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Abstract

Transformers have become the de facto architecture for a wide range of machine
learning tasks, particularly in large language models (LLMs). Despite their remark-
able performance, many challenges remain in training deep transformer networks,
especially regarding the position of the layer normalization. While Pre-Norm
structures facilitate more stable training owing to their stronger identity path, they
often lead to suboptimal performance compared to Post-Norm. In this paper,
we propose HybridNorm, a simple yet effective hybrid normalization strategy
that integrates the advantages of both Pre-Norm and Post-Norm. Specifically,
HybridNorm employs QKV normalization within the attention mechanism and
Post-Norm in the feed-forward network (FFN) of each transformer block. We
provide both theoretical insights and empirical evidence to demonstrate that Hy-
bridNorm improves the gradient flow and the model robustness. Extensive ex-
periments on large-scale transformer models, including both dense and sparse
variants, show that HybridNorm consistently outperforms both Pre-Norm and
Post-Norm approaches across multiple benchmarks. These findings highlight the
potential of HybridNorm as a more stable and effective technique for improving
the training and performance of deep transformer models. Code is available at
https://github.com/BryceZhuo/HybridNorm.

1 Introduction

Transformers have become the backbone of large language models (LLMs) and a wide range of
machine learning applications. These architectures are capable of modeling long-range dependencies
through self-attention mechanisms, which have made them the preferred choice for a variety of
tasks, including language modeling, machine translation, and image processing [1–3]. However, as
transformer models become deeper and more complex, ensuring stable training remains a significant
challenge. One critical factor that influences training stability is the choice of normalization methods,
which is crucial for mitigating issues such as internal covariate shift and gradient instability [4].
Effectively addressing these challenges is crucial for fully harnessing the potential of deep transformer
models in large-scale applications.

In transformers, Layer Normalization (LayerNorm) [5] plays a central role in stabilizing training
by normalizing the activations within each layer. The two predominant strategies for applying
LayerNorm are Pre-Layer Normalization (Pre-Norm) and Post-Layer Normalization (Post-Norm),
each with its respective benefits and trade-offs. In the Pre-Norm architecture, normalization is
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applied before the residual addition, resulting in a more prominent identity path that facilitates
faster convergence and more stable gradients [4]. This design is particularly advantageous when
training deep models, as it helps mitigate gradient-related issues that can arise during backpropagation.
However, while Pre-Norm can stabilize training, it often leads to inferior final performance compared
to Post-Norm [6]. In contrast, Post-Norm applies normalization after the residual connection, resulting
in stronger regularization effects, which contribute to improved model performance. This approach
has been shown to improve the generalization ability of transformers, particularly in very deep
networks [7]. Further discussion of related work is provided in Appendix A.

Despite the benefits of each approach, there is an inherent trade-off between training stability and
final model performance. Pre-Norm structures typically stabilize training but may underperform
in terms of generalization, while Post-Norm architectures provide better performance but can be
more difficult to train, especially in deep models. To reconcile these trade-offs, we propose a hybrid
normalization method that applies QKV normalization in the attention mechanism and Post-Norm in
the feed-forward network (FFN), which is named as HybridNorm. The QKV normalization in the
attention mechanism stabilizes the flow of information between layers by normalizing the query, key,
and value components, while Post-Norm in the FFN ensures the effective depth of the transformer.

Through extensive experiments on large-scale models, we validate the effectiveness of our approach.
Our results show that the hybrid normalization method significantly outperforms both Pre-Norm and
Post-Norm across multiple benchmarks, providing a stable training process and improved model
performance. We believe that this hybrid approach offers a promising solution for enhancing the
training stability and performance of deep transformer architectures, particularly in the rapidly
evolving field of LLMs. The main contributions of this paper can be summarized as follows:

• We propose HybridNorm, a novel hybrid normalization structure that combines the advan-
tages of Pre-Norm and Post-Norm, offering a simple yet effective solution to enhancing
performance in large transformer models. Our method is designed to exploit the strengths of
both normalization approaches, ensuring robust convergence during training and superior
final performance.

• We present both theoretical and empirical analyses of HybridNorm, demonstrating its
advantages in enhancing gradient flow stability and improving model robustness. Our
findings underscore the method’s effectiveness in mitigating core challenges inherent to
deep transformer architectures.

• Through extensive experiments on large-scale models, we empirically validate the effective-
ness of our approach. Our results show that hybrid normalization significantly outperforms
both Pre-Norm and Post-Norm across a variety of tasks, leading to more stable training and
improved model performance, particularly in the context of LLMs.

2 Preliminaries

Scaled Dot-Product Attention The scaled dot-product attention computes the attention scores
between the Query (Q) and Key (K) matrices, scaled by the square root of the key dimension dk, and
applies these scores to the Value (V) matrix. The formulation is expressed as

attn(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V, (1)

where Q,K, V ∈ Rn×dk represent the query, key, and value matrices respectively, and n is the
sequence length.

Multi-Head Attention Multi-head attention (MHA) extends the scaled dot-product attention
mechanism by splitting the query, key, and value matrices into h heads, each of size dk = d/h.
Each head independently computes attention scores, and the outputs are concatenated and linearly
projected to the original dimension,

MHA(X) = Concat(head1, . . . ,headh)W
O, (2)

where headi = attn(Qi,Ki, Vi) for i = 1, 2, . . . , h, {•i}hi=1 = Split(XW•) for • ∈ {Q,K, V },
and WQ,WK ,WV ,WO ∈ Rd×d are learnable parameters. By enabling the model to focus on
different subspaces of the input representation, MHA enhances the transformer’s capacity to capture
diverse patterns in the input sequence.
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Figure 1: Illustrations of different transformer layer structures: (a) Post-Norm architecture; (b)
Pre-Norm architecture; (c) Pre-Norm with QK-Norm architecture; (d) HybridNorm architecture.

2.1 Post-Norm and Pre-Norm

The transformer architecture is composed of a stack of L blocks, each consisting of two key compo-
nents: MHA and FFN. Residual connections and normalization layers are applied around both the
MHA and FFN in each block to facilitate effective training and improve model stability. Figure 1
(a)&(b) illustrate Post-Norm and Pre-Norm, respectively.

Post-Norm Post-Norm applies the normalization layer after the residual connection in each trans-
former sub-layer. Formally, the output of Post-Norm can be expressed as

Y l = Norm(MHA(X l) +X l), X l+1 = Norm(FFN(Y l) + Y l), (3)

where Norm denotes RMSNorm [8] or LayerNorm [5].

Pre-Norm In contrast, Pre-Norm normalizes the input to the sub-layer, which allows for a more
prominent identity path. The output of Pre-Norm is given by

Y l = MHA(Norm(X l)) +X l, X l+1 = FFN(Norm(Y l)) + Y l. (4)

This structure facilitates better gradient flow and stable convergence, particularly for deep models.
However, its reliance on normalization before the residual connection can lead to suboptimal perfor-
mance compared to Post-Norm, as the normalization does not account for the interaction between the
residual connection and the sub-layers output. An analysis of the fundamental differences between
the two approaches is provided in the Appendix F.

3 HybridNorm

To address the trade-offs between Post-Norm and Pre-Norm, we propose HybridNorm, a hybrid
normalization strategy that integrates their strengths. Specifically, HybridNorm combines QKV-
Norm [9, 10] in MHA and Post-Norm in FFN.

