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Abstract

We present DRESS , a large vision language model
(LVLM) that innovatively exploits Natural Language feed-
back (NLF) from Large Language Models to enhance its
alignment and interactions by addressing two key limitations
in the state-of-the-art LVLMs. First, prior LVLMs gener-
ally rely only on the instruction finetuning stage to enhance
alignment with human preferences. Without incorporating
extra feedback, they are still prone to generate unhelpful,
hallucinated, or harmful responses. Second, while the visual
instruction tuning data is generally structured in a multi-
turn dialogue format, the connections and dependencies
among consecutive conversational turns are weak. This re-
duces the capacity for effective multi-turn interactions. To
tackle these, we propose a novel categorization of the NLF
into two key types: critique and refinement. The critique
NLF identifies the strengths and weaknesses of the responses
and is used to align the LVLMs with human preferences.
The refinement NLF offers concrete suggestions for improve-
ment and is adopted to improve the interaction ability of the
LVLMs– which focuses on LVLMs’ ability to refine responses
by incorporating feedback in multi-turn interactions. To
address the non-differentiable nature of NLF, we generalize
conditional reinforcement learning for training. Our experi-
mental results demonstrate that DRESS can generate more
helpful (9.76%), honest (11.52%), and harmless (21.03%)
responses, and more effectively learn from feedback during
multi-turn interactions compared to SOTA LVLMs.

1. Introduction
Large vision-language models (LVLMs) can perceive the
visual world and follow the instructions to generate user-
friendly responses [6, 43, 90]. This is achieved by effectively
combining large-scale visual instruction finetuning [78] with

*Work done during internship at SRI International.

Figure 1. We instruct DRESS to improve both alignment with
human preferences and interaction ability via natural language
feedback, which is categorized into critique and refinement.

large language models (LLMs) [5, 53].
However, existing LVLMs solely leverage the LLMs-

generated or hand-crafted datasets to achieve alignment
via supervised fine-tuning (SFT) [6, 43, 78]. While it’s
effective at transforming LVLMs from caption generators
to instruction-following models, LVLMs can still generate
responses that are unhelpful, hallucinated, or even harm-
ful (see Figure 4). This indicates that their present level of
alignment with human preference is still relatively low [81].
In addition, although existing work motivates to structure
visual instruction tuning samples in multi-turn formats, the
connection and dependencies among various turns are weak,
which restricts the interaction ability of the LVLMs. Here the
interaction ability measures whether LVLMs can effectively
leverage the previous context in multi-turn interactions and
refine their responses [72]. These two limitations restrict the
potential of LVLMs to serve as visual assistants in practice.

In this work, we introduce DRESS , an LVLM
distinctively trained through the application of Natural
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Language Feedback (NLF) generated by LLMs (see
Figure 1). We provide LLMs with dense annotation for
images and detailed guidelines, instructing them to give
fine-grained feedback on the LVLM’s responses. This
feedback annotation considers 3H criteria– helpfulness,
honesty, and harmlessness, consistent with the practice
in developing human-aligned LLMs [51]. The generated
feedback includes the numerical score and NLF that measure
the overall quality of the responses along the 3H criteria.

In our approach, we introduce a novel categorization of
NLF into two distinct types: critique and refinement. The
critique NLF provides an assessment of the strengths and
weaknesses of the responses, whereas the refinement NLF
provides specific suggestions to LVLMs on improving their
responses to align with the ground truth reference. This
categorization offers a natural utilization of two types of
NLF to align the LVLMs with human preferences and im-
prove their interaction capabilities. To train the LVLMs with
such feedback, we generalize the conditional reinforcement
learning algorithm to address the non-differentiable nature
of NLF. In particular, we train DRESS to produce cor-
responding responses conditioned on the two NLF using
language modeling (LM) loss on the responses. By learning
from the numerical scores and critique NLF, we improve the
alignment of DRESS with human preferences. While, by
leveraging refinement NLF, we train DRESS to acquire the
meta-skill of refining its initial responses by utilizing NLF
through multi-turn interactions during inference.

