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Abstract
Multimodal contrastive learning can align time
series sensor data with textual descriptions, but its
use in industrial settings is still rare. This paper
introduces DriMM, a Drilling Multimodal Model
that learns joint representations from time series
sensor data and textual activity labels from Daily
Drilling Reports. DriMM uses large models for
time series and pretrained language models to
build a shared embedding space across modal-
ities. Our experiments show that DriMM en-
ables cross-modal retrieval and zero-shot classifi-
cation of drilling activities. As a side effect, the
learned mono-modal representations also improve
linear probing classification accuracy compared to
generic pretrained baselines. These results demon-
strate the potential of large models for multimodal
learning in domain-specific industrial tasks.

1. Introduction
While recent Large Models for Time Series (LM4TS), such
as Chronos (Ansari et al., 2024), Moirai (Woo et al., 2024),
and MOMENT (Goswami et al., 2024), generalize effec-
tively across standard benchmarks, their performance de-
clines in specialized domains. (Buiting et al., 2024) have
shown that in the Oil & Gas drilling domain, LM4TS are
often outperformed by simpler convolutional models. While
this was an interesting finding, it is worth noting that in
drilling, data from different modalities are inherently cap-
tured, allowing us to potentially extend the study of multi-
modal learning in the era of large models. Drilling opera-
tions capture two complementary modalities: (1) time series
sensor data that continuously measures physical parame-
ters like hook load, torque, and flow rate; and (2) textual
Daily Drilling Reports (DDRs) that provide concise textual
summaries of operational activities, written by humans us-
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Figure 1. Joint embedding space learned by DriMM. Each point
is a sensor window (×) or a DDR sentence (◦), visualized using
PCA and t-SNE. Clusters reflect rig activity classes, showing that
DriMM aligns modalities in a meaningful way.

ing specialized technical language and abbreviations. To
date, no research has explored multimodal learning com-
bining time-series and textual data in the drilling domain.
Also, existing multimodal approaches predominantly focus
on medical data (Baldenweg et al., 2024; Li et al., 2024),
leaving a significant gap in industrial contexts.

In this paper, we address this gap by studying multimodal
learning specifically involving drilling sensor data and DDR
text. We trained the first drilling multimodal model called
”DriMM”, on 145k pairs of drilling time-series and drilling
textual reports. Technically, we leveraged contrastive learn-
ing, utilizing the InfoNCE loss (van den Oord et al., 2018)
to align embeddings from sensor data (encoded by LM4TS)
and DDR text (encoded by domain-specific models; here
RoBERTa). By training DriMM, we enabled the following
tasks on drilling data: (1) Cross-modal retrieval, allow-
ing queries from one modality to retrieve relevant entries
from the other; and (2) Zero-shot classification of drilling
activities on time-series, based purely on textual prompts.

These capabilities are valuable in real-world drilling opera-
tions. Indeed, retrieval enables drilling engineers to identify
historical patterns given a drilling report. Zero-shot clas-
sification supports rapid labeling of data using predefined
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Figure 2. Overview of the DriMM architecture. The model en-
codes time series and text pairs using modality-specific encoders:
a Large Model for Time Series (LM4TS) and an LLM. Linear
projection and normalization map both into a shared embedding
space. During training, aligned pairs are pulled together while
misaligned ones are pushed apart using a contrastive objective.

textual templates, which is especially valuable when labeled
datasets are sparse, a common scenario in the domain.

We demonstrate promising results in both tasks. Addition-
ally, we show that multimodal contrastive training enhances
the quality of LM4TS embeddings compared to generic pre-
trained models, improving linear-probing accuracy. Figure 1
illustrates how DriMM organizes sensor and text embed-
dings in a shared space. The model separates activities
like tripping, drilling, and casing, and clusters semantically
similar operations across modalities. Rotary drilling states
partially overlap due to similar surface signals, but over-
all, the clusters reflect the physical semantics of operations,
supporting the design of our multimodal approach.

2. Methodology
Our objective is to learn a shared embedding space between
sensor data and textual descriptions of drilling operations.