QKV Normalization in Attention In the attention mechanism, the query, key, and value matrices
are normalized individually before computing the attention output. The normalized QKV matrices
are then used in the scaled dot-product attention. QKV-Norm enhances the stability of model training
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(a) Layer gradient norm at step 1.
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(b) Layer gradient norm at step 100.

Figure 2: Gradient norm of Pre-Norm, Post-Norm, and HybridNorm at different training steps.

and leads to improved downstream performance. Formally, attention with QKV-Norm is defined as

attnQKV (Q,K, V ) = softmax

(
Norm(Q)Norm(K)⊤√

dk

)
Norm(V ). (5)

And we denote the multi-head attention with attnQKV as MHAQKV .

HybridNorm Architecture Combining the above, the overall output of a transformer block with
HybridNorm can be expressed as

Y l = MHAQKV (X
l) +X l, X l+1 = FFN(Norm(Y l)) + Norm(Y l). (6)

The architecture illustration can be found in Figure 1(d) and the pseudocode is shown in Algorithm
1. By integrating QKV normalization in the attention mechanism and Post-Norm in the FFN,
HybridNorm achieves stable training dynamics and enhanced final performance. The theoretical
gradient analysis can be found in Appendix B.

Remark 1. The method most closely related to ours is Mix-LN [11], which applies Post-Norm to
the earlier layers and Pre-Norm to the deeper layers, resulting in enhanced training stability and
performance. In contrast, our proposed HybridNorm integrates Pre-Norm and Post-Norm within
each transformer layer, thereby providing a more uniform approach across different layers to leverage
the benefits of both normalization strategies. Moreover, experiments demonstrate that HybridNorm
achieves superior downstream performance compared to Mix-LN (see Table 6 & Table 12).

Special Treatment of First Block Inspired by prior work [12], which employs the Mixture of
Experts (MoE) architecture with specialized handling of the first layer, we explore the impact of
introducing specialized normalization to the first transformer block. In our approach, the first layer of
the transformer is treated differently by applying Pre-Norm on MHA and FFN, while maintaining
QKV-Norm. Specifically, the structure of our first layer is defined as

Y 0 = MHAQKV (Norm(X0)) +X0, X1 = FFN(Norm(Y 0)) + Y 0. (7)

We refer to this variation of HybridNorm, which incorporates the specialized first block treatment,
as HybridNorm∗. This design aims to stabilize the training of the first transformer block and boost
overall performance by improving the flow of gradients in the early stages of training.

4 Theoretical Analysis

4.1 Benefits of Hybrid Method

To gain deeper insights into the stability introduced by HybridNorm, we follow the approach of
[13, 11] and analyze the evolution of gradient norms throughout training iterations. Suppose x
and F are the input and the sublayer of Transformer, respectively. The output of Post-Norm is
yPost = Norm(x+ F (x)) and the output of Pre-Norm is yPre = x+ F (Norm(x)). Then we have

∂yPost

∂x
=

∂Norm(x+ F (x))

∂(x+ F (x))

(
I +

∂F (x)

∂x

)
, (8)
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∂yPre

∂x
= I +

∂F (Norm(x))

∂Norm(x)

∂Norm(x)

∂x
, (9)

where the gradient of normalization is ∂Norm(x)
∂x = α ⊙

√
d

||x||2

(
I − xx⊤

||x||22

)
. The gradient of Post-

Norm is the product of two gradients, one of which is the normalization. If the spectral radius of
the normalization gradient is less than 1, it causes gradient vanishing. In Pre-Norm, the residual
connection is isolated from the normalization, ensuring that gradients retain a lower bound, thereby
preventing gradient vanishing. To ensure relatively stable gradients, a natural idea is to use both types
of normalization within a Transformer block, leading to Pre-Post (Pre-Norm in MHA and Post-Norm
in FFN) and Post-Pre. From Table 6, we find that Pre-Post achieves the best performance, which is
why we adopt this. And placing Pre-Norm in MHA with QKV-Norm further enhances performance.

In Figure 2, we compare the gradient norms of Pre-Norm, Post-Norm, and HybridNorm at steps 1 and
100. The results indicate that Pre-Norm tends to exhibit gradient explosion in deeper models, while
Post-Norm suffers from vanishing gradients, both of which hinder effective optimization. In contrast,
HybridNorm maintains a well-balanced gradient flow throughout training, effectively mitigating these
issues. An intuitive understanding is that Pre-Norm tends to amplify gradients, while Post-Norm
diminishes them. HybridNorm alternates between these two normalization strategies, leading to more
stable gradient propagation during backpropagation and effectively preventing gradient explosion or
vanishing. This balanced gradient propagation contributes to smoother optimization dynamics and
faster convergence, further reinforcing the effectiveness of HybridNorm in stabilizing training.

4.2 Benefits of QKV-Norm

Theoretically, we study how QKV-Norm affects the gradient flow during backpropagation, which is
crucial for training stability in deep transformer models. Our analysis reveals that QKV-Norm helps
decouple gradients between different weight matrices, thereby stabilizing training.

Theorem 1 (Informal version of Theorem 2). Suppose the the output of the attention is S, the input
X ∈ Rs×d, parameters WQ,WK ,WV ,W

⊤
O ∈ Rd×dk . For the attention with Pre-Norm, we have∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

= O (∥WV ∥2) ,
∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

= O (∥WO∥F ) ,∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

= O (∥WK∥2∥WV ∥2∥WO∥2) ,
∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

= O (∥WQ∥2∥WV ∥2∥WO∥2) .

For the attention with Pre-Norm and QK-Norm, we have∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

=O(∥WV ∥2) ,
∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

=O(∥WO∥F ) ,
∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

=

∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

=O(∥WV ∥2∥WO∥2).

For the attention with QKV-Norm, we have∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

= O (1) ,

∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

= O (∥WO∥2) ,
∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

=

∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

= O (∥WO∥2) .

The above theorem is an informal version of Theorem 2, with a more precise statement and proof
provided in Appendix B. In attention with Pre-Norm, gradients of weights exhibit strong dependencies
on other weights; for instance, WQ and WK are influenced by all three other weights but not by
themselves. In contrast, with QKV-Norm, the gradient of each weight depends at most on itself
and WO. This indicates that the gradient in Pre-Norm is more tightly coupled with other weights
compared to QKV-Norm, while Pre-Norm with QK-Norm lies between the two. Consequently, during
training, if the norm of a certain weight becomes excessively large, it is harder to control in Pre-Norm,
leading to increased gradient magnitude. This creates a vicious cycle that may cause model collapse.
In contrast, QKV-Norm alleviates this issue and significantly improves training stability. In summary,
the degree of gradient coupling follows: Pre-Norm > Pre-Norm with QK-Norm > QKV-Norm;
whereas training stability follows the reverse: Pre-Norm < Pre-Norm with QK-Norm < QKV-Norm.
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Figure 3: Training dynamics for 1.2B dense models with Pre-Norm, HybridNorm and HybridNorm∗

under 1T training tokens. We present the training loss, validation loss, and downstream performance
on HellaSwag and ARC-Easy, demonstrating that HybridNorm∗ achieves superior performance.

Table 1: Downstream evaluation results of 1.2B dense models with Pre-Norm, HybridNorm, and
HybridNorm∗ under 1T training tokens. OQA refers to OpenbookQA.

