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Abstract

Multimodal contrastive learning can align time
series sensor data with textual descriptions, but its
use in industrial settings is still rare. This paper
introduces DriMM, a Drilling Multimodal Model
that learns joint representations from time series
sensor data and textual activity labels from Daily
Drilling Reports. DriMM uses large models for
time series and pretrained language models to
build a shared embedding space across modal-
ities. Our experiments show that DriMM en-
ables cross-modal retrieval and zero-shot classifi-
cation of drilling activities. As a side effect, the
learned mono-modal representations also improve
linear probing classification accuracy compared to
generic pretrained baselines. These results demon-
strate the potential of large models for multimodal
learning in domain-specific industrial tasks.

1. Introduction

While recent Large Models for Time Series (LM4TS), such
as Chronos (Ansari et al., 2024), Moirai (Woo et al., 2024),
and MOMENT (Goswami et al., 2024), generalize effec-
tively across standard benchmarks, their performance de-
clines in specialized domains. (Buiting et al., 2024) have
shown that in the Oil & Gas drilling domain, LM4TS are
often outperformed by simpler convolutional models. While
this was an interesting finding, it is worth noting that in
drilling, data from different modalities are inherently cap-
tured, allowing us to potentially extend the study of multi-
modal learning in the era of large models. Drilling opera-
tions capture two complementary modalities: (1) time series
sensor data that continuously measures physical parame-
ters like hook load, torque, and flow rate; and (2) textual
Daily Drilling Reports (DDRs) that provide concise textual
summaries of operational activities, written by humans us-
ing specialized technical language and abbreviations. To
date, no research has explored multimodal learning com-
bining time-series and textual data in the drilling domain.
Also, existing multimodal approaches predominantly focus
on medical data (Baldenweg et al., 2024; Li et al., 2024),
leaving a significant gap in industrial contexts.

In this paper, we address this gap by studying multimodal
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Figure 1. Joint embedding space learned by DriMM. Each point
is a sensor window (x) or a DDR sentence (o), visualized using
PCA and t-SNE. Clusters reflect rig activity classes, showing that
DriMM aligns modalities in a meaningful way.

learning specifically involving drilling sensor data and DDR
text. We trained the first drilling multimodal model called
”DriMM”, on 145 thousand pairs of drilling time-series
and their associated drilling textual reports. Technically,
we leveraged contrastive learning, utilizing the InfoNCE
loss (van den Oord et al., 2018) to align embeddings from
sensor data (encoded by LM4TS) and DDR text (encoded
by domain-specific models; here RoOBERTa). By training
DriMM, we enabled the following tasks on drilling data: (1)
Cross-modal retrieval, allowing queries from one modality
to retrieve relevant entries from the other; and (2) Zero-shot
classification of drilling activities on time-series, based
purely on textual prompts.

These capabilities are directly valuable in real-world drilling
operations. Indeed, retrieval enables drilling engineers to
identify historical patterns given a drilling operation report.
Zero-shot classification supports rapid labeling of new data
using predefined textual templates, which is especially valu-
able when labeled datasets are sparse, a common scenario
in the drilling domain.

We demonstrate promising results in both tasks. Addition-
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Figure 2. Overview of the DriMM architecture. The model en-
codes time series and text pairs using modality-specific encoders:
a Large Model for Time Series (LM4TS) and an LLM. Linear
projection and normalization map both into a shared embedding
space. During training, aligned pairs are pulled together while
misaligned ones are pushed apart using a contrastive objective.

ally, we show that multimodal contrastive training enhances
the quality of LM4TS embeddings compared to generic pre-
trained models, improving linear-probing accuracy. Figure 1
illustrates how DriMM organizes sensor and text embed-
dings in a shared space. The model separates activities
like tripping, drilling, and casing, and clusters semantically
similar operations across modalities. Rotary drilling states
partially overlap due to similar surface signals, but over-
all, the clusters reflect the physical semantics of operations,
supporting the design of our multimodal approach.

2. Methodology

Our objective is to learn a shared embedding space between
sensor data and textual descriptions of drilling operations.

2.1. Model Architecture
As illustrated by Figure 2, the model consists of two
modality-specific encoders and projection heads:

¢ Time Series Encoder: A pretrained LM4TS (i.e.,
Moirai or MOMENT) processes windows of multivari-
ate surface sensor data (e.g., hookload, torque, ...). We
choose these models because these accept multivariate
data.

¢ Text Encoder: A RoBERTa (base) model (Liu et al.,
2019) pretrained to the technical language of DDRs.

* Projection Heads: Linear layers map both encoders’
outputs into a shared embedding space.

2.2. Multimodal Capabilities
Aligning sensor and text modalities in a joint space enables
key capabilities that are useful in industrial workflows:

Cross-Modal Retrieval. A signal window can retrieve se-
mantically matching operation descriptions, and vice versa.
This supports use cases such as referencing similar past
operations, automated search in drilling logs, and quality
control without relying on manually curated labels.

