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Abstract

There is extensive literature on accelerating first-order optimization methods in
an Euclidean setting. Under which conditions such acceleration is feasible in
Riemannian optimization problems is an active area of research. Motivated by the
recent success of silver stepsize methods in the Euclidean setting, we undertake
a study of such algorithms in the Riemannian setting. We provide the new class
of algorithms determined by the choice of vector transport that allows the silver
stepsize acceleration on Riemannian manifolds for the function classes associated
with the corresponding vector transport. As a core application, we show that our
algorithm recovers the standard Wasserstein gradient descent on the 2-Wasserstein
space and, as a result, provides the first provable accelerated gradient method for
potential functional optimization problems in the Wasserstein space. In addition,
we validate the numerical strength of the algorithm for standard benchmark tasks
on the space of symmetric positive definite matrices.

1 Introduction

Consider the Riemannian optimization problem

min
x∈N

f(x), (1.1)

where N ⊆ M is a geodesically convex subset of a Riemannian manifold M , and f : N → R is a
continuously differentiable geodesically convex functional. A popular approach to solve (1.1) is via
Riemannian gradient descent (RGD) [ZS16] given by,

xn+1 = expxn
(−ηnGrad f(xn)) , (1.2)

where expx(·) is the exponential map at x, ηn is the stepsize at iteration n, and Grad denotes the
Riemannian gradient. It is known that for geodesically convex and smooth functionals f , constant
stepsize RGD has an O(1/n) convergence rate as in Euclidean spaces [ZS16].

A natural follow-up question is whether one can find first-order algorithms that achieve an accelerated
convergence rate. This is motivated by the success of accelerated first-order methods in Euclidean
settings, most notably Nesterov’s method [Nes83], which uses momentum to achieve an O(1/n2)
rate for convex and smooth objectives. Extensive efforts have been made to achieve the same
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accelerated rate using similar acceleration in Riemannian optimization problems under various
settings [LSC+17, ZS18, AS20, Sie21, AOBL21, CB22, MR22, KY22, HMJG23]. However, these
works typically rely on additional constraints, stronger assumptions, or modifications to the basic
gradient descent update (1.2). For example, [LSC+17] involves an intractable nonlinear operator.
The analysis in [HMJG23] relies on a submanifold structure and establishes acceleration only in the
asymptotic regime. All the other algorithms require both upper and lower sectional curvature bounds.
We refer to [dST21] for a general survey of momentum-based acceleration methods, and to [KY22,
Sections 1, 2] for Riemannian variants.

On the other hand, there is a line of work showing that, in the Euclidean case, an accelerated
convergence rate is possible by using a carefully designed dynamic stepsize schedule without any
modification to vanilla gradient descent. This idea goes back to [You53]; for quadratic functions,
choosing ηn to be Chebyshev stepsizes in gradient descent achieves the O(1/n2) rate. Generalizing
this idea to general convex and smooth functions, [Alt18, AP24b, AP24c, BA24] introduced the silver
stepsize schedule—a carefully designed stepsize sequence that guarantees an improved convergence
rate of O(1/nlog2 ρ), where ρ = 1 +

√
2. While slower than the O(1/n2) rate of Nesterov’s

acceleration, this method significantly outperforms constant stepsize gradient descent and shows that
standard gradient descent, with a carefully designed stepsize schedule, can achieve meaningful
acceleration. Its further studies–including the optimality of the stepsize and generalization to
arbitrary number of iterations–are active area of research in the field of optimization [Gri24, GSW24].
Motivated by the success of the dynamic stepsize schedule in the Euclidean case, in this work, we
pose the following question:

Is it possible to accelerate Riemannian gradient descent by using the dynamic
stepsize schedule?

Main contribution Towards addressing the above question, we make the following contributions.

1. We introduce a family of algorithms, vector-transported Riemannian gradient descent
(VTRGD), parameterized by the choice of vector transport VT . This framework enables
silver step-size acceleration on Riemannian manifolds for function classes defined relative
to VT . To formalize these classes, we define the notions of VT -geodesic convexity (resp.
L-smoothness) with base point b ∈M .

2. We show if a function is (i) VT -geodesically L-smooth with base b, and (ii) VT -geodesically
convex with all base, then VTRGD with silver stepsize schedule achieves the accelerated
convergence rate of O(1/nlog2 ρ), and the rate of exp(−O(n/κlogρ 2)) when f is in addition
geodesically strongly convex with condition number κ. These rates match the corresponding
rates in the Euclidean case, and provides the acceleration with minimal assumptions on
the manifold. In particular, we avoid the curvature assumption and diameter assumption
typically required for momentum-based accelerated RGDs.

3. We show when VT = Γ, the parallel transport, then Γ-geodesic convexity and Γ-geodesic
smoothness are satisfied for some non-trivial Riemannian optimization problems. In par-
ticular, we show our algorithm coincides with the classical Wasserstein gradient descent
in 2-Wasserstein space, a space where previous accelerated algorithms fail. Hence, our
method provides the first provable accelerated result for (usual) Wasserstein gradient de-
scents, particularly for potential function optimization problem. We also provide numerical
illustrations in the space of symmetric positive definite matrices.

2 Background

Riemannian manifolds. In this section, we review basic concepts of Riemannian manifolds while
deferring more rigorous details to Appendix A.1. At a point x on a manifold M , tangent vectors are
the velocity vectors of smooth curves on M that pass through x. The tangent space TxM is the vector
space consisting of all such tangent vectors at x. A Riemannian manifold is a manifold equipped
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with an inner product ⟨·, ·⟩x for each tangent space TxM , called a Riemannian metric. For x, y ∈M ,
the distance d(x, y) is the infimum of the length of all piecewise continuously differentiable curves
from x to y. A Riemannian gradient of the differentiable function f : M → R at x is a tangent
vector Grad f(x) ∈ TxM satisfying dvf(x) = ⟨Grad f(x), v⟩x for all v ∈ TxM . Here, dvf(x) is a
directional derivative of f at x along the direction v. For (x, v) ∈ TM , where TM :=

∐
x∈M TxM

denotes the tangent bundle, a smooth curve γv : [0, 1] → M with γv(0) = x and γ′v(0) = v is
called a (constant speed) geodesic if it has the locally minimum length with zero acceleration. The
exponential map expx : TxM →M is a map defined by expx(v) = γv(1). expx(v) transports the
point x in the direction of the tangent vector v, following the geodesic γv . It is known that expx is a
local diffeomorphism in some neighborhood U of 0 ∈ TxM . Hence, expx allows the inverse on U ,
which is called the logarithmic map logx : expx(U) → TxM . While the exponential and logarithmic
maps are always locally well-defined, they may not be globally well-defined.

A parallel transport Γ(γ)t1t0 : Tγ(t0)M → Tγ(t1)M is a way to transport a tangent vector along the
curve γ parallely. If γ is a geodesic curve such that γ(0) = x, γ(1) = y, then we simply denote
Γ(γ)10 as Γyx, a (geodesic) parallel transport from TxM to TyM . One can generalize the notion of the
parallel transport by vector transport [AMS08, GGH+21, WDPY24]. For any x, y ∈ M , a vector
transport VT y

x : TxM → TyM is an operator which maps a tangent vector v ∈ TxM to another
tangent space TyM , satisfying VT x

x = id. Typical examples include the adjoint of the differential of
the exponential map VT y

x = (dexpx)
∗
logx y

and parallel transports VT y
x = Γyx.

Lastly, we introduce the notion of geodesic convexity and smoothness.

Definition 2.1 (Geodesic convexity). We say N ⊆M is a geodesically convex subset of M if for all
x, y ∈ N there exists a geodesic γ such that γ(0) = x, γ(1) = y, and γ(t) ∈ N for all t ∈ [0, 1]. We
say a differentiable function f : N → R is geodesically α-strongly convex if for all x, y ∈ N

f(y) ≥ f(x) + ⟨Grad f(x), logx y⟩x +
α

2
d2(x, y).

If the above inequality holds with α = 0, then f is said to be geodesically convex.

Definition 2.2 (Geodesic smoothness). We say f is geodesically L-smooth if for all x, y ∈M

f(y) ≤ f(x) + ⟨Grad f(x), logx y⟩+
L

2
d2(x, y).

Some literature use the L-Lipschitz continuity of the gradient function as the definition of geodesic
L-smoothness which in fact implies Definition 2.2 (see Definition A.17 and Lemma A.18). However,
we adopt the above definition used in [KY22, Section 3.1], as it is more directly related to our VT
extension introduced in Section 3.

Silver stepsize in Euclidean space In this section, we present the silver stepsize schedule [AP24c]
for Euclidean optimization problem. Consider the problem (1.1) where N ≡ Rd, and f is convex and
L-smooth. A standard approach is gradient descent, which updates via xn+1 = xn − η∇f(xn) for a
fixed stepsize η. In contrast, the silver stepsize schedule is a sequence of dynamic stepsizes {ηn}n∈N.
For n = 2k − 1 where k ∈ N, {ηn}n∈N is given by the following inductively constructed sequence:

η(k+1) = [η(k), 1 + ρk−1, η(k)], (2.1)

where ρ = 1 +
√
2. We set η0 = ρ− 1. For example, for k = 1, 2, 3, η(k) has the following form:

η(1) = [
√
2], η(2) = [

√
2, 2,

√
2], η(3) = [

√
2, 2,

√
2, 2 +

√
2,
√
2, 2,

√
2].

In Euclidean optimization, the silver stepsize was recently shown to improve the convergence rate of
the gradient descent from O(1/n) to O(1/nlog2 ρ) [AP24c]. The philosophy of the silver stepsize
extended to arbitrary n, with the name long stepsize [Gri24, GSW24]. For the brevity of the paper,
for this work we focus on the silver stepsize.
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3 Silver stepsize VTRGD: Assumptions and Preliminaries

In this section, we state the assumptions on the manifold and objective function required to solve
problem (1.1) using silver stepsize RGD (1.2).

Assumption 3.1 (Assumptions for Riemannian manifold).

1. M is a complete Riemannian manifold, i.e., any two points are connected by some geodesic.

2. N ⊆M is open, geodesically convex subset.

3. Exponential maps and logarithmic maps are all well-defined and computationally tractable
on N .

Assumption 3.2 (Assumptions on the objective). We make the following assumptions on f : N → R.

1. f is geodesically convex and has a global minimizer x∗ ∈ N .

2. All the iterates of our algorithms are well defined and remain inside N .

3. For a given linear vector transport VT , There exists a constant L > 0 and b ∈ N such that
for all xi, xj in the RGD trajectory, i, j = 0, 1, 2, · · · , ∗,

Qij;b := 2L(f(xi)− f(xj))− 2L
〈
VT b

xj
Grad f(xj), logb xi − logb xj

〉
b

−
∥∥∥VT b

xi
Grad f(xi)− VT b

xj
Grad f(xj)

∥∥∥2
b
≥ 0.

(3.1)

Remark 3.3. Assumptions 3.1 and 3.2, excluding equation (3.1), are standard in the Riemannian
optimization literature [AOBL21, KY22, HMJG23], and ensure well-behaved RGD iterates. While we
additionally assume (3.1), we do not require the curvature bound or diameter bound on N typically
assumed in (momentum-based) RGD algorithms.

Some comments on (3.1) are in order. In an Euclidean space, since all tangent spaces are the
same, i.e., VT b

xi
= id, (3.1) holds for any xi, xj , b ∈ Rd if and only if f is convex and L-smooth

[Nes14, Theorem 2.1.5]. However, on Riemannian manifolds, (3.1) does not directly match with
standard geodesic convexity and smoothness. To provide the interpretation of (3.1) in Riemannian
manifold as in Euclidean space, we introduce new notions of convexity and smoothness, which we
dub VT -geodesic convexity (smoothness).

Definition 3.4 (VT -geodesic convexity). A functional f : N → R is called VT -geodesically convex
with base b ∈M if for all x, y ∈ N , we have,

f(y) ≥ f(x) +
〈
VT b

xGrad f(x), logb y − logb x
〉
b
. (3.2)

f is called VT -geodesically convex if (3.2) holds for all b ∈ N .

Definition 3.5 (VT -geodesic L-smooth). A functional f : M → R is called VT -geodesically
L-smooth with base b ∈M if for all x, y ∈M we have,

f(y) ≤ f(x) +
〈
VT b

xGrad f(x), logb y − logb x
〉
b
+
L

2
∥logb y − logb x∥

2
b . (3.3)

f is called VT -geodesically L-smooth if (3.3) holds for all b ∈M .

We interpret VT -geodesic convexity (resp. L-smoothness) for some representative choices of VT .
One canonical example is VT x

b = (dexpb)
∗
logb x

. For such VT , the VT -geodesic convexity (resp.
L-smoothness) with base b is equivalent to the (Euclidean) convexity (resp. L-smoothness) of the
function F (v) := f(expb(v)) defined on the tangent space. Another natural choice of VT is the
parallel transport Γ. In the optimal transport literature, Γ-geodesic convexity is already a popular
concept, namely generalized geodesic convexity [AGS08, San14, SKL20, DBCS23] which is broadly
applied for studying the proximal operator, Γ-convergence in 2-Wasserstein space, and Riemannian
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Figure 1: Geometric illustration of VT -geodesic convexity. Usual geodesic convexity (resp. L-
smoothness) means for any x, y ∈ N , the function is convex (resp. L-smooth) along the geodesic
curve γ1(t). On the other hand, VT -geodesic convexity (L-smoothness) with base b implies the
function is convex along a curve γ2(t). Note a curve γ2 exists for general cases (see Remark C.7).

gradient methods [CMRS20, ACGS21]. Motivated from this fact, when VT = Γ, we will dub
Γ-geodesic convexity (resp. smoothness) by generalized geodesic convexity (resp. smoothness).
Since VT = Γ will be our main application in Section 5, we introduce more detail about generalized
geodesic convexity in Appendix C.

If the function is VT -geodesically convex (resp. L-smooth), then it is geodesically convex (resp.
L-smooth) by taking b = x. However, a function being VT -geodesically convex (resp. L-smooth)
with single base b is not a strictly stronger condition than geodesic convexity (resp. L-smoothness)
and is incomparable. For example, for VT = Γ, i.e., parallel transport, the function x 7→ 1

2d
2(x, p)

on a non-Euclidean Hadamard manifold, a manifold with non-positive curvature, is generalized
geodesically 1-smooth with base p, while it is not geodesically smooth (see Example C.10 and
[CK25]).
Remark 3.6 (Geometric interpretation of VT -geodesic convexity). Intuitively, for any three points
x, y, b ∈ N , VT -geodesic convexity requires f to be convex along a curve from x to y, where the
initial velocity is measured in the tangent space at a third point b ∈M (see Figure 1 for the detail).
This generalizes standard geodesic convexity, which corresponds to the special case z = x.

We now establish the relationship between (3.1) and convexity and smoothness, as in Euclidean space.
Proposition 3.7 provides a sufficient condition for (3.1).

Proposition 3.7. Let f be a VT -geodesically L-smooth with base b ∈ N , VT -geodesically convex,
and for all x, y ∈ N , define z := expb

(
− 1
L

(
VT b

y Grad f(y)− VT b
xGrad f(x)

)
+ logb y

)
∈ N .

Then f satisfies (3.1) for all xi, xj ∈ N .

We provide the proof in Appendix B.1. The condition z ∈ N is technical and generally requires
case-specific verification. We emphasize that, as a special case of Proposition 3.7 with b = y,
i.e., under standard geodesic smoothness, one obtains a Riemannian analogue of the co-coercivity
type inequality [Nes14, Theorem 2.1.5], a fundamental property of convex L-smooth functions in
Euclidean space. See Appendix B.1.1 for further discussion.

At first glance, (3.1) and the corresponding Proposition 3.7 may appear to be merely a technical
assumption imposed for the convenience of the proof. However, we will later demonstrate in Section 5
that (3.1) admits meaningful applications, particularly when VT = Γ. In this regard, our notion of
VT -geodesic convexity and smoothness is not introduced solely for technical convenience; rather, it
can be viewed as the generalization of existing concepts and allows practical applications.

4 Main Results

In this section, we present our main convergence results for silver stepsize acceleration on Riemannian
manifolds.
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Proposed Algorithm: VTRGD While classical RGDs are defined by the exponential map be-
tween consecutive updates as in (1.2), such construction turned out to be incapable to achieve the
convergence for dynamic stepsize methods like silver stepsize. The main reason is because dynamic
stepsize methods require the relationship between non-consecutive itereates, which is not feasible in
standard RGD (1.2). To overcome this bottleneck, we propose Vector Transported RGD (VTRGD).
VTRGD is defined as follows. First, choose a vector transport VT . Next, choose an arbitrary base
point b ∈M which satisfies (3.1) (e.g., a base b that makes f VT -geodesically L-smooth with base
b). Then, VTRGD makes the following update:

xn+1 = expb

(
logb xn − ηn

L
VT b

xn
Grad f(xn)

)
. (4.1)

Since we assumed that the exponential map, logarithmic map, and Riemannian gradients are tractable
in Assumption 3.1, (4.1) provides a tractable algorithm whenever VT is tractable. In particular, we
focus on the case when ηn is the silver stepsize. The below theorem is our main theorem, showing
that silver stepsize VTRGD achieves the accelerated convergence rate.

Theorem 4.1. Let Assumption 3.1. 3.2 be true and n = 2k − 1. Then, for VTRGD (4.1) with silver
stepsizes ηn/L (2.1), we have,

f(xn)− f(x∗) ≤ rkL ∥logb x0 − logb x∗∥
2
b , rk =

(
1 +

√
4ρ2k − 3

)−1

.

We provide the full proof in Appendix B.2. Since rk ≍ n− log2 ρ ≈ n−1.2716, Theorem 4.1 shows
an accelerated convergence rate than constant stepsize RGD on Riemannian manifolds, which is
O(n−1) [KY22, Appendix D]. For n ̸= 2k − 1, the error may oscillate and not always remain in a
low regime. However, the constraint n = 2k−1 is not a practical issue, since the number of iterations
can be freely chosen. Moreover, while the theorem is formally stated for n = 2k − 1, the oscillation
happens when we encounter the huge stepsize, which is known a priori. Thus, as long as the iteration
count avoids these spike points (specifically, when n = 2k), the iterates remain stable. Our numerical
experiments confirm this behavior; see Appendix D.

