficient local strategies for vaccination and network attack.

Europhysics Letters (EPL) 68, 6 (dec 2004), 908–914. https://doi.org/10.1209/epl/

i2004-10286-2

[14] Jun Hou, Shiyu Chen, Huaqiu Long, and Qianmu Li. 2022. Research and analysis

of influence maximization techniques in online network communities based on

social big data. Journal of Organizational and End User Computing (JOEUC) 34,
10 (2022), 1–23.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets

for Machine Learning on Graphs. CoRR abs/2005.00687 (2020). arXiv:2005.00687

https://arxiv.org/abs/2005.00687

[16] Huimin Huang, Hong Shen, Zaiqiao Meng, Huajian Chang, and Huaiwen He.

2019. Community-based influence maximization for viral marketing. Applied
Intelligence 49 (2019), 2137–2150.

[17] Zexi Huang, Mert Kosan, Sourav Medya, Sayan Ranu, and Ambuj Singh. 2023.

Global Counterfactual Explainer for Graph Neural Networks. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining.
141–149.

[18] Masoud Jalayer, Morvarid Azheian, and Mehrdad Agha Mohammad Ali Kermani.

2018. A hybrid algorithm based on community detection and multi attribute

decision making for influence maximization. Computers & Industrial Engineering
120 (2018), 234–250.

[19] Mingxuan Ju, Yujie Fan, Yanfang Ye, and Liang Zhao. 2022. Black-box Node

Injection Attack for Graph Neural Networks. https://doi.org/10.48550/ARXIV.

2202.09389

[20] Mingxuan Ju, Yujie Fan, Chuxu Zhang, and Yanfang Ye. 2022. Let Graph be the

Go Board: Gradient-free Node Injection Attack for Graph Neural Networks via

Reinforcement Learning. https://doi.org/10.48550/ARXIV.2211.10782

[21] Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. CoRR abs/1609.02907 (2016). arXiv:1609.02907

http://arxiv.org/abs/1609.02907

[22] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H Eugene Stanley, and Hernán A Makse. 2010. Identification of influential

spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[23] Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and BS Panda. 2022. Influence

maximization in social networks using graph embedding and graph neural

network. Information Sciences 607 (2022), 1617–1636.

[24] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. 2007. The dynamics

of viral marketing. ACM Transactions on the Web (TWEB) 1, 1 (2007), 5–es.
[25] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, and Matthew

Hurst. 2007. Patterns of cascading behavior in large blog graphs. In Proceedings
of the 2007 SIAM international conference on data mining. SIAM, 551–556.

[26] Weimin Li, Yaqiong Li, Wei Liu, and Can Wang. 2022. An influence maximiza-

tion method based on crowd emotion under an emotion-based attribute social

network. Information Processing & Management 59, 2 (2022), 102818.
[27] Yuchong Li and Qinghui Liu. 2021. A comprehensive review study of cyber-

attacks and cyber security; Emerging trends and recent developments. Energy
Reports 7 (2021), 8176–8186.

[28] Mingkai Lin, Wenzhong Li, and Sanglu Lu. 2020. Balanced influence maximiza-

tion in attributed social network based on sampling. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 375–383.

[29] Chen Ling, Junji Jiang, Junxiang Wang, My T Thai, Renhao Xue, James Song,

Meikang Qiu, and Liang Zhao. 2023. Deep graph representation learning and

optimization for influence maximization. In International Conference on Machine
Learning. PMLR, 21350–21361.

[30] Yang Lou, Ruizi Wu, Junli Li, Lin Wang, Xiang Li, and Guanrong Chen. 2022.

A Learning Convolutional Neural Network Approach for Network Robustness

Prediction. IEEE Transactions on Cybernetics (2022), 1–14. https://doi.org/10.

