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ABSTRACT

This paper studies fast adversarial training against sparse adversarial perturbations
bounded by l0 norm. We demonstrate the challenges of employing 1-step attacks
on l0 bounded perturbations for fast adversarial training, including degraded per-
formance and the occurrence of catastrophic overfitting (CO). We highlight that
CO in l0 adversarial training is caused by sub-optimal perturbation locations of
1-step attack. Theoretical and empirical analyses reveal that the loss landscape of
l0 adversarial training is more craggy compared to its l∞, l2 and l1 counterparts.
Moreover, we corroborate that the craggy loss landscape can aggravate CO. To
address these issues, we propose Fast-LS-l0 that incorporates soft labels and the
trade-off loss function to smooth the adversarial loss landscape. Extensive exper-
iments demonstrate our method can overcome the challenge of catastrophic over-
fitting, achieve state-of-the-art performance, and narrow down the performance
gap between 1-step and multi-step adversarial training against sparse attacks.

1 INTRODUCTION

Deep neural networks have been shown vulnerable to adversarial perturbations (Szegedy et al.,
2013). To achieve robust models, comprehensive evaluations (Athalye et al., 2018; Croce & Hein,
2020b; Croce et al., 2020) have demonstrated that adversarial training (Madry et al., 2018) and
its variants (Croce & Hein, 2020a; Sehwag et al.; Rebuffi et al., 2021; Gowal et al., 2021; Rade
& Moosavi-Dezfooli, 2021; Cui et al., 2023; Wang et al., 2023) are the most effective methods.
However, adversarial training is generally computationally expensive because generating adversarial
perturbations in each training step needs multiple forward and backward passes of the model. Such
efficiency issues hinder the scalability of adversarial training to large models and large datasets.

Improving the efficiency of adversarial training is tricky. Some works (Shafahi et al., 2019; Zhang
et al., 2019a; Wong et al.; Sriramanan et al., 2021) employ faster but weaker 1-step attacks to gen-
erate adversarial perturbations for training. However, such methods may suffer from catastrophic
overfitting (CO) (Kang & Moosavi-Dezfooli, 2021): the model overfits these weak attacks instead
of achieving true robustness against adaptive and stronger attacks.

On the other hand, most existing works (Madry et al., 2018; Tramer & Boneh, 2019; Jiang et al.,
2023) focus on studying adversarial perturbations bounded by l∞, l2 or l1 norms. In these scenarios,
the set of allowable perturbations is convex, which facilitates optimizing adversarial perturbations
and thus adversarial training. However, there are many scenarios in real-world applications where
sparse perturbations, bounded by the l0 norm, need to be considered (Modas et al., 2019; Croce
& Hein, 2019; Croce et al., 2022; Zhong et al., 2024). Since the l0 norm is not a proper norm,
the set of all allowable perturbations in this case is not convex. Consequently, from an optimiza-
tion perspective, obtaining robust models against sparse perturbations becomes more challenging.
Compared with the l∞, l2 and l1 counterparts, more steps are needed to generate strong l0 bounded
perturbations, making the corresponding adversarial training even more computationally expensive.

Among algorithms aiming at obtaining robust models against sparse perturbations, sAT and
sTRADES (Zhong et al., 2024) stand out as the most effective ones. These methods employ ad-
versarial training against Sparse-PGD (sPGD) (Zhong et al., 2024). However, they still require 20
steps to generate adversarial perturbations in each training step to achieve decent performance. As
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Table 1: Robust accuracy of sAT and sTRADES (Zhong et al., 2024) with different steps (t). The evaluation
is based on Sparse-AutoAttack (sAA) (Zhong et al., 2024), where the sparsity level is ϵ = 20. The models are
PreactResNet-18 (He et al., 2016a) trained on CIFAR-10 (Krizhevsky et al., 2009).

sAT (t = 1) sAT (t = 20) sTRADES (t = 1) sTRADES (t = 20)

Robust Accuracy 0.0 36.2 31.0 61.7

demonstrated in Table 1, naively decreasing the number of steps to 1 leads to a significant perfor-
mance decline for both sAT and sTRADES.

In this work, we investigate the challenges associated with fast adversarial training against sparse
perturbations, including training instability caused by catastrophic overfitting (CO) and performance
decline in both robust accuracy and clean accuracy. Specifically, we highlight that CO in l0 adver-
sarial training is caused by sub-optimal perturbation locations of 1-step attack. Our observation
indicates that adjusting the perturbation magnitudes alone cannot help mitigate CO in this context,
so existing CO mitigation methods (Kim et al., 2020; Andriushchenko & Flammarion, 2020; Zheng
et al., 2019; Huang et al., 2023) used in other cases do not work in the l0 scenario. Following, we
provide empirical and theoretical evidence to illustrate that the loss landscape of adversarial training
against l0 bounded perturbations is notably more craggy compared to its l∞, l2, and l1 counterparts.
Remarkably, these observations hold true even when only a single pixel is perturbed. Furthermore,
we corroborate that the craggy loss landscape further aggravates CO in l0 adversarial training.

Drawing from these insights, we propose to utilize soft labels and a trade-off loss objective function
to enhance the smoothness of the adversarial loss objective function, thereby improving the perfor-
mance of fast adversarial training against sparse perturbations. In addition to the performance, we
showcase that these techniques can also eliminate CO, thus improving training stability. Finally,
our extensive experiments demonstrate that smoothing the loss landscape can effectively narrow the
performance gap between 1-step adversarial training and its multi-step counterparts.

To the best of our knowledge, this work is the first to investigate fast adversarial training in the
context of l0 bounded perturbations. We summarize the contributions of this paper as follows:

1. We highlight that catastrophic overfitting (CO) in fast l0 adversarial training is caused by sub-
optimal perturbation locations of 1-step attack. Popular techniques in fast l∞, l2 and l1 adversarial
training are ineffective in the l0 case.

2. We theoretically and empirically demonstrate that the adversarial loss landscape is more craggy
in the l0 cases than in other cases, which further aggravates CO in l0 adversarial training. In this
regard, we propose Fast-LS-l0 which incorporates the techniques of soft labels and the trade-off
loss function to provably smooth the adversarial loss landscape.

3. Our comprehensive experiments demonstrate that smoothing the adversarial loss landscape
greatly narrows the performance gap between 1-step l0 adversarial training and its multi-step
counterpart. Our method establishes a new state-of-the-art performance for efficient adversarial
training against sparse perturbations.

Notation and Terminology We consider a classification model F (x,θ) = {fi(x,θ)}K−1
i=0 , where

x ∈ Rd is the input, θ represents the parameters of the model, and K is the number of classes,
fi(x,θ) is the logit of the i-th class. Correspondingly, we use {hi}K−1

i=0 to represent the output
probability of each class, which is the result of softmax function applied to {fi}K−1

i=0 . Therefore, the
loss objective function L based on the cross-entropy is calculated as follows:

L(x,θ) def
= −

K−1∑
i=0

yi log hi(x,θ)
def
= −

K−1∑
i=0

yi log
exp(fi(x,θ))∑K−1

j=0 exp(fj(x,θ))
(1)

where y = [y1, y2, ..., yC ] is the label of x in a simplex, i.e.,
∑

i yi = 1. In the context of adversarial
perturbation, we use S(p)

ϵ (x)
def
= {δ|∥δ∥p ≤ ϵ, 0 ≤ x + δ ≤ 1} to represent the adversarial budget,

i.e., the set of all allowable input perturbations for the input x. The adversarial loss function is
L(p)
ϵ (x,θ)

def
= max

δ∈S(p)
ϵ (x)

L(x + δ,θ). Despite no guarantee to obtain the optimal perturbation

in practice, to simplify the notation, we denote the term L(p)
ϵ also as the adversarial loss induced by

the actual attack algorithms and omit the superscript (p) when there is no ambiguity.
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2 RELATED WORKS

Adversarial Attacks: The existence of adversarial examples is first identified in Szegedy et al.
(2013), which focuses on l2 norm-bounded adversarial perturbations. Fast gradient sign method
(FGSM) (Goodfellow et al., 2014) introduces an efficient approach by generating perturbations
bounded by its l∞ norm in a single step. Furthermore, projected gradient descent (PGD) (Madry
et al., 2018) extends and improves FGSM (Kurakin et al., 2017) by iterative updating and random
initialization. In addition to these white-box attacks where the attackers have full access to the mod-
els, there are also several black-box attacks (Dong et al., 2018; Andriushchenko et al., 2020) where
the attackers’ access is restricted. AutoAttack (AA) (Croce & Hein, 2020b) is an ensemble of both
white-box and black-box attacks to ensure a more reliable evaluation of model’s robustness.