We evaluate DRESS on open-ended visual question an-
swering for helpfulness evaluation, image captioning for hon-
esty evaluation, adversarial prompting for harmlessness eval-
uation, and also on multi-turn interactions. Experimental re-
sults demonstrate that DRESS can generate responses that
are better aligned with human values as compared to previous
LVLMs, and also demonstrates better interaction ability that
can effectively learn from feedback to refine the responses
on the fly. To the best of our knowledge, we are the first work
to address all the 3H criteria as well as interaction ability for
LVLMs. We summarize our contributions as follows:
• We propose the distinct use of natural language feed-

back (NLF), specifically categorized into critique and
refinement NLF, to improve the alignment with human
preferences and interaction capabilities of LVLMs.

• We generalize the conditional reinforcement learning
algorithm to effectively incorporate the NLF, which is
non-differentiable, by training the model to generate
corresponding responses conditioned on the NLF.

• We produce and open-source 63K annotated vision-
language NLF samples covering 3H aspects. In addition,
we also open-source a dataset with 4.7K examples for
harmlessness alignment and evaluation of LVLMs. The
datasets are released at https://huggingface.
co/datasets/YangyiYY/LVLM_NLF.

2. Related Work
Large Vision-Language Models. The current research
motivates the creation of LVLMs that can tackle various
tasks without specific adaptations [36, 69, 73]1. Given the
strong fundamental abilities of LLMs [5, 6, 49], most re-
cent LVLMs typically adopt frozen LLMs as the language
component [43, 90], accompanied by a substantial scaling
in the model sizes. LVLMs capitalize on large-scale image-
caption pairs to train a projector to transform the image
features into the embedding space of LLMs to align the
two modalities [2, 36, 43, 84, 90]. In addition, large-scale
vision-language instruction tuning data is adopted to align
LVLMs with human preferences, ensuring that they can ef-
fectively understand instructions and generate user-friendly
responses [20, 22, 32, 42, 64, 75]. In this work, we further
calibrate the human preference alignment in responses gen-
erated by LVLMs and improve their interaction ability by
leveraging the feedback provided by LLMs.

Learning from Feedback. Incorporating feedback to train
and align LLMs has emerged as a pivotal approach [11, 17,
51, 57]. External feedback is often associated with rein-
forcement learning to train LLMs to optimize some goals
that are hard for data annotation, such as becoming help-
ful [3, 30, 63], harmless [4, 21], and honest [51]. Depending
on the form, the feedback can be formatted as numerical
scores [18, 41], preference ranking [4, 51], or natural lan-
guage [1, 57]. The numerical scores and preference ranking
feedback are relatively easier to collect via human annota-
tions [51, 63], while NLF is much harder and more expensive
for annotation. Thus, in this work, we rely on LLMs to pro-
vide NLF [1, 4, 79], which is different from [66] that pivots
on preference ranking data collection and adopts numerical
score reward for training. In addition, we categorize the
NLF into two types: critique and refinement, which can be
adopted respectively to improve the alignment and interac-
tion of LVLMs. We use generalized conditional reinforce-
ment learning to force the LVLM to learn directly from NLF
and differentiate between aligned or misaligned responses
and effective or ineffective interaction behaviors. We further
discuss related work on multi-turn interactions that incorpo-
rate human feedback for refinement in Appendix A.

3. DRESS
We describe DRESS , an LVLM designed to leverage NLF
from LLMs to improve two key aspects missing in prior
work: (1) Alignment with human preferences, and (2) In-
teraction capabilities. The first focuses on whether the re-
sponses respect human values, especially the 3H criteria
(helpfulness, honesty, and harmlessness) [51]. The sec-
ond aspect focuses on the ability to refine responses based

1More related research on vision-language modeling is in Appendix A
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on feedback provided during multi-turn interactions. We
achieve this by proposing an innovative classification of
NLF into two primary categories: Critique and Refinement.
For training DRESS with NLF, we propose a generaliza-
tion of conditional reinforcement learning specially designed
to address the non-differentiable nature of the NLF.

In this section, we first describe the training recipe to
produce DRESSft , the LVLM that subsequently serves as
the data source for collecting NLF, along with the data splits.
We then describe the procedure for collecting feedback from
LLMs. We finally discuss the training framework that effec-
tively uses the NLF to enhance alignment and interaction.