1109/tcyb.2022.3207878

[31] Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio

Silvestri. 2021. CF-GNNExplainer: Counterfactual Explanations for Graph Neural

Networks. CoRR abs/2102.03322 (2021). arXiv:2102.03322 https://arxiv.org/abs/

2102.03322

[32] Dongsheng Luo,Wei Cheng, Dongkuan Xu,Wenchao Yu, Bo Zong, Haifeng Chen,

and Xiang Zhang. 2020. Parameterized Explainer for Graph Neural Network.

CoRR abs/2011.04573 (2020). arXiv:2011.04573 https://arxiv.org/abs/2011.04573

[33] Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. 2021. Adversarial Attack on Graph

Neural Networks as An Influence Maximization Problem. CoRR abs/2106.10785

(2021). arXiv:2106.10785 https://arxiv.org/abs/2106.10785

[34] Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. 2022.

Clear: Generative counterfactual explanations on graphs. Advances in Neural
Information Processing Systems 35 (2022), 25895–25907.

[35] Balume Mburano, Weisheng Si, Qing Cao, and Wei Xing Zheng. 2022. More

Effective Centrality-Based Attacks on Weighted Networks. https://doi.org/10.

48550/ARXIV.2211.09345

[36] Balume Mburano, Weisheng Si, Qing Cao, and Wei Xing Zheng. 2022. More

Effective Centrality-Based Attacks on Weighted Networks. https://doi.org/10.

48550/ARXIV.2211.09345

[37] Hung T Nguyen, My T Thai, and Thang N Dinh. 2017. A billion-scale approxima-

tion algorithm for maximizing benefit in viral marketing. IEEE/ACM Transactions
On Networking 25, 4 (2017), 2419–2429.

[38] Quang Nguyen, Hi-Duc Pham, David Cassi, and Michele Bellingeri. 2019. Con-

ditional attack strategy for real-world complex networks. Physica A: Statistical
Mechanics and its Applications 530 (2019), 121561.

[39] Tingyuan Nie, Zheng Guo, Kun Zhao, and Zhe-Ming Lu. 2015. New attack strate-

gies for complex networks. Physica A: Statistical Mechanics and its Applications
424 (2015), 248–253. https://doi.org/10.1016/j.physa.2015.01.004

[40] Saeed Osat, Fragkiskos Papadopoulos, Andreia Sofia Teixeira, and Filippo Radic-

chi. 2022. Embedding-aided network dismantling. https://doi.org/10.48550/

ARXIV.2208.01087

[41] Yao Rong, Guanchu Wang, Qizhang Feng, Ninghao Liu, Zirui Liu, Enkelejda

Kasneci, and Xia Hu. 2023. Efficient GNN Explanation via Learning Removal-

based Attribution. arXiv:2306.05760 [cs.LG]

[42] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and

Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29
(2008), 93–106.

[43] Ilia Stepin, Jose M. Alonso, Alejandro Catala, and Martín Pereira-Fariña. 2021.

A Survey of Contrastive and Counterfactual Explanation Generation Methods

for Explainable Artificial Intelligence. IEEE Access 9 (2021), 11974–12001. https:

//doi.org/10.1109/ACCESS.2021.3051315

[44] Chengai Sun, Xiuliang Duan, Liqing Qiu, Qiang Shi, and Tengteng Li. 2022. RLIM:

representation learning method for influence maximization in social networks.

International Journal of Machine Learning and Cybernetics 13, 11 (2022), 3425–
3440.

[45] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.

2020. Adversarial attacks on graph neural networks via node injections: A hier-

archical reinforcement learning approach. In Proceedings of the Web Conference
2020. 673–683.

[46] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and

Yongfeng Zhang. 2022. Learning and Evaluating Graph Neural Network Expla-

nations based on Counterfactual and Factual Reasoning. In Proceedings of the
ACM Web Conference 2022. ACM. https://doi.org/10.1145/3485447.3511948

[47] Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi

Cheng. 2021. Single Node Injection Attack against Graph Neural Networks.