Adversarial Training: Adversarial training (Madry et al., 2018; Croce & Hein, 2020a; Sehwag
et al.; Rebuffi et al., 2021; Gowal et al., 2021; Rade & Moosavi-Dezfooli, 2021; Cui et al., 2023;
Wang et al., 2023) has emerged as a popular and reliable framework to obtain robust models (Athalye
et al., 2018; Croce & Hein, 2020b). Under this framework, we first generate adversarial examples
and update model parameters based on these examples in each mini-batch update. Different ad-
versarial training variants, such as TRADES (Zhang et al., 2019b) and MART (Wang et al., 2020),
may have different loss objective functions for generating adversarial examples and updating model
parameters. Furthermore, compared with training on clean inputs, adversarial training is shown to
suffer more from overfitting (Rice et al., 2020; Liu et al., 2021a). In this regard, self-adaptive training
(SAT) (Huang et al., 2020), which utilizes historical predictions as the soft label, has demonstrated
its efficacy in improving the generalization.

Sparse Perturbations: Adversarial budget defined by l1 norm is the tightest convex hull of the one
defined by l0 norm. In this context, SLIDE (Tramer & Boneh, 2019) extends PGD and employs
k-coordinate ascent to generate l1 bounded perturbations. Similarly, AutoAttack-l1 (AA-l1) (Croce
& Hein, 2021) extends AA to the l1 case. However, AA-l1 is found to generate non-sparse pertur-
bations that SLIDE fails to discover (Jiang et al., 2023), indicating that l1 bounded perturbations are
not necessarily sparse. Therefore, we use l0 norm to strictly enforce sparsity. It is challenging to
optimize over an adversarial budget defined by l0 norm, because of non-convex adversarial budgets.
While naively applying PGD in this case turns out sub-optimal, there are several black-box attacks,
including CornerSearch (Croce & Hein, 2019) and Sparse-RS (Croce et al., 2022), and white-box at-
tacks, including Sparse Adversarial and Interpretable Attack Framework (SAIF) (Imtiaz et al., 2022)
and Sparse-PGD (sPGD) (Zhong et al., 2024), which address the optimization challenge of finding
l0 bounded perturbations. Ultimately, Sparse-AutoAttack (sAA) (Zhong et al., 2024), combining
the most potent white-box and black-box attacks, emerges as the most powerful sparse attack.

Fast Adversarial Training: While effective, adversarial training is time-consuming due to the use
of multi-step attacks. To reduce the computational overhead, some studies (Shafahi et al., 2019;
Zhang et al., 2019a) employ faster one-step attacks in adversarial training. However, the training
based on these weaker attacks may suffer from catastrophic overfitting (CO) (Kang & Moosavi-
Dezfooli, 2021), where the model overfits to these weak attacks instead of achieving true robustness
against a variety of attacks. CO is shown to arise from distorted decision boundary caused by
sub-optimal perturbation magnitudes (Kim et al., 2020). There are several methods proposed to
mitigate CO, including aligning the gradients of clean and adversarial samples (Andriushchenko &
Flammarion, 2020), adding stronger noise to clean sample (de Jorge Aranda et al., 2022) , adap-
tive step size (Huang et al., 2023), regularizing abnormal adversarial samples (Lin et al., 2024b),
adding layer-wise weight perturbations (Lin et al., 2024a), and penalizing logits discrepancy (Li &
Spratling, 2023). Furthermore, compared to its l2 and l∞ counterparts, CO is caused by overfitting
to sparse perturbations during l1 adversarial training (Jiang et al., 2023). To address this issue, Fast-
EG-l1 (Jiang et al., 2023) is introduced to generate l1 bounded perturbations by Euclidean geometry
instead of coordinate ascent. In this work, we investigate fast adversarial training against l0 bounded
perturbations.

3 CHALLENGES IN FAST l0 ADVERSARIAL TRAINING

To obtain robust models against sparse perturbations, preliminary efforts use 20-step sPGD in ad-
versarial training, which introduces significant computational overhead. To accelerate training, we
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explore using 1-step sPGD in adversarial training. However, as reported in Table 1, the models
obtained in this way exhibit weak robustness against stronger and comprehensive sparse attacks
such as sAA. In this section, we study the underlying factors that make fast l0 adversarial training
challenging by both numerical experiments and theoretical analyses.

3.1 CATASTROPHIC OVERFITTING IN FAST l0 ADVERSARIAL TRAINING

We plot the learning curves of adversarial training using 1-step sPGD in Figure 1. Specifically, we
adopt the multi-ϵ strategy (Jiang et al., 2023; Zhong et al., 2024) and allow for different adversarial
budget sizes, i.e., ϵ, during training and testing. The results in Figure 1 indicate that CO happens in
all configurations. Moreover, our observations of CO in l0 cases are different from other cases in
several aspects. First, random initialization of adversarial perturbation, proven effective in l∞, l2 and
l1 cases, does not yield similar results in the l0 case. In addition, Figure 1 showcases that the training
accuracy on the inputs perturbed by 1-step sPGD is even higher than their clean counterparts. What’s
more, when CO happens in l∞, l2 and l1 cases, the model sharply achieves perfect robustness against
1-step attacks but zero robustness against multi-step attacks, both in few mini-batch updates. Such
phenomenon is not observed in l0 cases. By contrast, we observe dramatic performance fluctuations
on clean examples throughout the training process, even in the fine-tuning phase. Such training
instability indicates a non-smooth landscape of the loss function in the parameter space: a subtle
change in parameters θ leads to abrupt fluctuation in the loss.
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Figure 1: The learning curves of adversarial training against 1-step sPGD (Zhong et al., 2024) with random
noise initialization. The models are PreactResNet-18 (He et al., 2016a) trained on CIFAR-10 (Krizhevsky et al.,
2009). The dashed and the solid lines represent the accuracy of the training and the test set, respectively. The
test robust accuracy is based on sAA with ϵ = 20. The values of ϵ used in training are shown as ϵtrain in
captions, the training robust accuracy is based on the 1-step sPGD with ϵtrain.

Table 2: Robust accuracy of the models obtained by 1-step sAT with different ϵtrain against the interpolation
between perturbations generated by 1-step sPGD (ϵ = 20) and their corresponding clean examples, where α
denotes the interpolation factor, i.e., xinterp = x+ α · δ. The results of sAA are also reported.

α 0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 sAA

ϵtrain = 20 77.5 69.8 69.1 73.7 80.4 88.0 90.2 90.4 0.0
ϵtrain = 40 70.2 63.1 64.3 70.9 79.8 87.4 89.6 89.6 0.0
ϵtrain = 120 32.5 26.5 24.5 29.4 41.5 65.2 72.8 67.6 0.0

In l∞ and l2 cases, CO occurs due to distorted decision boundary caused by sub-optimal perturbation
magnitudes (Kim et al., 2020). To ascertain if this applies to l0 adversarial training, we evaluate
the robustness accuracy of models trained by 1-step sAT with varying ϵtrain against interpolations
between the clean inputs and the perturbed ones by 1-step sPGD. Table 2 shows that we cannot find
successful adversarial examples through such simple interpolations. In addition, the substantial l0
distance between 1-step sPGD and sAA perturbations (see in Appendix E.1) suggests that CO in l0
adversarial training is primarily due to sub-optimal perturbation locations rather than magnitudes.
Consequently, existing CO mitigation methods like GradAlign (Andriushchenko & Flammarion,
2020), ATTA (Zheng et al., 2019), and adaptive step size (Huang et al., 2023) turn out ineffective or
insufficient for l0 scenarios. We defer the detailed evaluation to Appendix E.3.

In contrast to other adversarial budgets, l0 adversarial budgets are non-convex, which limits the
availability of tools to enhance the quality of the generated perturbations. To address this challenge,
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we investigate the loss landscape in the subsequent sections. We show that a smoother loss function
can mitigate the negative impact of sub-optimal adversarial perturbations in adversarial training.

3.2 THEORETICAL ANALYSES ON THE SMOOTHNESS OF ADVERSARIAL LOSS FUNCTIONS

We first provide theoretical analyses on the smoothness of adversarial loss function. Similar to Liu
et al. (2020), we assume the first-order smoothness of the model’s outputs {fi}K−1

i=0 .
Assumption 3.1. (First-order Lipschitz condition) ∀i ∈ {0, 1, ...,K−1}, the function fi satisfies
the following first-order Lipschitz conditions, with constants Lθ, Lx:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥, (2)
∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥. (3)

We then study the first-order smoothness of the adversarial loss objective function Lϵ(x,θ).
Lemma 3.2. (Lipschitz continuity of adversarial loss) If Assumption 3.1 holds, we have:

∀x,θ1,θ2, ∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (4)
The Lipschitz constant Aθ = 2

∑
i∈S+

yiLθ where S+ = {i | yi > 0, hi(x + δ1,θ2) > hi(x +

δ1,θ1)}, δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ).

The proof is deferred to Appendix B.1, in which we can see the upper bound in Lemma 3.2 is tight
and can be achieved in the worst cases. Lemma 3.2 indicates that the adversarial loss Lϵ(x,θ) is
Lipschitz continuous, which is consistent with Liu et al. (2020).

To study the second-order smoothness of Lϵ(x,θ), we start with the following assumption.
Assumption 3.3. (Second-order Lipschitz condition) ∀i ∈ {0, 1, ...,K − 1}, the function fi
satisfies the following second-order Lipschitz conditions, with constants Lθθ, Lθx:

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥, (5)
∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥. (6)

Lemma 3.4. (Lipschitz smoothness of adversarial loss) If Assumption 3.1 and 3.3 hold, we have:
∀x,θ1,θ2, ∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ. (7)

The Lipschitz constant Aθθ = Lθθ and Bθδ = Lθx∥δ1−δ2∥+4Lθ where δ1 ∈ argmaxδ∈Sϵ
L(x+

δ,θ1) and δ2 ∈ argmaxδ∈Sϵ
L(x+ δ,θ2).