Strongly convex case While the Euclidean silver stepsize method allows the strong convexity
variant [AP24b], it relies heavily on the use of the interpolating inequality [AP24b, Eqaution (2.6)]
which does not seem to have the direct interpretation in Riemannian setting, as well as suffers the
saturation (non-accelerating) regime after the certain number of the iterates. On the other hand, it
turns out that silver stepsize VTRGD can be extended to geodesically strongly convex functionals1,
by the use of well-known restarting method [OC15]. The method proceeds as follows:

1. Perform m steps of gradient descent starting from an initial point x0 to obtain xm.

2. Restart from xm with the stepsize reset to η0, and run m additional steps to obtain x2m.

3. Repeat this process ℓ times, each time restarting from the most recent iterate with the stepsize
reset to η0. The total number of iteration will be n = mℓ.

For fixed n, choosing m and ℓ appropriately yields the optimal convergence rate for strongly convex
objectives. Notably, this approach remains valid in the Riemannian setting with silver stepsize
VTRGD.

Theorem 4.2. Consider the same setting of Theorem 4.1. In addition, let f be geodesically α-strongly
convex1 with the condition number κ := L/α. Set k∗ =

⌈
logρ κ

⌉
+ 1. For any ℓ ∈ N, consider the

above restarting scheme with m = 2k
∗ − 1, so that the total number of iteration is n = ℓ(2k

∗ − 1).
Then, for any ℓ ∈ N and n = ℓ(2k

∗ − 1),

d2(xn, x∗) ≤ exp
(
− log(ρ/2)n/κlogρ 2

)
∥logb x0 − logb x∗∥

2
b

In particular, the algorithm finds an ϵ-approximate solution, i.e., d(xn, x∗)
2 ≤ ϵ, in

O
(
κlogρ 2 log(1/ϵ)

)
number of iterations.

1Note that we use standard geodesic strong convexity here, not the VT -variant. Since VT -geodesic α-strong
convexity implies geodesic α-strong convexity, our assumption here is indeed the weaker one.

6



We provide the proof in Appendix B.2.1. Since constant stepsize RGD finds an ϵ-approximate solution
for strongly convex objectives in O(κ log(1/ϵ)) iterations [KY22, Appendix D], our algorithm
achieves an improved rate in the strongly convex setting as well. While the algorithm requires to pick
the certain number of iterations, again in practice this is not problematic as one can freely choose the
number of iterates. Also, unlike [AP24b], the restarting method avoids suffering saturation regime.

We conclude this section with a remark on the choice of b. Although the convergence rates of our
VTRGD algorithms in Theorems 4.1 and 4.2 are independent of the choice of the base point b, the
choice of b still influences the algorithm’s performance through the constant factor.

5 Applications

At first glance, (3.1) and (4.1) may appear to be merely technical assumptions and consequences
introduced for the convenience of the proof, without further implications. However, in this section,
we demonstrate that VTRGD in fact coincides with the standard Riemannian gradient descent in the
2-Wasserstein space under the canonical choice of VT = Γ.

5.1 Optimization on the 2-Wasserstein Space

A key advantage of our algorithm over existing methods is that it achieves the acceleration without
requiring the curvature bounds. This feature makes our analysis particularly suitable for the 2-
Wasserstein space, which admits a Riemannian structure but lacks an upper curvature bound (see
Lemmas A.33 and A.42). While the acceleration has been studied in the continuous-time setting
[CCT18, WL22], no discrete-time algorithm with provable acceleration guarantee was previously
available. To the best of our knowledge, our method provides the first theoretically guaranteed
accelerated algorithm in the 2-Wasserstein space for a widely used family of functionals, the potential
functional.

We briefly introduce the 2-Wasserstein geometry (see Appendix A.2 for details). Let P2,ac(Rd) denote
the set of probability measures on Rd with finite second moments and absolutely continuous with
respect to the Lebesgue measure, L2(µ) be the space of square-integrable functions from Rd → Rd

under µ ∈ P2,ac(Rd), and T#µ denotes a pushforward of µ by T . For any µ, ν ∈ P2,ac(Rd), the
2-Wasserstein metric is defined as:

W 2
2 (µ, ν) := min

T∈L2(µ) s.t. T#µ=ν
Ex∼µ

[
∥T (x)− x∥2

]
. (5.1)

The well-definedness (precisely, the existence of the minimum T ) is guaranteed by Brenier Theorem
[Bre91]. The map Tµ,ν achieving the minimum in (5.1) is called an optimal transport map from
µ to ν. The metric space (P2,ac(Rd),W2), called the 2-Wasserstein space, admits a Riemannian
structure with tangent space TµP2,ac(Rd) ⊂ L2(µ) and the Riemannian metric given by the L2(µ)
inner product. The exponential map is defined by expµ(v) = (id+ v)#µ, and the logarithmic map is
defined by logµ ν = Tµ,ν − id. The Wasserstein gradient at µ is defined as the operator satisfying
∂t|t=0F(µt) = ⟨GradW2

F(µ), v0⟩, where µt is any sufficiently regular curve of measures with
µ0 = µ and vt ∈ L2(µt) is the velocity vector satisfying the continuity equation ∂tµt+div(µtvt) = 0.
This definition is the exact analogy of the definition of Riemannian gradient that is defined by
dvf(x) = ⟨Grad f(x), v⟩. A natural vector transport in 2-Wasserstein space is a transport map, i.e.,
VT ν

µ = Tν,µ, where Tν,µ is a map satisfying (Tν,µ)#ν = µ. If Tν,µ is the optimal transport map,
this is in fact an un-projected parallel transport in 2-Wasserstein space. In particular, when one
uses the optimal transport map, Definition 3.4, 3.5 becomes generalized geodesic convexity (resp.
smoothness) in 2-Wasserstein space [AGS08, San14, SKL20].

Perhaps surprisingly, VTRGD recovers the standard Wasserstein gradient descent (WGD) when VT
is chosen to be any transport map, since for all b ∈ P2,ac(Rd) and any transport map Tb,µn

µn+1 = (Tb,µn
− ηn
L

GradW2
F(µn) ◦ Tb,µn

)#b = (id− ηn
L

GradW2
F(µn))#µn

. (5.2)

7



Figure 2: Comparison between silver stepsize method and RGD for potential functional optimization

in BW (Rd), with different convexity parameters. We set ℓ = 2

⌊
log2

(
210−1

2k
∗−1

)⌋
and n = ℓ(2k

∗ − 1),
where k∗ being the optimal sub-iterate derived in Theorem 4.2. Columns: From left to right, each
column corresponds to κ = 101, 103, 107, 1013.

Hence in 2-Wasserstein space, silver stepsize Wasserstein gradient descent guarantees the accelerated
convergence, analogous to Theorem 4.1, and 4.2.

Corollary 5.1 (Acceleration by silver stepsize WGD). Let F : P2,ac(Rd) → R to be a functional
on 2-Wasserstein space. Set n = 2k − 1, and let µn be a WGD update (5.2) with ηn being the
silver stepsize. If F satisfies (3.1) with some b ∈ P2,ac(Rd) and VT xi

b = Tb,µi
, and all µi and

(id− 1
L

(
GradW2 F(µi)−GradW2 F(µj) ◦ Tµi,µj

)
#µi

admit the densities, we get

F(µn)−F(µ∗) ≤ rkL ∥Tb,µ0
− Tb,µ∗∥

2
b .

Suppose F is, in addition, geodesically α-strongly convex with the condition number κ = L/α. Then,
under the same setup as in Theorem 4.2,

W 2
2 (µn, µ∗) ≤ Cκexp

(
− log(ρ/2)n/κlogρ 2

)
∥Tb,µ0

− Tb,µ∗∥
2
b .

Again, the algorithm finds an ϵ-approximate solution in O
(
κlogρ 2 log(1/ϵ)

)
number of iterations.

In particular, when the condition (3.1) holds for all b ∈ P2,ac(Rd), one can substitute the left hand
sides ∥Tb,µ0 − Tb,µ∗∥

2
b to minb ∥Tb,µ0 − Tb,µ∗∥

2
b = W 2

2 (µ0, µ∗). While Corollary 5.1 may appear
to be a straightforward application of our main theorems, it in fact requires careful attention to
the underlying geometry, since the 2-Wasserstein space is not geodesically complete [PZ20]. This
obstacle can nevertheless be resolved by exploiting specific properties of the 2-Wasserstein geometry.
The proof is deferred to Appendix B.3.

Remark 5.2 (Optimality is not needed). In classical Wasserstein gradient descent, one typically
needs to impose the condition id− ηn

L GradW2
F(µn) to be convex, which restricts the size of steps

to be less or equal to 1/L; the convexity condition is essential for the gradient update to be the
optimal transport map. However, our proof does not use the optimality of the update step. Therefore,
we do not require the map id− ηn

L GradW2
F(µn) to be convex, and it justifies the choice of large

stepsizes.

Remark 5.3 (Simplification of the regularity condition). The regularity condition–existence of
densities among iterates–can be simplified as follows. If the transport map Tµi,µj ∈ C1,1

loc (R
d), and

GradW2
F(µ) = ∇h for some h ∈ C1,1

loc (R
d), which is in fact the case for many of Wasserstein

gradient algorithms, then the regularity condition boils down to I − ηn
L ∇GradW2

F(µ) and I −
( 1
L∇GradW2

F(µi)−∇GradW2
F(µj) ◦ Tµi,µj

) being invertible. See Appendix B.3 for the detail.

Motivated by Corollary 5.1, we provide the numerical experiments on WGD. We set M = P2,ac(Rd)
and N as the Bures-Wasserstein space BW (Rd), the space of non-singular Gaussian distributions
in Rd equipped with Wasserstein geometry. BW (Rd) is a geodesically convex subset of P2,ac(Rd)
[LCB+22]. Moreover, BW (Rd) can be identified with a product Riemannian manifold of mean
vectors and covariance matrices, i.e., Rd × SPD(d) where SPD(d) denotes the space of symmetric
positive definite matrices of Rd×d. We introduce more detail of BW (Rd) geometry in Appendix
A.2.1.
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As our objective functional, we consider the potential energy functional:

V(µ) := Ex∼µ[V (x)]

where V : Rd → R. Such functional appears frequently in applications, for example as the component
of variational inference. Using the explicit formula of GradBW V(m,Σ) [DBCS23] in (5.2), we
obtain the following silver stepsize RGD in BW (Rd) for V(µ):

mn+1 = mn − ηn
L

EX∼N(mn,Σn)[∇V (X)],

Σn+1 =
(
I − ηn

L
EX∼N(mn,Σn)[∇

2V (X)]
)
Σn

(
I − ηn

L
EX∼N(mn,Σn)[∇

2V (X)]
)
.

(5.3)

The following proposition shows that the potential functional is an instance of Corollary 5.1 whenever
V is convex and L-smooth.

Proposition 5.4. If V is convex and L-smooth in Rd, then V satisfies (3.1) with any b ∈ P2,ac(Rd)
and any transport map VT b

µ = Tb,µi
under both the Wasserstein and Bures-Wasserstein geome-

tries. In particular, the results in Corollary 5.1, with F = V , hold by substituting W 2
2 (µ0, µ∗) for

∥Tb,µ0
− Tb,µ∗∥

2
b .

We provide the proof in Appendix B.3. By Corollary 5.1, the silver stepsize WGD (5.3) achieves
the accelerated convergence rate whenever I − ηnE[∇2V (X)]/L is invertible. For our experiment,
we considered quadratic V (x) = 1

2 (x − m∗)
TΣ−1

∗ (x − m∗) defined on R10, with m∗,Σ∗ being
a randomly generated vector and symmetric positive definite matrix respectively. Since V is a
strongly-convex quadratic function, by Proposition 5.4 V is generalized geodesically α-strongly
convex and geodesically L-smooth with L = 1/λmin(Σ∗) and α = 1/λmax(Σ∗). To study the effect
of the condition number κ = L/α, we fix L = 1, and vary α. Small α corresponds to convex case,
and larger α stands for the strongly convex case. We choose 1/L as the stepsize for constant stepsize
WGD [ZS16, KY22]. Figure 2 shows that the silver stepsize WGD outperforms constant stepsize
WGD in both convex and strongly convex case. We provide further implementation detail (e.g., the
specific distributions of m∗ and Σ∗) and additional experiments under various settings (e.g., different
random seeds, number of iterations, stochastic gradients, and comparisons with various constant
stepsizes) in Appendix D.

Beyond quadratic potential, or even in the absence of convexity and smoothness guarantees, we
observed that our algorithm yields numerical improvements for other optimization problems in the
2-Wasserstein space. Specifically, we present additional experiments on logistic regression potential
and mean-field training of neural networks in Appendix D.2.1 and D.2.2.

5.2 Optimization on Symmetric Positive definite matrices

While our main motivation is 2-Wasserstein space, we also provide the numerical experiments for the
optimization problem in symmetric positive definite matrix (SPD) with VT = Γ again. The tangent
space is Sym(d), the space of symmetric matrices of Rd×d. On this space, there is a natural choice of
the metric, called affine invariant metric. The metric is defined by:

dAI(A,B) :=
∥∥∥logA−1/2BA−1/2

∥∥∥
F
, ⟨S,R⟩A = tr(A−1SA−1R).

This metric coincides with the Fisher-Rao metric between multivariate Gaussian distributions with
fixed mean and covariance matrices A and B [Nie23]. Additionally, the Fréchet mean of SPD
matrices with respect to dAI coincides with the geometric mean and plays an important role in many
applications, such as diffusion tensor imaging [FAP+05, PFA05, BH06, Ngu22, KPB25]. This metric
induces the complete non-positively curved manifold on SPD(d) with the curvature bound [−1/2, 0]
[CB23].

While there is a problem setup which fully satisfies our assumption on this space (see Proposition D.1),
to validate the wide applicability of our method we provide experiments on a representative benchmark
problem which does not satisfy our assumptions. In addition, we provide more experiments with
various setups on SPD(d) in Appendix D.2.3, including a setup which does satisfies our assumption.
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Figure 3: Optimization of f(X) = tr(CX)− log detX , with the different condition number on C.
We set b = I for VTRGD (4.1). We set L = 2 for both experiments. We plot f − fmin, where fmin

is the minimum value over all experiments. Left: κ = 10. Right: κ = 105.

Linear minus log-determinant The linear minus log-determinant is widely studied problem, as it
can be considered as a generalization of linear semidefinite programming (SDP) problems as well as
the log-likelihood of the Wishart distribution [BV04, WST10, HMJG21, MM24]. The problem is
formulated as follows: for C ∈ SPD(d), one optimizes the function

min
X∈SPD(d)

f(X) := tr(CX)− log detX.

Unfortunately, this problem does not satisfy our desired assumptions. In practice, however, standard
RGD is nontheless applied to this problem [HMJG21]. We set d = 50. Since the problem is not
geodesically L-smooth, one must choose L manually; we set L = 2, which ensures the stability of
both algorithms. For VTRGD with the silver stepsize (4.1), we set the base point to b = I . The
results are summarized in Figure 3.

Codes for our experiments can be found at https://github.com/wldyddl5510/VTRGD-Silver.

6 Conclusion

In this work, we provide the new concept of convexity and smoothness on Riemannian manifolds,
namely vector transported geodesic convexity and smoothness. Based on these new concepts, we
propose vector transported Riemannian gradient descent (VTRGD) method (4.1), which enables
silver stepsize acceleration to be feasible for the functions satisfying the VT -geodesic convexity and
VT -geodesic smoothness with a base. Albeit under a different notion of convexity and smoothness,
our algorithm is the first tractable accelerated algorithm in Riemannian manifolds, without imposing
the curvature assumption or diameter assumption. As our core application, in 2-Wasserstein space
VTRGD coincides with standard gradient descent in 2-Wasserstein space. Particularly, our framework
yields the acceleration for potential energy functional optimization problem, which is the functional
frequently appears in optimal transport literature.

We conclude the paper with some open questions: 1. The implication of VT -geodesic convexity and
smoothness is not direct. We are unaware how restrictive or favorable these conditions will be. That
said, given that this concept, under specific choices of VT , is a well-studied topic in 2-Wasserstein
geometry and that there exist nontrivial examples satisfying these conditions, it appears to deserve
further investigation. We leave this to the future work. 2. Our VTRGD algorithm coincides with
standard RGD in some applications, thus we obtain the silver stepsize acceleration of standard RGD
for such specific cases. However, whether one can obtain silver stepsize acceleration of standard
RGD for general problems remains an open question. 3. We restricted our attention to deterministic
gradient descent. Stochastic or proximal version still remains the open. 4. There are extensions of the
silver stepsize; showing for arbitrary iterates n or showing the optimality [Gri24, GSW24]. One can
possibly explore the similar directions under Riemannian setting. 5. Recently, for specific classes of
functions in the Euclidean setting, [AP24a] proposed a stepsize schedule for gradient descent that
achieves the fully accelerated rate O(1/n2), matching that of momentum methods. Extending these
ideas to the Riemannian setting would be an intriguing direction for future work.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction clearly states our main theorems 4.1: achieving
the acceleration using silver stepsize under on Riemannian manifolds via algorithmic
modifications. In addition, our main application and experiments are well-stated as well.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 3 and 4, we clarified that the algorithmic modification and some
of the assumptions which are less standard. That said, Section 5 presents numerical results
demonstrating that our method remains effective even when some of these assumptions
are relaxed. Finally, Section 6 mentions directions that may refine or extend the current
approach.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We explicitly stated the assumptions in our main body (Assumption 3.1, 3.2).
We provide the full proof in the Appendix B.2, B.3. We also provided the full reference for
the results we cited.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the sufficient detail of the experiment we conducted in Section 5
and Appendix D. We also provided the code by the public Github link.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the full code in the public Github link, which can reproduce the
results of our experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the data generating process of the simulation data and explicit
algorithm in Section 5 and Appendix D.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the result of multiple experiments and statistical significance in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We stated our computational resource in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

20



9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is conducted in compliance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed. Our focus is purely on the
algorithmic aspects, rather than on societal applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research does not involve the high risk for misuse.