In Proceedings of the 30th ACM International Conference on Information and

9

https://arxiv.org/abs/2107.04086
https://arxiv.org/abs/2107.04086
https://arxiv.org/abs/2107.04086
https://doi.org/10.48550/ARXIV.2202.08057
https://arxiv.org/abs/2011.14365
https://arxiv.org/abs/2011.14365
https://doi.org/10.1145/502512.502525
https://doi.org/10.1145/502512.502525
https://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
https://doi.org/10.1209/epl/i2004-10286-2
https://doi.org/10.1209/epl/i2004-10286-2
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2005.00687
https://doi.org/10.48550/ARXIV.2202.09389
https://doi.org/10.48550/ARXIV.2202.09389
https://doi.org/10.48550/ARXIV.2211.10782
https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/tcyb.2022.3207878
https://doi.org/10.1109/tcyb.2022.3207878
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2011.04573
https://arxiv.org/abs/2106.10785
https://arxiv.org/abs/2106.10785
https://doi.org/10.48550/ARXIV.2211.09345
https://doi.org/10.48550/ARXIV.2211.09345
https://doi.org/10.48550/ARXIV.2211.09345
https://doi.org/10.48550/ARXIV.2211.09345
https://doi.org/10.1016/j.physa.2015.01.004
https://doi.org/10.48550/ARXIV.2208.01087
https://doi.org/10.48550/ARXIV.2208.01087
https://arxiv.org/abs/2306.05760
https://doi.org/10.1109/ACCESS.2021.3051315
https://doi.org/10.1109/ACCESS.2021.3051315
https://doi.org/10.1145/3485447.3511948

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Knowledge Management. ACM. https://doi.org/10.1145/3459637.3482393

[48] Shan Tian, Songsong Mo, Liwei Wang, and Zhiyong Peng. 2020. Deep reinforce-

ment learning-based approach to tackle topic-aware influence maximization.

Data Science and Engineering 5 (2020), 1–11.

[49] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2017. Graph Attention Networks. https://doi.org/10.

48550/ARXIV.1710.10903

[50] Chao Wang, Yiming Liu, Xiaofeng Gao, and Guihai Chen. 2021. A reinforcement

learning model for influence maximization in social networks. In International
Conference on Database Systems for Advanced Applications. Springer, 701–709.

[51] Haoran Wang, Yingtong Dou, Canyu Chen, Lichao Sun, Philip S. Yu, and Kai Shu.

2023. Attacking Fake News Detectors via Manipulating News Social Engagement.

arXiv:2302.07363 [cs.SI]

[52] Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua

Zheng. 2020. Scalable Attack on Graph Data by Injecting Vicious Nodes. CoRR
abs/2004.13825 (2020). arXiv:2004.13825 https://arxiv.org/abs/2004.13825

[53] Ying Wang, Yunan Zheng, and Yiguang Liu. 2022. Identifying vital nodes for

influence maximization in attributed networks. Scientific Reports 12, 1 (2022),
22630.

[54] Zhen Wang, Da-Wei Zhao, Lin Wang, Gui-Quan Sun, and Zhen Jin. 2015. Im-

munity of multiplex networks via acquaintance vaccination. Europhysics Letters
112, 4 (2015), 48002.

[55] Haoran Wu, Wei Chen, Shuang Xu, and Bo Xu. 2021. Counterfactual Supporting

Facts Extraction for Explainable Medical Record Based Diagnosis with Graph

Network. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, Online, 1942–1955. https://doi.org/

10.18653/v1/2021.naacl-main.156

[56] Zhiping Xiao, Weiping Song, Haoyan Xu, Zhicheng Ren, and Yizhou Sun. 2020.

TIMME: Twitter ideology-detection via multi-task multi-relational embedding.

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2258–2268.

[57] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks:

An Optimization Perspective. CoRR abs/1906.04214 (2019). arXiv:1906.04214

http://arxiv.org/abs/1906.04214

[58] Dengcheng Yan, Wenxin Xie, and Yiwen Zhang. 2022. Betweenness Approx-

imation for Hypernetwork Dismantling with Hypergraph Neural Network.

https://doi.org/10.48550/ARXIV.2203.03958

[59] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.

