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Abstract
Temporal credit assignment in reinforcement
learning is challenging due to delayed and stochas-
tic outcomes. Monte Carlo targets can bridge long
delays between action and consequence but lead
to high-variance targets due to stochasticity. Tem-
poral difference (TD) learning uses bootstrapping
to overcome variance but introduces a bias that
can only be corrected through many iterations.
TD(λ) provides a mechanism to navigate this
bias-variance tradeoff smoothly. Appropriately se-
lecting λ can significantly improve performance.
Here, we propose Chunked-TD, which uses pre-
dicted probabilities of transitions from a model for
computing λ-return targets. Unlike other model-
based solutions to credit assignment, Chunked-
TD is less vulnerable to model inaccuracies. Our
approach is motivated by the principle of history
compression and ‘chunks’ trajectories for conven-
tional TD learning. Chunking with learned world
models compresses near-deterministic regions of
the environment-policy interaction to speed up
credit assignment while still bootstrapping when
necessary. We propose algorithms that can be im-
plemented online and show that they solve some
problems much faster than conventional TD(λ).

1. Introduction
An intelligent agent should recognize which of its actions
contributed to success or failure (Minsky, 1961). Assigning
credit or blame can be particularly difficult when there are
long delays between a critical action and its consequences.
Stochastic events between the action and its eventual conse-
quence further complicate credit assignment. For example,
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consider the scenario where taking the umbrella in the morn-
ing helped the agent stay dry in the evening rain.

Reinforcement learning (RL) agents can bridge long delays
by using Monte Carlo (MC) returns to evaluate—and sub-
sequently improve—their behavior. However, using MC
returns comes at the cost of high variance when the envi-
ronment or the agent’s behavior is stochastic. Temporal-
difference (TD) approaches are designed to counter the
variance of MC returns by constructing targets using pre-
dicted outcomes in future states (bootstrapping). TD lowers
variance at the cost of introducing bias. TD(λ) approaches
provide a way to smoothly interpolate between one-step
bootstrapping (TD(0)) and MC targets by selecting λ. Un-
fortunately, correcting the bias of TD approaches can be
very slow due to long delays between action and conse-
quence (Arjona-Medina et al., 2019). TD with underparam-
eterized function approximation introduces additional bias,
even asymptotically (Sutton & Barto, 2018). Navigating this
bias-variance trade-off is critical to achieving accurate and
sample-efficient credit assignment (Watkins, 1989; Kearns
& Singh, 2000). Previous research has attempted to auto-
mate the selection of λ to improve the performance of TD
algorithms (Sutton & Singh, 1994; White & White, 2016;
Xu et al., 2018).

An alternative to the previously discussed model-free ap-
proaches is to build a model of the world and use it for
credit assignment. A world model can make associations
between cause and effect, which could be used to guide
policy learning. A prominent approach in this direction is to
learn a differentiable model of the world and use gradients
for credit assignment (Werbos, 1987; Munro, 1987; Schmid-
huber, 1990; Heess et al., 2015). Such approaches have
successfully been applied to continuous control problems
with smooth dynamics (Deisenroth & Rasmussen, 2011;
Amos et al., 2021). Unfortunately, this idea is not easily
applicable in environments with discrete actions and is quite
sensitive to inaccuracies in the learned model (Hafner et al.,
2021; Meulemans et al., 2023).

World models can also be used to simulate experience to
train the agent’s policy or value function (Schmidhuber,
1990; Sutton, 1990; Ha & Schmidhuber, 2018; Hafner et al.,
2021). Imagination with world models (or experience re-
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play) can propagate credit without requiring the agent to
re-experience the same transitions in the true environment.
This can speed up credit assignment in terms of interactions
needed with the true environment. However, imagination-
based approaches can drastically fail when the learned world
model is inaccurate (Talvitie, 2017; Abbas et al., 2020).

In this paper, we propose an approach that uses (possibly in-
accurate) learned models to dynamically chunk trajectories
of experience for TD learning. We introduce Chunked Tem-
poral Difference (Chunked-TD) algorithms that compute
adaptive λ-returns using model predictions for on-policy
value learning. Our approach is inspired by the principle of
history compression (Schmidhuber, 1991; 1992), which uses
predictive coding to remove redundant information from a
sequence to shorten credit assignment paths. Chunking in
RL can shorten credit assignment paths in deterministic and
predictable regions of the environment-policy interaction
and facilitate faster learning while also bootstrapping to han-
dle noise where necessary. Our proposed algorithms can be
implemented online using eligibility traces (Sutton, 1984).
Importantly, since the model is used only to decide when
to bootstrap, our approach is robust to arbitrary levels of
model error and simply degrades toward TD(0) as model
errors become extreme.

Our experiments show that Chunked-TD can assign credit
much faster than conventional TD(λ) in the considered
Markov decision processes with tabular value functions. We
also present a variant of Chunked-TD that can use factored
rewards to solve a typical hard credit assignment problem. §

Our approach is closely related to a previously proposed
variable TD(λ) strategy (Sutton & Singh, 1994) which is
motivated from the perspective of reducing the bias of TD
approaches. Similar to our approach, it uses transition prob-
abilities from tabular models to decay traces. As a sepa-
rate contribution, we revisit their proposed algorithms and
show that their approach can be viewed as using ‘backward’
model predictions for constructing λ-returns.

2. Preliminaries
2.1. RL notation and definitions

Consider an agent interacting with a Markov Decision Pro-
cess (MDP) (Puterman, 1990) with finite state, action, and
reward spaces (S,A, andR) and a discount factor γ ∈ [0, 1].
The discount factor can be one in episodic tasks. The agent
interacts with the environment at discrete time steps through
actions sampled from a policy At ∼ π(.|St), where the
policy π : S → ∆(A) maps states to a distribution over
actions. In response to the agent’s action, the environment

§Code is available at https://github.com/
Aditya-Ramesh-10/chunktd.

produces a new state and reward according to transition
dynamics St+1 ∼ T (.|St, At) and Rt+1 ∼ R(.|St, At).

Interaction between policy and MDP generates a sequence

R0, S0, A0, R1, S1, A1 . . . St−1, At−1, Rt, St, At . . . ,

where R0 = 0 (for convenience and uniformity). Let Xt =
(Rt, St) be the ‘concatenation’ of reward and state. We will
refer to Xt as the percept at time step t. It represents the
response of the environment as a single object. In general,
we could use Xt = f(Rt, St) with some suitable function
for state abstraction.

The above interaction can then be re-expressed as

X0, A0, X1, A1 . . . Xt−1, At−1, Xt . . . .

The agent’s goal is to maximize the expected discounted
return, E [

∑∞
t=0 γ

tRt+1], where the expectation accounts
for randomness in the environment and the agent’s policy.

RL algorithms often learn estimates of state or state-action
values as an intermediate step for improvement. The
value of a state Vπ(s) is defined as the expected sum of
discounted rewards when starting from s and acting ac-
cording to π, Vπ(s) = E [

∑∞
t=0 γ

tRt+1|S0 = s]. Simi-
larly, action-value functions can be defined as Qπ(s, a) =
E [
∑∞

t=0 γ
tRt+1|S0 = s,A0 = a].

Targets for value learning can be obtained via Monte-Carlo
estimates or bootstrapped targets through temporal dif-
ference. Interpolating smoothly between MC and one-
step bootstrapped targets is possible through the use of λ-
returns (Watkins, 1989; Sutton & Barto, 2018). The λ-return
(Gλ

t ) can be recursively defined as

Gλ
t = Rt+1 + γλGλ

t+1 + (1− λ)γV̂ (St+1), (1)

where V̂ (St+1) is the current estimate of the value of St+1.
Using λ = 1 amounts to the MC target and λ = 0 uses
one-step bootstrapped TD targets.

One can use λ-return targets to update value functions in
the following manner,

V̂ (St)← V̂ (St) + α
(
Gλ

t − V̂ (St)
)
, (2)

where α is the learning rate. Similar updates can be used
for learning Q̂(St, At).

Updates with λ-returns can be done in an offline manner
upon completion of episodes. This is because computing
the λ-return according to Equation 1 requires knowing the
entire sequence of future states and rewards. However, it
is possible to approximate updates from offline λ-returns
in an online, incremental way through TD(λ), which uses
eligibility traces (Sutton, 1984).
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Figure 1. Two-level Chunker-RNNs can shorten credit assignment
paths. Only the tokens associated with incorrect predictions (de-
noted with red) at the lower level are passed on to the higher level
RNN (with the start token). The hidden state of the RNN at level l
and index i is denoted as hl

i.