Methods BasicArithmetic HellaSwag SciQ ARC-C ARC-E PIQA OQA COPA Avg.↑
Pre-Norm 44.10 63.41 91.80 39.20 69.82 75.19 38.40 82.00 62.99
HybridNorm 44.12 64.22 91.88 39.13 71.05 74.72 38.88 82.00 63.25
HybridNorm∗ 47.21 65.12 91.38 37.06 71.79 75.72 39.16 85.78 64.15

5 Experiments

5.1 Experiment Settings

Baseline We evaluate HybridNorm across two series of models: dense models and Mixture of
Experts (MoE) models. The dense models include two scales: 550M and 1B, with the latter containing
approximately 1.27 billion parameters and utilizing an architecture similar to LLaMA 3.2 [14]. All
analytical experiments are conducted on the 550M dense models. For the MoE model, we use
the OLMoE framework [15], which activates 1.3B parameters out of a total of 6.9B parameters
(MoE-1B-7B). Both models are trained from scratch on the OLMoE Mix dataset [15].

Model Configuration The 550M dense model has a model dimension of 1536, an FFN dimension
of 4096, and utilizes 16 attention heads with 4 key/value heads per attention head. The 1.2B model
features a larger model dimension of 2048 and an FFN dimension of 9192, with 32 attention heads
and 8 key/value heads per attention head. The MoE-1B-7B model employs 16 attention heads, a
model dimension of 2048, and an FFN dimension of 1024. Notably, it features 8 experts out of 64,
providing a more fine-grained distribution of computational resources. All models consist of 16 layers
and are trained with a consistent context length of 4096. More details can be found in Appendix C.

Hyperparameters Model weights are initialized using Megatron initialization [16] (See Section
5.4 for more details). For the optimization, we apply the AdamW optimizer with β1 = 0.9 and
β2 = 0.95. All models are trained on sequences of 4096 tokens. For the dense model, we set the
learning rate to 3e-4, decaying to 3e-5 using a cosine scheduler. The MoE model starts with a learning
rate of 4e-4, decaying with a cosine schedule. We summarize the hyperparameters in Table 10.

Evaluation Metrics To evaluate the performance of LLMs with HybridNorm, we employ a
diverse set of open benchmarks, including ARC-Easy (ARC-E) [17], ARC-Challenge (ARC-C) [17],
HellaSwag [18], PIQA [19], SciQ [20], CoQA [21], Winogrande [22], MMLU [23], BoolQ [24],
COPA [25], CSQA [26], OBQA [27], and SocialIQA [28]. We leverage the LM Eval Harness [29]
for standardized performance evaluation.

5.2 Main Results

Dense Models We evaluate the performance of HybridNorm and HybridNorm∗ on 1.2B dense trans-
former models. Figure 3 compares the training dynamics of dense models with different normalization
methods. As shown in the figure, models with HybridNorm and HybridNorm∗ exhibit consistently
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Figure 4: Training dynamics for MoE-1B-7B models with Pre-Norm and HybridNorm∗ under 500B
training tokens. We present the training loss, validation loss, and downstream performance on
HellaSwag and MMLU Var, demonstrating that HybridNorm∗ achieves superior performance.

Table 2: Downstream evaluation results of MoE-1B-7B with Pre-Norm and HybridNorm∗ under
500B training tokens. OQA refers to OpenbookQA.

Methods HellaSwag ARC-C ARC-E PIQA WinoGrande OQA BoolQ COPA Avg.↑
Pre-Norm 69.94 39.92 73.37 77.82 63.34 42.37 67.47 85.40 64.95
HybridNorm∗ 70.71 42.27 75.77 78.06 64.58 43.18 68.41 86.00 66.12

lower training loss and validation perplexity throughout training compared to Pre-Norm, highlighting
their effectiveness in enhancing training stability and convergence. Table 1 presents the downstream
evaluation results. HybridNorm∗ consistently outperforms Pre-Norm in most tasks, achieving the
highest average score. Notably, it demonstrates substantial improvements in tasks such as Basi-
cArithmetic (+3.11), HellaSwag (+1.71), and COPA (+3.78), indicating enhanced generalization and
robustness. These results underscore the scalability of HybridNorm∗ in larger transformer models,
further validating its effectiveness in improving both training stability and downstream performance.
More results can be found in Figure 9. In Appendix E.1, we present additional comparisons with
other approaches, such as Post-Norm and Mix-LN. We further provide analyses of signal propagation
and entropy dynamics across different methods, as detailed in Appendix E.2 & E.3.

MoE Models For MoE models, we conduct experiments on MoE-1B-7B with 8 experts selected
from a pool of 64. Figure 4 presents the training dynamics of MoE models under different normaliza-
tion strategies. Throughout the training, HybridNorm∗ consistently achieves lower training loss and
validation perplexity compared to Pre-Norm. These findings indicate that HybridNorm∗ effectively
alleviates optimization difficulties in large-scale MoE models, resulting in more stable training and
enhanced downstream performance. Further, as shown in Table 2, HybridNorm∗ consistently out-
performs Pre-Norm across various downstream tasks, achieving the highest average score. Notably,
it demonstrates significant improvements in ARC-C (+2.35), ARC-E (+2.40), and OpenbookQA
(+0.81), highlighting its ability to enhance generalization across diverse benchmarks.

5.3 More Experiment in 7B Dense Model

The experimental setup primarily follows the 7B model configuration outlined in [30] and the
number of training tokens is 150B. To further enhance model stability, we introduce an additional
normalization layer to the output of the attention module in 7B model, with its weight initialized to
1/

√
2L [31], where L denotes the number of model layers. Table 3 presents the training loss and

validation perplexity (PPL), while Table 4 reports the downstream evaluation metrics.

The experimental results demonstrate the clear superiority of HybridNorm∗ over the traditional
Pre-Norm approach in the 7B model. Firstly, HybridNorm∗ achieves a lower training loss (2.430 vs.
2.469), indicating more efficient optimization during training. This improvement in training dynamics
translates into consistently better performance across a range of language modeling benchmarks.
Specifically, HybridNorm∗ yields lower perplexity scores on all evaluated datasets, including C4,
Books, Common Crawl, Wiki, and Wikitext 103. For instance, perplexity on the C4 dataset drops
from 15.32 to 14.83, suggesting stronger generalization across both structured and unstructured
corpora.
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Table 3: Training loss and perplexity (PPL) comparison of Pre-Norm and HybridNorm∗ across
multiple datasets. CC means Common Crawl.

Methods Loss C4 Books CC peS2o Reddit Stack Wiki Pile Wikitext
Pre-Norm 2.469 15.32 13.37 17.10 8.07 20.31 3.57 9.96 7.85 10.09
HybridNorm∗ 2.430 14.83 12.77 16.77 7.67 19.65 3.40 9.34 7.81 9.16

Table 4: Downstream evaluation results of 1.2B dense models trained with Pre-Norm and
HybridNorm∗. All numbers denote task accuracies (%). BA and OAQ mean Basic Arithmetic
and Openbook QA, respectively.