Zero-Shot Classification. Domain-specific classes are
represented by textual prompts. The text encoder embeds
these prompts, which then act as anchors. Sensor signals can
be classified by finding the closest prompt in the embedding
space. This enables automatic labeling in scenarios where
ground truth is unavailable. The anchors/prompts used are
provided in Appendix A

Linear Probing. To assess the structure of the learned
embeddings, we train a linear classifier using time series
embeddings generated by the trained and frozen LM4TS
model. Strong linear separability indicates that the model
has learned a meaningful representation of drilling activities.
This simplifies downstream classification and reduces the
need for highly-supervised models.

Together, these capabilities illustrate how contrastive train-
ing improves the expressiveness and usability of sensor rep-
resentations in operational contexts, enabling automation
and decision support directly from raw multimodal data.

2.3. Contrastive Learning Objective

We train the model with InfoNCE loss that pulls paired
sensor-text embeddings together and pushes unpaired ones
apart. Given a batch of N aligned pairs (zj,, 2{,,), Where
z;, 1s the embedding of the i-th time series and 2}, is the
embedding of the corresponding text, the loss is computed
in both directions and averaged:
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sim(u, v) denotes cosine similarity, 7 is a temperature pa-
rameter, and NV is the number of positive pairs in the batch.

2.4. Training Details

Further details on the training configuration, including opti-
mizer settings, embedding dimensions, and early stopping
criteria, are provided in Appendix B.

3. Experimental results
3.1. Data and Operational Activities

The dataset comprises 1787 distinct multivariate time series,
each with 10 sensor features (e.g., hookload, torque, flow
rate) recorded at a 1-second interval, paired with textual
annotations from DDRs. Time series are segmented into
65536-timestep strided windows, subsampled to 512 steps.
Each window is associated with a single textual drilling
operation e.g., "RIH 5” BHA to 10,245 ft, tagged top CSG,
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(b) Time Series to Text. The left column shows the query time
series and its corresponding text. The right column shows the
top retrieved text and its time series. The model retrieves a text
with matching drilling activity and a close semantic descrip-
tion—demonstrating accurate TS-to-text alignment.

Figure 3. Qualitative results for cross-modal retrieval. (a) shows retrieval from text to time series. (b) same in the opposite direction.

circ @ 10.2 ppg, no losses”. This results in 145,715 paired
(time series window, text) samples. Understanding the in-
terplay of multiple sensor features is key for interpreting
drilling operations.

To evaluate whether the models capture the global semantic
structure of drilling operations, we annotate the validation
set with high-level activity labels. These labels correspond
to nine drilling classes (DRILL, TRIP, CSG, CM, CMT,
CORE, DRLOUT, REAM, STKP). They serve as semantic
references for interpreting both retrieval and classification
performance. The dataset is split 80/20 (train/validation) by
distinct time series to prevent information leakage.

3.2. Evaluation Metrics

We report standard metrics tailored to each capability:

Global Retrieval. We use Recall@1, Recall@10, and Re-
call@100 to quantify how well a query from one modality
retrieves relevant entries from the other. Metrics are aver-
aged across both directions (TS—Text and Text—TS).

Class-Level Retrieval. We evaluate retrieval quality at
the class level using precision, recall, and Fl-score at k = 1

and k£ = 10. A retrieved item is counted as correct if it
belongs to the same high-level class as the query.

Zero-Shot Classification. Accuracy is measured by as-
signing each time series to the closest class prompt in the
embedding space. Results are reported on both 3 and 9 class
setups.

Linear Probing. We assess representation quality by train-
ing a linear classifier on frozen time series embeddings.
Accuracy is reported for both the 3 and 9 class tasks.

3.3. Results

We report results across three evaluation axes: cross-modal
retrieval, zero-shot classification, and linear probing.

1. Cross-modal Retrieval Pair-level recall remains low,
but class-level F1 scores indicate meaningful semantic learn-
ing. Moirai-l with a non-frozen LLM outperforms all mod-
els: Recall@1 is 0.53%, Recall@10 is 2.49%, Recall @100
is 14.3%, and F1@10 reaches 55.5%. Freezing the LLM
reduces pair-level recall by an order of magnitude but low-
ers F1@10 only slightly (from 55.5% to 48.1%), showing
that semantic grouping is mostly preserved. Moment mod-
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Table 1. Cross-modal retrieval results (%). Recall@k measures
exact pair retrieval. Class-level F1 @k captures semantic grouping.