2.2. Chunking and the principle of history compression

The principle of history compression (Schmidhuber, 1991;
1992) suggests removing redundant information from a se-
quence to shorten credit assignment paths. The aforemen-
tioned paper introduces a multi-level hierarchy of recurrent
neural networks (RNNs) for sequence modeling or predic-
tive coding, i.e., predicting the next input token. The central
idea is that incorrectly predicted next inputs are identified
based on a threshold on the error and passed to a higher
level RNN, which can relate its inputs with shorter credit
assignment paths.

We illustrate the idea through the example presented
by Schmidhuber (1992) where there are two distinct se-
quences < start >, a, i1, i2, . . . iN−1, 0 and < start >
, b, i1, i2, . . . iN−1, 1. Depending on whether the sequence
starts with an a or b, the final token is 0 or 1. A standard
RNN predicting the next input token finds it challenging
to model this sequence due to the long delay between the
critical input (a or b) and the classification label (0 or 1).
However, the architecture with two RNNs, as presented in
Figure 1, easily solves this problem.

At every time step t, each RNN tries to predict its next
input token (xt+1). Since the sub-sequence i1, i2 . . . iN−1 is
highly predictable from local context, the lower level RNN
easily learns to predict these tokens. The ‘unpredictable’
and compressed sequence passed to the higher level would
be < start >, a, 0 or < start >, b, 1, which removes the
delay in credit assignment.

In this paper, we take inspiration from the idea of history
compression. While we do not use a hierarchical policy
or value function, we employ the idea of ‘compressing’
sequences through next token prediction with a learned
model. This can help address some of the difficulties arising

from long gaps between crucial action and rewarding conse-
quences in RL. In our case, the sequences are trajectories
or episodes of interaction in reinforcement learning settings.
As we explain in the next section, we use the compressed
sequence to construct targets for value estimation.

3. Method
First, in Section 3.1, we present an approach that uses n-step
targets for learning value functions based on a dynamic (and
stochastic) choice of n obtained through sequence compres-
sion/chunking.

Next, in Section 3.2, we reformulate the stochastic chunking
procedure as an exact, expected update, which is expressed
as a λ-return. We show that our update can also be used to
implement online algorithms through eligibility traces.

3.1. n-step chunked targets

Long delays between an action and its rewarding conse-
quence make credit assignment in RL difficult (Arjona-
Medina et al., 2019). As discussed in Section 2.2, removing
redundant information from a sequence can shorten credit as-
signment paths for sequence modeling (Schmidhuber, 1992).
With a similar motivation, we aim to use a learned (genera-
tive) model of the environment to shorten credit assignment
paths in RL when possible. We use the predicted proba-
bility of the next input under the learned model to chunk
an episode of policy-environment interaction. The chun-
ked episode will provide us with the states from which we
bootstrap.

In our first variant, which applies to bootstrapping from state
values, we use P̂π(Xt+1|Xt), the probability of the next
percept under the current policy. The following factorization
can be used in MDPs with Markov policies,

P̂π(Xt+1|Xt) =
∑
a∈A

P̂ (Xt+1|Xt, a)π(a|Xt), (3)

where P̂ (Xt+1|Xt, a) is the estimated transition probabil-
ity given a particular action. Note that while policies are
typically defined as a function of states, they can also be
defined on percepts directly by constraining policy functions
to ignore the reward component of the percept.

Consider the following chunking strategy that applies to
learning V̂ (s) in episodic MDPs: (1) We always keep the
first state s0 (2) For t ≥ 1 we drop state st with probability
P̂π(xt+1|xt) (3) Whenever we drop a percept, we sum the
intermediate rewards such that the compressed and original
episode have equivalent returns (4) We always keep the
terminal/ultimate state sT .

The compressed episode is used to construct targets for the
states encountered in the entire episode. Consider the exam-
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ple presented in Figure 2, where an episode of interaction
produces percepts x0, x1, . . . xT . All transitions are deter-
ministic and accurately modeled, apart from one transition
xk → xk+1 which has a low probability. In this situation,
our chunking procedure may return the compressed state
sequence of xo, xk, xT , which are used for bootstrapping.
All states before xk using the value of V̂ (sk) to bootstrap.
All states thereafter use Monte-Carlo targets (bootstrapping
from the terminal state V̂ (sT ) which has a value of zero).

Thus, we can use a learned model to chunk and obtain n-
step bootstrapped backups with a stochastic n. The key
feature of this approach is that if the environment-policy
interaction is quite deterministic and our model is accu-
rate, then it is like Monte Carlo learning. If there is high
stochasticity, or if our model is inaccurate, our approach
falls back to bootstrapping, with TD(0) being the extreme
case. A similar approach can be used for bootstrapping
from Q-value functions, where we chunk the episode using
P̂π(Xt+1, At+1|Xt, At) (see Appendix B).

3.2. Chunked-TD(λ)

The sampling-based chunking of the previous section can
be reformulated as an expected update without the variance
of sampling indicator variables to drop or keep states.

We recall the recursive definition of the λ-return (Gλ
t ) with

a time-varying λt+1,

Gλ
t = Rt+1 + γλt+1G

λ
t+1 + (1− λt+1)γV (St+1). (4)

As motivated in Section 3.1, we bootstrap based on predic-
tions from a forward model. Concretely, we keep St+1 in the
compressed sequence with probability 1− P̂π(xt+2|xt+1).
Keeping it in the compressed sequence is equivalent to using
it for bootstrapping, i.e., using λt+1 = 0 in Equation 4.

It can be seen that using λt+1 = P̂π(xt+2|xt+1) is equiv-
alent to the expected update from the chunking procedure
described in the previous section.

Eligibility-trace based online algorithm Since the target
for St (Gλ

t ) depends on St+1 and St+2, it may not be imme-
diately obvious that updates based on such a λ-return can
be implemented online. We show that online updates are
indeed possible. Algorithm 1 presents an incremental and
online algorithm that approximates updates based on the λ-
return described in Equation 4 with λt+1 = P̂π(xt+2|xt+1).
The equivalence is exact at the end of episodes in acyclic
MDPs with tabular value functions.

Proposition 1. Let M be an acyclic episodic Markov de-
cision process with state space S and let V̂ : S → R
be the estimated tabular value function. Let the sequence
x0, a0, x1, a1 . . . xT correspond to an episode of interac-
tion. Then updates from offline-λ returns from Equations 2

Algorithm 1 Chunked-TD state value evaluation
Ensure: Eligibility e(s) = 0 ∀s ∈ S at the beginning of

each episode
for each step of the episode (Xt, At, Xt+1) do

Optionally train dynamics model
for each state s do
e(s)← γP̂π(Xt+1|Xt)e(s)

end for
e(St)← e(St) + 1
δt ← Rt+1 + γV̂ (St+1)− V̂ (St)
for each state s do
V̂ (s)← V̂ (s) + αδte(s)

end for
end for

and 4 with λt+1 = P̂π(xt+2|xt+1) match the total updates
made by Algorithm 1 at the end of the episode.

Proof. Proof sketch only. We know that a state in the se-
quence, st, is encountered exactly once at step t since M
is acyclic. Without loss of generality, we consider a single
state st.

Consider the update term ut added to V̂ (st) by the offline-λ
return of Equation 2,

ut = α(Gλ
t − V̂ (st)).

Unrolling the recursive definition from Equation 4, we get

ut = α(rt+1+γλt+1G
λ
t+1+(1−λt+1)γV̂ (st+1)−V̂ (st)).

Add and subtract γλt+1V̂ (St+1),

ut = α(rt+1 + (1− λt+1)γV̂ (st+1)+γλt+1V̂ (st+1)

− V̂ (st) + γλt+1G
λ
t+1−γλt+1V̂ (st+1)).

Using δt = rt+1 + γV̂ (st+1)− V̂ (st), and unrolling,

ut = α(δt + γλt+1(G
λ
t+1 − V̂ (st+1))

= α(δt + γλt+1(δt+1 + γλt+2(G
λ
t+2 − V̂ (st+2)))).