2.1. Model Architecture
As illustrated by Figure 2, the model consists of two
modality-specific encoders and projection heads:

• Time Series Encoder: A pretrained LM4TS (i.e.,
Moirai or MOMENT) processes windows of multi-
variate surface sensor data (e.g., hookload, torque, ...).

• Text Encoder: A RoBERTa (base) model (Liu et al.,
2019) pretrained to the technical language of DDRs.

• Projection Heads: Linear layers map both encoders’
outputs into a shared embedding space.

2.2. Multimodal Capabilities
Aligning sensor and text modalities in a joint space enables
key capabilities that are useful in industrial workflows:

Cross-Modal Retrieval. A signal window can retrieve se-
mantically matching operation descriptions, and vice versa.
This supports use cases such as referencing similar past
operations, automated search in drilling logs, and quality
control without relying on manually curated labels.

Zero-Shot Classification. Classes are represented by tex-
tual prompts. The text encoder embeds these prompts,
which then act as anchors. Sensor signals can be classi-
fied by finding the closest prompt in the embedding space.
This enables automatic labeling in scenarios where ground
truth is unavailable. The anchors/prompts used are provided
in Appendix A. Cosine similarity is used as the distance
metric between the time series embedding and the class
prompt embeddings.

Linear Probing. To assess the structure of the learned
embeddings, we train a linear classifier using time series
embeddings generated by the trained and frozen LM4TS
model. Strong linear separability indicates that the model
has learned a meaningful representation of drilling activities.
This simplifies downstream classification and reduces the
need for highly-supervised models.

2.3. Contrastive Learning Objective
We train the model with InfoNCE loss that pulls paired
sensor-text embeddings together and pushes unpaired ones
apart. Given a batch of N aligned pairs (zits, z

i
txt), where

zits is the embedding of the i-th time series and zitxt is the
embedding of the corresponding text, the loss is computed
in both directions and averaged:
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sim(u, v) denotes cosine similarity, τ is a temperature pa-
rameter, and N is the number of positive pairs in the batch.

2.4. Training Details

Further details on the training configuration are provided in
Appendix B.

3. Experimental results
3.1. Data and Operational Activities

The dataset comprises 1787 distinct multivariate time series,
each with 10 sensor features (e.g., hookload, torque, flow
rate) recorded at a 1-second interval, paired with textual
annotations from DDRs. Time series are segmented into
65536-timestep strided windows, subsampled to 512 steps.
Each window is associated with a single textual drilling
operation. This results in 145,715 paired (time series win-
dow, text) samples. Understanding the interplay of multiple
sensor features is key for interpreting drilling operations.

To evaluate whether the models capture the global semantic
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(a) Text to Time Series. The left column shows the query text
and its corresponding time series. The right column shows the
top retrieved time series and its corresponding text. The retrieved
time series has the correct class REAM, close depth and sensor
values, same activity, and a semantically similar description.

(b) Time Series to Text. The left column shows the query time
series and its corresponding text. The right column shows the
top retrieved text and its time series. The model retrieves a text
with matching drilling activity and a close semantic descrip-
tion—demonstrating accurate TS-to-text alignment.

Figure 3. Qualitative results for cross-modal retrieval. (a) shows retrieval from text to time series. (b) same in the opposite direction.

structure of drilling operations, we annotate the validation
set with high-level activity labels. These labels correspond
to nine drilling classes (DRILL, TRIP, CSG, CM, CMT,
CORE, DRLOUT, REAM, STKP). They serve as semantic
references for interpreting both retrieval and classification
performance. The dataset is split 80/20 (train/validation) by
distinct time series to prevent information leakage.

3.2. Evaluation Metrics

We report standard metrics tailored to each capability:

Global Retrieval. We use Recall@1, Recall@10, and Re-
call@100 to quantify how well a query from one modality
retrieves relevant entries from the other. Metrics are aver-
aged across both directions (TS→Text and Text→TS).

Class-Level Retrieval. We evaluate retrieval quality at
the class level using precision, recall, and F1-score at k = 1
and k = 10. A retrieved item is counted as correct if it
belongs to the same high-level class as the query.

Zero-Shot Classification. Accuracy is measured by as-
signing each time series to the closest class prompt in the
embedding space. Results are reported on both 3 and 9 class
setups.