Methods BA Hella
Swag SciQ ARC-C ARC-E PIQA OQA COPA Wino

Grande BoolQ Avg.↑

Pre-Norm 43.50 69.03 46.57 41.47 74.95 76.71 39.40 84.00 63.00 67.43 60.61
HybridNorm∗ 50.67 70.77 47.44 43.82 75.82 78.93 43.77 86.01 63.32 70.06 63.06

Moreover, HybridNorm∗ shows consistent improvements on all downstream tasks, covering various
domains such as arithmetic reasoning, commonsense QA, and natural language inference. Notably,
performance on Basic Arithmetic improves significantly from 43.50% to 50.67%. Across the full
suite of tasks, including ARC, PIQA, COPA, BoolQ, and WinoGrande, HybridNorm∗ outperforms
Pre-Norm in every case, leading to an overall increase in average accuracy from 60.61% to 63.06%.

5.4 Ablation Studies

Initialization To evaluate the sensitivity of Pre-Norm and HybridNorm to initialization schemes, we
conduct ablation studies comparing three widely used initialization strategies: Normal initialization
[32], Depth-Scaled initialization [33, 34], and Megatron initialization [16]. Normal initialization
initializes all weights of linear layers using a truncated normal distribution with mean zero and
standard deviation 1/

√
2.5d, where d is the hidden dimension. Depth-Scaled initialization and

Megatron initialization introduce scaling factors to stabilize training in deep architectures. Specifically,
Depth-Scaled initialization scales down the output projections of the attention and FFN by a factor of√
2l, where l is the layer index. In contrast, Megatron initialization scales down these projections by√
2L, where L is the total number of layers, mitigating gradient variance accumulation in very deep

transformers. As shown in Table 5, Pre-Norm and HybridNorm exhibit sensitivity across different
initialization methods, achieving the lowest training loss and perplexity under Normal initialization
and Megatron initialization, respectively. Therefore, we set the default initialization method for
Pre-Norm to Normal initialization and for HybridNorm to Megatron initialization in all experiments,
respectively, which ensures that even under settings that may be more favorable to baseline models,
the superiority of our approach is effectively demonstrated.

Normalization Position We investigate the impact of the position of normalization layers within
the transformer block. First, we examine the effect of varying the placement of QKV normalization
(e.g., normalization setting in attention). We extend the normalization setting by considering not only
the Query (Q), Key (K), and Value (V) components but also the Context (C), which refers to the output
of the attention mechanism. For instance, QKVC-Norm applies normalization to all four components:
Query, Key, Value, and Context, while KV-Norm and KC-Norm focus on the normalization of the
Key-Value and Key-Context pairs, respectively. QKVC-Post refers to transformer blocks that employ
QKVC-Norm in the MHA while using Post-Norm in the FFN. Second, we explore the effect of
integrating QKV-Norm into different transformer architectures. For instance, Pre-QKV-Post refers
to a configuration where QKV-Norm is applied with Pre-Norm in the MHA layer, while the FFN
layer utilizes Post-Norm. Other configurations follow similar definitions. Finally, we compare
various hybrid combinations of Pre-Norm and Post-Norm. Pre-Post refers to transformer blocks
that apply Pre-Norm in the MHA and Post-Norm in the FFN, whereas Post-Pre adopts the opposite
configuration. Mathematical formulas for methods mentioned above can be found in Appendix G.
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Table 5: Training loss and validation perplexity of 550M dense models with Pre-Norm and Hybrid-
Norm under various initialization methods and 400B training tokens.

Method Initialization Loss↓ PPL on C4↓ Method Initialization Loss↓ PPL on C4↓

Pre-Norm
Normal 2.75 20.29

HybridNorm
Normal 2.76 20.44

Depth-Scaled 2.76 20.49 Depth-Scaled 2.76 20.40
Megatron 2.76 20.44 Megatron 2.74 20.00

Table 6: Abalation study of the position of normalization layers on 550M dense models with
400B tokens. We report the training loss, the perplexity on C4 and Pile, and the accuracy on HS
(HellaSwag).

Methods Loss↓ C4↓ Pile↓ HS ↑
QKVC-Post 2.74 20.05 10.34 52.68
QKC-Post 2.73 20.00 10.31 52.26
QK-Post - diverge
KV-Post 2.74 20.11 10.38 52.10
KC-Post 2.75 20.34 10.47 51.15

Pre-QKV-Post 2.74 20.13 10.37 52.65
Pre-QKV-Pre 2.74 19.97 10.33 53.05
Pre-QK-Pre 2.75 20.22 10.43 52.29
QKV-Pre 2.74 19.96 10.33 52.57

Methods Loss↓ C4↓ Pile↓ HS ↑

Post-Norm 2.76 20.43 10.57 51.20
Pre-Norm 2.75 20.30 10.48 51.97
QK-norm 2.75 20.22 10.43 52.29
Mix-LN 2.76 20.43 10.56 51.29
Post-Pre 2.75 20.26 10.46 51.19
Pre-Post 2.74 20.15 10.40 52.42

HybridNorm 2.74 20.00 10.29 53.35
HybridNorm∗ 2.73 19.85 10.25 53.36

As shown in Table 6, HybridNorm (a.k.a. QKV-Post) and its variant HybridNorm∗ consistently
surpass other methods. Notably, HybridNorm∗ achieves the lowest training loss and perplexity while
attaining the highest accuracy on HellaSwag. Specifically, by comparing HybridNorm with the
left first block in Table 6, we find that QKV-Norm is the most effective normalization. Similarly,
comparing HybridNorm with the left second block, we observe that combining QKV-Norm with
Post-Norm in the FFN yields superior performance. From the right table, one can see that the Pre-Post
configuration indeed leads to improved performance, while replacing Pre-Norm in the MHA with
QKV-Norm to form HybridNorm further enhances performance, achieving the best results.

Special Treatment of First Block For the special treatment of the first block, we test different
architectures, such as adding a normalization layer after embedding (call EmbedNorm) and armed
the first block with QKV-norm and Pre-Norm in FFN (call First-QKV-Pre), which formulations are:

Y 0 = MHAQKV (X
0) +X0, X1 = FFN(Norm(Y 0)) + Y 0. (10)

As shown in Figure 5, we can see that, except for EmbedNorm, the special treatment of the first block
effectively reduces training loss and improves downstream performance.

5.5 Scaling Laws Experiments

We compare the loss scaling curves between Pre-Norm and HybridNorm∗ across a range of dense
model sizes, from 151M to 1.2B parameters. The model sizes used for the scaling law experiments
are detailed in Table 9, and all models are trained using the same setting and hyperparameters for
fair comparison, as specified in Table 10. Models with 151M, 285M, 550M, and 1.2B parameters
are trained on 200B, 200B, 300B, and 1T tokens, respectively. As shown in Figure 6, HybridNorm∗

exhibits superior scaling properties, demonstrating lower training loss as the model size increases.
This highlights its capacity to maintain both training stability and performance, even for extremely
large models, thereby making it highly suitable for scaling to billion-parameter regimes.

5.6 Deeper Models

To further evaluate the robustness of HybridNorm and HybridNorm∗ in deeper architectures, we
conduct experiments on transformers with depths ranging from 16 to 29 layers while maintaining
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Figure 5: Training loss and accuracy on HellaSwag of
550M dense models with different normalization methods
for the first block.
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Figure 6: Scaling law curves of Pre-
Norm and HybridNorm∗.

Table 7: Performance of dense models with different depths under 400B training tokens. We report
the training loss, the perplexity on C4 and Pile, and the accuracy on HellaSwag and PIQA.