Unrolling on, and noting λt+1 = P̂π(xt+2|xt+1),

ut = α

T−1∑
k=t

γk−tδk

k∏
i=t+1

P̂π(xi+1|xi). (5)

Now, let us consider the updates made by Algorithm 1. Only
TD errors encountered from st onward contribute towards
updating V̂ (st). The first transition from st adds αδt to
V̂ (st) (as e(st) is 1 when st is first encountered). The
next update adds αγδt+1P̂

π(xt+2|xt+1), the one after adds
αγ2δt+2P̂

π(xt+3|xt+2)P̂
π(xt+2|xt+1). Summing all of

them gives the same update as Equation 5.
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Figure 2. Sample-based chunking (see Section 3.1) for state value estimation. All next states (and rewards) are deterministic apart from the
outcome at xk, where Pπ(xk+1|xk) is low. The states in red are a sample from our algorithm, i.e., chunking based on model probabilities
that provide targets for bootstrapping. The chunked target for s2 (with γ = 1, denoted as GC

2 ) is shown as an example.

So far, we have presented Chunked-TD for state value es-
timation. Chunked algorithms can similarly be defined
for action-value functions, which can be used to imple-
ment SARSA-like algorithms (Rummery & Niranjan, 1994;
Van Seijen et al., 2009) for evaluation and control. We
present these variants in Algorithms 2 and 3 (see Ap-
pendix B).

Backward model An interesting alternative is to use a
backward model for chunking or choosing λt+1. There
one would have to model P̂π(Xt, At|Xt+1, At+1) or
P̂π(Xt|Xt+1). Intuitively, this will bootstrap more from
states that may be reached by many different paths, which
in turn means their value is likely to be updated many times
between each visit to a particular transition. Conversely,
if a state is only ever visited from a single predecessor,
bootstrapping is unlikely to be helpful as the value of that
state and its predecessor will always be updated together,
even with MC updates. In Appendix C, we show that, with
careful analysis, a previously proposed algorithm by Sutton
& Singh (1994) can be interpreted as using a λ-return by
chunking with a backward model. † A crucial disadvantage
of backward models is that they are policy-dependent (Chelu
et al., 2020), making them harder to learn, especially in con-
trol, i.e., learning the optimal policy.

4. Experiments
This section presents an empirical comparison of Chunked-
TD and conventional TD(λ), i.e., with a constant scalar λ,
for learning tabular action-value functions. We conduct
experiments in MDPs with fully-observable states to avoid
conflating memory and credit assignment (Osband et al.,
2019; Ni et al., 2023).

†While the trace-based TDC algorithm in Sutton & Singh
(1994) uses a forward model to cut traces, with adjustments to
the learning rate the corresponding λ-return (or forward view)
amounts to using a backward model. Please see Appendix C for
further details.

Figure 3. Chain-and-Split environment. States are denoted by
large circles and actions by lines leading to the small black circles.
Colored states have a reward upon entering that state.

We note that in our experiments, we set Xt = St for
Chunked-TD as all randomness related to the reward is
absorbed in the next state in our considered environments.

4.1. Chain-and-Split

Chain-and-Split (see Figure 3) is an environment that re-
quires adaptive values of λ for efficient policy evaluation.
It is an episodic MDP in which only the first action influ-
ences transitions and rewards. One action leads to a ‘de-
layed’ deterministic reward, whereas the other actions lead
to stochastic consequences.

Environment specification The agent has n actions
{a1, a2, . . . an} available at the start/root state. After the
first step, there is only one action available in every state.
Taking a1 at the start state leads to a linear chain of length
H , which ultimately provides a deterministic reward of 0.01.
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Figure 4. Results from the Chain-and-Split environment. The
action-value gap (∆Q) between optimal action a1 and the maxi-
mum action value among the remaining actions. The true value
of ∆Q = 0.01. Shading indicates 95% bootstrapped confidence
intervals over 10 independent trials.

This is the optimal choice. All remaining actions lead to
a common ‘parent’ state on the left (sL), which has a zero
value but is followed by noisy transitions/rewards. The state
sL branches to one of w states with equal probability. Each
of the w states provides a deterministic reward between -1
and 1, with the average over all states being equal to zero.
We set H = 20, n = 10, and w = 101 for our experiment.

Evaluation details We compare the performance of
SARSA(0), SARSA(1)/MC, and Chunked SARSA (Algo-
rithm 2). Tabular Q-values are learned from data collected
by a policy that takes uniform random actions. We use a
learned tabular model for computing λt+1 for chunking.
See Appendix A.1 for further details.

We compare algorithms based on the action-value
gap with respect to the optimal action. Concretely,
we consider the quantity ∆Q = Q(start, a1) −
maxa∈{a2,a3...an} Q(start, a), which is positive only when
the optimal action is assigned a higher value than all others.
We consider multiple learning rates for each approach (see
Appendix A.1).

Results We present results with the best learning rate
for each approach. Figure 4 shows that Chunked SARSA
quickly discovers that taking a1 is the best choice and
smoothly approaches the true value of ∆Q.

In contrast, MC/SARSA(1) fails because it does not boot-
strap from the value of sL. This results in learning entirely
independent action values Q̂(start, ai), i ∈ {2, 3 . . . 10},
without relying on the fact that all these actions actually
lead to the same next state (sL in Figure 3). This results
in negative values of ∆Q, as the value of some action
Q̂(start, ai), i ∈ {2, 3 . . . 10} is typically overestimated
due to limited samples.
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Figure 5. Results from the Accumulated-Charge environment. The
average number of regretful choices over 10 runs for different
algorithms with different learning rates for the accumulated-charge
experiment. The dashed blue line represents the best possible
expected regretful choices under the exploration scheme.

SARSA(0) bootstraps immediately, which is good for the
left sub-tree as it correctly averages all the experience from
sub-optimal actions. However, SARSA(0) is slower and less
stable than Chunked SARSA. This is because SARSA(0)
requires many experiences of taking a1 to back up values
along the linear chain on the right since the reward is pro-
vided only H steps after selecting a1 in the start state.

Additional results with longer evaluation are reported in
Appendix A.1.

4.2. Accumulated-Charge

In the previous section, we looked at evaluating actions
under a uniform random policy. Here, we focus on control,
i.e., learning optimal behavior. We consider a variant of the
Choice environment studied by Arjona-Medina et al. (2019).
This environment illustrates the benefit of our approach in
environments where transitions are mostly deterministic,
except at certain points, leading to highly compressible
trajectories.

Environment specification The agent has two available
actions in the initial state (a1 and a2) and only one available
action (a1) thereafter.

The state is represented as three components s1, s2, s3. s1

is a boolean indicating whether the first action was a1. s2 is
a non-negative integer that indicates the total charge accu-
mulated so far. s3 is the time step.

During the episode, at k values of the time step, the agent
stochastically accumulates ‘charge’. The k time steps where
a charge is accumulated are fixed for the interaction but
are randomly chosen for each independent initialization
(seed) of the environment. Further details are presented in
Appendix A.2. In our selected setting, the episode lasts
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H = 200 steps, and the agent encounters k = 10 accumu-
lation points, where it accumulates charge sampled from a
binomial variable with n = H/k and p = 0.5.

A reward is provided at the final time step. The final reward
depends on the amount of charge accumulated and on a
bonus b that depends on whether the first action was a1
or a2. Choosing a1 leads to an expected return of b, and
choosing a2 leads to an expected return of zero. We set
b = 0.1 in our experiment. The precise reward function is
described in Appendix A.2.

Evaluation details We compare the performance of Chun-
ked SARSA and SARSA(λ) over multiple choices of λ and
the learning rate. As the performance measure, we look at
the number of regretful choices made by each algorithm. If
the agent’s choice at the first time step is not the optimal
choice (i.e., a1), it is labeled as regretful. We learn tabu-
lar Q-values. The agent takes uniform random actions in
the first 1000 episodes and then acts ϵ-greedily for 9000
episodes, with ϵ = 0.1.

We learn a neural network model to compute λt+1 for
Chunked SARSA. The neural network is trained to predict
∆st = st+1 − st based on st and at. The neural network is
trained on samples from a replay buffer. Details about the
architecture and training are provided in Appendix A.2.