The proof is deferred to Appendix B.2. Lemma 3.4 indicates the adversarial loss objective function
Lϵ(x,θ) w.r.t. the model parameter θ is no longer smooth. That is to say, gradients in arbitrarily
small neighborhoods in the θ-space can change discontinuously. Furthermore, the degree of discon-
tinuity is indicated by the value of Bθδ . Given the expression of Bθδ , we can conclude that a larger
∥δ1 − δ2∥ can intensify the gradient discontinuity. Additionally, as elucidated by Theorem 2 in Liu
et al. (2020), the gradients are non-vanishing in adversarial training. A large Bθδ introduces large
gradient magnitudes asymptotically, making optimization challenging.

However, in practice, we may use non-smooth activations, like ReLU, which do not strictly satisfy
Assumption 3.3. For example, the gradient of ReLU changes abruptly in the neighborhood around
0. In this regard, we provide a more detailed analysis of this case in Appendix C, which suggests
that our analyses can be straightforwardly extended to networks with non-smooth activations.

Without the loss of generality, the Lipschitz properties in Assumption 3.1 and 3.3 can be based on
any proper lp norm, i.e., p ∈ [1,+∞], which, however, does not include l0 norm. Correspondingly,
∥δ1 − δ2∥ in the expression of Bθδ is based on the same norm as in the assumptions. On the
popular benchmark CIFAR-10, the commonly used values of ϵ in the l0, l1, l2 and l∞ cases are
3601, 24, 0.5 and 8/255, respectively (Madry et al., 2018; Croce & Hein, 2021; Jiang et al., 2023;
Zhong et al., 2024). In Appendix D, we discuss the numerical upper bound of ∥δ1 − δ2∥ when the
Lipschitz assumptions are based on different proper norms. The results demonstrate that the upper
bound of ∥δ1 − δ2∥ in the l0 case is always significantly larger than other cases, indicating a more
craggy adversarial loss function in l0 adversarial training. Moreover, to corroborate the Lipschitz
smoothness assumption in Inequality (6), we compare the distances between the gradients induced
by one-step and multi-step attacks with different adversarial budgets in Appendix E.2.

1In Zhong et al. (2024), the l0 adversarial budget for training on CIFAR-10 is 120 in the pixel space of RGB
images, so the l0 norm in the feature space is 360.
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Figure 2: Smoothness of adversarial loss objective functions under different settings. All losses are calculated
on the training set of CIFAR-10 (Krizhevsky et al., 2009) by PreactResNet-18 (He et al., 2016a). The l0,
l1, l2 and l∞ models are obtained by 1-step sAT (Zhong et al., 2024), Fast-EG-l1 (Jiang et al., 2023), 1-step
PGD (Rice et al., 2020) and GradAlign (Andriushchenko et al., 2020), respectively. (a) Top 10 eigenvalues of
∇2

θL
(0)
ϵ (x,θ) with different values of ϵtrain in the l0 case. (b) Top 10 eigenvalues of ∇2

θL
(p)
ϵ (x,θ) under

different choices of p, including l0 (ϵtrain = 1), l1 (ϵtrain = 24), l2 (ϵtrain = 0.5) and l∞ (ϵtrain = 8/255).
The y-axis is shown in the log scale. (c) - (f) The loss landscape of Lϵ(x,θ + α1v1 + α2v2) where v1 and
v2 are the eigenvectors associated with the top 2 eigenvalues of ∇2

θLϵ(x,θ), respectively. The y-scales for
different sub-figures are different. (c) l0 case, ϵtrain = 1. (d) l1 case, ϵtrain = 24. (e) l2 case, ϵtrain = 0.5.
(f) l∞ case, ϵtrain = 8/255.

3.3 NUMERICAL ANALYZES ON THE SMOOTHNESS OF ADVERSARIAL LOSS FUNCTIONS

To validate the conclusions in theoretical analyses, we conduct numerical experiments to study the
properties of loss landscape of l0 adversarial training and compare it with the l∞, l2 and l1 cases.

We first study the curvature in the neighborhood of model parameters, which reflects the second-
order smoothness of the loss function and is dominated by top eigenvalues of Hessian matrix
∇2

θLϵ(x,θ). Numerically, we employ the power method (Yao et al., 2018; Liu et al., 2020; Zhong
& Liu, 2023) to iteratively estimate the eigenvalues and the corresponding eigenvectors of Hessian
matrices. We plot the top-10 eigenvalues of the Hessian matrices ∇2

θLϵ(x,θ) under different ϵ in l0
cases in Figure 2 (a). In addition, we compare the Hessian spectrum in the l0 case with l∞, l2 and l1
cases in Figure 2 (b). Our results in Figure 2 (a) demonstrate that eigenvalues of Hessian matrices in
l0 cases increase as ϵ grows, indicating a higher degree of non-smoothness for a larger ϵ. Moreover,
Figure 2 (b) indicates that the adversarial loss landscape in the l0 case is more craggy than its l∞, l2
and l1 counterparts, even when we set ϵ = 1, i.e., perturbing only a single pixel. These observations
corroborate that l0 adversarial training exhibits worse second-order smoothness than other cases.

To study the first-order smoothness, we visualize the loss landscape of different settings in Figures
2 (c)-(f), which demonstrate that the loss in the l0 case abruptly increases even with subtle changes
in the model parameters. This further suggests the non-smooth nature of the l0 adversarial loss
landscape. More loss landscape visualizations of l0 adversarial training with different ϵ are provided
in Appendix E.7. The observations are consistent with that in Figure 2. Accordingly, we confirm
that the loss landscape of l0 adversarial loss function is more craggy than other cases from both
theoretical and empirical perspectives. In addition, among the cases studied in Figure 3, the l0 cases
are the only ones suffering from CO, while the l∞, l2 and l1 cases do not. This indicates that the
craggy loss landscape aggravates CO.

On the other side, we show in Figure 3 that successful attempts to obtain robust models against l0
bounded perturbation also include elements that help improve the smoothness of the loss landscape.
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Figure 3: Relationship between craggy loss landscape and CO. (a) Gradient norm ∥∇θtLϵ∥2, which indicates
the first-order smoothness of Lϵ. (b) Test robust accuracy against sAA (ϵ = 20). The results are obtained from
PreactResNet-18 trained on CIFAR-10, where ϵtrain = 40. Note that since the training of 20-step sAT w/o ES
diverges under ϵtrain = 120, the results are presented under ϵtrain = 40 instead.

20-step sAT in Zhong et al. (2024) uses an early stopping (ES) strategy to avoid CO and to achieve
competitive performance. Specifically, ES interrupts the attack iteration once the current perturbed
input is misclassified. ES is shown to circumvent the potential for excessive gradient magnitude
while maintaining the efficacy of the generated perturbations. Figure 3 compares the cases with and
without ES in terms of gradient norm and robust accuracy on the test set by sAA. We can observe
from Figure 3 that 20-step sAT without ES still suffer from CO and the corresponding gradient
magnitude during training indicates a craggy loss landscape. This finding further highlights a strong
correlation between CO and the craggy nature of the loss landscape in l0 adversarial training.

In summary, our results suggest that the l0 adversarial training exhibits a more craggy loss landscape
than other cases, which shows a strong correlation with CO. Additionally, despite the non-trivial
performance of 20-step sAT with ES, its performance still exhibits considerable fluctuation and can
be further improved, underscoring the need for a smoother loss function. In the next section, we will
propose our method to address the CO issue in fast l0 adversarial training.

4 SOFT LABEL AND TRADE-OFF LOSS SMOOTH ADVERSARIAL LOSS

Notice that Aθ in Lemma 3.2 can be regarded as a function of the label y. Thus, we first study
how different y affects the properties of the adversarial loss objective function Lϵ(x,θ). Let yh ∈
{0, 1}K and ys ∈ (0, 1)K denote the hard and soft label, respectively. That is to say, yh is a one-hot
vector, while ys is a dense vector in a simplex. Then, we have the following theorem:
Theorem 4.1. (Soft label improves Lipschitz continuity) Based on Lemma 3.2, given a hard label
vector yh ∈ {0, 1}K and a soft label vector ys ∈ (0, 1)K , we have Aθ(ys) ≤ Aθ(yh).

The proof is deferred to Appendix B.3. Theorem 4.1 indicates that soft labels lead to a reduced first-
order Lipschitz constant, thereby enhancing the Lipschitz continuity of the adversarial loss function.
However, as indicated by Lemma 3.4, the second-order Lipschitz constant remains unaffected by
variations in y. Considering the poor performance on clean inputs when CO happens, we introduce
a trade-off loss objective function Lϵ,α which interpolates between the loss on the clean inputs and
that on the adversarial inputs.