Methods 550M, 16 Layers 543M, 29 Layers
Loss↓ C4↓ Pile↓ HellaSwag↑ PIQA↑ Loss↓ C4↓ Pile↓ HellaSwag↑ PIQA↑

Post-Norm 2.76 20.43 10.57 51.20 71.80 diverge
Pre-Norm 2.75 20.30 10.48 51.97 71.14 2.73 19.88 10.31 53.86 71.63
HybridNorm 2.74 20.00 10.29 53.35 71.96 2.72 19.67 10.18 54.89 72.62
HybridNorm∗ 2.73 19.85 10.25 53.36 71.15 2.71 19.52 10.10 54.54 72.01

a comparable parameter budget. This setup allows for a fair comparison of different normaliza-
tion strategies in deep transformer architectures. As shown in Table 7, both HybridNorm and
HybridNorm∗ consistently outperform Pre-Norm and Post-Norm across various depths, demonstrat-
ing their effectiveness in stabilizing deep model training. A particularly striking observation is that
Post-Norm fails to converge at 29 layers, reinforcing its well-documented instability in deeper archi-
tectures. In contrast, HybridNorm and HybridNorm∗ not only ensure stable training across all depths
but also achieve significantly lower training loss and perplexity on both the C4 and Pile datasets.
These improvements indicate that HybridNorm-based normalization strategies mitigate optimization
difficulties that commonly arise in deep transformers. Furthermore, HybridNorm∗ achieves the
highest accuracy on challenging downstream benchmarks such as HellaSwag and PIQA, suggesting
that its benefits extend beyond mere training stability to enhanced generalization on real-world tasks.
These results provide strong empirical evidence that HybridNorm-based normalization schemes
enable deeper transformer training while preserving superior optimization efficiency and downstream
task performance.

6 Conclusion

In this paper, we have introduced HybridNorm, a novel hybrid normalization strategy that has
seamlessly integrated the advantages of both Pre-Norm and Post-Norm, thereby addressing the
longstanding trade-offs in transformer training. We have provided both comprehensive theoretical
and empirical analyses to demonstrate how HybridNorm has stabilized gradient propagation while
preserving strong regularization effects, ultimately improving both convergence speed and final model
performance. Extensive experiments across diverse benchmarks have substantiated the effectiveness
of our approach, consistently showing that HybridNorm has outperformed conventional normalization
schemes in terms of stability and accuracy. These findings have highlighted the importance of re-
examining the role and placement of normalization within transformer architectures, paving the way
for further exploration of hybrid normalization paradigms. We believe that HybridNorm has marked a
significant step forward in the development of more robust and efficient transformer models, offering
practical advantages for training next-generation large-scale neural networks.

10



References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2019.

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[4] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In ICML, 2020.

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[6] Shufang Xie, Huishuai Zhang, Junliang Guo, Xu Tan, Jiang Bian, Hany Hassan Awadalla, Arul
Menezes, Tao Qin, and Rui Yan. Residual: Transformer with dual residual connections. arXiv
preprint arXiv:2304.14802, 2023.

[7] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei.
Deepnet: Scaling transformers to 1,000 layers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

[8] Biao Zhang and Rico Sennrich. Root mean square layer normalization. In NeurIPS, 2019.

[9] Stephen Menary, Samuel Kaski, and Andre Freitas. Transformer normalisation layers and the
independence of semantic subspaces. arXiv preprint arXiv:2406.17837, 2024.

[10] Oleg Rybakov, Mike Chrzanowski, Peter Dykas, Jinze Xue, and Ben Lanir. Methods of
improving llm training stability. arXiv preprint arXiv:2410.16682, 2024.

[11] Pengxiang Li, Lu Yin, and Shiwei Liu. Mix-LN: Unleashing the power of deeper layers by
combining pre-LN and post-LN. In The Thirteenth International Conference on Learning
Representations, 2025.

[12] DeepSeek-AI. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024.

[13] Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. B2T connection: Serving
stability and performance in deep transformers. In Findings of the Association for Computational
Linguistics: ACL, 2023.

[14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[15] Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min,
Weijia Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita
Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers,
Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh
Hajishirzi. OLMoe: Open mixture-of-experts language models. In The Thirteenth International
Conference on Learning Representations, 2025.

11



[16] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[17] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[18] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791–4800, 2019.

[19] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[20] Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science
questions. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 94–106,
2017.

[21] Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question
answering challenge. Transactions of the Association for Computational Linguistics, 7:249–266,
2019.

[22] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[23] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021.

[24] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 2924–2936, 2019.

[25] Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. Semeval-2012 task 7: Choice of
plausible alternatives: An evaluation of commonsense causal reasoning. In * SEM 2012: The
First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012), pages 394–398, 2012.

[26] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158, 2019.

[27] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2381–2391, 2018.

[28] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[29] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

12



[30] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Ma-
lik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam,
Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christo-
pher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh
Hajishirzi. 2 olmo 2 furious. arXiv preprint arXiv:2501.00656, 2024.

[31] Ya Wang, Zhijian Zhuo, Yutao Zeng, Xun Zhou, Jian Yang, and Xiaoqing Li. Scale-distribution
decoupling: Enabling stable and effective training of large language models. arXiv preprint
arXiv:2502.15499, 2025.

[32] Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization
of self-attention. In Proceedings of the 16th International Conference on Spoken Language
Translation, 2019.

[33] Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with depth-scaled
initialization and merged attention. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 898–909, 2019.

[34] Suchin Gururangan, Mitchell Wortsman, Samir Yitzhak Gadre, Achal Dave, Maciej Kilian,
Weijia Shi, Jean Mercat, Georgios Smyrnis, Gabriel Ilharco, Matt Jordan, Reinhard Heckel,
Alex Dimakis, Ali Farhadi, Vaishaal Shankar, and Ludwig Schmidt. Openlm: a minimal
but performative language modeling (lm) repository, 2023. URL https://github.com/
mlfoundations/open_lm/. GitHub repository.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

[36] Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader. Twenty years of mixture of experts.
IEEE transactions on neural networks and learning systems, 23(8):1177–1193, 2012.

[37] Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 4246–4253, 2020.

[38] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. In ICML, 2023.

[39] Zhuliang Yao, Yue Cao, Yutong Lin, Ze Liu, Zheng Zhang, and Han Hu. Leveraging batch nor-
malization for vision transformers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) Workshops, 2021.

[40] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the
difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 5747–5763, 2020.

[41] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. In ACL, 2019.

[42] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush. Opennmt:
Open-source toolkit for neural machine translation. In Proceedings of ACL 2017, System
Demonstrations, pages 67–72, 2017.

[43] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin,
Xu Zou, Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via
transformers. In NeurIPS, 2021.

13

https://github.com/mlfoundations/open_lm/
https://github.com/mlfoundations/open_lm/


[44] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[45] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. In NeurIPS, 2022.

[46] Weronika Ormaniec, Felix Dangel, and Sidak Pal Singh. What does it mean to be a transformer?
insights from a theoretical hessian analysis. In ICLR, 2025.

[47] Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and
rank of neural network hessian maps. In NeurIPS, 2021.

[48] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[49] Nandan Kumar Jha and Brandon Reagen. Relu’s revival: On the entropic overload in
normalization-free large language models. arXiv preprint arXiv:2410.09637, 2024.