Guidelines:

21

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mentioned and cited the packages we used in Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

22

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM


Appendix

A Preliminaries 24

B Deferred proofs 33

C Generalized geodesic convexity and smoothness 43

D Implementation detail and additional experiments 48

E Changes from the Submitted Version 55

A Preliminaries

A.1 Riemannian geometry

In this appendix, we introduce key concepts in Riemannian geometry briefly discussed in Section 2.
We mainly mention the known results, and omit the proof and well-definedness of definitions. For
detail, interested reader can find relevant material in textbooks, e.g., [Lee12, Lee18, Bou23].

A Riemannian manifold is a manifold equipped with an inner product for each tangent space, called a
Riemannian metric.

Definition A.1 (Riemannian manifold). A Riemannian manifold (M, g) is a real smooth manifold
equipped with a Riemannian metric g which assigns to each p ∈M a positive-definite inner product
gp(v, w) = ⟨v, w⟩p on the tangent space TpM .

Often, this tangent space TpM is conveniently expressed in the form of the vector field, which takes
a point in a manifold as an input and returns a tangent space vector at that point. Formally, the vector
field of M is defined as follows:

Definition A.2 (Vector field). A map X : C∞(M) → C∞(M) is called a smooth vector field if it is
a derivation, i.e., X satisfies

X·(fg) = X·(f)g(·) + f(·)X·(g).

Here · ∈M is the input of the function.

As the name derivation indicates, one can think of the vector field as a directional derivative along the
direction of the vector field. The following familiar example may help.

Example A.3 (Vector field in Rd). For f ∈ C∞(Rd), p ∈ Rd, and v ∈ Rd, think of a directional
derivative of f at p along direction v, dvf(p). If we fix p and view f as a variable input, then v ∈ TpM
can be identified with the functional f 7→ dvf(p). In other words, by defining Xp(f) := dvf(p), the
value of vector field Xp at each point p ∈M can be identified as a tangent vector v ∈ TpRd.

From now on, we will write X as a vector field, and this will mean a function Xp(f) = dvf(p)
where v = Xp. For the definition of a directional derivative in general manifolds, we refer to [Lee12].
We write X(M) as a set of smooth vector fields on M .

One of the fundamental structure of a manifold is an affine connection, a concept that connects
tangent spaces of different points of the manifold.

Definition A.4 (Affine connection). Let M be a manifold, and X(M) be the set of all smooth vector
fields on M . An operator ∇·· : X(M) × X(M) → X(X) is called an affine connection if for all
f ∈ C∞(M) and X,Y ∈ X(M) it satisfies the following properties:

1. ∇fXY = f∇XY , i.e. linear in the first variable.
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2. ∇X(fY ) = (dXf)Y + f∇XY , that is, ∇ satisfies the Leibniz rule in the second variable.

In the case of Riemannian manifolds, we have a natural connection induced from the Riemannian
metric, called Levi-Civita connection.

Definition A.5 (Levi-Civita connection). For a Riemannian manifold (M, g), let X(M) be a set
of smooth vector field on M . The Levi-Civita connection is the unique affine connection ∇·· :
X(M)× X(M) → X(M), satisfying the following properties:

1. ∇XY −∇YX = [X,Y ], i.e. it is torsion-free. Here, [·, ·] denotes a Lie bracket.

2. X (g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ), that is, the connection is compatible with the
metric g.

The choice of the affine connection determines multiple geometric concepts. One fundamental
concept is geodesic curve, which is a constant speed curve on the manifold.

Definition A.6 (Geodesic). A smooth curve γ : [0, 1] →M is called a geodesic curve if ∇γ̇ γ̇ = 0.

A Riemannian manifold is called complete if any two points are connected by some geodesic. We
will always assume M is a complete Riemannian manifold.

We say a Riemannian submanifold M̃ ⊆ M is totally geodesic if for every v ∈ TM̃ , the geodesic
with respect to M̃ , γv , lies entirely in M .

Equipped with the notion of geodesic, one can define the exponential map and logarithmic map on a
Riemannian manifold.

Definition A.7 (Exponential map, logarithmic map). Let p ∈M .

1. For any v ∈ TpM , one can define a geodesic curve γv : [0, 1] → M such that γv(0) = p
and γ′v(0) = v. Then, one can define a map expp(v) := γv(1). This map is called the
exponential map.

2. It is known that the exponential map is a local diffeomorphism on U , the open neighborhood
of 0 ∈ TpM . Therefore, one can define logp q := exp−1

p (q) for q ∈ expp(U). This map is
called the logarithmic map.

To understand the notions of the exponential map and logarithmic map, we illustrate these concepts in
the Euclidean case. In the Euclidean space, expp(v) = p+ v and logp q = q − p. In other words, the
exponential map moves p along the tangent direction v, and the logarithmic map returns the tangent
direction from p to q.

Note the logarithmic map is only defined locally. While our analysis assumed the global existence
of the logarithmic map over the geodesically convex subset N (Assumption 3.1), whether there is a
global logarithmic map is not always guaranteed.

Another geometric concept induced from the connection is a covariant derivative, a notion of
differentiation of the vector field along the curve [Bou23, Definition 5.28, 5.29].

Definition A.8 (Vector field along the curve). Let γ : [0, 1] → M be a smooth curve. A map
Z : [0, 1] → TM is called a vector field on γ if Z(t) ∈ Tγ(t)M for all t ∈ [0, 1]. We write the set of
vector fields on γ as X(γ).

Definition A.9 (Covariant derivative). Let γ : [0, 1] → M be a smooth curve and ∇ be an affine
connection. Then, the covariant derivative is the unique operator Dt : X(γ) → X(γ) satisfying the
following properties for all Y,Z ∈ X(γ),W ∈ X(M), g ∈ c∞([0, 1]) and a, b ∈ R:

1. Dt(aY + bZ) = aDt(Y ) + bDt(Z).

2. Dt(gZ) = ( ddtg)Z + gDt(Z).

3. (Dt(W ◦ γ))(t) = ∇γ′(t)W for all t ∈ [0, 1].
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If ∇ is the Levi-Civita connection, then the covariant derivative also satisfies
d

dt
⟨Y, Z⟩ = ⟨DtY,Z⟩+ ⟨Y,DtZ⟩ .

Parallel transport is a notion of transporting vectors between different tangent space parallely. The
parallel transport is uniquely determined by the covariant derivative [Bou23, Defintion 10.33, 10.35].

Definition A.10. A vector field Z ∈ X(γ) is called parallel if DtZ = 0.

Definition A.11 (Parallel transport). Let γ : [0, 1] →M be a smooth curve. The parallel transport
of the tangent vector at Tγ(t0)M to the tangent vector at Tγ(t1)M along the curve γ is the map

Γ(γ)t1t0 : Tγ(t0)M → Tγ(t1)M

defined by Γ(γ)t1t0(Z(t0)) = Z(t1) for the parallel vector field Z ∈ X(γ).

We collect some properties of the parallel transport.

Proposition A.12. [Bou23, Proposition 10.36]

1. Γ(γ)t1t0 is a linear map.

2. Γ(γ)t2t1 ◦ Γ(γ)
t1
t0 = Γ(γ)t2t0 .

3. Γ(γ)t1t0 ◦ Γ(γ)
t0
t1 = id.

4. ⟨v, w⟩γ(t0) =
〈
Γ(γ)t1t0v,Γ(γ)

t1
t0w
〉
γ(t1)

.

When γ is chosen to be the geodesic curve such that γ(0) = x and γ(1) = y, we denote the parallel
transport Γ(γ)10 as Γyx. When context is clear, we will denote Γyx as the (geodesic) parallel transport
from x to y.

Remark A.13 (Properties of geodesic parallel transport). By Proposition A.12, a geodesic parallel
transport Γyx satisfies the following properties:

1. Γyx is a linear map.

2. Γyx ◦ Γxy = id.

3. ⟨v, w⟩x = ⟨Γyxv,Γyxw⟩y .

Note the second property is dropped, as geodesics from x to y and y to z do not necessarily be in the
same curve.

Remark A.13 is the key properties of parallel transport used in our analysis. These properties play a
pivotal role when we define the parallel transport in 2-Wasserstein space (Proposition A.30).

The last geometric concept induced from the Levi-Civita connection is curvature.

Definition A.14 (Riemannian curvature). The Riemannian curvature tensor R(·, ·)· : X(M) ×
X(M)× X(M) → X(M) is defined by the following formula:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where [·, ·] denotes a Lie bracket.

The key geometric quantity in our analysis is sectional curvature, which generalizes Gaussian
curvature in a 2-dimensional surface.

Definition A.15 (Sectional curvature). Let p ∈M , and denote Σp a set of two-dimensional subspaces
in TpM . The sectional curvature K : Σp → R is defined by the following formula:

K(σp) =
⟨R(u, v)v, u⟩p

∥u∥2p ∥v∥
2
p − ⟨u, v⟩2p

where {u, v} is a basis of σp.
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Note that we can write this sectional curvature as a function of two linearly independent vectors in
TpM as well. In particular, if u, v are orthonormal, then K(u, v) = ⟨R(u, v)v, u⟩p.

A Riemannian manifold is called flat if for all p and σp sectional curvature K(σp) = 0, positively
curved if K(σp) > 0, and negatively curved if K(σp) < 0.

A.1.1 Functional properties of functions on Riemannian manifolds

In this appendix, we introduce additional functional properties of functions on a Riemannian manifold.

We begin with introducing the notion of geodesically convex set.

Definition A.16. [Bou23, Definition 11.2] Let (M, g) be a complete Riemannian manifold. N ⊆M
is called geodesically convex subset of M if for all x, y ∈ N , there exists a geodesic γ : [0, 1] →M
such that γ(0) = x, γ(1) = y, and γ(t) ∈ N for all t ∈ [0, 1].

Next, we introduce the notion of geodesic convexity and smoothness.

Definition A.17 (Geodesic convexity and smoothness). Let f : N → R be a differentiable function.

1. f is called geodesically α-strongly convex if for all x, y ∈ N

f(y) ≥ f(x) + ⟨Grad f(x), logx y⟩x +
α

2
d2(x, y).

If α = 0, we say f is geodesically convex.

2. f is called geodesically L-smooth if for all x, y ∈ N∥∥Γxy Grad f(y)−Grad f(x)
∥∥
x
≤ Ld(x, y).

Now, we show the key inequality induced from the geodesic L-smoothness. This is often called
descent lemma.

Lemma A.18 (Descent lemma). If f is geodesically L-smooth, then for all x, y ∈ N

f(y) ≤ f(x) + ⟨Grad f(x), logx y⟩+
L

2
d2(x, y).

Proof. Let γ : [0, 1] → M be a geodesic curve such that γ(0) = x, γ(1) = y. By the definition of
the Riemannian logarithmic map, we get γ′(0) = logx y. By Fundamental Theorem of Calculus and
properties of the parallel transport,

f(y) = f(γ(1)) = f(γ(0)) +

∫ 1

0

d

dt
(f ◦ γ)(t)dt = f(x) +

∫ 1

0

⟨Grad f(γ(t)), γ′(t)⟩ dt

= f(x) +

∫ 1

0

〈
Γ
γ(0)
γ(t) Grad f(γ(t)), γ′(0)

〉
dt = f(x) +

∫ 1

0

〈
Γxγ(t) Grad f(γ(t)), logx y

〉
dt.

Then, by subtracting f(x) + ⟨Grad f(x), logx y⟩ from the both hand sides,

f(y)− f(x)− ⟨Grad f(x), logx y⟩ =
∫ 1

0

〈
Γxγ(t) Grad f(γ(t))−Grad f(x), logx y

〉
(i)
≤
∫ 1

0

∥∥∥Γxγ(t) Grad f(γ(t))−Grad f(x)
∥∥∥ ∥logx y∥ dt

(ii)
≤
∫ 1

0

Ld(γ(t), x)d(x, y)dt
(iii)
= Ld2(x, y)

∫ 1

0

tdt

=
L

2
d2(x, y).

For (i) we used Cauchy-Schwartz inequality, and for (ii) we used L-smoothness property. For (iii)
we used the fact that the geodesic curve satisfies d(x, γ(t)) = td(x, y) due to the constant speed
property.
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Note we used this descent lemma as the definition of the geodesic L-smoothness in the main body.
This is because we wanted to make the correspondence with VT -geodesic smoothness. For our
VT -geodesic smoothness, Lipschitz gradient type condition no longer implies (3.3) for general VT ,

unless γ′(t) =
(
VT γ(t)

γ(0)

)∗
γ′(0) for a curve γ, where ∗ denotes the adjoint operator. On the other

hand, it turns out that our results only require (3.3) rather than Lipschitz gradient type condition, thus
we stayed with Definition 3.5 to pursue the generality.

A.1.2 Product Riemannain manifold

In Appendix A.2.1, we will encounter a product manifold. To that end, we present some preliminary
facts here. We omit the details and simply list a few useful results. For more information on product
Riemannian manifolds, we refer the reader to [Lee18].

Definition A.19 (Product Riemannian manifold). A product Riemannian manifold is a manifold
M =M1×M2 such that each (M1, g1) and (M2, g2) are Riemannian manifolds, and the Riemannian
metric g is defined by the product metric:

g ((X1, X2), (Y1, Y2)) = g1(X1, Y1) + g2(X2, Y2).

Product Riemannians manifold have useful properties that make the computation easier.

Theorem A.20 (Levi-Civita connection of a product Riemannian manifold). The Levi-Civita con-
nection of a product Riemannian manifold (M, g) = (M1, g1) × (M2, g2) satisfies the following
property:

∇(X1,X2)(Y1, Y2) = ∇1,X1Y1 ⊕∇2,X2Y2.

The following corollary is a direct consequence of the definition of Riemannian curvature, Lie bracket,
and Theorem A.20.

Corollary A.21 (Riemannian curvature of a product Riemannian manifold).

R ((X1, X2), (Y1, Y2)) (Z1, Z2) = R1(X1, Y1)Z1 ⊕R2(X2, Y2)Z2.

Lastly, we obtain the following collorary, which will play an important role in our later section.

Corollary A.22 (Sectional curvature of product Riemannian manifold). Let (u1, u2), (v1, v2) be
orthonormal vectors in TpM . Write Ai := ∥ui∥2 ∥vi∥2 − gi(ui, vi)

2. Then,

K ((u1, u2), (v1, v1)) = A1K1(u1, v1) +A2K2(u2, v2).

Proof. From Definition A.15, Definition A.19, and Corollary A.21, we have

K ((u1, u2), (v1, v2)) = g (R((u1, u2), (v1, v2))(v1, v2), (u1, u2))

= g ((R1(u1, v1)v1, R2(u2, v2)v2), (u1, u2))

= g1(R1(u1, v1)v1, u1) + g2(R2(u2, v2)v2, u2)

= A1K1(u1, v1) +A2K2(u2, v2).

In particular, if K1 = 0, i.e., one of the spaces is flat, the the curvature behavior of the product
manifold is entirely determined by K2. This will be the case in Appendix A.2.1.

A.2 Wasserstein geometry

In this appendix, we introduce the core concept of Wasserstein geometry, which is one of our key
application. We write the space of probability measures with a finite pth moment on Rd by Pp(Rd).
Again, we mainly introduce the known results without proofs. For interested readers, we refer to
[Vil08, AGS08, San14, Che24].

For µ, ν ∈ Pp(Rd), let Γ(µ, ν) be a set of couplings of µ and ν. Wasserstein distance between µ and
ν are defined as follows.
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Definition A.23 (Wasserstein metric). Let µ, ν ∈ Pp(Rd). Denote Γ(µ, ν) to be a set of coupling
measures of µ and ν. p-Wasserstein distance between µ and ν is defined as follows:

W p
p (µ, ν) := inf

γ∈Γ(µ,ν)
E(x,y)∼γ [∥x− y∥p] .

This is known to be a well-defined metric. A metric space (Pp(Rd),Wp) is called p-Wasserstein
space.

2-Wasserstein space is typically a more interesting space compared to other p-Wasserstein spaces due
to its geometric properties. [Bre91, JKO98, Ott01] found out that if we restrict our attention to the
probability measures which are absolutely continuous with respect to Lebesgue measure and have
a finite second moment, denoted by P2,ac(Rd), then (P2,ac(Rd),W2) endows a richer geometric
properties. Specifically, while (P2,ac(Rd),W2) is not precisely a Riemannian manifold, its geometry
is almost same to the non-negatively curved Riemannian manifold.

The reason (P2,ac(Rd),W2) endows a Riemannian structure is rooted from the following theorem
[Bre91]:
Theorem A.24 (Brenier Theorem). If µ, ν ∈ P2,ac(Rd), then

W 2
2 (µ, ν) = min

T∈L2(µ) s.t. T#µ=ν
Ex∼µ

[
∥T (x)− x∥2

]
= min
T∈L2(µ) s.t. T#µ=ν

∥T − id∥2L2(µ;Rd) .

Denote the minima as Tµ,ν . Then Tµ,ν is a gradient of some convex function ϕ on Rd µ-a.e.
Furthermore, Tµ,ν ◦ Tν,µ = id. The minima Tµ,ν is called the optimal transport map from µ to ν.

Theorem A.24 gives a notion of tangent direction at µ.
Definition A.25 (Riemannian metric in 2-Wasserstein space). For µ ∈ W2(Rd), a tangent space

of µ is TµP2,ac(Rd) = {∇ψ | ψ ∈ C∞
c (Rd)}

L2(µ)
⊂ L2(µ). Here, C∞

c (Rd) is a set of compactly
supported smooth functions on Rd. The Riemannian metric is defined as a L2(µ)-inner product. In
other words, ⟨v, w⟩µ = Ex∼µ[⟨v(x), w(x)⟩].
Remark A.26 (Interpretation of the tangent space). By Brenier theorem, Tµ,ν = ∇ϕ. For arbitrary

λ > 0, it follows that λ(Tµ,ν − id) = ∇(λϕ− λ∥·∥2

2 ) ∈ TµP2,ac(Rd). This implies that the tangent
space TµP2,ac(Rd) can be interpreted as the set of scaled displacement fields λ(Tµ,ν− id). If X ∼ µ
and Y ∼ ν, then λ(Tµ,ν − id)(X) = λ(Y − X), which corresponds to directions in the usual
Euclidean sense. From this perspective, the tangent space is naturally constructed to represent
Euclidean directions at the level of individual particles.