3.1. Training Recipe for DRESSft & Dataset Split
Model Architecture. DRESS and DRESSft share the
same model architecture design, which follows the common
LVLMs design principle that connects a frozen image en-
coder and an LLM with a transformation module [6, 43]. We
use EVA-CLIP-Giant [65] with 1.3B parameters and Vicuna-
13b-v1.5 [87] to initialize the pretrained image encoder and
the LLM respectively, and the linear projector is randomly
initialized. We also add a LoRA [24] module to the LLM
for adaptation, and the details are described in Appendix B.

Training Recipe & Dataset Split. DRESSft adopts a
two-stage training process, including pretraining and instruc-
tion fine-tuning (a.k.a, SFT). For pretraining, we utilize 8
million synthetic captions generated by BLIP [35], with the
image sourced from CC3M [60], CC12M [7], and SBU [50].
For SFT, we adopt the high-quality LLaVA visual instruction
tuning dataset, which contains 80K samples and covers 2
data types: conversation and reasoning. We partition the
multi-turn LLaVA data into separate turns because of the
limited relevance among them, effectively increasing the
number of samples. We retain 25K and 5K samples of con-
versation and reasoning data types respectively for gathering
feedback following 2 principles: (1) There should be no du-
plicate images in the feedback dataset; (2) The questions can
only be answered with the visual information2. We achieve
this through a filtering process using LLMs. The remain-
ing 161K samples are adopted for SFT. In addition, due to
the lack of visual safety data for alignment along the harm-
lessness aspect, Based on the COCO dataset, we create a
new dataset– VLSafe that contains adversarial promptings to
train and validate the harmlessness alignment of LVLMs. An
example is shown in Figure 4. The construction process in-
volves an LLM-Human-in-the-Loop process that iteratively
creates and filters the datasets [8] (see Appendix F for more
details). In total, VLSafe contains 4,764 training samples
and 1,110 testing samples. We retain 3K samples from the
training set for feedback annotation, and the other 1,764
samples are used for SFT. The dataset statistics are summa-

2Some questions on the LLaVA dataset can be addressed without images.

Aspect Helpfulness & Honesty Harmlessness Total
NumberData Type Conversation Reasoning Adversarial

SFT 156,333 35,000 1,764 193,097
Feedback 25,000 5,000 3,000 33,000

Table 1. The dataset statistics for SFT and feedback collection. We
use 3 types of data and consider 3 fine-grained feedback aspects.

rized in Table 1. The hyper-parameter configurations are
described in Appendix B.

3.2. Gathering Feedback From LLMs
Dataset Collection for Obtaining Feedback. We use the
DRESSft , trained with SFT on the dataset described ear-
lier, to collect examples that will be used for obtaining feed-
back from the LLM subsequently. For each question in the
Feedback subset of the dataset described earlier, we instruct
DRESSft to generate a response using greedy decoding.
Finally, each sample is composed of an image mi, a question
qi, the response r1i generated by DRESSft , and the ground
truth reference gi from the LLaVA dataset.

Feedback via LLMs. We leverage GPT-4 [49] to provide
feedback on the responses generated by DRESSft . This is
motivated by two key factors: (1) The images in our dataset
are sourced from the COCO dataset, which includes metic-
ulously annotated dense captions and bounding boxes of
objects for each image. Consequently, GPT-4 can effectively
comprehend the images based on this annotated information;
(2) Prior studies, such as [4], highlight the efficacy of using
strong LLMs for simulating human preferences. Given our
additional focus on collecting detailed NLF, GPT-4 emerges
as a feasible alternative to human annotation when resources
are limited. This is further corroborated by findings in [72],
indicating that GPT-4 can produce NLF on par with human
annotation if provided with enough contextual information
and appropriate instructions.

We instruct GPT-4 to provide feedback on the generated
responses based on the human annotation from COCO and
annotation guidelines (see Figure 2). We decompose the
feedback into 3 fine-grained aspects, including helpfulness,
honesty, and harmlessness (3H), for better characterization:
• Helpfulness evaluates the overall quality of responses,

extensively evaluating the usefulness, relevancy, and ad-
herence to the given question. Specifically, GPT-4 needs
to determine whether the responses offer practical and
beneficial information regarding the image that aligns
with the given question and pertains exclusively to the
user’s question, excluding unrelated details.

• Honesty measures whether the responses include content
that does not align with the images. To be specific, GPT-
4 needs to determine whether DRESSft hallucinates
visual information that doesn’t exist in the given images.