14



Appendix

Table of Contents
A Related Work 16

B Theoretical Gradient Analysis 16
B.1 Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.4 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.5 Expand Theoretical Clarifications to LayerNorm . . . . . . . . . . . . . . . . . 25

C Details of Experiments 26
C.1 PyTorch Style Implementation of HybridNorm . . . . . . . . . . . . . . . . . . 26
C.2 Architectures of Different Models . . . . . . . . . . . . . . . . . . . . . . . . . 26
C.3 Hyperparameters for Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . 26

D Computational Overhead 27

E Additional Experimental Results 28
E.1 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . 28
E.2 Signal Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
E.3 Entropy Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
E.4 Overall Results for Dense Models . . . . . . . . . . . . . . . . . . . . . . . . . 29
E.5 Overall Results for MoE Models . . . . . . . . . . . . . . . . . . . . . . . . . 29

F Essential Differences Between Pre-Norm and Post-Norm 30

G Formulas for Different Positions of Normalization Layers 32

H Broader Impacts and Limitations 35
H.1 Broader Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
H.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15



A Related Work

Architecture Modifications in Transformers Recent efforts in transformer architecture modifica-
tions have sought to optimize both the computational efficiency and the expressiveness of the model.
These efforts include changes to the attention mechanism and feed-forward networks all aimed at
improving performance on a variety of tasks, ranging from language modeling to vision tasks [35, 3].
For example, Multi-head Latent Attention (MLA) [12], Mixture of Experts (MoE) [36]. While these
modifications contribute to more efficient training, they also require careful integration with other
components, such as normalization layers, to maintain model stability and performance.

Normalization Types in Transformers Normalization layers are integral to the success of deep
learning models, and transformers are no exception. The most commonly used normalization tech-
nique in transformers is LayerNorm [5], which normalizes the activations of each layer independently.
However, alternative methods such as RMSNorm [8], which normalizes using root mean square
statistics, have been proposed as more effective alternatives in certain settings. These methods are
designed to mitigate the challenges of internal covariate shift and gradient instability, which are
critical for the success of large-scale transformer models.

Normalization Settings in Attention For training stability, QK-Norm [37, 38] modifies the stan-
dard attention mechanism by applying normalization directly to the query (Q) and key (K) components
during attention computation. Building upon this, QKV-Norm [9, 10] extends the approach by nor-
malizing the Query (Q), Key (K), and Value (V) components. This comprehensive normalization
ensures that all critical components of the attention mechanism are normalized, resulting in enhanced
stability and improved performance.

Location of Normalization Layers Recent research has also explored the impact of normalization
location in both Vision Transformers [39, 40] and language models [41, 40]. For example, the choice
between Pre-Norm and Post-Norm architectures has been widely studied in the transformer literature
[35, 42, 41]. Pre-Norm, where normalization is applied before the residual connection, has been
shown to be more stable in deep networks and accelerates convergence [4]. Although Post-Norm
is more challenging to train, it tends to deliver better final performance by normalizing after the
residual connection [40]. DeepNorm [7] was proposed as a strategy to address training instability
in deep transformers, which scales the residual connections by a carefully chosen factor to improve
gradient flow and mitigate exploding or vanishing gradients. Ding et al. [43] introduced Sandwich-LN
in multimodal settings to improve training stability, a strategy that has also been adopted by the
Gemma team in their recent models [44]. Similarly, OLMo-2 [30] applies the normalization layer
after the sublayer but before the residual connection, differing from both traditional Pre-LN and
Post-LN schemes. The method most similar to ours is Mix-LN [11], which applies Post-Norm
to the earlier layers and Pre-Norm to the deeper layers, achieving improved training stability and
better performance. In contrast, our HybridNorm integrates Pre-Norm and Post-Norm within each
transformer block. This intra-layer hybridization offers several key advantages: (1) consistently
improved model performance, (2) intra-layer hybridization ensures uniformity across all layers,
facilitating other post-training such as pruning and quantization.

B Theoretical Gradient Analysis

For simplicity, we consider a single-head attention layer. The input is X ∈ Rs×d, representing a
sequence of s tokens with dimension d. Throughout this section, we denote RMSNorm1 as Norm(·),
i.e., Norm(x) = α ⊙ x

RMS(x) for x ∈ Rd, where RMS(x) =
√
(x2

1 + · · ·+ x2
d)/d. For further

simplicity, we set α = 1d. The learnable parameters WQ,WK ,WV ∈ Rd×dk and WO ∈ Rdk×d. Let
XN = Norm(X), M = 1√

dk
XNWQW

⊤
KX⊤

N , and A = softmax(M). The output of the attention
block with Pre-Norm is then given by

S = AXNWV WO. (11)

1Given that the vast majority of popular LLMs are based on RMSNorm, our experiments and conclusions are
broadly applicable to standard LLM architectures. Futher, in Appendix B.5, we demonstrate that RMSNorm and
LayerNorm exhibit no fundamental differences, both in theoretical analysis and empirical observations.
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Defining Q = XWQ, K = XWK , and V = XWV , with their normalized counterparts QN =
Norm(Q), KN = Norm(K), and VN = Norm(V ), the output of the attention block with QKV-
Norm is formulated as

SN = ANVNWO, (12)

where AN = softmax(MN ) and MN = 1√
dk
QNK⊤

N .

Defining Q̂ = XNWQ and K̂N = XNWK , with their normalized counterparts Q̂N = Norm(Q̂)

and K̂N = Norm(K̂), the output of the attention block with Pre-Norm and QK-Norm is formulated
as

Ŝ = ÂNXNWV WO, (13)

where ÂN = softmax(M̂N ) and M̂N = 1√
dk
Q̂NK̂⊤

N .

Following the prior work of Noci et al. [45], Ormaniec et al. [46], we analyze the gradients by
computing derivatives using row-wise vectorization and arranging the Jacobian in the numerator
layout, i.e.,

∂Y

∂X
=

∂vecr(Y )

∂vecr(X)⊤
.

The following derivation primarily relies on the chain rule and the following rule

∂AWB

∂W
= A⊗B⊤, (14)

where A ∈ Rm×n,W ∈ Rn×p, B ∈ Rp×q , and ⊗ is the Kronecker product. The proof of Eq. 14 can
be found in [47].

B.1 Theorem 2

We first present the following extension of Lemma 2 in Noci et al. [45].

Lemma 1 (Extention of Lemma 2 in Noci et al. [45]). The gradients of the attention with Pre-Norm
defined in Eq. (11) are given by

∂S

∂WO
= softmax

(
XNWQW

⊤
KX⊤

N√
dk

)
XNWV ⊗ Id, (15)

∂S

∂WV
= softmax

(
XNWQW

⊤
KX⊤

N√
dk

)
XN ⊗W⊤

O , (16)

∂S

∂WQ
=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂A

∂M

(
XN ⊗XNWK√

dk

)
, (17)

∂S

∂WK
=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂A

∂M

(
XNWQ ⊗XN√

dk

)
Kdk,d, (18)

where the gradients of the softmax with respect to its inputs is

∂A

∂M
= blockdiag

(
∂Ai,:

∂Mi,:

)
= blockdiag

(
diag(Ai,:)−Ai,:A

⊤
i,:

)
, (19)

Ai,: is the i-th row of A in column vector format, and the commutation matrix Kdk,d is a permutation
matrix that transforms the row-wise vectorization of WK into the column-wise vectorization of WK ,
i.e.,

Kdk,dvecr(WK) = vecr(W
⊤
K ).