2019. GNNExplainer: Generating Explanations for Graph Neural Networks.

In Advances in Neural Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019, NeurIPS 2019, Decem-
ber 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle,

Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-

nett (Eds.). 9240–9251. https://proceedings.neurips.cc/paper/2019/hash/

d80b7040b773199015de6d3b4293c8ff-Abstract.html

[60] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. XGNN: Towards Model-

Level Explanations of Graph Neural Networks. CoRR abs/2006.02587 (2020).

arXiv:2006.02587 https://arxiv.org/abs/2006.02587

[61] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On Explainabil-

ity of Graph Neural Networks via Subgraph Explorations. CoRR abs/2102.05152

(2021). arXiv:2102.05152 https://arxiv.org/abs/2102.05152

[62] Cai Zhang, Weimin Li, Dingmei Wei, Yanxia Liu, and Zheng Li. 2022. Net-

work dynamic GCN influence maximization algorithm with leader fake labeling

mechanism. IEEE Transactions on Computational Social Systems (2022).
[63] Jiazheng Zhang and Bang Wang. 2022. Dismantling Complex Networks by

a Neural Model Trained from Tiny Networks. In Proceedings of the 31st ACM
International Conference on Information Knowledge Management. ACM. https:

//doi.org/10.1145/3511808.3557290

[64] Sixiao Zhang, Hongxu Chen, Xiangguo Sun, Yicong Li, and Guandong Xu. 2022.

Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation.

In Proceedings of the ACM Web Conference 2022. ACM. https://doi.org/10.1145/

3485447.3512179

[65] Xu Zou, Qiuye Jia, Jianwei Zhang, Chang Zhou, Hongxia Yang, and Jie Tang.

2019. Dimensional reweighting graph convolutional networks. arXiv preprint
arXiv:1907.02237 (2019).

[66] Xu Zou, Qinkai Zheng, YuxiaoDong, XinyuGuan, Evgeny Kharlamov, Jialiang Lu,

and Jie Tang. 2021. TDGIA: Effective InjectionAttacks onGraphNeural Networks.

CoRR abs/2106.06663 (2021). arXiv:2106.06663 https://arxiv.org/abs/2106.06663

[67] Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann.

2020. Adversarial Attacks on Graph Neural Networks: Perturbations and Their

Patterns. ACM Trans. Knowl. Discov. Data 14, 5, Article 57 (jun 2020), 31 pages.

https://doi.org/10.1145/3394520

[68] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on

Graph Neural Networks via Meta Learning. CoRR abs/1902.08412 (2019).

arXiv:1902.08412 http://arxiv.org/abs/1902.08412

[69] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

Attacks on Neural Networks for Graph Data. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM.

https://doi.org/10.1145/3219819.3220078

10

https://doi.org/10.1145/3459637.3482393
https://doi.org/10.48550/ARXIV.1710.10903
https://doi.org/10.48550/ARXIV.1710.10903
https://arxiv.org/abs/2302.07363
https://arxiv.org/abs/2004.13825
https://arxiv.org/abs/2004.13825
https://doi.org/10.18653/v1/2021.naacl-main.156
https://doi.org/10.18653/v1/2021.naacl-main.156
https://arxiv.org/abs/1906.04214
http://arxiv.org/abs/1906.04214
https://doi.org/10.48550/ARXIV.2203.03958
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html
https://arxiv.org/abs/2006.02587
https://arxiv.org/abs/2006.02587
https://arxiv.org/abs/2102.05152
https://arxiv.org/abs/2102.05152
https://doi.org/10.1145/3511808.3557290
https://doi.org/10.1145/3511808.3557290
https://doi.org/10.1145/3485447.3512179
https://doi.org/10.1145/3485447.3512179
https://arxiv.org/abs/2106.06663
https://arxiv.org/abs/2106.06663
https://doi.org/10.1145/3394520
https://arxiv.org/abs/1902.08412
http://arxiv.org/abs/1902.08412
https://doi.org/10.1145/3219819.3220078

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A SUPPLEMENTARY DISCUSSIONS OF
METHODS

Here we provide the supplementary discussions for the “Methods”

section.