Linear Probing. We assess representation quality by train-
ing a linear classifier on frozen time series embeddings.
Accuracy is reported for both the 3 and 9 class tasks.

3.3. Results

We report results across three evaluation axes: cross-modal
retrieval, zero-shot classification, and linear probing.

Table 1. Cross-modal retrieval results (%). Recall@k measures
exact pair retrieval. Class-level F1@k captures semantic grouping.

Model Frozen LLM Recall (pair) F1-score (class)

@1 @10 @100 @1 @10

Moirai-s no 0.19 0.98 7.1 41.8 51.2
Moirai-s yes 0.05 0.22 2.14 37.9 46.8
Moirai-l no 0.53 2.49 14.3 46.1 55.5
Moirai-l yes 0.07 0.37 2.67 39.3 48.1
Moment-s no 0.15 0.95 7.96 32 32.3
Moment-s yes 0.04 0.23 1.54 29 30.4
Moment-l no 0.39 2.1 13.35 36.4 37
Moment-l yes 0.06 0.28 2.49 36.7 37.7

1. Cross-modal Retrieval Pair-level recall remains low,
but class-level F1 scores suggest meaningful semantic align-
ment. Moirai-l with a non-frozen LLM achieves the best
performance: Recall@1 of 0.53%, Recall@10 of 2.49%,
Recall@100 of 14.3%, and F1@10 of 55.5%. Freezing the
LLM lowers pair-level recall significantly but only slightly
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reduces F1@10 (to 48.1%), indicating that semantic group-
ing is largely preserved. Moment models follow the same
trend but perform consistently lower; for instance, Moment-
l (non-frozen) reaches Recall@1 of 0.39%, Recall@100 of
13.35%, and F1@10 of 37.0%. Freezing its LLM drops
Recall@1 to 0.06%, while F1@10 remains stable at 37.7%.

These results highlight a key point: Recall@1 measures
exact pair retrieval in a pool of 29k candidates. In prac-
tice, multiple valid time series can correspond to a given
report—especially in drilling, where similar operations oc-
cur at different depths and DDR texts vary in phrasing. As
a result, Recall@1 underestimates practical utility. Class-
level F1 (e.g., F1@10 = 55.5%) offers a better view of the
model’s semantic understanding. Qualitative results (Fig-
ure 3, App. C) confirm that top retrieved samples match
in operational class, sensor dynamics, and textual mean-
ing—even when they are not the original annotated pair.

Table 2. Prompt-based zero-shot classification accuracy (%).

Model 3-class 9-class

Moirai-s (non-frozen LLM) 62.9 36.3
Moirai-s (frozen LLM) 75.7 41.6
Moirai-l (non-frozen LLM) 52.1 26.3
Moirai-l (frozen LLM) 61.5 21.8
Moment-s (non-frozen LLM) 64.1 32.8
Moment-s (frozen LLM) 63.7 44.2
Moment-l (non-frozen LLM) 63.3 24.4
Moment-l (frozen LLM) 64.6 41.9

2. Zero-Shot Classification Freezing the LLM leads to
more robust zero-shot generalization, especially for Moirai-
s (Table 2). For Moirai-s, keeping the RoBERTa encoder
fixed improves 3-class accuracy from 62.9% to 75.7%,
and slightly boosts 9-class accuracy from 36.3% to 41.6%.
Moment-s (frozen) achieves the highest 9-class zero-shot
accuracy at 44.2%, followed closely by Moment-l (frozen)
at 41.9%. This suggests that preserving the pretrained se-
mantic priors of the LLM is beneficial, especially for fine-
grained prompt-based classification. Moirai-l shows a differ-
ent pattern: freezing improves 3-class performance (52.1%
to 61.5%) but decreases 9-class accuracy (26.3% to 21.8%),
indicating potential over-reliance on fixed representations.
Overall, fine-tuning the LLM can reduce its ability to gener-
alize to prompts, likely due to operation-specific overfitting.
3. Linear Probing Linear probing shows consistent gains
from multimodal pretraining (Table 3). Moment-l (non-
frozen LLM) reaches 89.3% on the 3-class task and 72.2%
on the 9-class task, surpassing its initial checkpoint by 24.2
and 30.7 percentage points. Moirai-s (non-frozen) posts
the highest 9-class accuracy overall at 74.2%, a 10.3-point
jump over its original weights. While there are notable
differences between frozen and non-frozen LLM variants
for linear probing, particularly for Moirai-l and Moment-

Table 3. Linear classification accuracy on frozen embeddings (%).
MP = multimodal pretraining; Init = original pretrained checkpoint.