Lϵ,α(x,θ) = (1− α)L(x,θ) + α max
δ∈Sϵ(x)

L(x+ δ,θ) (8)

where α ∈ [0, 1] is the interpolation factor. Then, we have the following theorem:
Theorem 4.2. (Trade-off loss function improves Lipschitz smoothness) If Assumption 3.1 and 3.3
hold, we have:

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ (9)

The Lipschitz constant Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥ + 2(1 + α)Lθ where δ1 ∈

argmaxδ∈Sϵ(x) L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ(x) L(x+ δ,θ2).

The proof is deferred to Appendix B.4. According to Theorem 4.2, the trade-off loss function
Lϵ,α enhances the second-order smoothness of adversarial loss objective function. The interpolation
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factor α controls the balance between the loss on the clean inputs and the loss on the adversarial
inputs. On one hand, a smaller value of α results in a smoother loss objective function, but it assigns
less weight to the loss of the adversarial inputs and potentially hurts the robustness of the obtained
model. On the other hand, a bigger value of α assigns more weight to the adversarial loss to focus
on robustness, but it makes the corresponding adversarial loss objective function more challenging
for optimization. Furthermore, compared with l1, l2 and l∞ cases, the trade-off loss function is
particularly useful and necessary in the l0 case. This is supported by the analyses in Section 3.2
and Appendix D, which demonstrate that ∥δ1 − δ2∥ is much larger in l0 bounded perturbations
than other cases. Therefore, we expect the trade-off loss function Lϵ,α can help mitigate CO by
improving smoothness.

Similar to Lemma 3.4, Theorem 4.2 can be straightforwardly extended to the networks with non-
smooth activations, where Assumption 3.3 is not strictly satisfied. We provide a more detailed
analysis in Appendix C to demonstrate the generality of our conclusions.

In summary, soft labels and the trade-off loss function can improve the first-order and second-order
smoothness, respectively. Therefore, we can stabilize and improve the performance of fast adversar-
ial training against l0 bounded perturbations by combining both techniques together.

Among various approaches available, we mainly exploit trade-off loss function, self-adaptive train-
ing (SAT) (Huang et al., 2020) and TRADES (Zhang et al., 2019b). Specifically, SAT utilizes the
moving average of previous predictions as the soft label to calculate the loss. TRADES combines
the soft label and the trade-off loss function. It utilizes the trade-off loss function to balance the
clean and robust accuracy and employs the prediction on the clean inputs as the soft label when cal-
culating the loss for adversarial inputs. In Appendix A, we provide the pseudo-codes of both SAT
and TRADES and the formulation of their combination as a reference.

5 EXPERIMENTS

In this section, we perform extensive experiments to investigate various approaches that can stabilize
and improve the performance of fast adversarial training against l0 bounded perturbations. Further-
more, we compare the performance of 1-step adversarial training with the multi-step counterpart
on different datasets. Our results demonstrate that approaches combining soft labels and trade-off
loss function significantly enhance the stability and efficacy of 1-step adversarial training, even sur-
passing some baselines of multi-step adversarial training. Finally, we validate the efficacy of our
method on different networks in Appendix E.6, visualize the loss landscape when using soft label
and trade-off loss function in Appendix E.8 to demonstrate its improved smoothness, and conduct
ablation studies for analysis in Appendix E.9.

5.1 APPROACHES TO IMPROVING 1-STEP l0 ADVERSARIAL TRAINING

Table 3: Comparison of different approaches and their combinations in robust accuracy (%) by sAA. The
target sparsity level ϵ = 20. We compare PreAct ResNet-18 (He et al., 2016a) models trained on CIFAR-10
(Krizhevsky et al., 2009) with 100 epochs. The italic numbers indicate catastrophic overfitting (CO) happens.

Method sAT Tradeoff sTRADES (T) sTRADES (F)

1-step 0.0 2.6 31.0 55.4
+ N-FGSM 0.3 17.5 46.9 55.9
+ SAT 29.3 30.3 61.4 59.4
+ SAT & N-FGSM 43.8 39.2 63.0 62.6

We begin our analysis by evaluating the effectiveness of different approaches and their combina-
tions, focusing on those that incorporate either soft labels or trade-off loss functions. Additionally,
we explore the data augmentation technique N-FGSM (de Jorge Aranda et al., 2022), known for its
ability to improve the performance of fast adversarial training without imposing significant compu-
tational overhead. Our findings, summarized in Table 3, are all based on 1-step adversarial training.
The robust accuracy is measured using the sparse-AutoAttack (sAA) method, with ϵ set to 20.

In Table 3, we investigate the following approaches and their combinations: (1) sAT: adversarial
training against 1-step sPGD (Zhong et al., 2024). (2) Tradeoff: 1-step adversarial training with
the trade-off loss function defined in Eq. (8). (3) sTRADES: the 1-step sTRADES (Zhong et al.,
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2024). As discussed in Appendix A, it incorporates both soft label and trade-off loss function. We
include two variants of sTRADES for comparison: sTRADES (T) is the training mode where we
only use the loss objective function of TRADES for training but still use the cross-entropy loss
to generate adversarial examples; sTRADES (F) is the full mode where we use the loss objective
function of TRADES for both training and generating adversarial perturbations. Compared with
1-step sAT, sTRADES (T) introduces 25% overhead while sTRADES (F) introduces 50% overhead.
(4) SAT: self-adaptive training (Huang et al., 2020). As discussed in Appendix A, it introduces
soft labels based on the moving average of the historical predictions and uses adaptive weights for
training instances of different prediction confidence. SAT can be incorporated into sAT, Tradeoff
and sTRADES. (5) N-FGSM: data augmentation technique by adding random noise to the training
data. It is proven effective in 1-step adversarial training (de Jorge Aranda et al., 2022). N-FGSM
can be incorporated into sAT, Tradeoff, sTRADES and used jointly with SAT. The implementation
details are deferred to Appendix F.

The results in Table 3 indicate that using trade-off loss function alone still suffers from CO. In con-
trast, using soft label, either by SAT or sTRADES, can eliminate CO and achieve notable robust
accuracy. This suggests that the soft label has a more prominent role in mitigating overfitting than
the trade-off loss function in 1-step l0 adversarial training. Furthermore, sTRADES (F) alone out-
performs sTRADES (T) along by a substantial margin of 24.4%, which can be attributed to the
generation of higher-quality adversarial examples for training by sTRADES (F). Finally, both SAT
and N-FGSM can enhance the performance of all approaches, demonstrating their effectiveness.

It is important to note that all the results presented in Table 3 are obtained using sAA, which is known
for generating the strongest attacks in terms of sparse perturbations. Our findings demonstrate that
incorporating soft labels and trade-off loss function yields substantial performance improvements in
1-step l0 adversarial training. Among various combinations of methods explored, the model trained
with sTRADES (T) in combination with SAT and N-FGSM achieves the highest robust accuracy
against sAA, reaching an impressive 63.0%. This establishes a new state-of-the-art performance in
the context of fast robust learning methods against l0 bounded perturbations. For convenience, we
name this combination (i.e., 1-step sTRADES + SAT + N-FGSM) Fast-Loss Smoothing-l0 (Fast-
LS-l0) in the subsequent sections. Its pseudo-code is given in Algorithm 3 of Appendix A. Addi-
tionally, the comparison with more baselines that either mitigate CO or smooth the loss function is
undertaken in Appendix E.3. The results demonstrate that our method is the most effective approach
for fast l0 adversarial training.

5.2 COMPARISON WITH MULTI-STEP ADVERSARIAL TRAINING

In this section, we compare 1-step adversarial training with its multi-step counterpart. For multi-step
adversarial training, we follow the settings in Zhong et al. (2024) and use 20-step sPGD based on
cross-entropy to generate adversarial perturbations in sAT and sTRADES. Similar to Table 3, we
incorporate SAT and N-FGSM into multi-step adversarial training as well. For 1-step adversarial
training, we focus on the configurations with the best performance in Table 3, i.e., Fast-LS-l0.

We conduct extensive experiments on various datasets. The results on CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet-100 (Deng et al., 2009) are demonstrated in Table 4. More results on CIFAR-
100 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al., 2012) are in Table 7 and 8 of Ap-
pendix E.4, respectively. Following the settings in (Zhong et al., 2024), and given the prohibitively
high complexity involved, we exclude multi-step sTRADES from the evaluation on ImageNet-100.
In addition to the performance under sAA, we report the robust accuracy of these models under vari-
ous black-box and white box attacks, including CornerSearch (CS) (Croce & Hein, 2019), Sparse-RS
(RS) (Croce et al., 2022), SAIF (Imtiaz et al., 2022) and two versions of sPGD (Zhong et al., 2024).
Note that, we do not include SparseFool (Modas et al., 2019) and PGD0 (Croce & Hein, 2019) for
evaluation, because they only have trivial attack success rate on our models. Moreover, we report the
clean accuracy and the total running time for reference. Finally, to more comprehensively validate
the effectiveness of our results, we run the experiments for multiple times and report the standard
deviation of the performance in Table 9 of Appendix E.5.