• Harmlessness examines whether the responses contain
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Figure 2. The annotation instruction and the annotation pipeline. For training, the cross entropy loss is only applied to the model response
and ground truth reference. In this case, the model can learn from the critique NLF about the strengths and weaknesses in the response to
achieve alignment and also obtain the meta-skill of interaction by learning from the refinement NLF.

any harmful content that does not align with human ethics
and values [61].

Specifically, the conversation and reasoning types of data
are used for helpfulness and honesty annotation, and the
adversarial type of data is used for harmlessness annotation.
For illustration, we provide an outline of the instruction in
Figure 2. The complete instructions are shown in Appendix J.
The instruction starts by providing the annotation guidelines
and outlining the score-quality correspondence, and then
requires GPT-4 to first generate the reason li for scoring,
then give a numerical score rating ni 2 [1, 4], and finally
provide the suggestion si for guiding the response towards
the ground truth reference annotated on the LLaVA dataset.
Based on our preliminary experiments, the generated reason
li can function as a type of chain-of-thought rationales [74],
which enhances the precision of numerical scores generated
using GPT-4. Using the (li, ni, si) produced by GPT-4, we
obtain the specific feedback types:
• Numerical Scores: We directly adopt the ni as the numer-

ical score feedback, which evaluates the overall quality
of the response along the 3H criteria.

• Critique NLF: The produced li can be verbose and re-
dundant. We instruct GPT-4 to summarize the li into
the concise critique NLF l

0
i, containing 5-7 words, that

pinpoint the strengths and weaknesses in the response.
• Refinement NLF: We directly adopt the si as the refine-

ment NLF, which provides concrete advice to guide the
model toward the ground truth reference.

The proposed categorization of NLF into two categories
enables the natural utilization of the feedback data to
improve the alignment and interaction respectively, which
will be elaborated on later.

In addition, we introduce an interactive generation-
annotation process to create multi-turn interaction data with
NLF. The motivation is that by training on extensive multi-
turn horizontal interaction data, LVLMs can enhance their
interaction ability to refine previous responses more effec-
tively through the incorporation of NLF. For each turn, we
collect samples rated lower in the previous turns, and prompt
DRESSft to generate the new responses conditioned on

the question, previous responses, and the refinement NLF.
Following the same feedback annotation procedure, we ob-
tain NLF and numerical score ratings for the new responses.
We provide the detailed implementation in Appendix G.

In summary, for each 3H aspect, we produce a curated
feedback dataset, where each sample is organized as {mi, qi,
{rji , nj

i , l0ji , sji}ki
j=1}, where mi and qi are the original image

and question on the LLaVA dataset. In addition, each sample
includes ki turns interactions, where each turn j contains the
response rji generated by DRESSft and feedback provided
by GPT-4 including the numerical score nj

i , the critique NLF
l
0j
i , and the refinement NLF s

j
i . Note that in the concluding

iteration, the response is denoted by the ground truth refer-
ence, which correspondingly yields the optimal numerical
score and critique NLF. We describe the human annotation
results of the quality of LLM-generated NLF in Appendix C.

3.3. Harnessing Feedback for Training
We introduce our training framework that effectively lever-
ages the annotated feedback dataset to improve the align-
ment and interaction of LVLMs. This framework oper-
ates during the reinforcement learning from LLMs (AI)
feedback (RLAIF) stage, following the completion of the
SFT stage. We generalize conditional reinforcement learn-
ing [44, 47, 71] to facilitate the use of both the numeri-
cal score and the non-differentiable NLF. The fundamental
concept involves training the model to produce appropriate
responses conditioned on NLF, enabling it to differentiate
between aligned or misaligned responses and effective or in-
effective interaction behaviors. We initialize DRESS with
the weights of DRESSft , and conduct continual training to
optimize the likelihood of generating the j-th turn response,
given the image, question, numerical score, the critique NLF,
the refinement NLF, and all preceding interaction turns. This
is achieved by minimizing the cross-entropy loss, defined as:

Of = E
xi⇠D

h
� logP (rji |mi, qi, n

j
i , l

0j
i , {r

k
i , n

k
i , l

0k
i , s

k
i }k<j)

i

(1)
where xi is sampled from the feedback dataset D, and other
denotations are introduced in the previous subsection. We
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Dataset LLaVA Eval LLaVA Bench

Model Conversation Description Reasoning Average Relevance Accuracy Level of detail Helpfulness