One can naturally define a geodesic curve in (P2,ac(Rd),W2), by pushforwarding the interpolation
between particles to the measure space.
Definition A.27 (Geodesic in Wasserstein space). A geodesic curve γ : [0, 1] → P2,ac(Rd) such that
γ(0) = µ and γ(1) = ν can be defined as follows:

γ(t) = ((1− t)id+ tTµ,ν)#µ .

The exponential map and logarithmic map are then defined accordingly.
Definition A.28 (Exponential map and Logarithmic map in Wasserstein space). For µ, ν ∈ P2,ac(Rd)
and v ∈ L2(µ), exponential map and logarithmic map of (P2,ac(Rd),W2) are defined as follows:

expµ(v) = (v + id)#µ,

logµ(ν) = Tµ,ν − id.

A favorable property of 2-Wasserstein space is that the exponential map (and accordingly logarithmic
map) is globally well-defined on L2(µ), i.e., 2-Wasserstein space satisfies Assumption 3.1.

This Riemannian structure induces 2-Wasserstein metric. Observe the Riemannian distance in-
duced from the above structure coincides with the Wasserstein distance; d(µ, ν)2 = ∥ logµ ν∥2 =

∥Tµ,ν − id∥2 =W 2
2 (µ, ν).

One can define a geodesic parallel transport as well.
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Definition A.29. [AG08, Parallel transport] For µ, ν ∈ P2,ac(Rd) and v ∈ TµP2,ac(Rd),

Γνµv := Πν(v ◦ Tν,µ).

Here, Π· is a projection operator L2(·) → T·P2,ac(Rd).

This definition of parallel transport is not entirely satisfactory, as it involves the operator Π· which
lacks an explicit form. However, recall our analysis only requires the properties of parallel transport
in Remark A.13. It turns out that even if we drop Π· and consider Γνµv = v ◦ Tν,µ as a parallel
transport onto L2(µ), the corresponding parallel transport still has properties in Remark A.13, which
are sufficient for our analyses.

Proposition A.30 (Transfer lemma). For µ, ν ∈ P2,ac(Rd) and v ∈ L2(µ), define Γνµv := v ◦ Tν,µ.
Then,

1. Γνµ is linear operator on L2(µ).

2. Γνµ ◦ Γµν = id.

3. ⟨v, w⟩µ =
〈
Γνµv,Γ

ν
µw
〉
ν
.

Proof. Property 1 is direct: for v, w ∈ L2(µ) and a, b ∈ R, Γνµ(av+ bw) = av ◦Tµ,ν + bw ◦Tµ,ν =
aΓνµv + bΓνµw.

Property 2 is from Theorem A.24.

Property 3 is a direct consequence of the change of the measure formula:

⟨v, w⟩µ =

∫
⟨v(x), w(x)⟩ d(Tν,µ)#ν(x) =

∫
⟨v ◦ Tν,µ(x), w ◦ Tν,µ(x)⟩ dν(x) =

〈
Γνµv,Γ

ν
µw
〉
ν
.

Therefore, by Proposition A.30, we can use the un-projected parallel transport · ◦ Tν,µ as a parallel
transport Γνµ· and L2(µ) as the tangent space for our analysis. In fact, such parallel transport and
tangent space are sufficient for other first-order Wasserstein gradient flow analyses as well (e.g.,
[AGS08, SKL20]).

Now, we introduce a sectional curvature in 2-Wasserstein space. To establish this, we introduce the
continuity equation and the notion of covariant derivative in the 2-Wasserstein space.

Definition A.31 (Continuity equation). Let µt be a flow in P2,ac(Rd). For given µt, there exists a
vector field vt ∈ L2(µt) such that

∂tµt = −div(µtvt).

Such vt is called a (velocity) vector field of the flow µt.

One can think of vt as a velocity at µt, and plays a similar role as γ′(t) in Riemannian manifolds.

Definition A.32 (Covariant derivative). A covariant derivative of wt ∈ Tµt
P2,ac(Rd) along a curve

µt is defined by the following formula:

∇vtwt = Πµt

(
lim
h→0

Γ
µt+h
µt wt+h − wt

h

)
.

Here, Γ is a parallel transport defined in Definition A.29, and vt is a vector field of the flow µt.

We are ready to introduce the result that 2-Wasserstein space is non-negatively curved.

Lemma A.33. Let vt, wt be orthonormal elements in Tµt
P2,ac(Rd). Then, the sectional curvature of

the subspace spanned by these two tangent vectors is as follows:

Kµt(vt, wt) = 3∥∇vt · wt −∇wtvt∥2L2(µt)

where the first ∇ is Euclidean gradient, and the second ∇wt
vt is a covariant derivative.
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We refer to [AG08, Proposition 7.2] or [Lot07, Corollary 5.13] for the derivation.

The last ingredients we need for the analysis of the Wasserstein space are notions of gradient. The
concept is defined as an analogous manner to the Riemannian case. Again, we omit the detail and
just present the result.

Wasserstein gradient is defined analogously to the formula dvf(x) = ⟨Grad f(x), v⟩x in Riemannian
manifold.

Definition A.34 (Wasserstein gradient). For a functional F : P2,ac(Rd) → R, the Wasserstein
gradient of F at µ0 is an element of L2(µ0) satisfying the following equation:

∂tF(µt)
∣∣
t=0

= ⟨GradW2
F(µ0), v0⟩µ0

.

Here vt is a vector field of the flow µt.

One has the following explicit formula:

GradW2
F(µ) = ∇δF(µ)

δµ
.

Here, ∇ is Euclidean gradient and δF(µ)
δµ is the first variation.

Here, the role of γ′(0) is changed to v0. For the derivation we refer to [Che24, Theorem 1.4.1].

A.2.1 Bures-Wasserstein geometry

In this appendix, we briefly introduce Bures-Wasserstein space BW (Rd), a space of Gaussian
measures equipped with W2 metric. Main takeaways of this appendix are as follow:

1. BW (Rd) is a product Riemannian manifold with non-negative sectional curvature.

2. BW (Rd) is a geodesically convex subset of (P2,ac(Rd),W2) and totally geodesic submani-
fold. In this regard, we can take N = BW (Rd) for our algorithm.

3. This example shows how one can parameterize the transport map to make the algorithm
implementable as in Equation (5.3).

4. This example confirms thatBW (Rd), and therefore the 2-Wasserstein space, do not admit the
curvature upper bound. Consequently, existing acceleration methods requiring the curvature
upper bound are not well-suited for solving the optimization problems in Wasserstein space.

Again, we briefly list the results. For detail, we refer to [Tak09, BJL19, ACGS21, LCB+22,
DBCS23].

Definition A.35 (Optimal transport map between Gaussian). The optimal transport map between
µ0 = N(m0,Σ0) and µ1 = N(m1,Σ1) is defined as follows:

Tµ0,µ1(x) = m1 +Σ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 (x−m0).

Definition A.35 saids the optimal transport map between Gaussians is an affine map. This fact
provides two favorable results.

First, since affine transform of the Gaussian is also a Gaussian, from Definition A.27 every geodesic
interpolation between two Gaussians is also Gaussian. This shows BW (Rd) is a geodesically convex
subset of 2-Wasserstein space. In addition it implies BW (Rd) is totally geodesic submanifold of
2-Wasserstein space [Lee18, Exercise 8.4].

Second, we can identify µ = N(m,Σ) ∼= (m,Σ) ∈ Rd × SPD(d) and TµBW (Rd) ∼= (a, S) ∈
Rd × Sym(d). Here, SPD(d) is the space of Rd×d symmetric positive definite matrices, and Sym(d)
is the space of Rd×d symmetric matrices. By writing an affine map as T (x) = a + S(x −m) for
fixed m (which is the mean of µ), any affine map starting at µ = N(m,Σ) can be parameterized
by (a, S). Under this identification, we can view BW (Rd) space as a product Riemannian manifold
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of Rd × SPD(d) (Appendix A.1.2). Then one can parameterize every quantity in Appendix A.2 by
this product manifold sense. For instance, the vector corresponding to the optimal transport map is
(m1,Σ

−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 ).

Then, we can define Riemannian metric, exponential map, logarithmic map, and Bures-Wasserstein
gradient in terms of parameters as well.

Definition A.36 (Riemannian metric of Bures-Wasserstein space). Let µ = N(m,Σ). The Rieman-
nian metric of BW (Rd) is define by

⟨(a0, S0), (a1, S1)⟩µ = ⟨a0, a1⟩Rd + tr(S0ΣS1).

Definition A.37. [LCB+22, Appendix B.3] Let µi = N(mi,Σi). The exponential map and a
logarithm map in BW (Rd) are defined by

expµ0
((a, S)) = N (a+m0, (S + I)Σ0(S + I)) ,

logµ0
(µ1) = (m1 −m0,Σ

−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 − I).

Note the exponential map is only defined when det(S + I) ̸= 0 (more precisely, for all geodesic
interpolations to be well-defined, one needs −I ≺ S). Hence, Bures-Wasserstein space is not
geodesically complete.

Definition A.38. [LCB+22, Appendix B.3] Bures-Wasserstein metric of the functional F can be
written as a function on Rd × SPD(d), the space of the mean and covariance. Then, for m ∈ R and
Σ ∈ SPD(d),

GradBW F(m,Σ) = (∇mF(m,Σ), 2∇ΣF(m,Σ)).

See [LCB+22, DBCS23] for further discussion.

Using the isometry between the function representation and the vector-matrix representation of
TpBW (Rd), we can define the following operation, which can be used to construct the (un-projected)
parallel transport.

Definition A.39. For (a, S) ∈ Tµ1
BW (Rd) and (b, R) ∈ Tµ0

BW (Rd), we have the following
operation.

(a, S) ◦ (b, R) = (a+ Sb− Sm1, SR).

In particular,
Γ
(m0,Σ0)
(m1,Σ1)

(a, S) = (a, SΣ
−1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0 ).

Some works adopt an alternative definition of the Bures–Wasserstein metric; we make a remark that
this definition is equivalent to the one we present here. This remark plays a pivotal role when we
conduct actual calculation in BW (Rd) space (Appendix C).

Remark A.40 (Equivalent formulation of Bures-Wasserstein metric). In some works (e.g.,
[HMJG21]), BW (Rd) metric is defined as ⟨(a, S), (b, R)⟩µ = ⟨a, b⟩Rd + 1

2 tr(LΣ(S)R), where
LΣ(S) is the Lyapunov operator defined via the solution of LΣ(S)Σ + ΣLΣ(S) = S. While it has
the different form with what we introduced earlier, these two formulations turned out to be equivalent:
our formulation is from Wasserstein perspective, and the other formulation is from Riemannian
perspective. In our setup, we define the tangent vector to directly parameterize the optimal transport
map. That said, this does not directly fit with the Riemannian framework. For instance, if we con-
sider the curve γ(t) = expµ(t(a, S)) defined by our exponential map, then the velocity at t = 0 is
γ̇(0) = (a, SΣ + ΣS), which does not coincide with the tangent vector (a, S). By contrast, under
the Lyapunov operator based definition, the initial velocity is exactly γ̇(0) = (a, S). However, since
there is a one-to-one correspondence between SΣ+ ΣS and S for a given Σ, one may regard these
two definitions as equivalent by identifying the tangent vector with v0 = S whenever the velocity
γ̇(0) = SΣ+ ΣS appears. One can change all corresponding quantities accordingly, and these two
definitions turned out to be equivalent. We have chosen our formulation because it leads to a simpler
algorithm (5.3) that avoids solving the Lyapunov equation.
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Lastly, we end up with the analysis of the curvature of BW (Rd). In particular, we show the result
that even BW (Rd) space does not allow the curvature upper bound, indicating that the 2-Wasserstein
space does not have the curvature upper bound as well.

By applying Corollary A.22 and the flatness of Euclidean space, we obtain the following result:
Corollary A.41. For any µ ∈ BW (Rd) and {(a, S), (b, R)} orthonormal vectors in TµBW (Rd) =
Rd × Sym(d),

KBW (Rd) ((a, S), (b, R)) = (tr(SΣS) tr(RΣR)− tr(SΣR)2)KSym+(Rd×d)(S,R).

Therefore, to analyze the curvature of BW (Rd), it is sufficient to analyze the space of positive
definite matrices, without accounting for the mean component. In this regard, without the loss of
generality we consider µ = N(0,Σ). Then, since Σ is a symmetric positive definite matrix, it is
diagonalizable, and therefore we can write Σ = PD(λi)P

T with P being an orthogonal matrix
and all real positive eigenvalues λi. Then, it is known that Sym(d) is spanned by the following
orthonormal basis [Tak09]:{

e+ =
P (E11 + Edd)P

T

√
λ1 + λd

, eij =
P (Eii − Ejj)P

T√
λi + λj

, fij =
P (Eij + Eji)P

T√
λi + λj

}
1≤i,j≤d

where Eij is a matrix with only its (i, j) entry is 1 and 0 otherwise.

Using this orthonormal basis, we can characterize all of the sectional curvature in SPD(d) as follows:
Lemma A.42. [Tak09][Sectional curvature of Bures-Wasserstein space]

K(e+, fij) =
3λiλj

(λi + λj)2(λ1 + λd)
(i = 1 or j = d),

K(eik, fij) =
3λiλj

(λi + λj)2(λi + λk)
(j ̸= k),

K(eij , fij) =
12λiλj

(λi + λj)3
,

K(fij , fik) =
3λjλk

(λi + λj)(λj + λk)(λi + λk)
(j ̸= k),

K(any other combinations) = 0.

This explicit form indicates that the curvature upper bound at µ depends on the smallest eigenavalue
of the covariance matrix Σ. Since the space of symmetric positive definite matrices does not have
the uniform positive eigenvalue lower bound, BW (Rd) does not have the uniform curvature upper
bound. See [Tak09] for more discussions on the sectional curvature of BW (Rd) space.

In general, the curvature of a submanifold and the curvature of its ambient manifold needs not be
the same. However, if the submanifold is totally geodesic, by Gauss formula [Lee18, Theorem 8.2]
and the fact that the second fundamental form vanishes [Lee18, Exercise 8.4], the curvature of the
submanifold coincides to the curvature of the ambient manifold. Since BW (Rd) is a totally geodesic
submanifold of the 2-Wasserstein space [CL20], Lemma A.42 implies that 2-Wasserstein space also
does not have the sectional curvature upper bound.

B Deferred proofs

B.1 Deferred proofs for Section 3

Proof of Proposition 3.7. If f is VT -geodesically smooth with base b ∈ M and VT -geodesically
convex, then we take

z = expb

(
− 1

L

(
Γby Grad f(y)− ΓbxGrad f(x)

)
+ logb y

)
.
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z ∈ N from the condition we assumed. Then,

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ −
〈
VT b

xGrad f(x), logb z − logb x
〉
b
+
〈
VT b

y Grad f(y), logb z − logb y
〉
b
+
L

2
∥logb z − logb y∥

2
b

=
〈
VT b

xGrad f(x), logb x− logb y
〉
b
−
〈
VT b

xGrad f(x), logb z − logb y
〉
b

+
〈
VT b

y Grad f(y), logb z − logb y
〉
b
+
L

2
∥logb z − logb y∥

2
b

=
〈
VT b

xGrad f(x), logb x− logb y
〉
b
− 1

2L

∥∥∥VT b
y Grad f(y)− VT b

xGrad f(x)
∥∥∥2
b
.

B.1.1 Additional discussions on Proposition 3.7

In Euclidean space, the important property of convex and L-smooth function is that the following
inequality holds [Nes14, Theorem 2.1.5]:

f(y)− f(x)− ⟨∇f(x), y − x⟩ − 1

2L
∥∇f(y)−∇f(x)∥2 ≥ 0. (B.1)

Such inequality is sometimes referred as co-coercivity type inequality or interpolating inequality, and
works as the core inequality for some optimization algorithms, e.g. algorithms based on Performance
Estimation Problem (PEP) [THG17, AP24c] or some recent adaptive methods [SM25]. A natural
Riemannian analogue of (B.1) would be written as follows:

f(y)− f(x)− ⟨Grad f(x), logx y⟩ −
1

2L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 ≥ 0. (B.2)

We show the same proof strategy in Appendix B.2 can be applied to obtain the sufficient condition
for (B.2) as the special case.

In fact, we provide more general result. We show, if f is generalized geodesically convex and for
all x, y ∈ N , and f satisfies z := expy

(
− 1
L (Grad f(y)− ΓyxGrad f(x))

)
∈ N , then we show

(B.2) is equivalent to geodesic L-smoothness. Hence, generalized geodesic convexity and geodesic
smoothness, under additional technical assumption, imply (B.2).

For this result, we will use the L-Lipchitz gradient for the definition of geodesic L-smoothness, as
defined in Definition A.17, Recall L-Lipchitz gradient implies quadratic upper bound (Definition 2.2)
by Lemma A.18.

We need to introduce the notion of co-coercivity.

Definition B.1 (Geodesic co-coercivity). A differentiable function f : N → R is called geodesically
co-coercive if for all x, y ∈ N〈

Γxy Grad f(y)−Grad f(x), logx y
〉
≥ 1

L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 .

The geodesic co-coercivity condition links L-smoothness and (B.2). The next lemma is a general
version of Proposition 3.7, which shows the relationship between L-smoothness, co-coercivity, and
(B.2).

Lemma B.2. For a differentiable function f : N → R, The below relationship holds:

(B.2) (i)⇒ geodesic co-coercivity
(ii)⇒ geodesic L-smoothness.

In addition, suppose for all x, y ∈ N , f satisfies z := expy
(
− 1
L (Grad f(y)− ΓyxGrad f(x))

)
∈

N . Then, if f is generalized geodesically convex,

geodesic L-smoothness
(iii)⇒ (B.2).
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Proof. (i): By applying (B.2) for (x, y) and (y, x) and using Lemma C.9, one gets

f(y)− f(x)− ⟨Grad f(x), logx y⟩ −
1

2L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 ≥ 0,

f(x)− f(y) +
〈
Γxy Grad f(y), logx y

〉
− 1

2L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 ≥ 0.