Model Frozen LLM 3-cls 9-cls

MP Init MP Init

Moirai-s no 87.8 86.9 74.2 63.9
Moirai-s yes 87.3 86.9 71.4 63.9
Moirai-l no 88.5 79.2 74.1 63.3
Moirai-l yes 81.5 79.2 71.4 63.3
Moment-s no 85.5 72.6 66.5 53.9
Moment-s yes 84.6 72.6 60.7 53.9
Moment-l no 89.3 65.1 72.2 41.5
Moment-l yes 88.3 65.1 67.7 41.5

s/l on 9-class tasks, the primary benefit for linear probing
accuracy consistently comes from the joint text and time
series training itself (MP) rather than solely from LLM fine-
tuning. These results confirm that multimodal alignment
improves the linear separability of downstream classes in
the sensor embedding space.

4. Conclusion
We introduced a multimodal contrastive learning frame-
work that aligns drilling sensor data with textual operations
from DDRs. By pairing pretrained LM4TS with a domain-
adapted language encoder, our approach improves represen-
tation quality beyond what unimodal pretraining offers.

Multimodal training enables capabilities not seen in stan-
dard LM4TS models, most notably, zero-shot classifica-
tion and cross-modal retrieval. Our experiments show that
fine-tuning the text encoder improves pair retrieval, while
freezing it tends to benefit zero-shot classification. Linear
probing accuracy also improves significantly when using
embeddings learned through multimodal alignment.

The contrast between pair retrieval and zero-shot results
reveals a trade-off between alignment strength and semantic
robustness. They also suggest that stronger or carefully
staged language models may help reconcile this tension,
enabling robust multimodal systems.

While our approach relies on paired data for training, it can
be extended to partially paired or unpaired settings using
pseudo-pairing or weak alignment strategies.

Future work also includes improving the contrastive objec-
tive itself. Our current use of InfoNCE assumes all nega-
tives are fully dissimilar, which may limit retrieval perfor-
mance—especially in drilling, where semantically similar
operations occur often. Incorporating hard-negative mining
or similarity-aware losses could reduce this gap and further
improve alignment.
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A. Strings used for zero shot classification
• TRIP: RIH, POOH

• DRILL: DRILL

• CSG: CSG, LINER

• CM: TUBING, TBG

• CMT: CEMENT, CMT, JOB

• CORE: CORE, CORING

• STKP: STUCK, WORKING STRING

• DRLOUT: DRILL OUT

• REAM: WASHED DOWN, REAM

B. Training Specifics
Our model’s training configuration included the following specifics:

• Optimizer: We used the Adam optimizer with a learning rate of 2.5× 10−5 for multimodal training and 2.5× 10−4

for the linear probing.

• Embedding Dimension: Both the time series and language models project their outputs into a shared embedding space
of 256 dimensions.

• Pooling Strategies:

– The language model’s embedding was derived by taking the last token’s representation.
– The time series model utilized a mean pooling approach to compress its window-length dimension.

• Early Stopping: To prevent overfitting on the multimodal model, we monitored the InfoNCE loss on the validation
set. Training halted if the loss didn’t improve by at least 0.005 for 3 consecutive epochs (mode: ’min’).

For the linear probing model, we monitored the accuracy on the validation set. Training halted if the accuracy didn’t
improve by at least 0.002 for 10 consecutive epochs (mode: ’max’).

• Data Preprocessing: Input sensor data features were normalized using max-scaling on each channel.