BLIP-2 66.08 31.33 22.00 39.80 25.00 16.00 16.00 17.67
InstructBLIP 74.08 61.67 82.17 72.64 34.00 21.00 19.67 22.67
LLaVA 65.17 42.17 61.50 56.28 31.83 19.83 18.67 20.83
LLaVA-HF 69.74 60.87 85.33 71.98 34.33 18.50 17.67 23.50
mPLUG 66.08 44.17 75.83 62.03 35.17 20.33 16.33 20.33
miniGPT4 54.92 51.50 74.67 60.36 32.45 20.33 20.17 24.17
DRESS 77.67 62.17 84.27 74.70 37.18 20.12 21.87 26.45

Table 2. The helpfulness evaluation on the open-ended visual question answering task. The evaluation is based on GPT-4 scoring.

show the data format used for training in Figure 2. Specifi-
cally, we use verbalizers to transform the 4 scales of the nu-
merical score into descriptive words, namely bad, mediocre,
good, and excellent. Intuitively, we aim to achieve two-fold
objectives: (1) Alignment: DRESS is trained to generate
the j-th turn response based on the numerical score and cri-
tique NLF in the j-th turn, and thus it can directly learn
from the critique NLF which clearly states the strengths and
weaknesses regarding alignment with the 3H aspects in this
response; (2) Multi-turn Interaction Ability: DRESS is
trained to generate the (j + 1)-th turn response based on the
responses in previous turns and the refinement NLF in the
(j + 1)-th turn. Based on the critique NLF in the (j + 1)-th
turn, the model can distinguish between effective and inef-
fective interactions. In this way, the model can acquire the
meta-skill of incorporating the provided language feedback
in multi-turn interactions.

Regularization. To preserve the knowledge and visual
concepts acquired during the pretraining stage in DRESS ,
we incorporate a regularization term, denoted as Or. This
term represents the image captioning loss utilized in pretrain-
ing. The total loss, O, is calculated as O = Of +↵ ·Or, with
↵ being a weighting factor set to 1 in our implementation.

3.4. Inference
In the training time, DRESS is trained to generate cor-
responding responses conditioned on the numerical score
verbalizers and the critique NLF. In this way, the model
can learn the distinct features in various responses respec-
tively. In the inference time, we expect DRESS to generate
the best response. So we require DRESS to generate the
response based on the “<excellent> [Nice response.]” prefix.

4. Experiment
We describe our experiments in this section. We first
discuss the previous SOTA LVLMs used for comparison
(Sec. 4.1). We then discuss the evaluation setting and results
on helpfulness alignment using open-ended visual question-
answering (Sec. 4.2), honesty alignment using image cap-
tioning (Sec. 4.3), harmlessness alignment using adversar-
ial prompting (Sec. 4.4), and multi-turn interaction ability

Dataset Instruction-1 Instruction-2

Model CHAIRi CHAIRs CHAIRi CHAIRs

BLIP-2 3.40 4.00 2.75 3.50
InstructBLIP 2.38 3.45 5.16 14.48
LLaVA 9.98 31.10 23.40 61.50
LLaVA-HF 4.26 5.40 6.05 10.80
mPLUG 15.10 21.65 25.89 73.50
miniGPT4 5.70 13.40 10.60 30.45
DRESS 2.34 3.30 4.74 9.84

Table 3. The honesty evaluation on the image captioning task using
CHAIR metrics (lower is better), which account for the mismatch
between generated and annotated objects.
(Sec. 4.5). In addition, we also conduct the fundamental
capability evaluation (Sec. 4.6) and ablation study (Sec. 4.7),
and conclude with a qualitative analysis (Sec. 4.8). Note that
for automatic evaluation that leverages GPT-4, we provide
all the evaluation prompts used in Appendix J. We also pro-
vide human annotation results that verify the effectiveness
of using GPT-4 for automatic evaluation in Appendix D.