Summing up two inequalities, one gets〈
Γxy Grad f(y)−Grad f(x), logx y

〉
≥ 1

L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 .

(ii): Using Cauchy-Schwartz inequality on the co-coercivity condition, one gets
1

L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 ≤

∥∥Γxy Grad f(y)−Grad f(x)
∥∥ ∥logx y∥ .

Since ∥logx y∥ = d(x, y), one gets the result.

(iii): We follow the same proof strategy as in the proof of Proposition 3.7. Take z =
expy

(
− 1
L (Grad f(y)− ΓyxGrad f(x))

)
. Write f(x)− f(y) = f(x)− f(z)+ f(z)− f(y). Then,

using generalized geodesic convexity with base y and Lemma A.18,

f(x)− f(y) = f(x)− f(z) + f(z)− f(y)

≤ −
〈
ΓyxGrad f(x), logy z − logy x

〉
+
〈
Grad f(y), logy z

〉
+
L

2

∥∥logy z∥∥2
= −

〈
ΓyxGrad f(x),− 1

L
(Grad f(y)− ΓyxGrad f(x))− logy x

〉
+

〈
Grad f(y),− 1

L
(Grad f(y)− ΓyxGrad f(x))

〉
+

1

2L
∥Grad f(y)− ΓyxGrad f(x)∥2

=
〈
ΓyxGrad f(x), logy x

〉
− 1

2L
∥Grad f(y)− ΓyxGrad f(x)∥2

= −⟨Grad f(x), logx y⟩ −
1

2L

∥∥Γxy Grad f(y)−Grad f(x)
∥∥2 .

Here, we again used Lemma C.9 for the last equality. This is equivalent to the desired inequality.

B.2 Deferred proofs for Section 4

This appendix contains the proofs of Section 4. While the overall proofs follow [AP24c], to clarify
that the Riemannian settings are properly taken into accout, we provide the full explicit proofs.

Before we proceed, we introduce simplified formulation of Qij;b. By simply expanding the squared
norm term, one can write Qij;b as follows:

Qij;b = 2f(xi)− 2f(xj)− 2
〈
VT b

xj
Grad f(xj), logb xi − logb xj

〉
b

−
∥∥∥VT b

xi
Grad f(xi)

∥∥∥2
xi

−
∥∥∥VT b

xj
Grad f(xj)

∥∥∥2
xj

+ 2
〈
VT b

xj
Grad f(xj),VT b

xi
Grad f(xi)

〉
b
.

This formulation will be used frequently for the rest of the proof.

In addition, we also use the following formula for the intermeidate calculation.
Lemma B.3. Set L = 1. The following equality holds.∥∥∥logb x∗ − logb xn + (2rk)

−1VT b
xn

Grad f(xn)
∥∥∥2
b
− ∥logb x∗ − logb x0∥

2
b .

= (4r2k)
−1
∥∥∥VT b

nGrad f(xn)
∥∥∥2
b
+ r−1

k

〈
VT b

xn
Grad f(xn), logb x∗ − logb xn

〉
b

+

n−1∑
i=0

η2i

∥∥∥VT b
i Grad f(xi)

∥∥∥2
b
+ 2

n−1∑
i=0

ηi

〈
VT b

xi
Grad f(xi), logb x∗ − logb xi

〉
b
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Proof of Lemma B.3.

LHS = −∥logb x∗ − logb x0∥
2
b + ∥logb x∗ − logb xn∥

2
b +

1

4r2k

∥∥∥VT b
nGrad f(xn)

∥∥∥2
b

+
1

rk

〈
logb x∗ − logb xn,VT b

nGrad f(xn)
〉
b

= −∥logb x∗ − logb x0∥
2
b + ∥logb x∗ − logb xn−1∥2b + ∥logb xn − logb xn−1∥2b

− 2 ⟨logb x∗ − logb xn−1, logb xn − logb xn−1⟩b

+
1

4r2k

∥∥∥VT b
nGrad f(xn)

∥∥∥2
b
+

1

rk

〈
logb x∗ − logb xn,VT b

xn
Grad f(xn)

〉
b

(i)
= −∥logb x∗ − logb x0∥

2
b + ∥logb x∗ − logb xn−1∥2b + η2n−1

∥∥∥VT b
n−1 Grad f(xn−1)

∥∥∥2
b

+ 2ηn−1

〈
logb x∗ − logb xn−1,VT b

xn−1
Grad f(xn−1)

〉
b

+
1

4r2k

∥∥∥VT b
nGrad f(xn)

∥∥∥2
b
+

1

rk

〈
logb x∗ − logb xn,VT b

nGrad f(xn)
〉
b

For (i), we used logb xi − logb xi−1 = −ηi−1VT b
xi−1

Grad f(xi−1).

Now, do the same decomposition on logb x∗ − logb xn−1 by (logb x∗ − logb xn−2)− (logb xn−1 −
logb xn−2) and use logb xi − logb xi−1 = −ηi−1VT b

xi−1
Grad f(xi−1). Iteratively conducting this

procedure until x0 yields the desired claim.

The following lemma is the main component of the proof of Theorem 4.1. Without loss of generality,
set L = 1. We also set n = 2k − 1 for some k ∈ N.
Lemma B.4. Let the conditions of Theorem 4.1 be true. Then, for suitably chosen λij ≥ 0,∑

i,j=0,...,n,∗
λijQij;b =

1

rk
(f(x∗)− f(xn)) + ∥logb x∗ − logb x0∥

2
b

−
∥∥∥∥logb x∗ − logb xn +

1

2rk
VT b

xn
Grad f(xn)

∥∥∥∥2
b

.

(B.3)

Once we establish Lemma B.4, the proof of Theorem 4.1 is direct.

Proof of Theorem 4.1. First consider the case L = 1. By Lemma B.4 and (3.1), one gets
f(xn)− f(x∗) ≤ rk ∥logb x∗ − logb x0∥

2
b .

This proves the desired convergence rate for L = 1.

For general L, let g = 1
Lf . Then, by the linearity of the vector transport (which is assumed) and the

Riemannian gradient, g satisfies (3.1) with L = 1. By applying L = 1 case on g, one gets
1

L
(f(xn)− f(x∗)) = g(xn)− g(x∗) ≤ rk ∥logb x0 − logb x∗∥

2
b .

To prove Lemma B.4, as in [AP24c] we will prove it by induction.

We begin with the base step of the induction.

Base Step First, we show (B.3) is valid for n = 1 (k = 1).
Lemma B.5. For any arbitrary initialization x0 ∈ N , consider the following VTRGD update (4.1).

x1 = expb

(
logb x0 − η0VT b

x0
Grad f(x0)

)
,

where η0 = ρ− 1. Choose λij the same as in [AP24c, Example 2], i.e.,(
λ00 λ01 λ0∗
λ10 λ11 λ1∗
λ∗0 λ∗1 λ∗∗

)
=

(
0 ρ 0
1 0 ρ− 1

ρ− 1 1
2r1

0

)
. (B.4)

Then, the equality (B.3) holds.
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Proof of Lemma B.5. Observe the following calculation:∑
i,j

λijQij;b = ρQ01;b +Q10;b + (ρ− 1)Q1∗;b + (ρ− 1)Q∗0;b +
1

2r1
Q∗1;b

=
f(x∗)− f(x1)

r1
− 2ρ

〈
VT b

x1
Grad f(x1), logb x0 − logb x1

〉
b
− ρ

∥∥∥VT b
x1

Grad f(x1)
∥∥∥2
b

− ρ
∥∥∥VT b

x0
Grad f(x0)

∥∥∥2
b
+ 2ρ

〈
VT b

x1
Grad f(x1),VT b

x0
Grad f(x0)

〉
b

− 2ρ
〈
VT b

x0
Grad f(x0), logb x1 − logb x0

〉
b
−
∥∥∥VT b

x1
Grad f(x1)

∥∥∥2
b
−
∥∥∥VT b

x0
Grad f(x0)

∥∥∥2
b

+ 2
〈
VT b

x1
Grad f(x1),VT b

x0
Grad f(x0)

〉
b
− (ρ− 1)

∥∥∥VT b
x1

Grad f(x1)
∥∥∥2
b

− 2(ρ− 1)
〈
VT b

x0
Grad f(x0), logb x∗ − logb x0

〉
b
− (ρ− 1)

∥∥∥VT b
x0

Grad f(x0)
∥∥∥2
b

− 1

rk

〈
VT b

x1
Grad f(x1), logb x∗ − logb x1

〉
b
− 1

2r1

∥∥∥VT b
x1

Grad f(x1)
∥∥∥2
b

(i)
=
f(x∗)− f(x1)

r1
+ (2 + 2ρ− 2η0ρ)

〈
VT b

x1
Grad f(x1),VT b

x0
Grad f(x0)

〉
b

−
(

1

2r1
+ 2ρ

)∥∥∥VT b
x1

Grad f(x1)
∥∥∥2
b
− (2ρ− 2η0)

∥∥∥VT b
x0

Grad f(x0)
∥∥∥2
b

− 2(ρ− 1)
〈
VT b

x0
Grad f(x0), logb x∗ − logb x0

〉
b
− 1

r1

〈
VT b

x1
Grad f(x1), logb x∗ − logb x1

〉
b

(ii)
=
f(x∗)− f(x1)

r1
− η20

∥∥∥VT b
x0

Grad f(x0)
∥∥∥2
b
− 1

4r21

∥∥∥VT b
x1

Grad f(x1)
∥∥∥2
b

− 2η0

〈
VT b

x0
Grad f(x0), logb x∗ − logb x0

〉
b
− 1

r1

〈
VT b

x1
Grad f(x1), logb x∗ − logb x1

〉
b

(iii)
= RHS.

Here, for (i) we used again logb xi+1 − logb xi = −(logb xi − logb xi+1) = −ηiΓbxi
Grad f(xi),

and for (ii) we used the explicit quantity of η0, ρ, and r1. (iii) holds from Lemma B.3.

Induction step Lemma B.5 validates that (B.3) holds for the base case n = 1. In this section, given
we have the inequality (B.3) for n = 2k − 1 number of iterates, we show by merging two silver
stepsizes, one can get (B.3) for 2n+ 1 = 2k+1 − 1 number of iterates.

Lemma B.6. Fix n = 2k − 1. Take {xi}i=0,...,n ⊂ N a sequence induced from the silver stepsize

VTRGD. Suppose there exist λ(k)ij ≥ 0 such that (B.3) holds. Write

σij = λ
(k)
ij 1{i,j=0,...,n,∗} + (1 + 2ρ)λ

(k)
i−n−1,j−n−11{i,j=n+1,...,2n+1,∗}

where ∗ − n− 1 is understood to mean ∗. Define

λ
(k+1)
ij := σij + ρηj1{i=n,2n+1,j=n+1,...,2n} − 2ρηj1{i=∗,j=n+1,...,2n}

+

(
1 + ρk−1 − 1

2rk

)
1{i=∗,j=n} +

(
1

2rk+1
− 1 + 2ρ

2rk

)
1{i=∗,j=2n+1}

+ ρ1{i=n,j=2n+1} + ρk1{i=2n+1,j=n}

+ (1− ρk)1{i=n,j=∗} + (2ρ−
√
2ρk+1)1{i=2n+1,j=∗}.

Then, λ(k+1)
ij satisfies∑

i,j=0,...,2n+1,∗
λ
(k+1)
ij Qij;b =

f(x∗)− f(x2n+1)

rk+1
+ ∥logb x∗ − logb x0∥

2
b
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−
∥∥∥∥logb x∗ − logb x2n+1 +

1

2rk+1
VT b

x2n+1
Grad f(x2n+1)

∥∥∥∥2
b

.

In particular, if λ(1)ij is chosen as in Lemma B.5, then λ(k)ij ≥ 0 for all k ∈ N and i, j = 0, . . . , 2k −
1, ∗.

Proof of Lemma B.6. For the simplicity of the notation, we write gi := Grad f(xi).

From the construction of σij , we have∑
i,j=0,...,2n+1,∗

σijQij;b =
∑

i,j=0,...,n,∗
λ
(k)
ij Qij;b + (1 + 2ρ)

∑
i,j=n+1,...,2n+1,∗

λ
(k)
i−n−1,j−n−1Qij;b.

Since we assumed (B.3) in the induction, we have∑
i,j=0,...,2n+1,∗

σijQij;b =
1

rk
(f(x∗)− f(xn)) + ∥logb x∗ − logb x0∥

2
b

−
∥∥∥∥logb x∗ − logb xn +

1

2rk
VT b

xn
Grad f(xn)

∥∥∥∥2
b

+
1 + 2ρ

rk
(f(x∗)− f(x2n+1))− (1 + 2ρ) ∥logb x∗ − logb xn+1∥2

− (1 + 2ρ)

∥∥∥∥logb x∗ − logb x2n+1 +
1

2rk
VT b

x2n+1
Grad f(x2n+1)

∥∥∥∥2
b

.

We subtract
∑
ij σijQij;b from the RHS. Using Lemma B.3, one gets

RHS −
∑
ij

σijQij;b

=

(
1

rk+1
− 2 + 2ρ

rk

)
f(x∗) +

1

rk
f(xn) +

(
1 + 2ρ

rk
− 1

rk+1

)
f(x2n+1)

+ 2ρ

2n∑
i=n+1

η2i

∥∥∥VT b
xi
Grad f(xi)

∥∥∥2
b
+ 4ρ

2n∑
i=n+1

ηi

〈
logb x∗ − logb xi,VT b

xi
Grad f(xi)

〉
b

−
(
η2n − 1

4r2k

)∥∥∥VT b
xn

Grad f(xn)
∥∥∥2
b
−
(
2ηn − 1

rk

)〈
logb x∗ − logb xn,VT b

xn
Grad f(xn)

〉
b

−
(

1

4r2k+1

− 1 + 2ρ

4r2k

)∥∥∥VT b
x2n+1

Grad f(x2n+1)
∥∥∥2
b

−
(

1

rk+1
− 1 + 2ρ

rk

)〈
logb x∗ − logb x2n+1,VT b

x2n+1
Grad f(x2n+1)

〉
b
.

We now subtract the rest of terms in LHS. After careful calculations, one gets

RHS −
∑
i,j

λ
(k+1)
ij Qij;b = 2ρk(1 + ρk−1)

∥∥∥VT b
xn

Grad f(xn)
∥∥∥2
b
+ 2ρ

2n∑
i=n+1

η2i

∥∥∥VT b
xi
Grad f(xi)

∥∥∥2
b

+ 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi), logb xn − logb xi

〉
b

+ 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi), logb x2n+1 − logb xi

〉
b

− 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi),VT b

xn
Grad f(xn)

〉
b
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− 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi),VT b

x2n+1
Grad f(x2n+1)

〉
b

+ 2ρ
〈
VT b

x2n+1
Grad f(x2n+1), logb xn − logb x2n+1

〉
b

+ 2ρk
〈
VT b

xn
Grad f(xn), logb x2n+1 − logb xn

〉
b

− 2ρ(ρk−1 + 1)
〈
VT b

xn
Grad f(xn),VT b

x2n+1
Grad f(x2n+1)

〉
b
=: A.

We show A = 0, which implies the desired equality. To this end, note VT b
xi
Grad f(xi) =

− 1
ηi

(logb xi+1 − logb xi). Plug-in this quantity to A. Then, the second, third, and fourth terms can
be rewritten as

2ρ

2n∑
i=n+1

η2i

∥∥∥VT b
xi
Grad f(xi)

∥∥∥2
b
+ 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi), logb xn − logb xi

〉
b

+ 2ρ

2n∑
i=n+1

ηi

〈
VT b

xi
Grad f(xi), logb x2n+1 − logb xi

〉
b

= ρ

2n∑
i=n+1

(
2 ∥logb xi+1 − logb xi∥

2
b − 2 ⟨logb xi+1 − logb xi, logb xn − logb xi⟩b

− 2 ⟨logb xi+1 − logb xi, logb x2n+1 − logb xi⟩b

)
= ρ

2n∑
i=n+1

(
∥logb xn − logb xi+1∥2b − ∥logb xn − logb xi∥

2
b

+ ∥logb x2n+1 − logb xi+1∥2b − ∥logb x2n+1 − logb xi∥
2
b

)
(i)
= ρ

(
∥logb xn − logb x2n+1∥2b − ∥logb xn − logb xn+1∥2b − ∥logb x2n+1 − logb xn+1∥2b

)
(ii)
= −2ρ ⟨logb xn − logb xn+1, logb x2n+1 − logb xn+1⟩b
(iii)
= 2ρηn

2n∑
i=n+1

ηi

〈
VT b

xn
Grad f(xn),VT b

xi
Grad f(xi)

〉
b
.

(B.5)

For (i) we used the telescoping sum, for (ii) we used the fact

∥a− b∥2 − ∥a− c∥2 − ∥b− c∥2 = −2 ⟨a− c, b− c⟩ ,

and for (iii) we used the fact logb x2n+1 − logb xn+1 = −
∑2n
i=n+1 ηiVT

b
xi
Grad f(xi).

Likewise, using the same fact,

2ρ
〈
VT b

x2n+1
Grad f(x2n+1), logb xn − logb x2n+1

〉
b
= 2ρ

2n∑
i=n

ηi

〈
VT b

x2n+1
Grad f(x2n+1),VT b

xi
Grad f(xi)

〉
b
,

2ρk
〈
VT b

xn
Grad f(xn), logb x2n+1 − logb xn

〉
b
= −2ρk

2n∑
i=n

ηi

〈
VT b

xn
Grad f(xn),VT b

xi
Grad f(xi)

〉
b
.

(B.6)

Pluggin-in Equation (B.5) and (B.6) into A and using ηn = 1 + ρk−1 yields

A = 2ρk(1 + ρk−1)
∥∥∥VT b

xn
Grad f(xn)

∥∥∥2
b
+ 2ρηn

〈
VT b

x2n+1
Grad f(x2n+1),VT b

xn
Grad f(xn)

〉
b

− 2ρkηn

〈
VT b

xn
Grad f(xn),VT b

xn
Grad f(xn)

〉
b
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− 2ρ(1 + ρk−1)
〈
VT b

xn
Grad f(xn),VT b

x2n+1
Grad f(x2n+1)

〉
b

= 0

by using the facts that ηn = 1 + ρk−1. This completes the induction argument.