A.1 Derivation of NORA
We first focus on the first term. To begin with, we get the following

formula based on the chain rule:

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

=
∑︁

𝑖∈𝑁 (𝑗)
(𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿)
𝑖

𝜕ℎ
(𝐿−1)
𝑗

) + 𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑗

𝜕ℎ
(𝐿)
𝑗

𝜕ℎ
(𝐿−1)
𝑗

(20)

To simplify its form,we need to approximate the ratio of
𝜕𝑓𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙−1)
𝑗

to
𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

. We use 𝑑 to represent the average degree. If 𝑣 𝑗 is not 𝑣𝑟 ’s

neighbor, the ratio is zero. If they are neighbors, which is of proba-

bility 𝑑/(𝑁 − 1), we assume that every neighbor of 𝑣 𝑗 contribute

equally to
𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

. And we approximate that 𝑣 𝑗 itself contributes

𝛽 times as its neighbors to the derivative. If we use 𝑑 to represent

the average degree, then for 𝑣 𝑗 being 𝑣𝑟 ’s neighbor, the ratio of

𝜕𝑓𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙−1)
𝑗

to
𝜕𝑓

𝜕ℎ
(𝑙−1)
𝑗

can be approximated as
1

𝑑+𝛽 . Further, we

assume that every node 𝑣 𝑗 functions equally, then we acquire Equa-

tion 21. ∑︁
𝑗≠𝑟

(
∑︁

𝑖∈𝑁 (𝑗),𝑖≠𝑟
(𝜕𝑓𝑟

𝜕ℎ
(𝑙)
𝑖

𝜕ℎ
(𝑙)
𝑖

𝜕ℎ
(𝑙−1)
𝑗

)𝛿ℎ (𝑙−1)
𝑗

)

=
∑︁
𝑗≠𝑟

(𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

− 𝜕𝑓𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙)
𝑟

𝜕ℎ
(𝑙−1)
𝑗

)𝛿ℎ (𝑙−1)
𝑗

(21)

≈ (
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑗

𝛿ℎ
(𝑙−1)
𝑗

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
) (22)

As shown in the “Methods” section, we derive NORA’s approxi-

mation formula layer by layer and from back to front. We explained

the approximation form on one GNN layer in the “Methods” sec-

tion. Here we show how we derive the final formula, Equation 17.

At first, we start our approximation from the output layer. Let’s

assume we are removing node 𝑣𝑟 and the GNN model has 𝐿 layers.

The approximation begins with:

F𝑔𝜃 (𝑣𝑟) ≈ 𝛿 𝑓𝑟 ≈
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿)
𝑖

𝛿ℎ
(𝐿)
𝑖

(23)

Then with the approximation of the three terms introduced in

the “Methods” section, we can transform the above formula to:

F𝑔𝜃 (𝑣𝑟) ≈ (
∑︁
𝑗≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑗

𝛿ℎ
(𝐿−1)
𝑗

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟) |

|�̂� (𝑟) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝑙−1)
𝑟

◦ ℎ (𝑙−1)𝑟 | |2

We rewrite 𝑗 with 𝑖 , and then we get:

F𝑔𝜃 (𝑣𝑟) ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟) |

|�̂� (𝑟) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 (24)

The first part of the formula has a similar algebraic form as

Equation 23. We approximate the term

∑
𝑖≠𝑟 (

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

) in
the same way, so it extends the formula to previous layers. As the

approximation error might accumulate through layers, we multi-

ply the term by an extra decay weight 𝑠 ∈ [0, 1] to mitigate the

contribution of former layers:

F𝑔𝜃 (𝑣𝑟) ≈ (
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑖

𝛿ℎ
(𝐿−1)
𝑖

)𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)

+𝛿𝑇𝑜𝑝𝑜𝑟 +
|�̂� (𝑟) |

|�̂� (𝑟) | + 𝛽
| | 𝜕𝑓𝑟

𝜕ℎ
(𝐿−1)
𝑟

◦ ℎ (𝐿−1)𝑟 | |2 (25)

We expand the formula to previous layers and approximate pre-

vious layers similarly. When we reach the input layer, we get:

F𝑔𝜃 (𝑣𝑟) ≈
𝐿−1∑︁
𝑖=1

(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1−𝑖) ·

(|�̂� (𝑘) |
|�̂� (𝑘) | + 𝛽

· | | 𝜕𝑓𝑟

𝜕ℎ
(𝑖)
𝑟

◦ ℎ (𝑖)𝑟 | |2 + 𝛿𝑇𝑜𝑝𝑜𝑟)

+(
∑︁
𝑖≠𝑟

𝜕𝑓𝑟

𝜕ℎ
(0)
𝑖

𝛿ℎ
(0)
𝑖

) (𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
))𝐿

+(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1) (𝛿𝑇𝑜𝑝𝑜𝑟 +

|�̂� (𝑟) |
|�̂� (𝑟) | + 𝛽

| | 𝜕𝑓𝑟

𝜕ℎ
(0)
𝑟

◦ ℎ (0)𝑟 | |2)

(26)

In the formula, ℎ
(0)
𝑖

is the input feature of 𝑣𝑖 . It won’t change,

so 𝛿ℎ
(0)
𝑖

= 0. Since 𝛿𝑇𝑜𝑝𝑜𝑟 is the same in every layer, we extract

it from the summation and assign it a weight 𝑘3. Then we can get

the final formula:

F𝑔𝜃 (𝑣𝑟) ≈
𝐿−1∑︁
𝑖=0

(𝑠 (1 − 𝑑

𝑁 − 1

1

𝑑 + 𝛽
)) (𝐿−1−𝑖) · |�̂� (𝑘) |

|�̂� (𝑘) | + 𝛽
·

| | 𝜕𝑓𝑟

𝜕ℎ
(𝑖)
𝑟

◦ ℎ (𝑖)𝑟 | |2 + 𝑘3 · 𝐿 · 𝛿𝑇𝑜𝑝𝑜𝑟 (27)

A.2 Time and Space Complexity
Here we make a detailed analysis of the methods’ time and space

complexity. 𝑁 denotes the number of nodes,𝑀 denotes the number

of edges, 𝐿 represents the number of the GNN’s layers, ℎ represents

the hidden size of the GNNmodel, and 𝑑 is the average node degree.

In most cases, the adjacency matrix is sparsely stored, and in this

situation, according to Paper [4], the time complexity of the forward

propagation or backpropagation of a common message-passing

GNN model is𝑂 (𝐿𝑁ℎ2 +𝐿𝑀ℎ), and the space complexity is𝑂 (𝑀 +
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW’24, May 13-17, 2024, Singapore Anon. Submission Id: 434

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

𝐿ℎ2 + 𝐿𝑁ℎ). Here we list the time complexity of the ground truth

and NORA:

• Brute-force method (ground truth): it removes the nodes

one by one and does the forward propagation. The average

time complexity of removing a node is 𝑂 (𝑑). Therefore,
the total time complexity is 𝑂 (𝑁 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ + 𝑑)) =