Results Figure 5 shows the number of regretful choices
made by Chunked SARSA and SARSA(λ) for different val-
ues of λ and the learning rate. We see that Chunked SARSA
performs best in this environment across several learning
rates. These results are also presented with 95% boot-
strapped confidence intervals in Figure 7 (Appendix A.2).
We see that SARSA(λ) exhibits a lot of variance, achieving
low regret on some trials and high regret on others. The
reliable success of Chunked SARSA is due to the learned
model’s accurate prediction of transitions where charge does
not accumulate. This bridges delays while still bootstrap-
ping to a larger degree upon charge accumulation.

4.3. Key-to-Door with factored rewards

A limitation of our Chunked-TD approach is the presence of
noisy components that don’t alter the expected return. Since
noise is inherently incompressible, our approach would not
be able to solve some hard credit assignment problems
previously considered in the literature (Meulemans et al.,
2023; Ni et al., 2023).

However, if we can decompose or factor rewards in a certain
way, we can apply our chunking idea on a per-component
basis to perform well in such environments.

Environment specification The environment state com-
prises of nd + 4 components. There are nd Boolean distrac-

tors (sd1
. . . sdnd

), which are sampled independently from
a Bernoulli distribution with probability p = 0.5 at each
time step. The state includes Boolean variables that indicate
whether the agent has the key, or is in the door or treasure
state (skey, sdoor, streasure). Another component indicates
the time step (stime). Further details about the state and
reward representation are available in Appendix A.3.

The agent has two available actions at every step. They
correspond to “pick key” and “unlock door”. Using “pick
key” in the start state turns the “key” boolean on. If the
agent has the key, using “unlock door” at the door state
(penultimate time step) will lead to the treasure. Other than
this, the actions have no effect on the state. The environment
is episodic with H = 100 steps and nd = 4.

The environment returns a vector of rewards, one for each
state component. If the treasure bit is on, it corresponds
to a treasure reward of 0.01. Each distractor being on cor-
responds to a distracting reward of 0.01/(nd). All other
components are associated with zero rewards. The optimal
policy is to pick up the key in the first step and use it to
access the treasure in the last step.

Evaluation details When rewards are decom-
posed, we can learn independent tabular Q-values
for each reward component, i.e., nd + 4 Q-functions
Q̂1(s, a), Q̂2(s, a), . . . Q̂nd+4(s, a). Each Qi(s, a) maps
the whole state vector to the Q-value of a particular reward
component. We act according to the global Q-value estimate,
which is the sum of component-wise tabular Q-values (Rus-
sell & Zimdars, 2003), Q̂(s, a) =

∑nd+4
i Qi(s, a). See

Appendix B for additional details. We compare three
approaches to learning Q-values.

The first corresponds to Expected-SARSA(λ), where the
value of λ is a fixed scalar and remains the same for
each Qi(s, a). The second is the chunked counterpart of
Expected-SARSA (Algorithm 3), but uses the same value of
λt+1 for each Qi(s, a), where λt+1 = P̂π(xt+2|xt+1) as is
usual. We refer to this variant as C-default.

The third is Chunked Expected-SARSA, which uses dif-
ferent values of λi

t+1 for each Qi(s, a). We refer to this
algorithm as C-factored. Specifically, the bootstrapping
factor of each component only depends on the predictabil-
ity of that component, λi

t+1 = P̂π(xi
t+2|xt+1). The exact

algorithm is presented in Appendix B.

Actions are selected ϵ-greedily from the global Q-value. ϵ
is annealed from 1 to 0.1 over the first 500 episodes. The
agent interacts with the environment for 5000 episodes. We
compare algorithms based on the number of episodes in
which the treasure was not collected. We consider multiple
learning rates for each approach (see Appendix A.3).
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Table 1. Number of episodes in which the treasure is not collected (out of 5000). Mean and standard deviation over 10 independent trials.
λ 0 0.1 0.5 0.9 1 C-default C-factored

Episodes 1881± 1950 2277± 2068 2273± 2076 2688± 2119 2261± 582 2285± 2061 669± 17

Results Table 1 presents results for the best choice of
learning rate for each approach. Results with all consid-
ered learning rates are presented in Figure 8. Expected-
SARSA(λ), with λ ∈ {0, 0.1, 0.5, 0.9, 1}, does not reliably
learn to collect the treasure. Similarly, the default version
of Chunked Expected-SARSA (C-default) performs poorly.

Since rewards are suitably decomposed, we could use the
factored version of Chunked Expected-SARSA (C-factored).
C-factored bootstraps separately based on the predictability
of each component of the state. For e.g., notice that the
key, door, treasure, and time steps are perfectly predictable
from the previous state. C-factored behaves like an MC
update with respect to the value of only these factors. This
allows the agent to better estimate Q-values quickly and
successfully collect the treasure in most episodes.

5. Related Work
The algorithms introduced in this paper are closely related
to the ones proposed by Sutton & Singh (1994). Their
algorithms are motivated from the perspective of eliminat-
ing the bias of temporal difference algorithms, which is
different from the compression-based motivation (Schmid-
huber, 1992) we present here. Similar to our approach, their
Corrected-TD and TD(n/n) algorithms use estimated for-
ward transition probabilities from tabular models to decay
traces. They also use state visitation counts to adapt the
learning rate. As we show in Appendix C, their algorithm
amounts to using a λ-return based on a ‘backward’ dynam-
ics model’s predictions. In contrast, our λ-return is defined
through predictions of a forward model. Forward models
can be easier to learn as they are not policy-dependent and
can use replay buffers for training (Chelu et al., 2020).

Unlike our model-based approach to select λ, other works
have studied model-free RL algorithms with adaptive or
state-dependent values of λ. White & White (2016) discuss
several factors that could guide the choice of λ in TD algo-
rithms: bias-variance control, confidence in value estimates,
etc. They design an objective that optimizes the immedi-
ate bias-variance trade-off to generate targets as a mixture
of TD(0) and MC. Riquelme et al. (2019) propose an ap-
proach to policy evaluation that switches between TD(0)
and MC based on confidence estimates of the value at that
state. Watkins (1989) proposes the Q(λ) algorithm, which
cuts the trace whenever an exploratory action is taken. Xu
et al. (2018) use meta-gradients to adjust λ.

A differentiable world model can be used to directly obtain

gradients for policy improvement (Werbos, 1987; Munro,
1987; Schmidhuber, 1990). In deterministic environments
with continuous actions, we can update a policy by coupling
it with a differentiable world model. This idea has been
extended to handle stochastic environments/policies and to
use actual trajectories (Heess et al., 2015). However, these
approaches are not easily applicable to environments with
discrete actions and are quite sensitive to inaccuracies in the
learned model (Hafner et al., 2021; Meulemans et al., 2023).
Our chunking-based approach presents a new way of using
world models with actual trajectories for credit assignment
in environments with discrete actions.

Learned models can also be used for imagination-based plan-
ning (Schmidhuber, 1990; Sutton, 1990; Ha & Schmidhuber,
2018; Hafner et al., 2021). Experience replay can be seen
as a non-parametric model and be used to drive a similar
effect (Van Hasselt et al., 2019). Using backward-model-
based imagination can also speed up credit assignment by
assigning credit to all state-actions that could have led to
the current outcome (Moore & Atkeson, 1993; Goyal et al.,
2018; Pitis, 2018; van Hasselt et al., 2021). The benefits of
using imagined experience are orthogonal to our proposed
approach which focuses on assigning credit based on real
experience.

Alternatives to standard forward dynamics models can be
used for assigning credit with real experience. The hindsight
credit assignment (HCA) family of approaches learns a
temporally extended inverse dynamics model to ascertain
the influence of actions (Harutyunyan et al., 2019; Alipov
et al., 2021; Meulemans et al., 2023). Similar to backward
models, temporally extended inverse dynamics models are
policy-dependent and can be challenging to learn.

Several works identify the need to move beyond con-
ventional TD(λ) to tackle challenging temporal credit as-
signment problems; see the recent survey by Pignatelli
et al. (2023). Finally, Arumugam et al. (2021) present an
information-theoretic formulation of the credit assignment
problem that may present interesting connections to our
compression-based approach.

6. Limitations
A crucial limitation of our approach is that learning a model
of the world can be challenging and expensive. Furthermore,
our approach requires a ‘generative’ model that can estimate
the probability of the next state, given the current state and
action. Nevertheless, our approach could be particularly use-
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ful when pre-trained generative models are already available
or are being learned for imagination-based planning.