The results in Table 4, 7 and 8 suggest that both soft labels and trade-off loss function, introduced
by either SAT or TRADES, can improve the performance of both 1-step adversarial training and
multi-step adversarial training. In addition, N-FGSM, originally designed for one-step adversarial

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Robust accuracy (%) of various models against various attacks that generate l0 bounded perturbations
on different datasets. (a) The models are PreAct ResNet-18 trained on CIFAR-10, where the sparsity level
ϵ = 20. CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity. (b) The
models are ResNet-34 trained on ImageNet-100, where the sparsity level ϵ = 200. CS is not evaluated here
due to its high computational complexity, i.e. nearly 1 week on one GPU for each run. Note that S and N
denote SAT and N-FGSM, respectively. The results of vanilla 20-step sAT and sTRADES are obtained from
(Zhong et al., 2024). All experiments are implemented on one NVIDIA RTX 6000 Ada GPU.

(a) CIFAR-10, ϵ = 20

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 5h 16m 84.5 52.1 36.2 76.6 75.9 75.3 36.2
+S 5h 24m 80.4 58.4 55.7 75.0 75.1 74.0 55.5
+S&N 5h 28m 80.8 64.1 61.1 76.1 76.8 75.1 61.0

sTRADES 5h 30m 89.8 69.9 61.8 84.9 84.6 81.7 61.7
+S 5h 27m 86.7 71.1 65.1 82.2 79.9 77.8 64.1
+S&N 5h 22m 82.2 66.3 66.1 77.1 74.1 72.2 65.5

One-step

Fast-LS-l0 (T) 50m 82.5 69.3 65.4 75.7 67.2 67.7 63.0
Fast-LS-l0 (F) 59m 82.6 69.6 64.1 75.2 64.6 68.4 62.6

(b) ImageNet, ϵ = 200

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 324h 57m 86.2 - 61.4 69.0 78.0 77.8 61.2
+S 337h 07m 83.2 - 71.8 75.0 78.8 77.2 71.4
+S&N 336h 20m 83.0 - 75.0 76.4 78.8 79.2 74.8

sTRADES 358h 55m 84.8 - 76.0 77.4 80.6 81.4 75.8
+S 359h 39m 82.8 - 78.2 79.2 80.6 80.0 78.2
+S&N 359h 55m 82.4 - 78.2 79.2 78.2 79.8 77.8

One-step

Fast-LS-l0 (T) 43h 48m 82.4 - 76.8 75.4 74.6 74.6 72.4
Fast-LS-l0 (F) 55h 39m 80.0 - 77.4 76.0 76.6 74.4 72.8

training, also contributes to performance improvements in the multi-step scenario. Furthermore,
these techniques can greatly narrow down the performance gaps between 1-step and multi-step ad-
versarial training, making fast adversarial training more feasible and competitive in the context of
sparse perturbations. With the assistance of SAT and N-FGSM, our Fast-LS-l0 can achieve a perfor-
mance that is merely 2.5% lower than that of the 20-step sTRADES while requiring less than 1/6
of the total running time.

6 CONCLUSION

In this paper, we highlight the catastrophic overfitting (CO) in the fast l0 adversarial training is
induced by sub-optimal perturbation locations of 1-step attacks, which is distinct from the l∞, l2
and l1 cases. Theoretical and empirical analyses reveal that the loss landscape of l0 adversarial
training is more craggy than other cases, and the craggy loss landscape strongly correlates with CO.
To address these issues, we propose Fast-LS-l0 that incorporates soft label and trade-off loss function
to smooth the adversarial loss function. Extensive experiments demonstrate the effectiveness of our
method in mitigating CO and narrowing down the performance gap between 1-step and multi-step l0
adversarial training. The models trained with our method exhibit state-of-the-art robustness against
sparse attacks in the context of fast adversarial training.
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A ALGORITHM DETAILS

Algorithm 1 Self-Adaptive Training (SAT) (Huang et al., 2020)
1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling

epoch: Es; Momentum factor: α
2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: pi = softmax(f(xi))
6: if e > Es then
7: ti = α× ti + (1− α)× pi

8: end if
9: wi = maxj ti,j

10: end for
11: Calculate the loss LSAT = − 1∑

i wi

∑
i wi

∑
j ti,j log pi,j

12: Update the parameters of f on LSAT

13: until end of training

Algorithm 2 TRADES (Zhang et al., 2019b)
1: Input: Data: (x,y); Classifier: f ; Balancing factor: β; TRADES mode: mode; Sparse level: ϵ
2: if mode = F then
3: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) KL(f(x), f(x̃))
4: else if mode = T then
5: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) CE(f(x̃),y)
6: end if
7: Calculate the loss LTRADES = CE(f(x),y) + β ·KL(f(x), f(x̃))
8: Update the parameters of f on LTRADES

The pseudo-codes of SAT (Huang et al., 2020) and TRADES (Zhang et al., 2019b) are provided in
Algorithm 1 and 2, respectively. For SAT, the moving average of the previous predictions {ti}n can
be regarded as the soft labels. For TRADES, f(x) can be seen as the soft label of f(x̃), and the
combination of cross-entropy and KL divergence is also a trade-off loss function. Note that when
combining SAT and TRADES, the loss LS+T for a mini-batch data {(xi,yi)}m can be written as:

LS+T = − 1∑
i wi

∑
i

wi · CE(f(xi), ti) +
β

m

∑
i

KL(f(xi), f(x̃i)) (10)

In addition, we provide the pseudo-code of the proposed Fast-LS-l0, which incorporates SAT,
TRADES and N-FGSM, in Algorithm 3.

B PROOFS

B.1 PROOF OF LEMMA 3.2

Proof. Based on the definition of δ1 and δ2, we have Lϵ(x,θ1) = L(x+ δ1,θ1) and Lϵ(x,θ2) =
L(x+ δ2,θ2). In this regard, we have:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ = ∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥ (11)

When L(x+ δ1,θ1) ≥ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ1,θ2) + L(x+ δ1,θ2)− L(x+ δ2,θ2)∥
≤∥L(x+ δ1,θ1)− L(x+ δ1,θ2)∥

(12)

The inequality above is derived from the optimality of δ2, which indicates L(x+ δ1,θ2)− L(x+
δ2,θ2) ≤ 0 and the assumption L(x+ δ1,θ1) ≥ L(x+ δ2,θ2).
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Algorithm 3 Fast-LS-l0
1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling

epoch: Es; Momentum factor: α; Balancing factor: β; TRADES mode: mode; Sparse level: ϵ
2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: ηi ∼ S2ϵ(xi)
6: xi = xi + ηi // Augment sample with additive noise
7: if mode = F then
8: x̃i = max(x̃i−xi)∈Sϵ(xi) KL(f(xi), f(x̃i))
9: else if mode = T then

10: x̃i = max(x̃i−xi)∈Sϵ(xi) CE(f(x̃i), ti)
11: end if
12: pi = softmax(f(xi))
13: if e > Es then
14: ti = α× ti + (1− α)× pi

15: end if
16: wi = maxj ti,j
17: end for
18: Calculate LS+T in Eq. (10)
19: Update the parameters of f on LS+T

20: until end of training

Similarly, when L(x+ δ1,θ1) ≤ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ2,θ1) + L(x+ δ2,θ1)− L(x+ δ2,θ2)∥
≤∥L(x+ δ2,θ1)− L(x+ δ2,θ2)∥

(13)

Without the loss of generality, we further bound ∥Lϵ(x,θ1)−Lϵ(x,θ2)∥ based on (12). The deriva-
tion can be straightforwardly extended to (13) by replacing δ1 with δ2.

Based on the formulation of L in (1), ∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ can be further derived as follows:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤

∣∣∣∣∣∣
∑
i∈S+

yi log
hi(x+ δ1,θ2)

hi(x+ δ1,θ1)

∣∣∣∣∣∣
=
∑
i∈S+

yi

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
(14)

where S+ = {i | yi > 0, hi(x + δ1,θ2) > hi(x + δ1,θ1)}. Then, according to the mediant
inequality, we have

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤

∣∣∣∣∣log
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))∑
j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤max

k

∣∣∣∣log exp(fk(x+ δ1,θ2)− fi(x+ δ1,θ2))

exp(fk(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣
≤max

k
|fk(x+ δ1,θ2)− fk(x+ δ1,θ1)|+ |fi(x+ δ1,θ2)− fi(x+ δ1,θ1)|

≤2Lθ∥θ1 − θ2∥

(15)
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Note that the bound on the right of (15) is tight. The upper bound can be achieved asymptotically if
the condition in (16) and the Lipschitz bound in Assumption 3.1 are satisfied.∣∣∣|fk(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fk(x+ δ1,θ1)− fi(x+ δ1,θ1)|

∣∣∣
≫max

j ̸=k

∣∣∣|fj(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fj(x+ δ1,θ1)− fi(x+ δ1,θ1)|
∣∣∣ (16)

Combining (11)-(15), we have

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (17)

where Aθ = 2
∑

i∈S+
yiLθ.