Recall (pair) F1-score (class)

Model Frozen LLM

@l @10 @100 @1 @10
Moirai-s no 0.19 0.98 7.1  41.8 51.2
Moirai-s yes 0.05 022 214 379 46.8
Moirai-1 no 0.53 249 143 46.1 55.5
Moirai-1 yes 0.07 037 267 393 48.1
Moment-s no 0.15 095 7.96 32 32.3
Moment-s yes 0.04 023 154 29 30.4
Moment-1 no 039 2.1 1335 364 37
Moment-1 yes 0.06 028 249 36.7 37.7

els follow the same trend but perform consistently lower.
For example, Moment-1 (non-frozen) achieves Recall@1 of
0.39% and Recall@100 of 13.35%, with F1@10 at 37.0%.
Freezing its LLM drops Recall@1 to 0.06%, but F1@10
remains nearly the same (37.7%), again suggesting robust-
ness in semantic clustering. As shown in Figure 3, retrieved
examples often share the same class and sensor character-
istics even when they are not exact matches. Appendix C
provides additional qualitative cases, including examples
where spelling differences or multiple valid matches lead to
underestimated retrieval metrics.

Table 2. Prompt-based zero-shot classification accuracy (%).

Model 3-class 9-class
Moirai-s (non-frozen LLM) 62.9 36.3
Moirai-s (frozen LLM) 75.7 41.6
Moirai-1 (non-frozen LLM) 52.1 26.3
Moirai-1 (frozen LLM) 61.5 21.8
Moment-s (non-frozen LLLM) 64.1 32.8
Moment-s (frozen LLM) 63.7 44.2
Moment-1 (non-frozen LLM) 63.3 24.4
Moment-1 (frozen LLM) 64.6 41.9

2. Zero-Shot Classification Freezing the LLM leads to
more robust zero-shot generalization, especially for Moirai-
s (Table 2). For Moirai-s, keeping the ROBERTa encoder
fixed improves 3-class accuracy from 62.9% to 75.7%,
and slightly boosts 9-class accuracy from 36.3% to 41.6%.
Moment-s (frozen) achieves the highest 9-class zero-shot
accuracy at 44.2%, followed closely by Moment-1 (frozen)
at 41.9%. This suggests that preserving the pretrained se-
mantic priors of the LLM is beneficial, especially for fine-
grained prompt-based classification. Moirai-1 shows a differ-
ent pattern: freezing improves 3-class performance (52.1%
to 61.5%) but decreases 9-class accuracy (26.3% to 21.8%),
indicating potential over-reliance on fixed representations.
Overall, fine-tuning the LLM can reduce its ability to gener-
alize to prompts, likely due to operation-specific overfitting.

Table 3. Linear classification accuracy on frozen embeddings (%).
MP = multimodal pretraining; Init = original pretrained checkpoint.

Model Frozen LLM 3-cls 9-cls
MP Init MP Init
Moirai-s no 87.8 869 74.2 63.9
Moirai-s yes 87.3 869 714 639
Moirai-1 no 88.5 79.2 74.1 633
Moirai-1 yes 81.5 79.2 714 633
Moment-s no 85.5 726 665 539
Moment-s yes 84.6 726 60.7 539
Moment-1 no 89.3 65.1 722 41.5
Moment-1 yes 88.3 65.1 67.7 415

3. Linear Probing Linear probing shows consistent gains
from multimodal pretraining (Table 3). Moment-I (non-
frozen LLM) reaches 89.3% on the 3-class task and 72.2%
on the 9-class task, surpassing its initial checkpoint by 24.2
and 30.7 percentage points. Moirai-s (non-frozen) posts
the highest 9-class accuracy overall at 74.2%, a 10.3-point
jump over its original weights. While there are notable
differences between frozen and non-frozen LLLM variants
for linear probing, particularly for Moirai-1 and Moment-
s/l on 9-class tasks, the primary benefit for linear probing
accuracy consistently comes from the joint text and time
series training itself (MP) rather than solely from LLM fine-
tuning. These results confirm that multimodal alignment
improves the linear separability of downstream classes in
the sensor embedding space.

4. Conclusion

We introduced a multimodal contrastive learning frame-
work that aligns drilling sensor data with textual operations
from DDRs. By pairing pretrained LM4TS with a domain-
adapted language encoder, our approach improves represen-
tation quality beyond what unimodal pretraining offers.

Multimodal training enables capabilities not seen in stan-
dard LM4TS models, most notably, zero-shot classification
and cross-modal retrieval. Our experiments show that fine-
tuning the text encoder improves pair retrieval. The zero-
shot classification improves with text encoder being frozen
for almost all cases. The linear classification task shows
improved performance with the multimodal training weights
compared with the initial published weights of LM4TS.

The contrast between pair retrieval and zero-shot results
reveals a trade-off between alignment strength and semantic
robustness. They also suggest that stronger or carefully
staged language models may help reconcile this tension,
enabling robust multimodal systems.