4.1. Prior SOTA LVLMs

We consider the following LVLMs for comparison: (1)
BLIP-2 [36] with the T5-XXL [10] as the LLM and trained
on large-scale image-caption pairs; (2) LLaVA [43] with the
LLaMA-13B as the LLM and trained on high-quality visual
instruction tuning data; (2) LLaVA-HF [66] with the Vicuna-
13B as the LLM and trained on human-annotated feedback
and a collection of supervised visual-language tasks; (3)
InstructBLIP [13] with the Vicuna-13B as the LLM and
trained on a collection of supervised visual-language tasks;
(4) MiniGPT-4 [90] with the Vicuna-13B as the LLM and
trained on high-quality and detailed image captioning tasks;
(5) mPLUG-Owl [83] with LLaMA-7B as the LLM compo-
nent and trained on both language and visual instructions.

4.2. Open-ended Visual Question Answering for
Helpfulness Evaluation

We evaluate the helpfulness of DRESS using the open-
ended visual question-answering task. This task requires
LVLMs to jointly consider both visual images and their in-
ternal knowledge to answer complex open-ended questions.
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Model Relevance Safety Persuasiveness

BLIP-2 41.08 12.61 40.27
InstructBLIP 99.19 30.63 71.71
LLaVA 99.19 38.20 73.42
LLaVA-HF 100.0 20.00 46.81
mPLUG 99.91 10.72 43.96
miniGPT4 100.0 75.05 74.14
DRESS 100.0 88.56 91.98

Table 4. The harmlessness evaluation on the resistance to adversar-
ial prompting. The evaluation is based on GPT-4 scoring.

Evaluation Setting. We consider two evaluation datasets:
(1) LLaVA-Eval [43], which is created by GPT-4 and con-
tains 3 categories of questions including visual conversa-
tion, detailed description, and complex reasoning. We lever-
age GPT-4 for evaluation by providing it with the human-
annotated dense captions from the COCO dataset and request
an overall helpfulness score ranging from 1-10. We report
the average score for each category. We use a different eval-
uation prompt as compared to the original paper, where we
explicitly require GPT-4 to assign low scores to responses
that contain hallucinated elements or unrelated content; (2)
LLaVA-Bench3, which is a curated set of images with com-
plex questions, encompassing indoor and outdoor scenes,
memes, paintings, and sketches. Each image is associated
with a highly detailed description, which is used to provide
visual information as a reference for LLMs during evaluation.
For evaluation, we require GPT-4 to not only generate the
overall helpfulness score for each response but also provide
fine-grained scores regarding relevance, accuracy, and level
of detail aspects. All the scores are ranged from 1-10.

Evaluation Results. The results are shown in Table 2.
DRESS can achieve overall better helpfulness scores com-
pared to previous SOTA LVLMs regarding 3 types of ques-
tions on the LLaVA Eval dataset. For the challenging LLaVA
Bench dataset, DRESS also achieves overall better helpful-
ness scores. Specifically, it gains higher scores on the “Rele-
vance” and “Level of Detail” dimensions compared to other
methods. This can be attributed to the NLF-conditioned
training that explicitly requires the responses to be highly re-
lated to the questions and provide enough visually grounded
visual details. However, we acknowledge that using exter-
nal feedback for alignment does not improve the overall
fundamental ability of LVLMs, thus DRESS achieves com-
parable performance regarding the “Accuracy” dimension
that examines the visual understanding ability.

4.3. Image Captioning for Honesty Evaluation
We evaluate the honesty (a.k.a, hallucination control) of
DRESS using the image captioning task following [12, 56,

3https://github.com/haotian- liu/LLaVA/blob/
main/docs/LLaVA_Bench.md

Figure 3. Evaluation of multi-turn interactions. The results are
averaged among two feedback providers.

89]. The key idea is to evaluate whether the generated cap-
tions contain objects that are not in the human annotation.

Evaluation Setting. We use the same 2,000 samples from
the COCO dataset and instructions for image captioning
as used in [40]. We adopt the metrics defined in [56]: (1)
CHAIRi quantifies the ratio of non-existent objects to anno-
tated objects, providing an average across all data samples;
(2) CHAIRs measures the ratio of generated captions having
at least one hallucinated object to all captions.
Evaluation Results. The results are shown in Table 3. We
observe that instruction finetuning can potentially lead to
a higher production of non-existent objects in LVLMs, evi-
denced by a higher hallucination rate when comparing BLIP-
2, devoid of instruction fine-tuning, with other LVLMs. How-
ever, by incorporating external feedback regarding honesty,
DRESS can significantly reduce the hallucination com-
pared to previous LVLMs trained with instruction finetuning.
This illustrates the advantages of incorporating an additional
RLAIF stage with NLF, which enhances the model’s capa-
bility to produce high-quality responses akin to instruction
finetuning while concurrently teaching the model to recog-
nize and avoid the hallucination of non-existent objects.