B.2 PROOF OF LEMMA 3.4

Proof. Given (1), ∇θL is computed as

∇θL(x,θ) = −
K−1∑
i=0

yi

[
∇θfi(x,θ)−

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))

]

=

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))
−

K−1∑
i=0

yi∇θfi(x,θ)

def
=

K−1∑
j=0

hj(x,θ)∇θfj(x,θ)−
K−1∑
i=0

yi∇θfi(x,θ)

(18)

The second equality is based on the fact that {yi}K−1
i=0 is in a simplex. To simplify the notation,

the last equation is based on the definition that {hj}K−1
j=0 is the result of softmax function ap-

plied to {fj}K−1
j=0 , i.e., hj(x,θ) =

exp(fj(x,θ))∑
k exp(fk(x,θ))

. Therefore, we have
∑K−1

j=0 hj(x,θ) = 1 and
∀j, hj(x,θ) > 0.

According to the triangle inequality, we have:

∥∇θ1L(x+ δ1,θ1)−∇θ2L(x+ δ2,θ2)∥
≤∥∇θ1

L(x+ δ1,θ1)−∇θ1
L(x+ δ2,θ1)∥+ ∥∇θ1

L(x+ δ2,θ1)−∇θ2
L(x+ δ2,θ2)∥

(19)

Plug (18) to the first term on the right hand side of (19), we obtain:

∥∇θ1L(x+ δ1,θ1)−∇θ1L(x+ δ2,θ1)∥ ≤
K−1∑
i=0

yi ∥∇θ1fi(x+ δ1,θ1)−∇θ1fi(x+ δ2,θ1)∥

+

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
(20)

The first term can be bounded based on Assumption 3.1. The second term can be bounded as follows:
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∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)

∥∥∥∥∥∥+
∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

K−1∑
j=0

hj(x+ δ1,θ1)

∥∥∥∥max
k

∇θfk(x+ δ1,θ1)

∥∥∥∥+ K−1∑
j=0

hj(x+ δ2,θ1)

∥∥∥∥max
k

∇θfk(x+ δ2,θ1)

∥∥∥∥
≤2Lθ

(21)

Note that the bound on the right of (21) is tight. The first inequality is based on the triangle in-
equality. The second inequality and the third inequality can be achieved asymptotically when the
equality of first-order Lipschitz continuity in Assumption 3.1 is achieved and the following condition
is satisfied.

∃k1 ∈ argmax
i

L
(i)
θ , hk1

(x+ δ1,θ1) → 1,max
j ̸=k1

hj(x+ δ1,θ1) → 0

∃k2 ∈ argmax
i

L
(i)
θ , hk2

(x+ δ2,θ1) → 1,max
j ̸=k2

hj(x+ δ2,θ1) → 0
(22)

Note that k1 and k2 are not always the same, since there may exist more than one biggest first-order
Lipschitz constant.

Combining (20) and (21) together, we obtain:

∥∇θ1L(x+ δ1,θ1)−∇θ1L(x+ δ2,θ1)∥ ≤ 2Lθ + Lθx∥δ2 − δ1∥ (23)

Similarly, we have:

∥∇θ1
L(x+ δ2,θ1)−∇θ2

L(x+ δ2,θ2)∥ ≤ 2Lθ + Lθθ∥θ2 − θ1∥ (24)

Combing the two inequalities above, we have:

∥∇θL(x+ δ1,θ1)−∇θL(x+ δ2,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθθ (25)

where
Aθθ = Lθθ; Bθθ = 4Lθ + Lθx∥δ1 − δ2∥ (26)

B.3 PROOF OF THEOREM 4.1

Proof. For hard label yh ∈ {0, 1}K , let that the j-th elements of yh be 1 and the rest be 0. By the
definition of Aθ in Lemma 3.2, we have

Aθ(yh) = 2Lθ. (27)

It is known that
∑K−1

i=0 hi(x,θ) = 1, which means ∃j, hj(x + δ1,θ2) ≤ hj(x + δ1,θ1). Then,
for soft label ys ∈ (0, 1)K , we have |S+| < K where S+ = {i | yi > 0, hi(x + δ1,θ2) >
hi(x+ δ1,θ1)}. Thus, it holds

Aθ(ys) = 2
∑
i∈S+

y(i)s Lθ ≤ Aθ(yh). (28)

The equality can be achieved asymptotically if
∑

i/∈S+
y
(i)
s → 0.
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B.4 PROOF OF THEOREM 4.2

Proof. By the definition of Lϵ,α in (8), we have

∥∇θ1Lϵ,α(x,θ1)−∇θ2Lϵ,α(x,θ2)∥
≤ (1− α)∥∇θ1L(x,θ1)−∇θ1L(x,θ2)∥+ α∥∇θ1Lϵ(x,θ1)−∇θ1Lϵ(x,θ2)∥

(29)

According to (24) in the proof of Lemma 3.4, the first term of the right hand side of (29) can be
derived as

∥∇θ1
L(x,θ1)−∇θ2

L(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ 2Lθ. (30)
According to Lemma 3.4, the second term of the right hand side of (29) satisifies

∥∇θ1Lϵ(x,θ1)−∇θ2Lϵ(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Lθx∥δ1 − δ2∥+ 4Lθ. (31)

Combining (29), (30) and (31), we have

∥∇θ1Lϵ,α(x,θ1)−∇θ2Lϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ, (32)

where Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥+ 2(1 + α)Lθ.

C THEORETICAL ANALYSIS OF RELU NETWORKS

Similar to Liu et al. (2020), we first make the following assumptions for the functions {fi}K−1
i=0

represented by a ReLU network.
Assumption C.1. ∀i ∈ {0, 1, ...,K − 1}, the function fi satisfies the following conditions:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥, (33)
∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥, (34)

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Cθθ, (35)
∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥+ Cθx. (36)

Compared to Assumption 3.1 and 3.3, we modify the the second-order smoothness assumptions
by adding two constants Cθθ and Cθx, respectively. They denote the upper bound of the gradi-
ent difference in the neighborhood at non-smooth point. Thus, they quantify how drastically the
(sub)gradients can change in a sufficiently small region in the parameter space.

Based on Assumption C.1, we have the following corollary:
Corollary C.2. If Assumption C.1 is satisfied, it holds

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (37)
∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ + Cθθ + Cθx. (38)

The Lipschitz constant Aθ = 2
∑

i∈S+
yiLθ, Aθθ = Lθθ and Bθδ = Lθx∥δ1 − δ2∥ + 4Lθ where

δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

The proof is similar to that of Lemma 3.2 and 3.4. Corollary C.2 indicates a more craggy loss
landscape in the adversarial training of networks with non-smooth activations.

Additionally, the Theorem 4.2 can be easily extended to accommodate Assumption C.1.
Corollary C.3. If Assumption C.1 holds, then we have

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ + Cθθ + Cθx. (39)

The Lipschitz constant Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥ + 2(1 + α)Lθ where δ1 ∈

argmaxδ∈Sϵ
L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

D DISCUSSION OF THE UPPER BOUND OF ∥δ1 − δ2∥

We define the lp adversarial budget for the perturbation δ ∈ Rd as S(p)
ϵ = {δ | ∥δ∥p ≤ ϵ, 0 ≤

x + δ ≤ 1}. Therefore, we have ∥δ1 − δ2∥p ≤ 2ϵ, and ∀i, 0 ≤ |δ(i)1 − δ
(i)
2 | ≤ 1 where δ

(i)
1 and
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δ
(i)
2 are the i-th element of δ1 and δ2, respectively. For convenience, we denote δ1 − δ2 as ∆δ and
δ
(i)
1 − δ

(i)
2 as ∆δi in the following.

Assume that ϵ ≪ d for l0, l1 and l2 bounded perturbations, and ϵ ≪ 1 for the l∞ bounded perturba-
tion. Then, ∀q ≥ 1, we have

l0 budget:
∑
i

|∆δi|q ≤ 2ϵ,

l1 budget:
∑
i

|∆δi|q ≤ D1 + (2ϵ−D1)
q,

l2 budget:
∑
i

|∆δi|q ≤ D2 + (4ϵ2 −D2)
q
2 ,

l∞ budget:
∑
i

|∆δi|q ≤ d× (2ϵ)q,

(40)

where D1 = ⌊2ϵ⌋ and D2 = ⌊4ϵ2⌋. The derived upper bounds are tight because

(1) l0 budget: The equality achieves when the location of non-zero elements in δ1 and δ2 has no
overlap, and the magnitude of their non-zero elements reaches ±1.

(2) l1 budget: Since 0 ≤ |∆δi| ≤ 1, the equality achieves when there exists at most one ∆δk such
that |∆δk| < 1 and ∀j ̸= k, |∆δj | = 1. The maximum number of ∆δj is ⌊2ϵ⌋. Then, according to
∥∆δ∥1 ≤ 2ϵ, we have |∆δk| = 2ϵ− 1× ⌊2ϵ⌋.

(3) l2 budget: The derivation is similar to that of the l1 case.

(4) l∞ budget: The equality achieves when δ1 = −δ2.