C. Qualitative Retrieval Examples
Discussion. These examples highlight the practical challenges and strengths of contrastive retrieval in drilling data.
In Figure 4(a), the model retrieves a text describing the same class (TRIP) and same section size (8.5”). Despite a 10%
difference in depth, the match is semantically correct. The model also handles phrasing variations like “cont’d” vs. “continue”
and “w/” vs. “with”. Figure 4(b) shows a DRLOUT retrieval with partial sensor alignment: torque values are close, rotation
is reasonably similar (60 vs. 70), but pressure varies more significantly (1320 vs. 1830). In Figure 4(c), the retrieved time
series fully matches the query text. The operation (well and flow check) and the observed losses are consistent, showing
how one text can align with multiple time series. Figure 4(d) is another such case: the retrieved text is semantically identical,
but different spelling causes a false positive under our current evaluation.
These examples suggest that the actual semantic retrieval accuracy may exceed what pairwise matching metrics report, due
to legitimate ambiguity in real-world annotations.
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(a) TS → Text Retrieval. Query class: TRIP → Retrieved class:
TRIP (Sim: 0.678).

(b) TS → Text Retrieval. Query class: DRLOUT → Retrieved
class: DRLOUT (Sim: 0.768).

(c) Text → TS Retrieval. Query class: TRIP → Retrieved class:
TRIP (Sim: 0.744).

(d) Text → TS Retrieval. Query class: CM → Retrieved class:
CM (Sim: 0.725).

Figure 4. Qualitative Retrieval Examples. These figures show more examples of cross-modal retrieval results in the drilling domain.
Each subfigure displays a query sample (left) and the top-1 retrieved sample (right) along with their similarity score. Subfigures (a) and (b)
show time series to text retrieval, while (c) and (d) show text to time series retrieval. Note the specific activity/text snippets and similarity
scores provided for each example.
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D. Text Retrieval Examples
Discussion. The qualitative examples in Figure 5 highlight a crucial aspect of multimodal retrieval in domain-specific
contexts like drilling. While exact-pair retrieval metrics are important, they may not fully capture practical utility due to the
inherent semantic overlap in drilling reports. Many reports describe semantically very similar activities, often varying only
in specific numerical values (e.g., depth, hole size) or minor phrasing, not necessarily indicating a true mismatch.
For instance, in Figure 5(a) (Query: DRILL Time Series), retrieved texts consistently describe drilling operations, matching
the operational code and similar hole sizes, despite numerical differences in depth. Similarly, Figure 5(b) (Query: TRIP Time
Series) shows top retrieved examples that accurately capture the essence of a ”TRIP” operation (e.g., picking up/making up,
running in hole, pulling out of hole), handling variations in phrasing. Figure 5(c) (Query: FLOW CHECK Time Series)
demonstrates accurate retrieval for ”flow check” and ”static” conditions. However, some retrieved texts mention ”loss,”
which was not explicitly part of the queried time series’ description. This suggests the model, while correctly identifying the
primary activity, sometimes broadens its semantic association. Lastly, Figure 5(d) (Query: TRIP Time Series) showcases
the model’s robustness to textual variations (e.g., ”cont. pooh” vs. ”cont’d poh”). While an occasional misclassification
to ”DRILL” occurs (Rank 2), the presence of related contextual details (e.g., BHA components) indicates that the learned
embeddings still capture underlying similarities.
These examples underscore that while precise exact-pair retrieval is challenging, DriMM’s cross-modal retrieval provides
high practical utility by identifying semantically equivalent or highly relevant drilling operations, offering valuable context
to engineers.
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(a) Query: DRILL Time Series. Top 5 unique texts retrieved
for a ‘DRILL‘ time series. The query’s paired text is on the left.

(b) Query: TRIP Time Series. Top 5 unique texts retrieved for
a ‘TRIP‘ time series. The query’s paired text is on the left.

(c) Query: FLOW CHECK Time Series. Top 5 unique texts
retrieved for a ‘FLOW CHECK‘ time series. The query’s paired
text is on the left.

(d) Query: TRIP Time Series. Top 5 unique texts retrieved for
a ‘TRIP‘ time series. The query’s paired text is on the left.

Figure 5. Qualitative Retrieval Examples: Time Series to Text. These figures illustrate the model’s ability to retrieve semantically
relevant text descriptions given a time series query. Each subfigure displays the queried time series with its paired text on the left, and the
top 5 unique retrieved texts (with their operational code and similarity score) on the right.
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