4.4. Robustness to Adversarial Prompting for
Harmlessness Evaluation

We evaluate the harmlessness of DRESS using the adver-
sarial prompting task [52], which measures the ability of
LVLMs to refrain from producing harmful responses while
maintaining the relevance and persuasiveness of the content.

Evaluation Setting. We use VLSafe test that contains
1,110 samples for evaluation. For each image, we require
LVLMs to generate a response given the associated adver-
sarial prompt. The response is scored by GPT-4 considering
relevance, safety, and persuasiveness. The relevance mea-
sures whether the response is related to the question and
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Model | Dataset VQAV2 OK-VQA GQA Average

BLIP-2 62.4 60.2 45.7 56.1
InstructBLIP 69.4 61.9 66.6 66.0
LLaVA 58.5 63.1 48.8 56.8
LLaVA-HF 62.6 70.5 48.3 60.5
mPLUG 59.5 65.1 40.9 55.2
miniGPT4 53.7 58.1 40.2 50.7
DRESS 62.8 67.8 58.9 63.2
- regularization 59.1 58.9 50.1 56.0

Table 5. The fundamental capability evaluation on 3 standard visual
question answering tasks. We use _ to denote that the training split
of the dataset is in the model’s training distribution.
extracts related visual information from the image. The
safety measures whether the response contains any harm-
ful content that is misaligned with human values and ethics.
The persuasiveness measures whether the response can effec-
tively persuade humans from causing harm to society. Note
that while we meticulously direct the evaluation via GPT-4
with detailed instructions, this evaluation is limited to the
range of harmful behaviors as defined within GPT-4, which
may not encompass all subtleties of harmful content.

Evaluation Results. The results are shown in Table 4. We
show that all LVLMs with instruction tuning can effectively
follow human instructions to provide related visual informa-
tion, consistently attaining scores close to 100 in terms of
response relevance. However, compared to DRESS , exist-
ing LVLMs without undergoing the harmlessness alignment
are much easier to be elicited to generate responses that are
misaligned with human values and ethics, such as providing
concrete suggestions for people to train cats to attack humans
(Figure 4). In addition, the responses generated by DRESS
can also effectively persuade the humans from causing harm,
indicating a high level of harmlessness alignment.

4.5. Multi-turn Interaction
We evaluate the multi-turn interaction ability of DRESS
during inference. This task examines the ability to incorpo-
rate external natural language feedback provided in context
to refine previous responses in multi-turn interactions.
Evaluation Setting. Due to the lack of a standard evalua-
tion benchmark for multimodal multi-turn interaction ability
evaluation, we adopt a simulated setting using the LLaVA
Eval dataset, which provides the ground truth reference for
evaluation. We leverage LLMs to provide concrete natu-
ral language feedback based on LVLMs’ responses and the
ground truth references and evaluate whether LVLMs can
continually improve their previous responses by increasing
the interaction turns. Specifically, we consider two feedback
providers, including GPT-3.5-Turbo and GPT-4, and mea-
sure the performance with a maximum of 4-turn interaction.
The results are averaged among two feedback providers.

Evaluation Results. The results are shown in Figure 3.
We observe that DRESS can effectively learn from the

Dataset LLaVA Eval
Model Conversation Description Reasoning Average

DRESS 77.67 61.33 84.27 74.42
- RLAIF 72.17 56.33 81.66 70.05
- Critique NLF 76.93 59.50 79.12 71.59
- Refinement NLF 77.14 60.18 83.10 73.47
- Honesty 75.34 60.92 85.38 73.88
- Helpfulness 76.48 58.29 84.92 73.23

Table 6. Ablation study of the design strategies in DRESS .

provided natural language feedback to continually refine
the previous responses through multi-turn interactions while
existing LVLMs cannot take advantage of the provided feed-
back. The effectiveness of DRESS can be attributed to
the strategic incorporation of the refinement NLF within the
training dataset. The model’s enhanced proficiency in the
meta-skill of interaction can be ascribed to the utilization of
our multi-turn interaction data, which demonstrates a marked
improvement over previous multi-turn examples.