𝑂 (𝐿𝑁 2ℎ2 + 𝐿𝑁𝑀ℎ).
• NORA: NORA first does a forward propagation and a back-

propagation, which costs 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ). In NORA’s for-

mula (Formula 14 in Section 4.1), the part before the plus

sign takes 𝑂 (ℎ) to calculate the 2-norm of the dot product

for each layer and each node, so it totally takes 𝑂 (𝐿𝑁ℎ).
The part after the plus sign needs to calculate 𝛿𝑡𝑜𝑝𝑜𝑟 . Cal-

culating 𝛿𝑡𝑜𝑝𝑜𝑟 makes two aggregations of neighbor in-

formation, each of which takes 𝑂 (𝑀) for all nodes, so

it takes 𝑂 (2𝑀) = 𝑂 (𝑀). Therefore, NORA totally takes

𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ + 𝐿𝑁ℎ +𝑀) = 𝑂 (𝐿𝑁ℎ2 + 𝐿𝑀ℎ), which is

the same as GNN’s propagation itself.

Here we list the space complexity of the ground truth and NORA

apart from the space complexity of GNN itself, 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).
• Brute-force method: it additionally stores a modified graph,

which costs 𝑂 (𝑀)..
• NORA: it additionally stores the gradients of every hidden

layer and some middle results, which costs 𝑂 (𝑀 + 𝐿𝑁ℎ).
None of these additional space complexity is comparable with

the space complexity of the GNN model, so their space complexity

is still 𝑂 (𝑀 + 𝐿ℎ2 + 𝐿𝑁ℎ).

B HYPER-PARAMETERS
On ogbn-arxiv, P_50, and P_20_50, we use their original data split

ratio. On Cora, CiteSeer, and PubMed, the majority of nodes are

not in any of the training, validation, or test set, so we change the

data split ratio to 5:3:2 to cover all nodes.

B.1 Hyper-Parameters of GNN Models
We have used five GNN models: GCN, GraphSAGE, GAT, DrGAT,

and TIMME. As GCN, GraphSAGE, and GAT are widely-used GNNs

on various datasets, we tune their hyper-parameters and choose a

well-performing setting. For DrGAT on ogbn-arxiv and TIMME on

the two Twitter datasets, we keep them the same as their original

choices. Please refer to DrGAT’s implementation repository
1
and

TIMME’s official repository
2
for more details. On Cora, CiteSeer,

and PubMed datasets, we adapt GCN, GraphSAGE, and GATmodels

from PyG. On ogbn-arxiv dataset, we adapt GCN and GraphSAGE

models from the implementation
3
of OGB team. We adapt DrGAT

from its implementation repository. On the two Twitter datasets,

we adapt TIMME from its official repository. TIMME consists of

multiple tasks, including a node classification task and some auxil-

iary edge prediction tasks, among which we only care about the

node classification task’s output.

Here we describe our hyper-parameter settings of GCN, Graph-

SAGE, and GAT. They have two layers when operating on Cora,

1
https://github.com/anonymousaabc/DRGCN

2
https://github.com/PatriciaXiao/TIMME

3
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/arxiv

CiteSeer, or PubMed, and three layers when operating on ogbn-

arxiv. On Cora, CiteSeer, or PubMed, they are trained with the

early-stopping mechanism. On ogbn-arxiv, GCN and GraphSAGE

are trained with fixed 300 epochs. We save the model at the epoch

where the validation performance reaches the highest. Later we use

that saved model to generate the influence of node removal. The

learning rate is set to 1𝑒 − 2, except for 3𝑒 − 3 when training GAT

on PubMed. Other hyper-parameters are listed in Table 6.

Table 6: Hyper-parameters of GNNmodels. “#epoch" and “pa-
tience" are the maximum number of epochs and the patience
used for early-stopping. “wd” is the weight decay.