The gradient of XN with respect to X is

∂XN

∂X
=

∂Norm(X)

∂X
= blockdiag

(
∂Norm(Xi,:)

∂Xi,:

)
= blockdiag

( √
d

∥Xi,:∥2

(
Id −

Xi,:X
⊤
i,:

∥Xi,:∥22

))
,

(20)
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where Xi,: is the i-th row of X represented as a column vector. The definitions of ∂QN

∂Q , ∂KN

∂K , ∂VN

∂V ,
∂Q̂N

∂Q̂
, and ∂K̂N

∂K̂
follow similarly, i.e., for • ∈ {Q,K, V, Q̂, K̂},

∂•N
∂•

= blockdiag

( √
dk

∥ •i,: ∥2

(
Idk

−
•i,:•⊤i,:
∥ •i,: ∥22

))
. (21)

Lemma 2. The gradients of the attention with QKV-Norm defined in Eq. (12) are

∂SN

∂WO
= softmax

(
Norm(XWQ)Norm(XWK)⊤√

dk

)
Norm(XWV )⊗ Id, (22)

∂SN

∂WV
=

(
softmax

(
Norm(XWQ)Norm(XWK)⊤√

dk

)
⊗W⊤

O

)
∂VN

∂V
(X ⊗ Idk

), (23)

∂SN

∂WQ
=
(
Is ⊗W⊤

ONorm(XWV )
⊤) ∂AN

∂MN

(
Is ⊗Norm(XWK)√

dk

)
∂QN

∂Q
(X ⊗ Idk

), (24)

∂SN

∂WK
=
(
Is ⊗W⊤

ONorm(XWV )
⊤) ∂AN

∂MN

(
Norm(XWQ)⊗ Is√

dk

)
Kdk,s

∂KN

∂K
(X ⊗ Idk

), (25)

where the definition of ∂AN

∂MN
is similar to ∂A

∂M and Kdk,s is the commutation matrix
s.t., Kdk,svecr(KN ) = vecr(K

⊤
N ).

The proof of Lemma 2 is provided in Appendix B.2. Similarly, for the attention with Pre-Norm and
QK-Norm, we derive the following lemma.
Lemma 3. The gradients of the attention with Pre-Norm and QK-Norm defined in Eq. (13) are

∂Ŝ

∂WO
= softmax

(
Norm(XNWQ)Norm(XNWK)⊤√

dk

)
XNWV ⊗ Id, (26)

∂Ŝ

∂WV
= softmax

(
Norm(XNWQ)Norm(XNWK)⊤√

dk

)
XN ⊗W⊤

O , (27)

∂Ŝ

∂WQ
=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Is ⊗Norm(XNWK)

dk

)
∂Q̂N

∂Q̂
(XN ⊗ Idk

), (28)

∂Ŝ

∂WK
=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Norm(XNWQ)⊗ Is√

dk

)
Kdk,s

∂K̂N

∂K̂
(XN ⊗ Idk

), (29)

where the definition of ∂ÂN

∂M̂N
is similar to ∂A

∂M and K̂dk,s is the commutation matrix

s.t., K̂dk,svecr(K̂N ) = vecr(K̂
⊤
N ).

The proof of Lemma 3 can be found in Appendix B.3.

Armed with the above lemmas, we arrive at the following theorem, which characterizes the gradient
norms of Pre-Norm, Pre-Norm with QK-Norm, and QKV-Norm.
Theorem 2. For the attention with Pre-Norm, we have∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

= O
(
s
√
d∥WV ∥2

)
, (30)∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

= O (s∥WO∥F ) , (31)∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

= O
(
(s)3/2

2
√
dk

∥WK∥2∥WV ∥2∥WO∥2
)
, (32)∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

= O
(
(s)3/2√

dk
∥WQ∥2∥WV ∥2∥WO∥2

)
. (33)

For the attention with Pre-Norm and QK-Norm, we have∥∥∥∥∥ ∂Ŝ

∂WO

∥∥∥∥∥
F

= O
(
s
√
d∥WV ∥2

)
, (34)
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∥∥∥∥∥ ∂Ŝ

∂WV

∥∥∥∥∥
F

= O (s∥WO∥F ) , (35)∥∥∥∥∥ ∂Ŝ

∂WQ

∥∥∥∥∥
F

= O

(
s
√
sdk

σQ
min

∥WV ∥2∥WO∥2

)
, (36)∥∥∥∥∥ ∂Ŝ

∂WK

∥∥∥∥∥
F

= O
(
s
√
sdk

σK
min

∥WV ∥2∥WO∥2
)
. (37)

For the attention with QKV-Norm, we have∥∥∥∥ ∂SN

∂WO

∥∥∥∥
F

= O
(
s
√
d
)
, (38)∥∥∥∥ ∂SN

∂WV

∥∥∥∥
F

= O
(

sdk
σV
min

∥WO∥2
)
, (39)∥∥∥∥ ∂SN

∂WQ

∥∥∥∥
F

= O

(
s
√
sdk

σQ
min

∥WO∥2

)
, (40)∥∥∥∥ ∂SN

∂WK

∥∥∥∥
F

= O
(
s
√
sdk

σK
min

∥WO∥2
)
, (41)

where σQ
min, σ

K
min, σ

V
min are minimal singular value of WQ,WK ,WV , respectively.

Theorem 2 presents the gradient norms of various methods, and its proof is provided in Appendix B.4.
In the attention with Pre-Norm, the gradient of the weight matrix exhibits strong dependencies on
other weights; for instance, WQ and WK are influenced by all three other weight matrices but not by
themselves. In contrast, in the attention with QKV-Norm, the gradient of each weight matrix depends
at most on itself and WO. This suggests that the gradient of the attention with Pre-Norm is more
tightly coupled with other weight matrices compared to the gradient of the attention with QKV-Norm.
Whereas the attention with Pre-Norm and QK-Norm lies between the two methods. Therefore, during
the gradient optimization process, if the norm of a certain weight becomes excessively large, it is more
challenging to control in the attention with Pre-Norm, leading to an increase in gradient magnitude.
This, in turn, creates a vicious cycle that may result in model collapse. In contrast, the attention
with QKV-Norm alleviates this issue to some extent, which significantly benefits the stability of
model training. Regarding the degree of coupling, the relationship follows Pre-Norm > Pre-Norm
with QK-Norm > QKV-Norm, whereas for training stability, the hierarchy is reversed: Pre-Norm <
Pre-Norm with QK-Norm < QKV-Norm.

B.2 Proof of Lemma 2

Proof of Lemma 2. For ∂SN

∂WO
, according to Eq. (14), we obtain

∂SN

∂WO
= ANVN ⊗ Id = softmax

(
Norm(XWQ)Norm(XWK)⊤√

dk

)
Norm(XWV )⊗ Id.

For ∂SN

∂WV
, using the chain rule and Eq. (14), we have

∂SN

∂WV
=

∂SN

∂VN

∂VN

∂V

∂V

∂WV

= (A⊗W⊤
O )

∂VN

∂V
(X ⊗ Idk

)

=

(
softmax

(
Norm(XWQ)Norm(XWK)⊤√

dk

)
⊗W⊤

O

)
∂VN

∂V
(X ⊗ Idk

).