For non-negativeness of the coefficients, if the initialization is the same, then by [AP24c, Section
3.2] the non-negativeness is guaranteed as we selected the same coefficients.

Equipped with Lemma B.5 B.6, Lemma B.4 is direct.

Proof of Lemma B.4. Start with the coefficients in Lemma B.5. The coefficients are clearly non-
negative, and (B.3) holds for n = k = 1. Then, applying Lemma B.6 gives (B.3) for all k ∈ N and
n = 2k − 1.

B.2.1 Moving to strongly convex smooth functional: Restarting method

We now turn our attention to the geodesically strongly convex case. Although an alternative silver
stepsize scheme has been proposed for strongly convex, smooth problems in the Euclidean setting
[AP24b], the co-coercivity condition it relies on does not carry over to geodesically strongly convex,
smooth problems on Riemannian manifolds. In contrast, for convex, smooth functions the co-
coercivity condition admits a natural Riemannian interpretation via generalized geodesic convexity
and geodesic smoothness (see Proposition 3.7.

Nevertheless, as noted in the main text, one can still employ the silver stepsize in the convex, smooth
setting by combining it with the restarting technique of [OC15]. Theorem 4.2 shows that applying
the restarting method [OC15] to our silver stepsize RGD yields an algorithm that also applies to
geodesically strongly convex problems.

Proof of Theorem 4.2. Since f is geodesically α-strongly convex and x∗ is a minimizer,

f(xm)− f(x∗) ≥
α

2
d2(xm, x∗)

from the geodesic strong convexity and stationarity condition.

Therefore, for m = 2k − 1, one gets

d2(xm, x∗) ≤
2

α
(f(xm)− f(x∗)) ≤ 2κrk ∥logb x0 − logb x∗∥

2
.

We first consider the case when r = 0, i.e., we exactly iterate m = 2k − 1 silver stepsize gradient
descent ℓ times, by restarting the algorithm from the very last update of the previous runs. The total
number of iterations becomes n = mℓ = (2k − 1)ℓ. Then, one gets the following bound for n
number of iterations:

d2(xn, x∗) ≤ (2κrk)
ℓ ∥logb x0 − logb x∗∥

2
.

The term (2κrk)
ℓ is the rate we obtain for this algorithm. Now, one can optimize the choice of k, ℓ to

get the tightest convergence rate, by solving

min
ℓ,k

(2κrk)
ℓ given (2k − 1)ℓ = n.

Specifically, we plug-in k∗ =
⌈
logρ κ

⌉
+ 1. Observe ρk

∗
+ 1 ≥ 1 + ρlogρ κ = 1 + ρκ ≥ ρκ. Then,

2κrk∗ =
2κ

1 +
√
4ρ2k∗ − 3

≤ 2κ

ρk∗ + 1
≤ 2

ρ
< 1

Now, since ℓ = n
2k∗−1

,

(2κrk∗)
ℓ = exp (ℓ log (2κrk∗)) ≤ exp

((
log

2

ρ

)
n

2k∗ − 1

)
≤ exp

(
−
(
log

ρ

2

) n

κlogρ 2

)

40



which is the claimed rate.

For the ϵ-approximate error, d2(xn, x∗) ≤ ϵ holds whenever

exp

(
−
(
log

ρ

2

) n

κlogρ 2

)
∥logb x0 − logb x∗∥

2 ≤ ϵ.

This is equivalent to

n ≥ κlogρ 2

log(ρ/2)
log

∥logb x0 − logb x∗∥
2

ϵ
= Θ(κlogρ 2 log(1/ϵ)).

B.3 Deferred proofs for Section 5

This appendix contains the proofs for the results in Section 5.

Proof of Corollary 5.1. First, choose the base b ∈ P2,ac(Rd) from the points that makes F being
generalized geodesically L-smooth with base b. Then, if Proposition 3.7 holds, then the proof goes
exactly same as in Theorem 4.1 and 4.2, once one substitutes the following quantities in the proof of
Theorem 4.1 and 4.2 accordingly:

• Set M = N = P2,ac(Rd).

• Change the Riemannian metric by ⟨·, ·⟩µ = ⟨·, ·⟩L2(µ) = Ex∼µ [⟨·(x), ·(x)⟩].

• Set VT b
µn

= Tb,µn
, where Tb,µn

= Tb,µn−1
− ηn−1

L GradW2
F(µn−1) ◦ Tb,µn−1

and Tb,µ0

is an arbitrary transport map (e.g., optimal transport map).

• Use expb(v) = (id+ v)#b.

• Take logb ν = Tb,ν − id.

• Set Grad f(x) to GradW2
F(µ), introduced in Definition A.34.

One thing to clarify is that 2-Wasserstein space is not geodesically complete [PZ20], so Assump-
tions 3.1 and 3.2 are not direct. However, we claim that the regularity conditions we imposed ensure
that all the proof ingredients in Theorem 4.1, 4.2, and Proposition 3.7 to be valid.

To check the claim, first Proposition 3.7 will remain valid if the condition on z in Proposition 3.7 is
satisfied. Under this specific geometry, the condition on z can be written as for all µ, ν ∈ P2,ac(Rd),

σ :=

(
− 1

L
(GradW2

F(ν) ◦ Tb,ν −GradW2
F(µ) ◦ Tb,µ) + Tb,ν

)
#b

=

(
id− 1

L
(GradW2

F(ν)−GradW2
F(µ) ◦ Tν,µ)

)
#ν

∈ P2,ac(R
d).

The above equality holds since Tν,µ ◦ Tb,ν = Tb,µ when µ, ν are the iterates from (5.2) (this is
because T·,· is not the optimal transport map). Precisely, for j > i,

Tb,µj
= (id−GradW2

F(µj−1)) ◦ (id−GradW2
F(µj−2)) ◦ · · · ◦ (id−GradW2

F(µi))︸ ︷︷ ︸
=Tµi,µj

◦Tb,µi .

Since GradW2
F(µ),GradW2

F(µ) ◦ Tν,µ ∈ L2(ν), the second moment condition is satisfied, and
the regularity condition we imposed ensures the absolute continuity.

Remaining part is whether the gradient iterates are well-defined in P2,ac(Rd), which is not guaranteed
anymore as the space is not geodesically complete. Again, the second moment condition is direct;
since GradW2

F(µn) ∈ L2(µn), (id − ηn
L GradW2

F(µn))#µn
also has the second moment. In
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addition, we imposed d(id− ηn
L GradW2 F(µn)#µn ≪ dm where dm is Lebesugue measure, so it

certifies that the gradient iterates are staying in P2,ac(Rd). However, there is still one more thing to
clarify: Definition A.28 is well defined only when all geodesic interpolations exist, which is stronger
than merely requiring invertibility at the endpoints. Such a condition guarantees the well definedness
of geodesic interpolations between two points. Nevertheless, note that our proofs of Theorems 4.1
and 4.2 rely only on inequalities evaluated at the iterates themselves; no interpolating points are
involved (e.g., the proofs do not invoke time integrals). Hence, we do not need the the all geodesic
interpolations between µn and (id− ηn

L GradF(µn))#µn
to exist. Under this perspective, we can

conclude that as long as the gradient iterates stay in P2,ac(Rd), all our proof ingredients remain valid.

In sum, as long as the imposed regularity conditions hold, all our proof ingredients remain valid even
without the geodesic completeness. This completes the proof.

Remark B.7 (Proof for Bures-Wasserstein space). The proof of Corollary 5.1 holds the same if we
replace N to be BW (Rd), as BW (Rd) is a totally geodesic submanifold of P2,ac(Rd). This justifies
our choice of N in Section 5.1.

Now, we prove the results in Remark 5.3.

Proofs on the statements in Remark 5.3. First, we show if dµ ≪ dm, I − s∇2h being invertible
implies d(id− s∇h)#µ ≪ dm for any fixed s > 0, if h ∈ C1,1

loc (R
d). Since h ∈ C1,1

loc (R
d), the map

T (x) = x− s∇h(x) is locally Lipschitz and differentiable a.e.

Write BR := B(0, R), and for any nonnegative measurable function g consider gk(y) =
min {g(y), k}1{|y|≤k}. Then, by the change of variable formula and area formula,∫

BR

gk(y)d(T#µ)(y) =

∫
T−1(BR)

gk ◦ T (x)dµ(x) =
∫
T−1(BR)

gk ◦ T (x)µ(x)dx

=

∫
BR

gk(y)
∑

x∈BR∩T−1(y)

µ(x)

|det(I − s∇2h(x))|
dy.

We used the invertibility for the division by the Jacobian. Next, using monotone convergence theorem
with R→ ∞, one gets∫

Rd

gk(y)d(T#µ)(y) =

∫
Rd

gk(y)
∑

x∈T−1(y)

µ(x)

|det(I − s∇2h(x))|
dy.

Apply MCT one more time with k → ∞ to get∫
Rd

g(y)d(T#µ)(y) =

∫
Rd

g(y)
∑

x∈T−1(y)

µ(x)

|det(I − s∇2h(x))|
dy.

Now, for any measurable function g, one can use the standard method in measure theory (spliiting
g = g+ − g−) to get∫

Rd

g(y)d(T#µ)(y) =

∫
Rd

g(y)
∑

x∈T−1(y)

µ(x)

|det(I − s∇2h(x))|
dy

for any measurable function g. This shows that (id − s∇h)#µ admits the density∑
x∈T−1(y)

µ(x)
|det(I−s∇2h(x))| .

For (id − 1
L (∇h − ∇h ◦ Tν,µ)#ν ≪ dm, the same argument as in the above holds as long as

Tν,µ ∈ C1,1
loc (R

d).

In many applications, GradW2 F(µ) ∈ C1,1
loc (R

d) is weak condition. For example, our potential
energy functional application satisfies this as long as the potential function is convex and L-smooth,
which is typical case. In addition, the negative entropy functional H(µ) =

∫
µ logµ also satisfies this

condition as long as the log density is C1,1
loc (R

d). The regularity condition on the optimal transport
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map Tν,µ ∈ C1,1
loc (R

d) have been studied intensively in the Monge-Ampere Equation literature, and
depends on the relationship between densities of µ and ν, but it holds in many practical applications.
For instance, in our Gaussian application, since the transport map is linear, it satisfies the desired
regularity.

Next, we present a complete proof of Proposition 5.4.

Proof of Proposition 5.4. Since the argument is identical for both the 2-Wasserstein and Bu-
res–Wasserstein geometries, we only present the proof in the 2-Wasserstein case.

Fix an aribtrary base b ∈ P2,ac(Rd). Let Tb,µ and Tb,ν be any transport maps from b to µ and ν
respectively. From the condition that V is convex and L-smooth on Rd, we have for any z ∼ b,

V (Tb,ν(z))−V (Tb,µ(z))−⟨∇V (Tb,µ(z)), Tb,ν(z)− Tb,µ(z)⟩−
1

2L
∥∇V (Tb,ν(z))−∇V (Tb,µ(z))∥2 ≥ 0

which is the standard inequality for convex L-smooth function on Rd. Take an expectation over z ∼ b
on the above inequality. The result follows from the fact GradW2

V(µ)(·) = ∇V (·), which is from
[San14, Remark 7.13] and Definition A.34. Since the result holds regardless of the choice of base b,
it holds with any base b.

To substituteW 2
2 (µ0, µ∗) for ∥Tb,µ0 − Tb,µ∗∥

2
b , we notice the above result holds for any b. In addition,

notice the gradient update µn itself does not depend on b. Therefore, one can rewrite the result of
Corollary 5.1 as follows:

V(µn)− V(µ∗) ≤ rkL inf
b∈P2,ac(Rd)

∥Tb,µ0
− Tb,µ∗∥

2
b = rkL inf

b∈P2,ac(Rd)
∥Tb,µ∗ ◦ Tµ0,b − id∥2µ0

.

By the optimality of the transport plan, one has infb∈P2,ac(Rd) ∥Tb,µ∗ ◦ Tµ0,b − id∥2µ0
=W 2

2 (µ0, µ∗),
which completes the proof.

Lastly, for strongly convex result, we claim V is geodesically α-strongly convex if V is α-strongly
convex. Under the claim, the result is direct from Corollary 5.1. To show the claim, for any
µ, ν ∈ P2,ac(Rd), write Tµ,ν the optimal transport map from µ to ν. From the strong convexity of V ,
for any x ∼ µ we get

V (Tµ,ν(x)) ≥ V (x) + ⟨∇V (x), Tµ,ν(x)− x⟩+ α

2
∥Tµ,ν(x)− x∥2 .

Take the expectation over x ∼ µ on the above inequality. Using the facts that Tµ,ν is the optimal
transport map and GradW2

V(µ)(·) = ∇V (·) lead to the claim.

Remark B.8. Note for the above proof we did not use the optimal transport map, and considered
arbitrary transport map. Hence, our algorithm is readily applicable to this setting.

C Generalized geodesic convexity and smoothness

The notion of generalized geodesic convexity was originally introduced in optimal transport and has
found various usages in Wasserstein geometry, including the theoretical analysis of the proximal
operator in the 2-Wasserstein space [AGS08, Lemma 9.2.7], [SKL20, DBCS23], and its connection
to Γ-convergence [AGS08, Lemma 9.2.9]. To the best of our knowledge, this notion has not yet
been explored in the Riemannian geometry literature. We therefore expect that introducing it in this
context could provide new tools for analyzing proximal operators and Γ-convergence on Riemannian
manifolds, as it has in the 2-Wasserstein setting-areas that, to date, remain underdeveloped.

In this appendix, we provide some examples of generalized geodesically convex functionals for
readers who are not familiar with the concept.

First, recall the notion of generalized geodesic convexity, which is VT -geodesic convexity with
VT = Γ. Generalized geodesic smoothness can be understood in analogous manner.
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Definition C.1 (Generalized geodesic convexity). A differentiable function f : N → R is called
generalized geodesically α-strongly convex with base b ∈M if for all x, y ∈ N

f(y) ≥ f(x) +
〈
ΓbxGrad f(x), logb y − logb x

〉
b
+
α

2
∥logb y − logb x∥

2
b .

If α = 0, we say f is generalized geodesically convex with base b. If f is generalized geodesically
α-strongly convex for all b ∈M , then f is called generalized geodesically α-strongly convex.

We start with the trivial example: Euclidean space.

Example C.2. A differentiable, α-strongly convex function f : Rd → R is generalized geodesically
α-strongly convex.

Proof. In Euclidean space, expx(v) = x + v and logx y = y − x. Since f is differentiable and
α-strongly convex, for all x, y, b ∈ Rd

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2

= f(x) + ⟨∇f(x), (y − b)− (x− b)⟩+ α

2
∥(y − b)− (x− b)∥2 .

Now, we move to nontrivial examples: non-Euclidean manifolds. As mentioned in the main body,
this concept has already been widely discussed in the Wasserstein space. Therefore, there are some
known examples in 2-Wasserstein space. We first introduce some generalized geodesically convex
functionals in Wasserstein space: potential energy functional and internal energy functional.

Example C.3 (Potential energy). Consider a function V : Rd → R. A functional V(µ) :=
EX∼µ[V (X)] is called a potential functional. If V is α-strongly convex (L-smooth) in Rd, then
V geodesically α-strongly convex (resp. L-smooth).

This is duplicate of Proposition 5.4.

Example C.4 (Internal energy). Let F : [0,∞) → (−∞,∞] be a proper, lower semi-continuous
convex function such that

F (0) = 0, lim inf
s↓0

F (s)

sα
> −∞ for some α >

d

d+ 2
.

Consider a functional HF : P2,ac(Rd) → R defined by

HF (µ) :=

∫
Rd

F (µ(x))dx.

If the map s 7→ sdF (s−d) is convex and non-increasing in (0,∞), then the functional HF is
generalized geodesically convex.

We refer to [AGS08, Proposition 9.3.9] for the proof.

Remark C.5. Some widely used choice of F satisfying the conditions are as follows:

1. F (s) = s log s. This choice leads to HF being the differential entropy functional.

2. For any q > 1, F (s) = sq .

3. For m ≥ 1− 1/d, F (s) = 1
m−1s

m.

Now, we present examples on Riemannian manifolds. We begin by providing sufficient conditions
for generalized geodesic convexity, which turns out to be useful in verifying the generalized geodesic
convexity for a given functional.

Lemma C.6 (Criteria for generalized geodesic convexity). Fix b ∈ N . For any x, y ∈ N , let γ(t) be
any curve such that γ(0) = x, γ(1) = y, and γ̇(0) = Γxb (logb y− logb x). If a differentiable function
f : N → R satisfies either one of the following conditions, then f is generalized geodesically convex
with base b ∈ N .
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1. Zeroth-order criterion: (1− t)f(x) + tf(y) ≥ (f ◦ γ)(t) for all t ∈ [0, 1].

2. Second-order criterion: d2

dt2 (f ◦ γ)(t) ≥ 0 for all t ∈ (0, 1).

Proof. 1. Zeroth-order criterion: Let ϕ(t) := (1− t)f(x) + tf(y)− (f ◦ γ)(t). Then, ϕ(t) ≥ 0
and ϕ(0) = 0 is the global minimizer. Since f is differentiable,

0 ≤ ϕ′(0+) = lim
t→0+

ϕ(t)

t
= f(y)− f(x)− d

dt

∣∣∣∣
t=0

(f ◦ γ)(t)

= f(y)− f(x)−
〈
Grad f(x),Γxb (logy b− logb x)

〉
x

= f(y)− f(x)−
〈
ΓbxGrad f(x), logb y − logb x

〉
b
.

2. Second-order criterion: By Taylor’s theorem,

f(y) = f(x) +
d

dt

∣∣∣∣
t=0

(f ◦ γ)(t) +
∫ 1

0

(1− t)
d2

dt2
(f ◦ γ)(t)dt

≥ f(x) + ⟨Grad f(x),Γxb (logb y − logb x)⟩ = f(x) +
〈
ΓbxGrad f(x), logb y − logb x

〉
.