Future work includes exploring larger language models,
domain-adaptive pretraining strategies, and real-time de-
ployment for drilling advisory systems.
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A. Strings used for zero shot classification

L]

L]

TRIP: RIH, POOH

DRILL: DRILL

CSG: CSG, LINER

CM: TUBING, TBG

CMT: CEMENT, CMT, JOB

CORE: CORE, CORING

STKP: STUCK, WORKING STRING
DRLOUT: DRILL OUT

REAM: WASHED DOWN, REAM

B. Training Specifics

Our model’s training configuration included the following specifics:

Optimizer: We used the Adam optimizer with a learning rate of 2.5 x 10~5 for multimodal training and 2.5 x 10~4
for the linear probing.

Embedding Dimension: Both the time series and language models project their outputs into a shared embedding space
of 256 dimensions.

Pooling Strategies:
— The language model’s embedding was derived by taking the last token’s representation.

— The time series model utilized a mean pooling approach to compress its window-length dimension.

Early Stopping: To prevent overfitting on the multimodal model, we monitored the InfoNCE loss. Training halted if
the loss didn’t improve by at least 0.005 for 3 consecutive epochs (mode: "min’).

For the linear probing model, we monitored the accuracy. Training halted if the loss didn’t improve by at least 0.002
for 10 consecutive epochs (mode: *max’).

Data Preprocessing: Input sensor data features were normalized using max-scaling on each channel.

C. Qualitative Retrieval Examples

Discussion. These examples highlight the practical challenges and strengths of contrastive retrieval in drilling data. In
Figure 4(a), the model retrieves a text describing the same class (TRIP) and same section size (8.5”). Despite a 10%
difference in depth, the match is semantically correct. The model also handles phrasing variations like “cont’d” vs. “continue”

and ‘

‘w/” vs. “with”. Figure 4(b) shows a DRLOUT retrieval with partial sensor alignment: torque values are close, rotation

is reasonably similar (60 vs. 70), but pressure varies more significantly (1320 vs. 1830). In Figure 4(c), the retrieved time
series fully matches the query text. The operation (well and flow check) and the observed losses are consistent, showing
how one text can align with multiple time series. Figure 4(d) is another such case: the retrieved text is semantically identical,
but different spelling causes a false positive under our current evaluation. These examples suggest that the actual semantic
retrieval accuracy may exceed what pairwise matching metrics report, due to legitimate ambiguity in real-world annotations.

D. Text Retrieval Example
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(a) TS — Text Retrieval.Example 4: Query class: TRIP —

Queried Time Series

Accompanying Time Series to
retrieved text

Accompanying Text to

queried Time Series

continue pooh with 8%" ad-ids
rss bha from 10,750 ft to
10,250 ft - record free rot tq
at 10,200 ft with 15/30 rpm: 6-
7/ 7-8 klb-ft.

Retrieved Text

cont'd pooh w/ 8 1/2" rss/lwd
on elevator f/ 9683 t/ t.o.w
** controlled tripping speed to
avoid any swab ** found open
hole in good condition

Retrieved class: TRIP (Sim: 0.678).
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(c) Text — TS Retrieval.Example 39: Query class: TRIP —

Accompanying Time Series to
uneried text

Retrieved Time Series

— bit_depth
|— hole_depth

‘ IlL

— Hhook_load
—— block_pos.

I

Queried Text

observe the well, 1-3 bph
static losses

Accompanying Text to
retrieved Time Series
flow check - 3bph static losses

Retrieved class: TRIP (Sim: 0.744).

Accompanying Time Series to

Accompanying Text to
queried Time Series

drill out cp #1 f/ 14,200 ft to
parameters: 300
: 1-3 kU

14,297 ft. **

sweep hole with 20bbls hvp
every single. ** circulate
106mins before connecti...

(b) TS — Text Retrieval.Example 15: Query class: DRLOUT

Retrieved Text

d/o cmt, top plug, float
collar, shoetrack cmt, float
shoe + 3 ft below to 15,246'.
** parameters: wob 5-10 klbs,
60 rpm / 18 - 22 kft-lb, 560 -
575 gpm / 1,830 - 3230 psi. **
back reamed and reamed d...

— Retrieved class: DRLOUT (Sim: 0.768).
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landed tourbing hanger info
(ths)and tight screw .

(d) Text — TS Retrieval.Example 41: Query class: CM —

Accompanying Text to
retrieved Time Series
landed tbg hgr into ths,
tighten 1l.d.s.

Retrieved class: CM (Sim: 0.725).
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Figure 4. Qualitative Retrieval Examples. These figures show more examples of cross-modal retrieval results in the drilling domain.
Each subfigure displays a query sample (left) and the top-1 retrieved sample (right) along with their similarity score. Subfigures (a) and (b)
show time series to text retrieval, while (c) and (d) show text to time series retrieval. Note the specific activity/text snippets and similarity
scores provided for each example.