4.6. Fundamental Capability
We evaluate the fundamental capability of DRESS using
standard visual question-answering tasks that evaluates the
basic visual understanding ability of LVLMs. This evalu-
ation aims to make sure that the model has preserved this
ability after RLAIF stage with NLF.

Evaluation Setting. We adopt 3 standard visual question
answering datasets, including VQAV2 [23], OK-VQA [48],
and GQA [27]. Different from open-ended visual question
answering datasets, these 3 datasets mainly require LVLMs
to extract some basic visual information from the images,
while OK-VQA requires the use of outside knowledge. Due
to the extensive time consumption of auto-regressive genera-
tion, we randomly sample 1,000 test cases from each dataset
for evaluation. For evaluation metrics, we use GPT-3.5-
Turbo to judge the validity of predictions based on the refer-
ence answers since most LVLMs tend to generate dialogue-
style responses, which are significantly different from the
short golden answers in the evaluation datasets.
Evaluation Results. The results are shown in Table 5. We
observe that DRESS can achieve comparable performance
with existing LVLMs regarding fundamental capability, es-
pecially excelling on the knowledge-extensive OK-VQA
dataset. We also compare the results of DRESS without
the regularization during the RLAIF stage. The degraded
performance underscores the necessity of implementing this
regularization to maintain the essential knowledge and visual
concepts acquired in the pretraining stage.

4.7. Ablation Study
We conduct an ablation study to investigate the influence of
several design strategies in DRESS : (1) Learning from
feedback: We evaluate the LVLM that undergoes only SFT
without incorporating external feedback for alignment; (2)
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Figure 4. The qualitative examples show that compared to previous LVLMs, DRESS can generate more helpful, honest, and harmless
responses. In addition, DRESS can effectively incorporate the provided feedback to refine the initial response on the fly, indicating better
multi-turn interaction ability. We use red to denote the harmful questions and responses.

Critique NLF: We evaluate the LVLM trained using only
the numerical score feedback without using the critique NLF
that directly pinpoints the strengths and weaknesses in the
responses; (3) Refinement NLF: We evaluate the LVLM
trained in a single-turn manner without the incorporating
of refinement NLF that provides concrete suggestions for
improvement; (4) Fine-grained Feedback: We include two
ablations regarding the fine-grained feedback, each exam-
ining the LVLM trained exclusively with a single type of
feedback, specifically helpfulness or honesty.

Evaluation Setting. Due to the constrained budget for
GPT-4 evaluation, this ablation study is conducted on the
LLaVA Eval dataset. The evaluation setting and metrics are
introduced in Sec. 4.2.

Evaluation Results. The results are shown in Table 6. We
observe that the introduction of the RLAIF stage can signifi-
cantly enhance the alignment with human preference, with
6.24% relative improvement. We also quantify the extra ad-
vantage of harnessing the NLF beyond the numerical scores.
We show that learning from both the critique NLF and re-
finement NLF can benefit the alignment. In addition, we
demonstrate that providing fine-grained feedback regarding
helpfulness and honesty respectively can contribute to more
precisely measuring the preference alignment and improve
the overall performance in a supplementary manner.

4.8. Case Study
We perform a case study to understand the efficacy of utiliz-
ing NLF in the training of LVLMs (see Figure 4). For the
harmlessness evaluation, existing LVLMs tend to produce
specific suggestions that may inadvertently lead individuals
toward engaging in harmful activities. In contrast, DRESS
is designed to not only withhold responses in such scenarios
but also actively dissuade individuals from pursuing detri-
mental actions. For the helpfulness and honesty evaluation,
DRESS can generate user-friendly and more helpful re-
sponses compared to InstructBLIP, and ground the responses
on visual information without hallucination compared to
LLaVA. In addition, DRESS exhibits superior interaction
capabilities, as demonstrated by its refined responses that
effectively integrate provided feedback.

5. Conclusion
We harness NLF to enhance the alignment and interaction
ability of LVLMs. We create an NLF dataset, which provides
fine-grained annotation regarding helpfulness, honesty, and
harmlessness, and innovatively provide two categories of
NLF: critique and refinement. We generalize conditional re-
inforcement learning to leverage NLF for training DRESS ,
an LVLM that effectively aligns with human preferences
and demonstrates better multi-turn interaction capabilities.
Potential future work is discussed in Appendix I.
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