Remark C.7 (Existence of γ). It is natural to ask whether such curve γ(t) exists. In fact, as long
as the exponential map is defined for sufficiently large neighborhood of x, there always exists a
curve satisfying the conditions. For example, in a complete manifold, such curve always exists. Let
v(t) := tΓxb (logb y − logb x) + t2(logx y − Γxb (logb y − logb x)), and define γ(t) = expx (v(t)).
Observe γ(0) = x and γ(1) = y. Furthermore, since the differential of the exponential map is the
identity at the origin, by the chain rule

γ̇(0) = dexpx(v(0))[v
′(0)] = Γxb (logb y − logb x).

In certain Riemannian manifolds with a particularly well-behaving exponential map, simpler curves
can be used. For instance, in the 2-Wasserstein space, a more natural choice of curve is available.
Fix a base π ∈ P2,ac(Rd). For any µ, ν ∈ P2,ac(Rd), let γ(t) := expπ((1− t) logπ µ+ t logπ ν) =
((1 − t)Tπ,µ + tTπ,ν)#π be a curve. Then, γ(0) = µ, γ(1) = ν, and the velocity vector field
corresponding to γ(t) is vt = (Tπ,ν − Tπ,µ) ◦ Tγ(t),π [DBCS23, Appendix B.2].

As a specific example, we consider the entropy functional on SPD(d) space. This example will
show how one can verify the generalized geodesic convexity using Lemma C.6.
Example C.8 (Entropy of Gaussian). Consider a functional H : SPD(d) → R defined by
H(A) = − 1

2 log detA. This functional is in fact the entropy functional of the multivariate Gaussian
distribution N(0, A) (up to an affine transformation). There are two natural Riemannian metrics in
SPD(d) space [FAP+05, PFA05, BH06, HMJG21, Ngu22, TP22, KPB25].

1. Affine invariant metric: dAI(A,B) :=
∥∥logA−1/2BA−1/2

∥∥
F

, and ⟨S,R⟩A =

tr(A−1SA−1R) for S,R ∈ Sym(d). This metric induces non-positively curved geome-
try on SPD(d).

2. Bures-Wasserstein metric: d2BW (A,B) := tr(A) + tr(B) − 2 tr(A1/2BA1/2)1/2, and
⟨S,R⟩A = tr(SAR) for S,R ∈ Sym(d). This metric induces non-negatively curved
geometry on SPD(d).

Both geometries originate from the geometry of zero-mean Gaussian distributions. The metric dAI
arises from the Fisher information metric associated with zero-mean Gaussians [Nie23], while the
metric dBW corresponds to the Wasserstein geometry of zero-mean Gaussians, as described in
Appendix A.2.1. Under both geometries, H(A) is generalized geodesically convex.

Note that dBW corresponds to the 2-Wasserstein distance between Gaussians, so the result for dBW
is a special case of Example C.4. Nonetheless, we present the proof entirely in the language of
Riemannian geometry to demonstrate that the notion of generalized geodesic convexity remains valid
purely within the Riemannian framework.
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Proof of Example C.8. In both cases, we apply the second-order criterion from Lemma C.6. The
general strategy is to construct a curve that satisfies the required conditions with respect to a fixed
starting point, endpoint, and base point. The specific choice of curve should reflect the underlying
geometry. Once the curve is chosen, we compute the time derivative of the functional along the curve;
this can be carried out entirely using matrix calculus, without explicitly invoking the Riemannian
structure.

We will use N to denote the arbitrary base point, and M0,M1 to denote the starting point and the
endpoint of the curve.

1. Affine invariant metric: We first construct a curve satisfying the desired property. For simplicity,
write Xi := N−1/2MiN

−1/2. Define c(t) := At+Bt2 where

A = logX1 − logX0,

B = log(X
−1/2
0 X1X

−1/2
0 )− (logX1 − logX0).

We now consider a curve on SPD(d) defined by

M(t) := N1/2X
1/2
0 exp(c(t))X

1/2
0 N1/2.

Here, the exp is usual matrix exponential, not the exponential map. We claim this is the desired
curve in Lemma C.6.2 First, M(0) = N1/2X0N

1/2 = M0, M(1) = N1/2X1N
1/2 = M1. Now,

we check M ′(0). Note

M ′(0) = N1/2X
1/2
0 exp(c(0))c′(0)X

1/2
0 N1/2

= N1/2X
1/2
0 AX

1/2
0 N1/2.

Now, since M0 = N1/2X0N
1/2, M0N

−1 = N1/2X0N
−1/2. Hence, (M0N

−1)1/2 =

N1/2X
1/2
0 N−1/2. This leads to

M ′(0) = N1/2X
1/2
0 N−1/2[N1/2AN1/2]N−1/2X

1/2
0 N1/2

= (M0N
−1)1/2N1/2AN1/2((M0N

−1)1/2)T .

This exactly coincides to ΓM0

N (logN M1 − logN M0) on (SPD(d), dAI)
3.

Now, since we obtained the desired curve, we compute d2

dt2H(Mt). First, observe

H(Mt) = −1

2
(log det exp(c(t)) + log detN + log detX0)

= −1

2
(log exp tr(c(t)) + log detN + log detX0) = −1

2
(tr(c(t)) + log detN + log detX0)

where we used the well-known matrix identity det exp(Y ) = exp tr(Y ).

Thus,

d2

dt2
H(Mt) = −1

2
tr(c′′(t)) = − tr(B)

= − tr(log(X
−1/2
0 X1X

−1/2
0 ) + tr(logX1)− tr(logX0)

= − log detX0 − log detX1 + log detX1 − log detX0 = 0

from the well-known matrix identity tr log(Y ) = log det(Y ). Hence, by the second order criterion
of Lemma C.6, H is generalized geodesically convex with base N .

Since the above result holds for arbitrary choice of N ∈ SPD(d), we get the generalized geodesic
convexity of H.4

2In fact, this curve is constructed as in Remark C.7.
3For the formula of the parallel transport and Riemannian logarithmic map on (SPD, dAI), see [Ngu22,

Supplement 1.1].
4More precisely, since the second derivative is zero, functional H is generalized geodesically linear.
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2. Bures-Wasserstein metric: We again start with constructing a curve satisfying the desired
properties. As noted in Remark A.40, in this setting we must match the tangent vector corresponding
to M ′(0) with ΓM0

N (logN M1 − logN M0), rather than matching M ′(0) directly. We consider
ν = N(0, N), µ0 = N(0,M0), and µ1 = N(0,M1). From Appendix A.2.1, the optimal transport
map between 0-mean Gaussians is a linear map. Therefore, for any π0, π1, we denote BL0,L1

to be
the matrix corresponding to the optimal transport map between π0 = N(0, L0), π1 = N(0, L1), i.e.,
Tπ0,π1

(x) = BL0,L1
x. Now, consider a curve on SPD(d) defined by

M(t) := ((1− t)I + tBN,M1
BM0,N )M0 ((1− t)I + tBN,M1

BM0,N )
T 5.

Then, M(0) = M0 trivially and M(1) = M1; for any X ∼ N(0,M0), on the one hand
BN,M1BM0,NX = Tν,µ1 ◦ Tµ0,ν(X) ∼ N(0,M1), and on the other hand BN,M1BM0,NX ∼
N(0, (BN,M1

BM0,N )M0(BN,M1
BM0,N )T ), meaning (BN,M1

BM0,N )M0(BN,M1
BM0,N )T =

M1. In addition, since M ′(0) = BN,M1
BM0,NM0 + M0BN,M1

BM0,N , from the identifica-
tion in Remark A.40 the tangent vector corresponding to M ′(0) is V0 = BN,M1

BM0,N − I =

ΓM0

N (BN,M1
−BN,M0

). Therefore, the curve M(t) satisfies the conditions in Lemma C.6.

Now, we compute d2

dt2H(Mt). First, sinceMt = AtM0A
T
t , H(Mt) = − log det(At)− 1

2 log detM0.
Then, for all t ∈ (0, 1),

d2

dt2
H(Mt) = − d2

dt2
log det(At) = − d

dt
tr
(
A−1
t Ȧt

)
= − d

dt
tr
(
A−1
t (BN,M1BM0,N − I)

)
= − tr

(
d

dt
A−1
t (BN,M1

BM0,N − I)

)
= tr

(
A−1
t ȦtA

−1
t (BN,M1

BM0,N − I)
)

= tr
(
A−1
t (BN,M1

BM0,N − I)A−1
t (BN,M1

BM0,N − I)
)

(i)
= tr

([
A

−1/2
t (BN,M1

BM0,N − I)A
−1/2
t

]2)
≥ 0

which is the desired inequality. For (i), we claim that A−1/2
t is well-defined as the principal square

root for all t ∈ (0, 1). This follows from the fact that both BN,M1 , BM0,N are optimal transport maps
and thus, by Brenier’s Theorem A.24, they are non-negative definite. Consequently, the product
BN,M1

BM0N also has non-negative eigenvalues. Since At is a convex combination of the identity
matrix I and a matrix with non-negative eigenvalues, it follows that all eigenvalues of At are strictly
positive on t ∈ (0, 1). Hence, all eigenvalues of A−1

t are positive for t ∈ (0, 1), and then A−1/2
t is

well-defined as the principal square root.

Again, since the inequality holds for arbitrary base N , we obtain the generalized geodesic convexity
of H.

Lastly, we show the generalized geodesic smoothness with base b is not strictly stronger than geodesic
smoothness. In particular, as mentioned in Section 3, we show the function f(x) = 1

2d
2(x, p) for

fixed p on Hadamard manifold M is generalized geodesically smooth with base p, while it is not
geodesically smooth [CK25].

Before we show the result, we need the following lemma, which shows how logarithmic map changes
under the parallel transport.

Lemma C.9. For all x, y ∈ N , let Γyx be a parallel transport from x to y induced from the geodesic
connecting x and y. Then,

Γyx logx y = − logy x.

This result is analogous result of y − x = −(x− y) in Euclidean case.

Proof. Let γ : [0, 1] →M be a geodesic curve such that γ(0) = x and γ(1) = y. Then, by definition
of logarithmic map, one gets γ′(0) = logx y.

5While BN,M1BM0,N − I may not be symmetric, the formula on the right hand side is still well-defined.
Consequently, there is no harm in defining the curve via this formula.
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Now, consider the reversed geodesic σ(t) := γ(1 − t). Then, σ′(0) = −γ′(1) = logy x. By the
property of the geodesic and the parallel transport,

Γyx logx y = Γyxγ
′(0) = γ′(1) = −σ′(0) = − logy x.

Now we are ready to prove the following example.

Example C.10 (Generalized geodesic smoothness with base is not restrictive). The function f(x) =
1
2d

2(x, p) on Hadamard manifold M is generalized geodesically 1-smooth with base p.

Proof. On Hadamard manifold, the exponential map is global diffeomorphism. Hence, we have
f(x) = 1

2

∥∥logp x∥∥2. In addition, the standard fact on Riemannian manifold is that Grad f(x) =
− logx p [AOBL20, Section 4]. Now, we show the inequality (3.3) with L = 1. In fact, in this case it
holds with equality. This can be verified by the below calculation:

f(y)− f(x)−
〈
ΓpxGrad f(x), logp y − logp x

〉
=

1

2

∥∥logp y∥∥2 − 1

2

∥∥logp x∥∥2 + 〈Γpx logx p, logp y − logp x
〉

(i)
=

1

2

∥∥logp y∥∥2 − 1

2

∥∥logp x∥∥2 − 〈logp x, logp y − logp x
〉

=
1

2

∥∥logp y∥∥2 + 1

2

∥∥logp x∥∥2 − 〈logp x, logp y〉
=

1

2

∥∥logp y − logp x
∥∥2 .

It is known that the above f(x) is not geodesically smooth [CK25]. Thus, Example C.10 shows
that generalized geodesic smoothness with single base is not strictly stronger than standard geodesic
smoothness.

D Implementation detail and additional experiments

This section includes implementation detail and more experiments of our algorithm under different
settings. We conduct additional experiments on the problems in Section 5, to show the robustness
of our algorithm. In particular, in this appendix we elaborate the following points that were briefly
mentioned in the main body.

1. Because the silver stepsize schedule sometimes uses very large stepsizes, one might ask
whether simply increasing RGD’s constant stepsize could match its performance. We show
this is not the case: using a constant stepsize above the critical threshold 2/L causes RGD
to diverge, while silver stepsize shows the improved performance.

2. We conducted experiments using multiple random seeds and demonstrate that our algorithm’s
performances are statistically significant.

Furthermore, to demonstrate our method’s versatility, we include experiments on an additional
optimization problem in the Wasserstein space: the mean-field training of a two-layer neural network.
This problem showcases the applicability of our algorithm, and of Wasserstein-based optimization
more broadly, to neural network training. In addition, we provide additional experiments on SPD
matrix space.

D.1 Implementation detail

All experiments in our paper were conducted on the free version of Google Colab using a T4 GPU.
Each task took no more than 5 minutes.
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Wasserstein potential functional optimization For the potential functional optimization problem
in Section 5.1, we used Python packages numpy, scipy for the implementation. We generated
m∗ from the uniform distribution on the unit cube [0, 1]d. For Σ∗, since we conducted experiments
with fixed L = 1 and α = 10−1, 10−3, 10−7, 10−13, we have λmin = 1/L = 1 and λmax = 1/α.
We placed d points evenly on a log-scale over the interval [1/L, 1/α] and used those values as
the eigenvalues to construct a diagonal matrix Λ. Then, we uniformly sampled an orthogonal
matrix P from the uniform distribution on the orthogonal group O(d) (using Haar measure), and set
Σ∗ = PΛPT . We used m0 = 0 and Σ0 = I as the initialization for all experiments.

SPD space optimization As in Wasserstein potential optimization, for C we placed d points evenly
on a log-scale over the interval [1/α, 1] and used those values as the diagonal matrix Λ. Then, we
again uniformly sampled the orthogonal matrix P and set C = PΛPT . We used α = 10 and
α = 105 to make the desired condition number.

D.2 Additional experiments

D.2.1 Potential functional optimization

We conduct numerial experiments on two tasks: the same task as in Section 5.1, and logistic regression.
To verify that our algorithm remains effective with a general choice of iteration count unless n is
close to the spikes (e.g. n = 2k), we set the number of iterations n = 1500, which is neither of the
form 2k − 1 nor close to 210 − 1 or 211 − 1. For the inner-iterations in the strongly convex setting
for the restarting, we chose m = 20 for α = 10−1 and m = 500 for α = 10−3, selecting values near
the 2k

∗ − 1 in Theorem 4.2 while ensuring divisibility by 1,500. We compared our silver stepsize
RGD with constant stepsize RGD using η = 1/L (the standard choice), η = 1.99/L (just below
the theoretical threshold), and η = 2.01/L (just above it). The experiment was repeated over 100
random seeds, and we report the mean error curves along with 95% confidence intervals. Here, using
different seeds can be understood as solving instances of a stochastic optimization problem. In this
regard, comparing the errors across different seeds is a reasonable evaluation.

The results are displayed in Figure 4. Figure 4 provides evidence supporting our claims:

1. The algorithm performs well even when the number of iterations is not of the form 2k − 1,
as long as it is not close to 2k.

2. Our method is not equivalent to simply increasing the constant stepsize in RGD; it consis-
tently outperforms all tested stepsize choices. In particular, the large stepsize RGD, unlike
silver stepsize RGD, diverges.

3. The performances of our algorithm are statistically significant.

In addition, we conduct the same experiments when gradient oracles are stochastic. The results are
coherent with the previous observations at the cost of extra oscillations, given sufficient number of
gradient samples. See Figure 5.

Lastly, we provide the Bures-Wasserstein gradient descent experiments on logistic regression potential.
For response Yi ∈ {0, 1} and predictor Xi ∈ Rd (i = 1, . . . , k), a logistic regression model assumes
Yi | Xi ∼ Bernoulli(logistic(XT

i θ)) independently across i. Assuming an improper prior on θ, the
potential V takes the form

V (θ) =

k∑
i=1

log(1 + exp(XT
i θ))− YiX

T
i θ.

It is well-known that V is convex and 1
4 ∥X∥2op-smooth. Thus, proposition 5.4 applies with L =

1
4 ∥X∥2op.

We conduct the experiments on this logistic regression potential minimization problem. Note for
this problem, the Wasserstein gradient (Eµ[∇V (θ)],Eµ[∇2V (θ)]) does not allow the closed form
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Figure 4: Comparison between silver stepsize method and RGD for potential functional optimization
in BW (Rd) with different convexity parameters. For each task, we conduct 100 simulations with
different seeds and plot the mean and 95% confidence interval of the error over the iterates. Columns:
From left to right, each column corresponds to κ = 101, 103, 107, 1013.

Figure 5: Same experiments as in Figure 4, but with stochastic gradients. We set the number
of gradient samples to be 100. Columns: From left to right, each column corresponds to κ =
101, 103, 107, 1013.

solution. Hence, we used the Monte Carlo approximation for these quantities. The result is provided
in Figure 6. This experiment not only verifies the extendability of our method beyond the quadratic
case, but also to the stochastic gradient given the sufficient number of gradient samples.

D.2.2 Mean-Field Two-Layer Network Training via Wasserstein gradient

Next, we numerically demonstrate the effectiveness of our algorithms for two-layer neural network
training. We first introduce the mean-field training formulation for a two-layer neural network, which
enables us to view neural network training as a Wasserstein optimization problem, and then present
our experimental results. For further details, we refer the interested reader to [CB18, MMN18, Woj20,
FRF22].

Problem formulation One way to interpret two-layer neural networks is to view their function
space as a space of probability measures. In particular, we adopt the Barron space formulation studied
in [Bar93, WE20, Woj20]. In Barron space formulation, a (possibly infinitely wide) two-layer neural
network is represented as

fπ(x) := E(a,w,b)∼π
[
aσ(wTx+ b)

]
where σ denoting a fixed activation function (e.g., ReLU). For instance, a m-width two-layer neural
network corresponds to fπm , where πm = 1

m

∑m
i=1 δ(ai,wi,bi).