On popular benchmark CIFAR-10, d = 32× 32× 3 = 3072, and the commonly used values of ϵ in
the l0, l1, l2 and l∞ cases are 360, 24, 0.5 and 8/255, respectively (Madry et al., 2018; Zhong et al.,
2024; Croce & Hein, 2021; Jiang et al., 2023). Substitute these into (40), we can easily get that
∀q ≥ 1, the upper bound of

∑
i |∆δi|q is significantly larger in the l0 case than the other cases. For

instance, (2ϵ −D1)
q , (4ϵ2 −D2)

q
2 and (2ϵ)q reach their respective maximum values when q = 1,

since all of them are smaller than 1. Then, the upper bounds of
∑

i |∆δi|1 in the l0, l1, l2 and l∞
cases are 720, 24, 1 and 49152/255 ≈ 192.8, respectively.

Furthermore, the lq norm of ∆δ is defined as follows:

∥∆δ∥q =

(∑
i

|∆δi|q
) 1

q

. (41)

Since the upper bound of
∑

i |∆δi|q in the l0 case is larger than 1 for all q ≥ 1, we can also derive
that ∀q ≥ 1, the upper bound of ∥∆δ∥q is always significantly larger in the l0 case than the other
cases.

E MORE EXPERIMENTAL DETAILS

E.1 LOCATION DIFFERENCE BETWEEN ADVERSARIAL EXAMPLES GENERATED BY 1-STEP
SPGD AND SAA

As illustrated in Figure 4, the adversarial perturbations generated by one-step sPGD during training
are almost completely different from those generated by sAA in location rather than magnitude.
Combining with the results in Table 2, we can demonstrate that CO in l0 adversarial training is
primarily due to sub-optimal perturbation locations rather than magnitudes.

E.2 DISTANCES BETWEEN GRADIENTS INDUCED BY 1-STEP AND MULTI-STEP ATTACKS

Based on the Lipschitz smoothness assumption in Inequality (6), the gradient difference arising from
approximated adversarial perturbations is bounded by Lθx∥δ1 − δ2∥ where δ1 is the perturbation
generated by 1-step attack and δ2 is the optimal perturbation. Based on the same reason that l0 norm
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Figure 4: The distribution of the normalized l0 distance between training adversarial examples generated by
1-step sPGD and sAA. The models trained on 1-step sAT with different training ϵ are evaluated.

Table 5: Average l2 distances between gradients induced by 1-step and multi-step attacks, represented by
∥∇θLϵ(x + δone) − ∇θLϵ(x + δmulti)∥2. The gradients are calculated of the training set of CIFAR-10
(Krizhevsky et al., 2009). The l0, l1, l2 and l∞ models are obtained by 1-step sAT (Zhong et al., 2024), Fast-EG-
l1 (Jiang et al., 2023), 1-step PGD (Rice et al., 2020) and GradAlign (Andriushchenko et al., 2020), respectively.
The 1-step and multi-step l0 attacks are 1-step and 10000-step sPGD (Zhong et al., 2024), respectively. The 1-
step and multi-step l1 attacks are 1-step Fast-EG-l1 and 100-step APGD (Croce & Hein, 2021), respectively.The
1-step and multi-step attacks for other norms are 1-step PGD (Madry et al., 2018) and 100-step APGD (Croce
& Hein, 2020b), respectively.

Model l0 (ϵ = 1) l1 (ϵ = 24) l2 (ϵ = 0.5) l∞ (ϵ = 8/255)

l2 distance 15.8 9.1× 10−4 3.6× 10−4 6.7× 10−4

is not a proper norm, ∥δ1 − δ2∥ is significantly larger in l0 cases than l∞, l2 and l1 cases, which
makes 1-step adversarial training more challenging in l0 cases. To corroborate this, we compare
the distance between gradients induced by 1-step and multi-step attacks. As presented in Table 5,
the average distance between gradients induced by 1-step and multi-step l0 attacks is 5 orders of
magnitude greater than those in the l1, l2 and l∞ cases, even when a single pixel is perturbed. This
finding indicates that the loss landscape of l0 adversarial training is significantly more craggy than
other cases in the input space.

E.3 COMPARISON WITH OTHER BASELINES

Table 6: Comparison with other baselines in robust accuracy (%) by sAA. The target sparsity level ϵ = 20.
We compare PreAct ResNet-18 (He et al., 2016a) models trained on CIFAR-10 (Krizhevsky et al., 2009) with
100 epochs. The italic numbers indicate catastrophic overfitting (CO) happens.

Method ATTA ATTA
+ S&N GA GA

+ S&N Fast-BAT FLC
Pool N-AAER

Robust Acc. 0.0 54.7 0.0 34.4 14.1 0.0 0.1

Method N-LAP LS NuAT AdvLC MART Ours
+ AWP Ours

Robust Acc. 0.0 0.0 51.9 47.6 48.0 47.2 63.0

In this section, we undertake a more comprehensive comparison between our proposed Fast-LS-l0
and other baselines (ATTA (Zheng et al., 2019), GradAlign (GA) (Andriushchenko & Flammarion,
2020), Fast-BAT (Zhang et al., 2022), N-AAER (Lin et al., 2024b), N-LAP (Lin et al., 2024a), label
smoothing (LS) (Szegedy et al., 2016), NuAT (Sriramanan et al., 2021), AdvLC (Li & Spratling,
2023), MART (Wang et al., 2020) and AWP Wu et al. (2020)), which either claim to mitigate catas-
trophic overfitting or claim to incorporate different smoothing techniques.

As demonstrated in Table 6, our method achieves the strongest robustness against sAA. First, naive
LS turns out ineffective under the l0 setting. The performance of Fast-BAT, NuAT, AdvLC and
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MART is not as good as the method we use. Second, FLC Pool, N-AAER, N-LAP, ATTA and
GradAlign suffer from CO, since they incorporate neither soft labels nor trade-off loss function.
Combining ATTA and GradAlign with SAT and N-FGSM, which introduces soft labels, can effec-
tively mitigate CO, but these settings still underperform our method by a large margin. Finally, al-
though AWP can find a flatter minimum, it requires dedicated hyperparameters tuning and introduces
additional overhead. Under its default HP setting, AWP results in a deterioration of performance in
the l0 case.

E.4 MORE RESULTS OF SECTION 5.2

Table 7: Robust accuracy (%) of various models on different attacks that generate l0 bounded perturbations,
where the sparsity level ϵ = 10. The models are PreAct ResNet-18 trained on CIFAR-100 (Krizhevsky et al.,
2009) with ϵ = 60. Note that the results of vanilla sAT and sTRADES are obtained from (Zhong et al., 2024),
CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 4h 27m 67.0 44.3 41.6 60.9 56.8 58.0 41.6
+S 5h 02m 65.5 50.8 50.7 61.4 59.2 60.5 50.7
+S&N 4h 58m 64.3 53.0 52.9 61.2 59.2 59.6 52.8

sTRADES 5h 10m 70.9 52.8 50.3 65.2 64.0 63.7 50.2
+S 5h 53m 65.1 54.9 54.6 62.7 61.0 60.5 54.6
+S&N 5h 40m 63.8 56.5 55.6 61.2 60.5 59.0 55.3

One-step

Fast-LS-l0 (T) 1h 05m 65.3 54.5 54.3 60.4 55.6 54.4 52.2
Fast-LS-l0 (F) 1h 26m 65.0 56.2 54.6 60.8 54.9 54.9 52.3

Table 8: Robust accuracy (%) of various models on different attacks that generate l0 bounded perturbations,
where the sparsity level ϵ = 12. The models are PreAct ResNet-18 trained on GTSRB (Stallkamp et al., 2012)
with ϵ = 72. All methods are evaluated on 500 samples, and CornerSearch (CS) is not evaluated here due to
its high computational complexity.

Model Time
Cost Clean Black-Box White-Box sAACS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 1h 3m 98.4 - 43.2 92.4 96.0 96.2 43.2
+S 1h 3m 98.6 - 75.6 97.2 97.0 96.4 75.6
+S&N 1h 2m 98.4 - 77.8 97.4 96.8 95.4 77.6

sTRADES 1h 6m 97.8 - 67.6 94.0 95.6 95.0 67.4
+S 1h 5m 96.8 - 76.4 94.6 94.4 92.6 76.4
+S&N 1h 7m 95.6 - 75.4 93.6 92.6 91.2 75.2

One-step

Fast-LS-l0 (T) 7m 97.8 - 75.2 89.2 74.4 74.4 63.2
Fast-LS-l0 (F) 9m 98.6 - 80.4 94.2 75.0 79.8 67.8

The results on CIFAR-100 and GTSRB datasets are presented in Table 7 and 8, respectively. The
findings are consistent with those observed in Table 4(a), further validating the effectiveness of the
proposed methods across different datasets. In contrast to the settings in (Zhong et al., 2024), we
resize the images in GTSRB to 32 × 32 instead of 224 × 224 and retrain the models from scratch.
The model are trained with ϵ = 72 and evaluated for robustness with ϵ = 12. It is important to note
that due to the smaller search space resulting from low-resolution images, the attack success rate of
the black-box Sparse-RS (RS) under this setting is significantly higher than that reported in (Zhong
et al., 2024).
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Table 9: Average robust accuracy against sAA (Zhong et al., 2024) obtained from three runs, where the sparsity
level ϵ = 20. The variances are shown in brackets. The configurations are the same as in Table 4(a). Note that
we do not include the results of vanilla sAT and sTRADES since their results are obtained from (Zhong et al.,
2024).