In this paper, we focus on tabular value functions to avoid
conflating the generalization effects of function approxi-
mation with credit assignment while developing an initial
understanding of Chunked-TD. Further work is required to
extend Chunked-TD to continuous states and actions where
probability mass functions are unavailable. One possibil-
ity is to chunk with discretized tokens (Janner et al., 2021)
or with discrete latent representations (e.g., Van Den Oord
et al., 2017). Another option is to apply a transformation
on the error in the model’s prediction to obtain λt. System-
atically extending our approach to such settings requires
careful consideration of additional design choices (and as-
sociated hyperparameters) and is deferred to future work.

Our approach relies on a suitable reward decomposition to
solve hard credit assignment problems like the key-to-door
(Section 4.3). Learning such decompositions is challenging
in general, but some works aim to tackle similar problems
through the use of successor features (Barreto et al., 2017),
reward features (Meulemans et al., 2023) and general value
functions (Van Seijen et al., 2017).

7. Conclusion
In this paper, we introduce Chunked Temporal Difference,
an approach that uses predictions from a learned model
to construct adaptive λ-returns for value learning in on-
policy settings. Our work presents a new perspective on
how learned world models can be used for credit assign-
ment. Building upon the idea of history compression, we
use model predictions to reduce trajectory descriptions, thus
shortening credit assignment paths.

We propose algorithms that can be implemented online and
show that they solve some problems much faster than con-
ventional TD(λ). Our approach introduces a promising way
to use a learned model that is less vulnerable to model inac-
curacies. Since our approach only uses the learned model
to chunk trajectories, it can also be useful when models are
only accurate in some regions of the state space.

The clearest direction for future work is to extend this idea
to higher dimensional state spaces and continuous actions.
Other exciting next steps are to generalize our approach to
the off-policy setting and to further explore different meth-
ods of chunking trajectories, e.g., with policy-conditioned
backward models or even in model-free ways.
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A. Experiments
A.1. Chain-and-Split

A.1.1. ENVIRONMENT DETAILS

The environment is depicted in Figure 3. The agent has n actions {a1, a2, . . . an} available at the start/root state. After the
first step, there is only one action available in every state. Taking a1 at the starting state leads to a linear chain of length
H , which ultimately provides a deterministic reward of 0.01. This is the optimal choice. All remaining actions lead to a
common ‘parent’ state on the left (sL), which has a value of zero but is followed immediately by a stochastic transition
that leads to a range of different rewards. The state sL branches to one of w states with equal probability. Each of the w
states provides a deterministic reward between -1 and 1, with the average over all states being equal to zero. We set H = 20,
n = 10, and w = 101 for our experiment. The discount factor γ = 1.

A.1.2. IMPLEMENTATION DETAILS

We learn tabular Q-value functions for SARSA(λ) and Chunked SARSA. The tabular Q-values are initialized at zero.

Chunked SARSA We use Algorithm 2. To model P̂π(xt+1, at+1|xt, at) in this case, we simply maintain empirical counts
of each possible transition n(x, a, x′) and state-action pair n(x, a) and let P̂ (xt+1|xt, at) =

n(xt,at,xt+1)
n(xt,at)

. We decompose

P̂π(xt+1, at+1|xt, at) = P̂ (xt+1|xt, at)π(at+1|st+1). Recall that xt is the same as st in our experiments.

The tabular model is updated at every transition, and counts are incremented before they are used for computing
P̂π(xt+1, at+1|xt, at). This ensures that the counts are never zero for any observed transition.

Hyperparameter selection We consider multiple values of the learning rate α for SARSA(λ) with λ ∈ {0, 1.0} and for
Chunked SARSA. We consider α ∈ 0.1× {2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9, 2−102−11, 2−12, 2−13}.

The selected choices are provided in Table 2. The selected learning rate for SARSA(0) and Chunked SARSA is the one with
the least square error with the true value of ∆Q after 100000 episodes.

Since SARSA(1) is quite poor initially, we selected the learning rate with the least square error with ∆Q after 1000000
episodes instead of 100000 episodes. SARSA(1) fares poorly as it tends to have negative values of ∆Q due to overestimating
the value of some action.

Table 2. Selecting the learning rate for Chain-and-Split experiments.
Algorithm Selected α

SARSA(0) 0.1× 2−5

SARSA(1) 0.1× 2−11

Chunked SARSA 0.1× 2−8

Figure 4 in the main paper shows results for λ ∈ {0, 1.0} and for Chunked SARSA with the selected learning rate.

A.1.3. ADDITIONAL RESULTS

Here we show that SARSA(0) and SARSA(1)/MC eventually achieve positive values of ∆Q with a longer evaluation.

We use the same hyperparameters as those selected in Table 2 and evaluate for 1000000 episodes instead of the 100000
episode evaluation of the main paper. Note that the chosen learning rates may not be the best selection for SARSA(0) and
Chunked SARSA with 1000000 episodes.

These results are presented in Figure 6.
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Figure 6. The action-value gap (∆Q) between optimal action a1 and the maximum action value among the remaining actions. The
true value of ∆Q = 0.01. Shading indicates 95% bootstrapped confidence intervals over 10 independent trials. These results present
evaluation over 10 times the number of episodes as those presented in Figure 4

A.2. Accumulated-Charge

A.2.1. ENVIRONMENT DETAILS

The agent has two available actions in the initial state (a1 and a2) and only one available action (a1) thereafter. The
environment is episodic with H time steps. The discount factor γ = 1.

The state has three components s = (s1, s2, s3). s1 is a boolean indicating whether the first action was a1, s2 is a
non-negative integer that indicates the total charge accumulated so far, and s3 is the time step.

During the episode, at k values of the time step, the agent stochastically accumulates ‘charge’. The k time steps where a
stochastic charge is accumulated are fixed for the interaction (all episodes) but are randomly chosen for each independent
initialization (seed) of the environment. In our selected setting, the episode lasts 200 steps, and the agent encounters k = 10
accumulation points, where it accumulates charge sampled from a binomial variable with n = H/k = 20 and p = 0.5.

There are no rewards apart from those provided at the final time step. The final reward depends on the amount of charge
accumulated and on a bonus b that depends on whether the first action was a1 or a2. Choosing a1 leads to an expected return
of b, and choosing a2 leads to an expected return of zero. We set b = 0.1 in our experiment.

Reward definition The final reward (at H) is a sum of three terms RH = Rb +Rc +Rd.

Let c0 = 0.5 if s1H = 1 (i.e. the agent took a1 at s0). Otherwise, if s1H = 0 (i.e. the agent took a2 at s0), c0 = −0.5.

We can now define the individual terms. The bonus term is provided if the agent had taken a1 in s0, Rb = s1Hb. The next
term Rc depends on the amount of charge accumulated on the trajectory, Rc = s2Hc0. The final component is Rd = −c0pH .
Note that E[Rc +Rd] = 0, since E[s2H ] = pnk = pH .

Randomization of charging time steps Evaluation in this environment may be considered as an evaluation over a
distribution of MDPs. The choice of the environment seed fixes the location of the time steps where the charge accumulates.
These steps remain fixed for all episodes in the environment instance.

A.2.2. IMPLEMENTATION DETAILS

We learn tabular Q-value functions for SARSA(λ) and Chunked SARSA. The tabular Q-values are initialized at zero.

Chunked SARSA We use Algorithm 2. We learn a neural network model to predict P̂π(xt+1, at+1|xt, at). Recall that
xt = st in our experiments.
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We can decompose P̂π(xt+1, at+1|xt, at) = P̂ (xt+1|xt, at)π(at+1|st+1).

Since the state space is quite large, with 200 possible values of charge and time step, we learn a neural network model
to predict ∆st+1 = st+1 − st as a categorical distribution. Using state-delta has the benefit of reducing the space of
outputs under the model and is similar to models learned in video prediction. The probability of the whole next state (or
state-delta) is modeled independently, i.e., taken as the product of the probability of each individual component (each
component is a categorical variable in n = H/k, the maximum change possible in a state component in this environment).
We use the probability of the actual delta and use P̂ (∆st+1|st, at) as the model’s predicted probability of the transition
λt+1 = P̂ (∆st+2|st+1, at+1)π(at+1|st+1).

Our neural network has 3 hidden layers with 256 units each and hyperbolic tangent activation functions. The neural network
is trained on a batch sampled from the replay buffer every kmodel steps in the environment.