This formulation enables us to view neural network training as an optimization over probability
measures. In particular, it becomes the following risk-functional minimization problem:

π∗ := argmin
π∈P2,ac(Rd)

R(π) := Ex∼P [ℓ(fπ(x), f
∗(x))] (D.1)

where f∗ is the target function, fπ is the two-layer neural network, and ℓ is a loss function (e.g.,
squared loss). The neural network fπ∗ is the risk-functional minimizer and thus the desired solution.
Since (D.1) is now just the optimization problem on the Wasserstein space, it is possible to consider
Wasserstein gradient descent algorithms (5.2) to solve (D.1):

πn+1 = (id− ηnGradW2
R(πn))#πn

. (D.2)

In practice, this update operates over the space of functions and is thus not directly implementable.
Instead, one typically uses a particle approximation of the probability measure, i.e.,

πn =
1

m

m∑
i=1

δ
(a

(n)
i ,w

(n)
i ,b

(n)
i )

,
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Figure 6: Comparison between silver stepsize method and RGD for potential functional optimization
in BW (Rd) for logistic regression potential. We plotted logV(µn)− logVmin for the y-axis, where
Vmin is the minimum value among all experiments. We set k = 20, d = 10, and the number of
gradient samples to be 100.

where m is the number of particles chosen by the user [SKL20, WL22]. Under this approximation,
the Wasserstein gradient update becomes

πn+1 = (id− ηnGradW2 R(πn))#πn

=
1

m

m∑
i=1

δ
(a

(n)
i ,w

(n)
i ,b

(n)
i )−ηn GradW2

R(πn)(a
(n)
i ,w

(n)
i ,b

(n)
i )

.

Using Definition A.34, it is known from [Woj20] that

GradW2
R(π)(a,w, b) = Ex∼P

[
∇(a,w,b)ℓ(fπ(x), f

∗(x))
]
.

Therefore, the particle approximation of the Wasserstein gradient update for a two-layer neural
network takes the form

(a
(n+1)
i , w

(n+1)
i , b

(n+1)
i ) = (a

(n)
i , w

(n)
i , b

(n)
i )− ηnEx∼P

[
∇

(a
(n)
i ,w

(n)
i ,b

(n)
i )

ℓ(fπn
(x), f∗(x))

]
(D.3)

for i = 1, . . . ,m. Observe (D.3) exactly coincides with the standard gradient descent update of the
parameters.

In conclusion, the silver stepsize (and, respectively, constant stepsize) parameter updates in two-
layer neural networks (D.3) can be interpreted as the particle approximation of silver stepsize (resp.
constant stepsize) Wasserstein gradient descent (D.2) applied to the risk minimization problem (D.1).
Hence, we consider applying silver stepsize WGD (5.2) on this problem.

Numerical experiments To evaluate the effectiveness of the silver stepsize for this task, we conduct
experiments on learning a target function using a two-layer neural network with ReLU activation.
Specifically, we consider the simple task of learning a univariate function f∗ : [−1, 1] → R. We
consider two target functions:

1. f∗(x) = 1
30

∑30
i=1 a

∗
i σ(w

∗
i x + b∗i ), i.e., a 30-width two-layer neural network with fixed

parameters a∗i , w
∗
i , b

∗
i . Here, σ is the ReLU activation.

2. f∗(x) = sin(2πx).

We use N = 200 samples, with 70% of the data used for training and the remaining 30% for testing.
The model is a two-layer neural network with width m = 100, trained using mean squared loss. We
set the smoothness parameter to L = 100, and the number of training iterations to n = 2000.

Figure 7 shows the results of our experiments for solving (D.3) using different stepsize schedules.
Consistent with previous findings, the silver stepsize algorithm outperforms constant stepsize RGDs
with various stepsizes in solving (D.1). While the figure displays results for a specific random seed,
we observed similar trends across multiple seeds.
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Figure 7: Mean-field training (D.3) of two-layer neural networks. Rows: The first row is the results
from f∗(x) = 1

30

∑30
i=1 a

∗
i σ(w

∗
i x+ b∗), and the second row is the results from f∗(x) = sin(2πx).

Columns: The first column is the training and test error curve, and the second column is the function
graph of the learned function.

D.2.3 Additional experiments on SPD space

As briefly mentioned in the main body, there is a non-trivial family of functions that is favorable
to use VTRGD algorithm (4.1), which are the functions of the form fφ(X) = φ(log detX) for
some φ : R → R. The first favorable fact is that fφ(X) is generalized geodesically convex (resp.
L-smooth) on (SPD(d), dAI) when φ is convex (resp. L-smooth).

Proposition D.1. For any convex function ϕ : R → R, the functional fϕ(X) = ϕ(log detX) defined
on SPD(d) is generalized geodesically convex. Also, for any L-smooth function ψ : R → R, the
function fψ(X) = ψ(log detX) is generalized geodesically Ld-smooth.

Proof. We will show for arbitrary base B ∈ SPD(d), Definition 3.4 and 3.5 holds with VT = Γ.

First, we consider g(X) = log detX . We first show for any X,Y,B ∈ SPD(d)

g(Y )−G(X) =
〈
ΓBX Grad g(X), logB Y − logB X

〉
. (D.4)

To verify this, first observe that Grad g(X) = X . This can be verified by the definition of Riemannian
gradient. Riemannain gradient is defined by the operator satisfying for all H ∈ Sym(d)

tr(X−1 Grad g(X)Y −1H) = ⟨Grad g(X), H⟩X = dgX(H) = tr(X−1H).

For the last inequality we used the well-known formula for the derivative of log-determinant function.
Since X ∈ SPD(d), this implies Grad g(X) = X .

Next, we show ΓBXX = X . To check this, from the definition of the parallel transport in
(SPD(d), dAI) [Ngu22, Supplement 1.1],

ΓBXX = (BX−1)1/2X((BX−1)1/2)T = B.

Hence, 〈
ΓBXX, logB Y − logB X

〉
= ⟨B, logB Y ⟩ − ⟨B, logB X⟩ .

Now, for any matrix M , from the definition of the Riemannian metric on dAI and logarithmic map
[Ngu22, Supplement 1.1],

⟨B, logBM⟩ = tr(B−1 logBM) = tr(B−1/2 log(B−1/2MB−1/2)B1/2) = tr(log(B−1/2MB−1/2))
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= log det(B−1/2MB−1/2) = 2 log detB−1/2 + log detM.

Therefore, 〈
ΓCBB, logC A− logC B

〉
= log detA− log detB = g(A)− g(B)

which shows (D.4).

Now we are left with the ϕ and ψ part. For ϕ, by the convexity of ϕ,

ϕ ◦ g(Y )− ϕ ◦ g(X) ≥ ϕ′(g(X))(g(Y )− g(X)) = ϕ′(g(X))
〈
ΓBX Grad g(X), logB Y − logB X

〉
=
〈
ΓBX Grad(ϕ ◦ g)(X), logB Y − logB X

〉
where the last equality is from the chain rule and linearity of the parallel transport and gradient. This
shows ϕ ◦ g is Γ-geodesically convex with arbitrary base B.

For ψ, first observe

g(Y )− g(X) =
〈
ΓBX Grad g(X), logB Y − logB X

〉
≤
∥∥ΓBX Grad g(X)

∥∥ ∥logB Y − logB X∥
≤ ∥X∥ ∥logB Y − logB X∥ = tr(X−1XX−1X) ∥logB Y − logB X∥ = d ∥logB Y − logB X∥ .

Then, using the L-smoothness of ψ,

ψ ◦ g(Y )− ψ ◦ g(X) ≤ ψ′(g(X))(g(Y )− g(X)) +
L

2
∥g(Y )− g(X)∥2

≤
〈
ΓBX Grad(ψ ◦ g)(X), logB Y − logB X

〉
+
Ld

2
∥logB Y − logB X∥2

which shows ψ ◦ g is Γ-geodesically Ld-smooth with arbitrary base B.

Note affine invariant metric yields the complete Riemannian manifolds on SPD(d) [PFA05], so
Proposition D.1 combined with Proposition 3.7 yields (3.1) with any base b ∈ SPD(d), hence
guarantee Theorem 4.1. On the other hand, since X 7→ log detX is not L-smooth in matrix norm
sense, Proposition D.1 highlights the strength of VTRGD algorithms for optimization problems
involving functions of the form fφ(X) = φ(log detX).

Moreover, as in Wasserstein space, for this certain function VTRGD coincides with standard RGD.

Proposition D.2. For the function of the form fφ(X) = φ(log detX), VTRGD algorithm coincides
with standard RGD, i.e., for any X,B ∈ SPD(d),

expB(logB X − ΓBX Grad fφ(X)) = expX(Grad fφ(X)).

Proof. We directly compute (4.1) and compare. We write B as the base point. First, from the
calculations in the proof of Proposition D.1,

ΓBXn
Grad fφ(Xn) = ΓBXn

φ′(log detXn)Grad(log detXn) = φ′(log detXn)Γ
B
Xn
X = φ′(log detXn)B.

Hence,

expB
(
logB Xn − ηnΓ

B
Xn

Grad log detXn

)
= B1/2exp

(
B−1/2[logB Xn − ηnφ

′(log detXn)B]B−1/2
)
B1/2

= e−ηnφ
′(log detXn)B1/2exp

(
B−1/2 logB XnB

−1/2
)
B1/2

= e−ηnφ
′(log detXn)Xn = expXn

(−ηnφ′(log detXn)Xn) = expXn
(−ηnGrad fφ(Xn)).

The function X 7→ log detX can be considered as the entropy of the zero-mean Gaussian distribu-
tions (up to affine transform). Hence, functionals of the form φ(log det ·) appears in many practical
applications, such as entropy regularization.
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Figure 8: Comparison between silver stepsize method and RGD for entropy matching under δ-pseudo
Huber loss on SPD(50). We set n = 27 − 1 as the total iteration number, and conducted 100
simulations under different seeds and initializations. Left: δ = 0.1. Middle: δ = 0.5. Right: δ = 1.

Entropy matching For the numerical experiment we consider the problem

fδ(X) = δ2

(√
1 +

(log detX − τ)2

δ2
− 1

)
which corresponds to the entropy-matching problem with target value τ under the pseudo-Huber loss.
We adopt the pseudo-Huber loss to examine how the algorithm’s behavior depends on the curvature
of the objective function (small δ yields a flatter function). Since pseudo-Huber loss is convex and
1-smooth, by Proposition D.1 f(A) is generalized geodesically convex and generalized geodesically
d-smooth. In addition, by Proposition D.2 we can apply silver stepsize directly to standard RGD.
We conduced 100 experiments with τ = 1 under different initializations, to verify our algorithm’s
stability. The results are summarized in Figure 8.
We additional provide two more benchmark problems on SPD(d) space. The Fréchet mean estimation
problem and Gaussian mixture model problem. Note for these general problem we do not have
Proposition D.2, so we again need to choose the base for VTRGD (4.1). We again chose b = I for
both experiments.

Fréchet mean estimation Fréchet mean estimation problem on the SPD space is widely studied
problem for both theoretically interesting properties and practical application. Practically, under
Affine invariant metric, Fréchet mean becomes geometric mean [FAP+05, PFA05] and therefore has
many applications. Theoretically the Fréchet mean over SPD matrices is again SPD, so unlike typical
matrix norm, this geometry is favorable when SPD constraint has to be involved when obtaining the
means over SPD matrices; such constraint is common in covariance estimation problem [KPB25].
Hence, this problem is one of the standard benchmark for RGD methods [AOBL21, KY22]. The
Fréchet mean estimation problem can be written for general manifold M as follows: for given
{p1, . . . , pn} ⊂M , the empirical Fréchet mean over pi is

p∗ := argmin
x∈M

f(x) :=
1

2

n∑
i=1

d2(x, pi).

This problem is known to be geodesically n-strongly convex, but not geodesically L-smooth. While
the squared distance function x 7→ d2(x, p)/2 is generalized geodesically 1-smooth with base p,
as we discussed in Section 3, by summing these together there is no single base that makes f to
be generalized geodesically L-smooth with base b. Hence, neither RGD or VTRGD guarantee
the theoretical convergence for this problem. Still, we found out that our algorithm numerically
outperforms the standard RGD for this problem.

With M = SPD(d), We considered two settings: (n, d) = (100, 10), and reversely (n, d) =
(10, 100), to observe whether dimension or sample size matters. Again we chose b = I for VTRGD
(4.1). We observed consistent strength of our method. The results are summarized in Figure 9.

Gaussian mixture model Another practical application of Riemannian optimization on SPD(d) is
minimization of the negative likelihood in Gaussian mixture model, which is a classical problem in
Statistics. [HS20] proposed the reformulated objective function for solving Gaussian mixture model
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Figure 9: Optimization of Barycenter problem. We plot f(x)− fmin, where fmin is the minimum
value over all experiments. We set b = I for VTRGD (4.1). Left: n = 100 and d = 10. We set
L = 200 which guaranteed the stability. Right: n = 10 and d = 100. We set L = 100 which again
guaranteed the stability.

Figure 10: Optimization of Gaussian mixture model fitting. We set b = I for VTRGD (4.1). Left:
Simple setting, where n = 100,K = 3, d = 2, L = 20. Right: Complicated setting, where
n = 1000,K = 5, d = 5, L = 1000. The L is chosen to guarantee the numerical stability.

fitting, which coincides to classical negative log likelihood minimization at the minima, and allows
the use of Riemannian optimization algorithm [HS20, HMJG21, SBS21]. For given observations
yi = (xi, 1)

T ∈ Rd for i = 1, . . . , n, the problem is formulated as follows:

argmin
θ=({wj}j=1,...,K ,{Sj}j=1,...,K)

ℓ(θ) = −
n∑
i=1

log

 K∑
j=1

ewj∑K
l=1 e

wl

qN (yi;Sj)


where

qN (yi;Sj) =
exp

(
1
2 (1− yTi S

−1
j yi)

)√
(2π)d detSj

.

This problem can be considered as the product manifold (Rd)K × (SPD(d))K . One can conduct
usual Euclidean gradient descent for vectors wj’s, and conduct Riemannian methods in Sj’s. Again,
this problem is not geodesically L-smooth, so neither our algorithm nor standard RGD do not allow
the theoretical guarantee. Still, we found out that numerically our algorithm turned out to be useful
for this problem.

We considered two setting: simple setting (n = 100, d = 2,K = 3, L = 20) and complicated setting
(n = 1000, d = 5,K = 5, L = 1000). The quantities of L are chosen again to guarantee the stability
of the algorithms. Again, we set b = I for VTRGD (4.1). The results are aggregated in Figure 10.

E Changes from the Submitted Version

In the submitted and reviewed version of our paper, we subsequently identified two errors. Below we
document the resulting revisions as transparently as possible.

Error I: Algebraic misstep We originally claimed that standard RGD (1.2) with silver stepsize
achieves the O(n− log2 ρ) rate of convergence, when the manifold is non-negatively curved and the
function satisfies (3.1) with b = xj . However, we identified an algebraic misstep when proving the
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induction step (Lemma 5.4 in the reviewed version)6. To address this issue, we made the following
changes:

1. Algorithm modification. We replace standard RGD (1.2) by VTRGD (4.1). In contrast
to standard RGD, VTRGD is defined relative to a specified vector transport, to which the
algorithm and assumptions are tied.

2. Scope. The revised analysis no longer requires nonnegative curvature; it applies under vector
transport-aware assumptions on the objective (3.1). Heuristically, the curvature requirement
can be seen as transferred to vector transport-indexed inequality conditions.

3. Function class and assumptions. The admissible function class is now tied to the chosen
vector transport via (3.1); a sufficient condition appears in Proposition 3.7. For the canonical
choice VT = Γ (parallel transport), this replaces geodesic L-smoothness by generalized
geodesicL-smoothness with a single base b. These conditions are incomparable; for instance,
as discussed in Example C.10, the function x 7→ d2(x, b) on a Hadamard manifold satisfies
the new but not the previous condition.

4. Numerical experiments: We replace the experiments on Rayleigh quotient maximization
problem by experiments on benchmarks over symmetric positive definite (SPD) matrices,
to include a nonpositively curved setting where the revised analysis applies (Section 5,
Appendix D.2.3). In this setting we also identify an additional function class satisfying our
assumptions (Propositions D.1, D.2), which did not appear in the previous setup.

Error II: regularity condition In Section 5.1, we noticed that we overlooked the geodesic incom-
pleteness of 2-Wasserstein space: along discrete updates, the update may leave the class of absolutely
continuous densities, (e.g., for large step sizes the update map may not be the gradient of a convex
potential). Consequently, Corollary 5.1 requires a regularity condition ensuring that the iterates admit
densities. In addition, the gradient update may not be the optimal transport map. We clarified these
points in Remark 5.2, 5.3 and provide sufficient conditions relevant to our applications.

What remains unchanged or strengthened Despite these changes, some core points remain intact
or are further reinforced by the revision.

1. Our central application, potential function optimization on the 2-Wasserstein space, remains
intact. In this setting, VTRGD with canonical vector transport VT µ

b = Tb,µ recovers
the standard Wasserstein gradient descent. Particularly, the potential energy satisfies the
modified assumptions (Proposition 5.4). Thus, our main claim, the first acceleration result
for Wasserstein gradient descent in Wasserstein space, still holds.

2. The Riemannian co-coercivity inequality, identified during the rebuttal as a key technical
component, is recovered as the special case of Proposition 3.7 when b = y; see Ap-
pendix B.1.1.

3. Allowing negative curvature broadens applicability (e.g., the log-determinant objective on
SPD manifolds verified in Proposition D.1, D.2).

Summary The revision corrects the errors via an algorithmic modification (RGD (1.2) → VTRGD
(4.1)) and additional regularity conditions (Corollary 5.1). The revised algorithm VTRGD is not
the standard RGD, and the updated assumptions are neither uniformly stronger nor weaker than
those in the original version. However, in some central applications VTRGD coincides with RGD,
and those applications satisfy the newly introduced assumptions. Crucially, VTRGD coincides with
standard RGD in our main application, the Wasserstein space. Hence, one of our main claims, the
first acceleration result on Wasserstein gradient descent, remains valid, and the revision additionally
includes a log-determinant example on the SPD space, which was not covered before.

6The error is in the last paragraph on p. 33 of the reviewed version, when subtracting A. We include the
reviewed version in the supplementary materials.
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