Dataset GNN wd hidden dropout #epoch patience

Cora

GCN 1e-4 1024 0.6 50 20

GraphSAGE 1e-4 256 0.9 100 50

GAT 3e-5 1024 0.5 200 100

CiteSeer

GCN 3e-4 1024 0.5 200 50

GraphSAGE 1e-4 128 0.9 100 50

GAT 1e-4 256 0.5 150 70

PubMed

GCN 2e-4 1024 0.5 50 20

GraphSAGE 1e-4 256 0.5 150 70

GAT 4e-4 1024 0.3 150 70

ogbn-arxiv

GCN 0 256 0.5 300 -

GraphSAGE 0 256 0.5 300 -

B.2 Hyper-Parameters of NORA
We need to slightly modify the NORA algorithm on the Twitter

datasets. Since the Twitter datasets are directed graphs and each

edge has a reversed counterpart, we change 𝑁 (𝑖) and �̂� (𝑖) into 𝑣𝑖 ’s
in-neighbors or out-neighbors, instead of containing each neighbor

twice. Similarly, we need to change 𝑑 to the average in-degree or

average out-degree.

NORA has five hyper-parameters in Equation 17: 𝑘1, 𝑘2, 𝑘3, 𝑠

and 𝛽 . We tune them for each dataset and model. Usually, the best

hyper-parameter setting for one metric is not the best for another.

We consider all the metrics when selecting the hyper-parameters.

We also report the highest Pearson correlation coefficient results

with hyper-parameters to maximize this metric. In the experiments

of NORA-t and NORA-n, we use the same hyper-parameters for

NORA on the same GNNmodel and dataset. In the experiments that

don’t consider Precision@k%, we only consider Pearson correlation

coefficient metric, so we use the hyper-parameters that maximize

Pearson correlation coefficient.

𝑘1, 𝑘2, and 𝑠 are limited in range [0, 1]. 𝑠 is usually set to 0.95

or 1. 𝑘3 differs greatly on different models and datasets, since the

scale of NORA-t and NORA-n differs greatly in different situations.

𝛽 typically falls in [2, 30]. The hyper-parameters of NORA that

only considers Pearson correlation coefficient are listed in Table ??.
Experiments of deeper GNNs consider more than 3 layers. Other

experiments only use 2 layers on Cora, CiteSeer, and PubMed;

and 3 layers on ogbn-arxiv. The hyper-parameters that consider

both Precision@k% and Pearson correlation coefficient are listed in

Table 8.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Fast Inference of Removal-Based Node Influence WWW’24, May 13-17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 8: Hyper-parameters of NORA that consider both Pre-
cision@k% and Pearson correlation coefficient.

Dataset GNN 𝑘1 𝑘2 𝑘3 𝑠 𝛽

Cora

GCN 0.9 0.5 20 0.95 6

GraphSAGE 0.6 0.3 100 1.0 6

GAT 0.6 0.6 50 1.0 2

CiteSeer

GCN 0.9 0.8 10 0.95 3

GraphSAGE 1.0 1.0 70 1.0 4

GAT 0.9 0.9 20 0.95 4

PubMed

GCN 0.4 1.0 500 0.95 25

GraphSAGE 0.2 1.0 3000 0.95 20

GAT 0.5 0.4 120 0.95 7

ogbn-arxiv

GCN 1.0 1.0 1.3e4 0.95 6

GraphSAGE 1.0 1.0 2e4 0.95 6

DrGAT 1.0 1.0 1e4 0.95 2

P50 TIMME 0.05 0.07 7e4 1.0 3

P_20_50 TIMME 0.1 0.1 3e4 0.95 4

13

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Adversarial Attack
	2.2 Graph Counterfactual Explanation
	2.3 Network Dismantling

	3 Problem Definition
	3.1 Notations
	3.2 Problem Definition

	4 Methods
	4.1 Influence Score Calculation Decomposition
	4.2 Approximation of Each Decomposed Term
	4.3 Combined Derivation
	4.4 Complexity Analysis

	5 Experiments
	5.1 Baseline Adaption
	5.2 Experiment Settings
	5.3 Performance Comparison
	5.4 Stability of The Proposed Influence Score

	6 Conclusion
	References
	A Supplementary Discussions of Methods
	A.1 Derivation of NORA
	A.2 Time and Space Complexity

	B Hyper-Parameters
	B.1 Hyper-Parameters of GNN Models
	B.2 Hyper-Parameters of NORA