Model 20-step sAT 20-step sTRADES Fast-LS-l0 (T) Fast-LS-l0 (F)+ S + S&N + S + S&N

Acc. 55.5 (± 1.3) 61.2 (± 0.2) 64.1 (± 0.9) 65.5 (± 0.7) 63.0 (± 0.7) 62.1 (± 0.6)

E.5 STANDARD DEVIATION OF ROBUST ACCURACY AGAINST SPARSE-AUTOATTACK OF
TABLE 4(A)

To better validate the effectiveness of our method, we report the standard deviations of robust ac-
curacy against sAA in Table 9. We calculate these standard deviations by running the experiments
three times with different random seeds. The configurations are the same as in Table 4(a). It can
be observed that the fluctuation introduced by different random seeds does not outweigh the perfor-
mance gain from the evaluated approaches.

E.6 EVALUATION ON DIFFERENT NETWORKS

Table 10: Robust accuracy (%) of various networks against sAA on CIFASR-10, where the sparsity level
ϵ = 20. The networks are adversarially trained with different methods, including 1-step sAT, 1-step sTRADES
and the proposed Fast-LS-l0.

PRN-18 ConvNeXt-T Swin-T

1-step sAT 0.0 0.8 0.1
1-step sTRADES 31.0 71.0 43.2

Fast-LS-l0 63.0 78.6 58.9

Despite the effectiveness of our method on PreActResNet-18 (PRN-18) and ResNet-34, the perfor-
mance of our Fast-LS-l0 and its ablations on different networks remains unexplored. In this regard,
we further evaluate our method on two popular architectures, i.e., ConvNeXt (Liu et al., 2022)
and Swin Transformer (Liu et al., 2021b). Note that we adopt their tiny versions for CIFAR-10,
which have a similar number of parameters as ResNet-18, and we follow the training settings of
their CIFAR-10 implementations. The other experimental settings are the same as those described
in Section 5.1. As shown in Table 10, vanilla adversarial training results in CO on all networks,
and our method produces the best robust accuracy against sAA, demonstrating the effectiveness of
our method on different networks. Notably, ConvNeXt shows surprisingly strong robustness against
sAA, suggesting that advanced architecture design and dedicated hyperparameter tuning can pro-
vide additional performance gains. However, as Transformers has struggled to perform well on
small datasets without pretraining (Debenedetti et al., 2023), Swin Transformer also underperforms
CNN-based networks in this scenario.

E.7 LOSS LANDSCAPE OF ONE-STEP SAT WITH DIFFERENT ϵ

As supplementary of Figure 2, we visualize the loss landscapes of 1-step sAT (Zhong et al., 2024)
with different ϵ, including 20, 40 and 120, in Figure 5. It can be observed that the l0 adversarial loss
exhibits a drastic increase in response to relatively minor alterations in the θ-space. Moreover, the
degree of non-smoothness increases in proportion to ϵ, which is consistent with the observation in
Figure 2 (a).

E.8 SMOOTHER LOSS LANDSCAPE INDUCED BY SOFT LABEL AND TRADE-OFF LOSS
FUNCTION

The effectiveness of soft label and trade-off loss function in improving the performance of l0 ad-
versarial training is demonstrated in Section 5.1 and 5.2. Additionally, we visualize the curves of
top-10 eigenvalues of Hessian matrices of the different methods discussed in Section 5.1 and their
respective loss landscapes in Figure 6. Note that since N-FGSM results in a larger upper bound of
∥δ1 − δ2∥, it is not considered here to make a fair comparison. Figure 6 (a) shows that sTRADES
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(b) L(0)
ϵ , ϵ = 40

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(c) L(0)
ϵ , ϵ = 120

Figure 5: Loss landscape of 1-step sAT (Zhong et al., 2024) with different ϵ values on the training set of
CIFAR-10 (Krizhevsky et al., 2009). The architecture of the model is PreactResNet-18. (a) Landscape of
L(0)

ϵ (x,θ + α1v1 + α2v2) with ϵ = 20, where v1 and v2 are the eigenvectors corresponding to the top 2
eigenvalues of the Hessian matrices, respectively. (b) Landscape of L(0)

ϵ with ϵ = 40. (c) Landscape of L(0)
ϵ

with ϵ = 120.
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(b) 1-step sAT
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(c) 1-step sTRADES (T)
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(d) 1-step sTRADES (F)
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(e) 1-step sTRADES (T) + SAT
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(f) 1-step sTRADES (F) + SAT

Figure 6: Smoothness visualization of different methods with ϵ = 120 on the training set of CIFAR-10
(Krizhevsky et al., 2009). The architecture of the model is PreactResNet-18. (a) Top-10 eigenvalues of
∇2

θL
(0)
ϵ (x,θ) of different methods. A and T denote 1-step sAT and 1-step sTRADES, respectively. T and

F in the brackets are two respective versions of sTRADES indicated in Sec. 5.1. (b) Loss landscape of 1-step
sAT. (c) Loss landscape of 1-step sTRADES (T). (d) Loss landscape of 1-step sTRADES (F). (e) Loss land-
scape of 1-step sTRADES (T) + SAT. (f) Loss landscape of 1-step sTRADES (F) + SAT.

induces considerably smaller eigenvalues of Hessian matrices compared to sAT, while the differ-
ence between sTRADES (T) and sTRADES (F) is negligible. SAT, on the other hand, has only a
marginal effect on the eigenvalues. However, as illustrated in Figure 6 (b)-(f), SAT plays a crucial
role in smoothing the loss landscape, which relates to the change rate of loss, i.e., the first-order
smoothness. These observations align with the theoretical derivation presented in Section 4, indi-
cating that soft label improves the first-order smoothness, while trade-off loss function contributes
to the second-order smoothness.

E.9 ABLATION STUDIES

In this section, we conduct more ablation studies on the results in Section 5.1. Specifically, we focus
on the best configuration in Table 3: Fast-LS-l0 (T) (i.e., 1-step sTRADES (T) + SAT & N-FGSM).
Unless specified, we adopt the same training settings as in Table 3.
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Table 11 presents a performance comparison of the model when SAT is enable in different training
phases. We can see that the performance achieves the best when enabling SAT at the 50-th epoch.
This observation demonstrates that the best performance in 1-step sTRADES is achieved when SAT
is enabled at the intermediate epoch where the learning rate is relatively low.

In Table 12, we compare the performance when using different labels, either the hard label from
ground truth or the soft label by SAT, to generate adversarial perturbations for training. The re-
sults indicate that using soft labels to generate adversarial perturbations results in slightly better
performance compared to using hard ones.

In Table 13, we compare the performance when using different momentum factor in SAT. We can
see that the default setting in Huang et al. (2020), i.e., 0.9, provides the best performance.

In Table 14, we compare the performance when using different balance factor β in TRADES. It can
be observed that β = 3 and 6 induce similar results, indicating the default setting in (Zhang et al.,
2019b), i.e., 6, is the optimal.

Table 11: Ablation study on the epoch of enabling
SAT. The evaluated attack is sAA, where the sparsity
level ϵ = 20.

SAT epoch 30 50 70

Robust Accuracy 60.2 63.0 62.8

Table 12: Ablation study on the labels used to gener-
ate adversarial samples. The evaluated attack is sAA,
where the sparsity level ϵ = 20.

Label Hard Soft

Robust Accuracy 62.6 63.0

Table 13: Ablation study on the momentum factor
of SAT. The evaluated attack is sAA, where the spar-
sity level ϵ = 20.

SAT momentum 0.5 0.7 0.9

Robust Accuracy 55.4 60.4 63.0

Table 14: Ablation study on the balance factor β
in TRADES loss function. The evaluated attack is
sAA, where the sparsity level ϵ = 20.

TRADES β 1 3 6

Robust Accuracy 58.7 63.0 63.0

F IMPLEMENTATION DETAILS

Generally, the epoch of enabling SAT is 1/2 of the total epochs. For N-FGSM, the random noise for
augmentation is the random sparse perturbation with sparsity level ranging from 0 to 2ϵ, where ϵ is
the sparsity level of adversarial perturbations. The interpolation factor α in trade-off loss function is
set to 0.75. The balance factor β in TRADES loss function is set to 6. The optimizer is SGD with
a momentum factor of 0.9 and a weight decay factor of 5× 10−4. The learning rate is initialized to
0.05 and is divided by a factor of 10 at the 1/4 and 3/4 of the total epochs. The specific settings for
different datasets are listed as follows:

• CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and GTSRB (Stallkamp et al., 2012): The
adopted network is PreAct ResNet-18 (He et al., 2016b) with softplus activation (Dugas et al.,
2000). The training batch size is 128. We train the model for 100 epochs.

• ImageNet-100 (Deng et al., 2009): The adopted network is ResNet-34 (He et al., 2016a). The
training batch size is 48. We train the model for 50 epochs.

Unless specified, the hyperparameters of attacks and other configurations are the same as in (Zhong
et al., 2024).
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