Hyperparameter selection The hyperparameters relating to the neural network model were selected as reasonable values
based on preliminary experiments. These are presented in Table 3. We use the Adam optimizer for training the neural
network (Kingma & Ba, 2015). All other hyperparameters match PyTorch defaults.

Table 3. NN model hyperparameters for accumulated charge experiment.
Hyperparameter Value

Model trained every kmodel steps 4
Batch size 128
Model learning rate (η) 0.0001
Weight decay for optimizer 1e-6
Replay buffer size 100000

We present results for SARSA(λ) with λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1} and Chunked SARSA.
We consider the following learning rates (α)for all approaches and report results for all settings, α ∈ 0.1 ×
{23, 22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−6, 2−8, 2−10, 2−12}.

A.2.3. ADDITIONAL RESULTS

In the main text, we presented the average number of regretful choices for each approach and learning rate. Here, we present
the same results with 95% bootstrapped confidence intervals (see Figure 7). The confidence intervals are quite wide for
TD(λ) approaches as they prefer a1 or a2 at random (across seeds) after the initial exploratory phase. They fail to reliably
prefer a1, resulting in a high average number of regretful choices with high variance.

A.3. Key-to-Door

A.3.1. ENVIRONMENT DETAILS

The state comprises of nd + 4 components, s = (skey, sdoor, sd1
. . . sdnd

streasure, stime). There are nd Boolean distractors
(sd1 . . . sdnd

), which are sampled independently from a Bernoulli distribution with probability p = 0.5. One boolean
indicates whether the agent has the key (skey). Two other components are Booleans that indicate whether the agent is in
front of a door (sdoor), and if the current state has the treasure (streasure). The last component indicates the time step
(stime). Distractors are absent (with a zero value) in the start state and states with treasure or door bits on.

The agent has two available actions at every step. They correspond to “pick key” and “unlock door”. Using “pick key” in
the start state turns the “key” boolean on. If the agent has the key, using “unlock door” at the penultimate state will lead to
the treasure. Other than this the actions have no effect on the state. The environment is episodic with H steps. The discount
factor γ = 1.

The environment returns a vector of rewards, one for each state component. If the treasure bit is on, it corresponds to a
treasure reward of 0.01. Each distractor being on corresponds to a distracting reward of 0.01/(nd). All other components,
the key, door, and time step, are associated with zero rewards. Concretely, the reward vector is a deterministic linear function
of the next state, r⃗t+1 = st+1 ⊙ (0, 0, 0.01

nd
. . . 0.01

nd
, 0.01, 0), where ⊙ represents the element-wise product. The overall

scalar reward can be obtained by summing over the reward vector.
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Figure 7. Results from the accumulated-charge environment. The average number of regretful choices over 10 runs for different algorithms
with different learning rates for the accumulated-charge experiment. The shading represents 95% bootstrapped confidence intervals. The
dashed blue line represents the best possible number of expected regretful choices under the exploration scheme.

In our experiment, we set H = 100 and nd = 4.

A.3.2. IMPLEMENTATION DETAILS

We use variants of Chunked Expected-SARSA in these experiments (Algorithm 4). Further, since the reward provided by
the environment is a vector of reward components, we learn a separate Q-value for each component. See Appendix B.3 for
details.

We learn tabular Q-value functions for each reward component. All values are initialized as zero.

C-factored The C-factored algorithm refers to Algorithm 4. We decompose P̂π(xi
t+1, |xt) =

∑
a P̂ (xi

t+1|xt, a)π(a|st).
Recall that xt = st in our experiments.

Hyperparameter selection We learn a neural network model that predicts the next state components given the current state
and action (P̂ (st+1|st, a)). All state components apart from the time step are Booleans, which we model as independent
Bernoulli variables. We predict the time step as a categorical variable with H categories.

Our neural network has 2 hidden layers with 128 units each and hyperbolic tangent activation functions. The neural network
is trained on a batch sampled from the replay buffer every kmodel steps in the environment.

The hyperparameters relating to the neural network model were selected as reasonable values based on preliminary
experiments. These are presented in Table 4. We use the Adam optimizer for training the neural network (Kingma & Ba,
2015). All other hyperparameters match PyTorch defaults.

Table 4. NN model hyperparameters for key-to-door
Hyperparameter Value

Model trained every kmodel steps 1
Batch size 64
Model learning rate (η) 0.0002
Replay buffer size 10000

We conducted a sweep over learning rates for all approaches. We show results for the best learning rate in terms of the
minimum number of episodes in which the treasure was not collected (averaged over 10 seeds). The considered candidates
and the selected values are provided in Table 5.
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Table 5. Selecting the learning rate for Key-to-Door experiments.
Algorithm Candidates Selected α

Expected-SARSA(0) 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 21

Expected-SARSA(0.1) 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 22

Expected-SARSA(0.5) 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 20

Expected-SARSA(0.9) 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 20

Expected-SARSA(1) 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 2−3

C-default 0.1× {22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, 2−7, 2−8, 2−9} 0.1× 20

C-factored 0.1× {22, 21, 20, 2−1, 2−2, 2−3} 0.1× 2−1
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Figure 8. The solid line represents the average number of episodes in which the treasure was not collected. Shading represents 95%
bootstrapped confidence intervals.

A.3.3. ADDITIONAL RESULTS

We present results for all considered learning rates (from Table 5) in Figure 8. We see that C-factored successfully collects
the treasure in most episodes across multiple values of the learning rate.

B. Variants of our algorithm
In this section, we present and discuss variants of our chunking-based algorithms.

B.1. n-step Chunked SARSA

Section 3.1 presents a chunked n-step method for bootstrapping from state value functions. Here, we also present an n-step
SARSA-like chunking procedure.

In this variant, which applies to bootstrapping from Q-values, we use P̂π(Xt+1At+1|Xt, At), the probability of the next
percept-action under the current policy. The following factorization can be used in MDPs with Markov policies,

P̂π(Xt+1, At+1|Xt, At) = P̂ (Xt+1|Xt, At)π(At+1|Xt+1), (6)

where P̂ (Xt+1|Xt, At) is the estimated transition probability.

Consider the following chunking strategy that applies to learning Q̂(s, a) in episodic MDPs: (1) We always keep the first
state-action (s0, a0) (2) For t ≥ 1 we drop state-action (st, at) with probability P̂π(xt+1, at+1|xt, at) (3) Whenever we
drop a percept-action, we sum the intermediate rewards such that the compressed and original episode have equivalent
returns (4) We always keep the terminal state sT .
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The compressed episode of state-action pairs (and the final state) is used to construct targets for the state-action pairs
encountered in the entire episode.

B.2. Chunked SARSA and Chunked Expected-SARSA

In this section, we present online algorithms for Chunked SARSA and Chunked Expected-SARSA.

Chunked SARSA Chunked SARSA is presented in Algorithm 2. The forward view of the algorithm would correspond to
using λt+1 = P̂π(xt+2, at+2|xt+1, at+1) in Equation 4. We used the Chunked SARSA algorithm for our experiments in
Sections 4.1 and 4.2.

Chunked Expected-SARSA Chunked Expected-SARSA is presented in Algorithm 3. The forward view of the algorithm
would correspond to using λt+1 = P̂π(xt+2|xt+1). As is the case with Expected-SARSA, the value of the next state is
computed as a weighted average of Q-values under the policy. We use Chunked Expected-SARSA for our experiment in
Section 4.3.

An advantage of the Chunked Expected-SARSA over Chunked SARSA is in situations where multiple actions lead to
the same next state. Notice that Chunked SARSA would cut the trace when an action of low probability is taken, even
if the next state is the same for all actions (λt = P̂ (Xt+1|Xt, At)π(At+1|Xt+1)). This would not happen with Chunked
Expected-SARSA, as it averages over the consequence of all actions, i.e., λt =

∑
a P̂ (Xt+1|Xt, a)π(a|Xt).

B.3. Component-wise chunked-TD

The algorithm presented here follows from a combination of Chunked Expected-SARSA (Algorithm 3) and Q-
decomposition (Russell & Zimdars, 2003).

We assume the state has d components, each associated with its own reward. Formally, at each time step we receive
R⃗t+1 = (R1

t+1, R
2
t+1, . . . R

d
t+1) and St+1 = (S1

t+1, S
2
t+1, . . . S

d
t+1). Our algorithm relies on the fact that each reward

component is associated with a single state component, i.e., Ri
t+1 = f(Si

t+1).

The typical RL reward is the sum of all the component rewards Rt+1 =
∑d

i=1 R
i
t+1, whose expected future sum we would

like to maximize.

We learn d Q-value functions Q̂1(s, a), Q̂2(s, a) . . . Q̂d(s, a). Each is learned by Chunked Expected-SARSA with its own
trace (ei(s, a)), which is based on the predictability of each individual state/percept component P̂π(Xi

t+1|Xt). Since the
reward is the sum of individual components, the Q-value also decomposes in the same way. Actions are taken according to
the global/overall Q-value Q̂(s, a) =

∑d
i=1 Q̂

i(s, a).

See Algorithm 4 for a complete description. We call this algorithm C-factored in our experiment in Section 4.3.

The algorithm that we call C-default would use the probability of the entire next percept P̂π(Xt+1|Xt) to decay the trace.

It is important to note that the policy π(.|s) is the global policy. So, in the ϵ-greedy case, the policy should be computed
using the global Q-value.
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Algorithm 2 Chunked SARSA
Ensure: Eligibility e(s, a) = 0 ∀(s, a) ∈ S ×A at the beginning of each episode

1: for each (Xt, At, Xt+1, At+1) of the episode do
2: Optionally train dynamics model
3: for each state-action pair (s, a) do
4: e(s, a)← γP̂π(Xt+1, At+1|Xt, At)e(s, a)
5: end for
6: e(St, At)← e(St, At) + 1
7: δt ← Rt+1 + γQ̂(St+1, At+1)− Q̂(St, At)
8: for each state-action pair (s, a) do
9: Q̂(s, a)← Q̂(s, a) + αδte(s, a)

10: end for
11: end for

Algorithm 3 Chunked Expected-SARSA
Ensure: Eligibility e(s, a) = 0 ∀(s, a) ∈ S ×A at the beginning of each episode

1: for each (Xt, At, Xt+1) of the episode do
2: Optionally train dynamics model
3: for each state-action pair (s, a) do
4: e(s, a)← γP̂π(Xt+1|Xt)e(s, a)
5: end for
6: e(St, At)← e(St, At) + 1
7: δt ← Rt+1 + γV̂ (St+1)− Q̂(St, At), where V̂ (St+1) =

∑
a π(a|St+1)Q̂(St+1, a)

8: for each state-action pair (s, a) do
9: Q̂(s, a)← Q̂(s, a) + αδte(s, a)

10: end for
11: end for

Algorithm 4 Chunked Expected-SARSA with decomposed rewards
Ensure: Eligibility ei(s, a) = 0 ∀(i, s, a) ∈ d× S ×A at the beginning of each episode

1: for each (Xt, At, Xt+1) of the episode do
2: Optionally train dynamics model
3: for each component-state-action (i, s, a) do
4: ei(s, a)← γP̂π(Xi

t+1|Xt)e
i(s, a)

5: end for
6: for each component i do
7: ei(St, At)← ei(St, At) + 1
8: δit ← Ri

t+1 + γV̂ i(St+1)− Q̂i(St, At), where V̂ i(St+1) =
∑

a π(a|St+1)Q̂
i(St+1, a)

9: for each state-action pair (s, a) do
10: Q̂i(s, a)← Q̂i(s, a) + αδite

i(s, a)
11: end for
12: end for
13: end for
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C. Algorithms from Sutton and Singh 1994
Here, we re-derive the approaches proposed by Sutton & Singh (1994) in order to compare them with the Chunked-TD
approach proposed in this work. We modify the approaches slightly to include a reward at each step since Sutton & Singh
(1994) assume the rewards only come at the end of the episode.

The basic goal of all the approaches highlighted by Sutton & Singh (1994) is to maintain

V̂t′(s) =
1

nt′(s)

( ∑
t<t′:St=s

Rt+1 + V̂τ(t,t′)(St+1)

)
(7)

where V̂t′(s) represents the value estimate for s after accounting for the transition observed at t′, nt′(s) is the total number
of times s has been visited, and τ(t, t′) represents some time future time compared to t to be defined. The approaches differ
only in τ(t, t′), that is, which time step’s value estimator is used to evaluate the successor states. Equation 7 is only enforced
at the end of episodes for those states s which occur within each episode. The values of states which do not occur within an
episode are left unchanged. Note that here, we use a shared time index across all episodes, so if an episode ends at time t,
the next episode will begin at t+ 1. We will assume acyclic MDPs as in Sutton & Singh (1994).

One can imagine we will generally get a better estimator by pushing τ(t, t′) as far into the future as possible relative to t as
this means the values used in the right-hand side of Equation 7 will be based on more recent information. However, doing so
will also come at the price of algorithmic complexity.

C.1. Naive TD(0)

The simplest approach is just to use τ(t, t′) = t+ 1 and thus V̂t+1(St+1), that is, the value estimate at the time St+1 was
entered. This can be achieved algorithmically with the following simple update on each transition:

n(St)← n(St) + 1 (8)

V̂ (St)← V̂ (St) +
1

n(St)
(Rt+1 + V̂ (St+1)− V̂ (St)), (9)

which just computes an incremental average of the value estimates and rewards observed directly following each state S.
This is easily seen to be TD(0) with a learning rate of 1

n(St)
and we can identify the target as Gλ

t = Rt+1 + V̂ (St+1). This,
however, suffers from only backing up reward information one step at a time.

C.2. TD(1/n)

A better approach might be to use the value estimates computed at the end of the episode in the update for each state,
effectively equivalent to updating value functions in reverse order from the end of the episode to the start. We can write
this as τ(t, t′) = T (t) where T (t) represents the termination of the episode which is in progress at time t and we define
V̂ (⊥) = V̂t′(⊥) = 0 for the terminal state ⊥ at all times t′.

To express this algorithmically, let’s define Ṽt to be the value we will set V̂T (t)(St) to at the termination time T (t). Note
that this is different from the λ-return, toward which V̂ (St) is normally updated only incrementally. With this definition, we
can express the approach as follows:

n(St)← n(St) + 1 (10)

Ṽt ← V̂ (St) +
1

n(St)
(Rt+1 + Ṽt+1 − V̂ (St)). (11)

Again, this is just performing an incremental average, but this time using the final value target Ṽt for each state rather
than its value at the time the state is visited. * We can identify the λ-return which acts as the update target for V̂ (St) as

*Note that the assumption of acyclic MDPs avoids possible circular reference here if a particular state occurs multiple times in an
episode.
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Algorithm 5 TD(1/n)

Ensure: Trace e(i) = 0 ∀i at the beginning of each episode
1: for each step of the episode do
2: n(St)← n(St) + 1
3: e(St)← 1
4: δt ← Rt+1 + V̂ (St+1)− V̂ (St)
5: for each state s do
6: V̂ (s)← V̂ (s) + 1

n(St)
δte(s)

7: e(s)← e(s) 1
n(St)

8: end for
9: end for

Gλ
t = Rt+1 + Ṽt+1. We can then derive a recursive expression for Gλ

t as follows

Ṽt = V̂ (St) +
1

n(St)
(Gλ

t − V̂ (St))

Gλ
t = Rt+1 + Ṽt+1

=⇒ Gλ
t = Rt+1 +

1

n(St+1)
Gλ

t+1 +
n(St+1)− 1

n(St+1)
V̂ (St+1).

So we have in this case λt =
1

n(St+1)
.

Equivalence between TD(1/n) and corresponding λ-return We can confirm that the TD(1/n) algorithm (Algorithm 5)
achieves the update of Equation 11 in an incremental manner.

We consider the update term ut from Equation 11 for state St,

ut = Ṽt − V̂ (St) = λt(G
λ
t − V̂ (St)),

where λt = 1/n(St). Substituting the recursive relation for Gλ
t , we get

ut = λt(Rt+1 + λt+1G
λ
t+1 + (1− λt+1)V̂ (St+1)− V̂ (St)).

We can add and subtract λt+1V̂ (St+1) inside the bracket, to get the following,

ut = λt(Rt+1 + (1− λt+1)V̂ (St+1)+λt+1V̂ (St+1)− V̂ (St) + λt+1G
λ
t+1−λt+1V̂ (St+1)),

ut = λt(δt + λt+1(G
λ
t+1 − V̂ (St+1))),

where δt = Rt+1 + V̂ (St+1)− V̂ (St) is the standard TD-error.

Unrolling further, we obtain that the value of St is updated as

ut =

T−1∑
k=t

δk

k∏
i=t

λi. (12)

Now, we can verify that this is exactly the update TD(1/n) achieves by the end of the episode.

Since the MDP is assumed to be acyclic, an encountered state is never seen again in that episode. Once a state is encountered,
it is ‘eligible’ for all future TD-errors. For a transition at time step t, St → St+1, the immediate update for St is λtδt,
since e(St) = 1 (see Line 6 of Algorithm 5). At the next time step (t + 1), e(St) = λt, and the update for St would be
λtλt+1δt+1. Thus, the sum of updates for St by the end of the episode is

∑T−1
k=t δk

∏k
i=t λi, the same as Equation 12.
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C.3. TDC

We can take the approach of using future estimates even further by retroactively correcting the value estimates used in past
episodes each time a particular transition is revisited. We can express this as τ(t, t′) = T (t′). This means rather than simply
using value estimates at the end of the episode in which a particular successor state was visited, we retroactively correct
past value estimates used in Equation 7 to be equal to those at the end of the current episode for each visited state s. It now
becomes a little more involved to formulate incrementally. In particular, we will have to maintain some extra information.

Towards formulating an incremental update, define n(s′, s) as the number of times the transition (s′, s) has been visited.
Also, define V̂ (s′, s) = V̂T (s′,s)(s

′) where T (s′, s) is the termination time of the most recent episode in which the transition
from s to s′ was visited. The reason for maintaining these quantities is essentially so we can subtract the older estimate
V̂ (s′, s) from the estimator V̂ (s) in order to replace it with an updated value each time the transition is visited. With these
definitions in place, we are ready to define Ṽt which, as in the previous section, represents the value we will set V̂T (t)(St) to
at the termination time T (t).

n(St+1, St)← n(St+1, St) + 1 (13)
n(St)← n(St) + 1 (14)

Ṽt ←
n(St)− 1

n(St)
V̂ (St)−

n(St+1, St)− 1

n(St)
V̂ (St+1, St)

+
n(St+1, St)

n(St)
Ṽt+1 +

1

n(St)
Rt+1.

(15)

To see how these updates enforce Equation 7, assume that at time t− 1 Equation 7 holds for St. Then, at time t, we visit St

and wish to make the correction for the new visit. Because we maintain V̂ (s′, s) = V̂T (s′,s)(s
′), we can write

V̂ (St) = R̄+
1

n(St)− 1

∑
s′ ̸=St

n(s′, St)V̂ (s′, St) + (n(St+1, St)− 1)V̂ (St+1, St)

 , (16)

at the time t for which we are computing Ṽt, where R̄ is the average of past rewards following state St. Substituting this
into the expression for Ṽt we get:

Ṽt =
1

n(St)

( ∑
s′ ̸=St

(n(s′, St)− 1)V̂ (s′, St) + (n(St+1, St)− 1)V̂ (St+1, St)

− (n(St+1, St)− 1)V̂ (St+1, St) + n(St+1, St)Ṽt+1 + (n(St)− 1)R̄+Rt+1

)
.

(17)

In effect, the update subtracts the outdated estimate from the sum, replaces it with the newer estimate, updates the incremental
average for the reward, and corrects the denominator to account for the additional visit to St. Having defined Ṽt, we can
now try to rewrite it in a form that looks more like a conventional TD update

Ṽt = V̂ (St) +
1

n(St)
(Rt+1 + n(St+1, St)Ṽt+1 − (n(St+1, St)− 1)V̂ (St+1, St)− V̂ (St)). (18)

The analogy to the lambda return in this case is

Gλ
t = Rt+1 + n(St+1, St)Ṽt+1 − (n(St+1, St)− 1)V̂ (St+1, St). (19)

Which we can once again put in a recursive form

Gλ
t = Rt+1 + n(St+1, St)Ṽt+1 − (n(St+1, St)− 1)V̂ (St+1, St) (20)

Ṽt = V̂ (St) +
1

n(St)
(Gλ

t − V̂ (St)) (21)

=⇒ Gλ
t = Rt+1 + n(St+1, St)

n(St+1)− 1

n(St+1)
V̂ (St+1)−

(n(St+1, St)− 1)V̂ (St+1, St) +
n(St+1, St)

n(St+1)
Gλ

t+1

(22)
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Algorithm 6 TDC
Ensure: Trace e(i) = 0 ∀i at the beginning of each episode

1: for each step of the episode do
2: n(St+1, St)← n(St+1, St) + 1
3: n(St)← n(St) + 1
4: e(St)← 1
5: δ′t ← Rt+1 + V̂ (St+1) + (n(St+1, St)− 1)[V̂ (St+1)− V̂ (St+1, St)]− V̂ (St)
6: for each state s do
7: V̂ (s)← V̂ (s) + 1

n(St)
δ′te(s)

8: e(s)← e(s)n(St+1,St)
n(St)

9: end for
10: end for
11: for each non-terminal St+1 in the episode do
12: V̂ (St+1, St) = V̂ (St+1)
13: end for

This looks like a λ-return with λ = n(St+1,St)
n(St+1)

, except that instead of (1 − λ)V̂ (St+1) we have a rather elaborate

difference term. However, note that in the case where V̂ (St+1, St) = V̂ (St+1) this extra term reduces to simply(
1− n(St+1,St)

n(St+1)

)
V̂ (St+1). Thus, as long as V̂ (St+1, St) is up to date, this is indeed just a normal λ-return with

λ = n(St+1,St)
n(St+1)

. Otherwise, it uses some extra machinery to subtract the outdated value estimate from the current
target before adding the new one.

Note that n(St+1,St)
n(St+1)

is the transition probability under an empirical backward model. Hence the TDC algorithm essentially
corresponds to setting lambda based on estimated backward transition probabilities. One could also write this in terms of
forward model probabilities as n(St+1,St)

n(St)
n(St)

n(St+1)
by multiplying by the visitation ratio. As we show in the next section, the

online backward view of the algorithm can be implemented using a forward model. The difference arises from whether the
learning rate for the update is set to be equal to the count for the state being updated itself or the future state at which the
update actually occurs in the backward view. In Chunked-TD we use a constant learning rate, so the correspondence is not
exact.

Equivalence between TDC and corresponding λ-return Proceeding similarly to our analysis for TD(1/n) in the
previous section, let us consider the update (ut) made by our recursive lambda return from Equation 22,

ut = Ṽt − V̂ (St) =
1

n(St)
(Gλ

t − V̂ (St)).

We use the same trick of expanding Gλ
t recursively, to get

ut =
1

n(St)
(Rt+1 + n(St+1, St)

(
1− 1

n(St+1)

)
V̂ (St+1)− (n(St+1, St)− 1) V̂ (St+1, St)

+λt+1G
λ
t+1 − V̂ (St)),

where λt+1 = n(St+1,St)
n(St+1)

.

The above can be re-expressed as

ut =
1

n(St)
(Rt+1 + V̂ (St+1) + (n(St+1, St)− 1)

(
V̂ (St+1)− V̂ (St+1, St)

)
+λt+1G

λ
t+1 − λt+1V̂ (St+1)− V̂ (St)).

Using the definition of the corrected-TD error (δ′t) from Algorithm 6,

ut =
1

n(St)

(
δ′t + λt+1(G

λ
t+1 − V̂ (St+1))

)
22
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Unrolling the recursion, we get

ut =
1

n(St)

T−1∑
k=t

δ′k

k∏
i=t+1

λi. (23)

Now let us consider the sequence of updates for a state St under Algorithm 6.

The first term of the update u1
t is

u1
t =

1

n(St)
· δ′t · 1

These updates are written as update = learning rate · corrected-td-error · trace value of St.

Now, in the next update the learning rate is 1/n(St+1), and the trace has been decayed by n(St+1, St)/n(St), giving us

u2
t =

1

n(St+1)
· δ′t+1 ·

n(St+1, St)

n(St)

Similarly,

u3
t =

1

n(St+2)
· δ′t+2 ·

n(St+1, St)

n(St)
· n(St+2, St+1)

n(St+1)

Summing all the updates to and taking 1/n(St) common, we get 1
n(St)

∑T−1
k=t δ′k

∏k
i=t+1 λi, which matches the update

from Equation 23.
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