For ∂SN

∂WQ
, using the chain rule and Eq. (14), we obtain

∂SN

∂WQ
=

∂SN

∂AN

∂AN

∂MN

∂MN

∂QN

∂QN

∂Q

∂Q

WQ
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=
(
Is ⊗W⊤

O V ⊤
N

) ∂AN

∂MN

(
Is ⊗KN√

dk

)
∂QN

∂Q
(X ⊗ Idk

)

=
(
Is ⊗W⊤

ONorm(XWV )
⊤) ∂AN

∂MN

(
Is ⊗Norm(XWK)

dk

)
∂QN

∂Q
(X ⊗ Idk

).

Similarly, for ∂SN

∂WK
, we have

∂SN

∂WK
=

∂SN

∂AN

∂AN

∂MN

∂MN

∂KN

∂KN

∂K

∂K

WK

=
(
Is ⊗W⊤

O V ⊤
N

) ∂AN

∂MN

(
QN ⊗ Is

dk

)
∂vecr(K

⊤
N )

∂vecr(KN )⊤
∂KN

∂K
(X ⊗ Idk

)

=
(
Is ⊗W⊤

ONorm(XWV )
⊤) ∂AN

∂MN

(
Norm(XWQ)⊗ Is√

dk

)
Kdk,s

∂KN

∂K
(X ⊗ Idk

).

B.3 Proof of Lemma 3

Proof of Lemma 3. For ∂Ŝ
∂WO

, according to Eq. (14), we obtain

∂Ŝ

∂WO
= ÂNXNWV ⊗ Id = softmax

(
Norm(XNWQ)Norm(XNWK)⊤√

dk

)
XNWV ⊗ Id.

For ∂Ŝ
∂WV

, using Eq. (14), we have

∂Ŝ

∂WV
= ÂNXN ⊗W⊤

O = softmax

(
Norm(XNWQ)Norm(XNWK)⊤√

dk

)
XN ⊗W⊤

O .

For ∂Ŝ
∂WQ

, using the chain rule and Eq. (14), we obtain

∂Ŝ

∂WQ
=

∂Ŝ

∂ÂN

∂ÂN

∂M̂N

∂M̂N

∂Q̂N

∂Q̂N

∂Q̂

∂Q̂

WQ

=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Is ⊗ K̂N√

dk

)
∂Q̂N

∂Q̂
(XN ⊗ Idk

)

=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Is ⊗Norm(XNWK)

dk

)
∂Q̂N

∂Q̂
(XN ⊗ Idk

).

Similarly, for ∂Ŝ
∂WK

, we have

∂Ŝ

∂WK
=

∂Ŝ

∂ÂN

∂ÂN

∂M̂N

∂M̂N

∂K̂N

∂K̂N

∂K̂

∂K̂

WK

=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Q̂N ⊗ Is

dk

)
∂vecr(K̂

⊤
N )

∂vecr(K̂N )⊤
∂K̂N

∂K̂
(XN ⊗ Idk

)

=
(
Is ⊗W⊤

OW⊤
V X⊤

N

) ∂ÂN

∂M̂N

(
Norm(XNWQ)⊗ Is√

dk

)
Kdk,s

∂K̂N

∂K̂
(XN ⊗ Idk

).

B.4 Proof of Theorem 2

The proof is primarily based on the following facts

• tr(B ⊗ C) = tr(B)tr(C)
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• (B ⊗ C)(D ⊗ E) = (BD)⊗ (CE)

• ∥B ⊗ C∥F = ∥B∥F ∥C∥F
• ∥B ⊗ C∥2 = ∥B∥2∥C∥2
• ∥BC∥2 ≤ ∥B∥2∥C∥2
• ∥BC∥F ≤ ∥B∥2∥C∥F ≤ ∥B∥F ∥C∥F
• ∥XN∥F =

√
s

• If p ∈ Rs, pi ≥ 0 and
∑s

i=1 pi = 1, then ∥diag(p)− pp⊤∥2 ≤ 1
2 .

Proof. According to Gershgorin Circle Theorem [48], every eigenvalue of diag(p)− pp⊤

lies within
s⋃

i=1

[pi − p2i −
∑
j ̸=i

pipj , pi − p2i +
∑
j ̸=i

pipj ]

=

s⋃
i=1

[pi(1− pi)− pi
∑
j ̸=i

pj , pi(1− pi) + pi
∑
j ̸=i

pj ]

=

s⋃
i=1

[pi(1− pi)− pi(1− pi), pi(1− pi) + pi(1− pi)]

=

s⋃
i=1

[0, 2pi(1− pi)]

⊆ [0,
1

2
].

Therefore, ∥diag(p)− pp⊤∥2 ≤ 1
2 . When p1 = p2 = 1

2 , the equality holds, indicating that
this bound is tight.

• If A ∈ Rs×s is a stochastic matrix, i.e., A1s = 1s and each entry is nonnegative, then
∥A∥2 ≤ ∥A∥F ≤

√
s.

Proof. Note that

∥A∥F =

√√√√ s∑
i=1

s∑
j=1

a2ij ≤

√√√√ s∑
i=1

s∑
j=1

aij =

√√√√ s∑
i=1

1 =
√
s.

If A = 1se1, then

∥A∥2 =
√
λmax(A⊤A) =

√
λmax(se1e⊤1 ) =

√
s.

Hence, the bound is tight.

Proof of Theorem 2. According to fundamental algebraic operations and Lemma 1, we obtain∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

= ∥AXNWV ⊗ Id∥F = ∥AXNWV ∥F ∥Id∥F ≤
√
d∥A∥2∥XN∥F ∥WV ∥2 ≤ s

√
d∥WV ∥2,

∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

=
∥∥AXN ⊗W⊤

O

∥∥
F
= ∥AXN∥F ∥WO∥F ≤ ∥A∥2∥XN∥F ∥WO∥F ≤ s∥WO∥F ,

∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

=

∥∥∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

) ∂A

∂M

(
XN ⊗XNWK√

dk

)∥∥∥∥
F

=
1√
dk

∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

)
blockdiag(diag(Ai,:)−Ai,:A

⊤
i,:)(XN ⊗XNWK)

∥∥
F
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=
1√
dk

∥∥blockdiag((W⊤
OW⊤

V X⊤
N )(diag(Ai,:)−Ai,:A

⊤
i,:))(XN ⊗XNWK)

∥∥
F

=
1√
dk

∥∥∥∥∥∥∥
 XN

⊤
1,: ⊗W⊤

OW⊤
V X⊤

N (diag(A1,:)−A1,:A
⊤
1,:))XNWK

...
XN

⊤
s,: ⊗W⊤

OW⊤
V X⊤

N (diag(As,:)−As,:A
⊤
s,:))XNWK


∥∥∥∥∥∥∥
F

≤ 1√
dk

∥XN∥F ∥WO∥2∥WV ∥2∥XN∥2
1

2
∥WK∥2∥XN∥F

≤ 1

2
√
dk

∥WK∥2∥WV ∥2∥WO∥2∥XN∥3F

=
(s)3/2

2
√
dk

∥WK∥2∥WV ∥2∥WO∥2,

∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

=

∥∥∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

) ∂A

∂M

(
XNWQ ⊗XN√

dk

)
Kdk,d

∥∥∥∥
F

=

∥∥∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

) ∂A

∂M

(
XNWQ ⊗XN√

dk

)∥∥∥∥
F

=
1√
dk

∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

)
blockdiag(diag(Ai,:)−Ai,:A

⊤
i,:)(XNWQ ⊗XN )

∥∥
F

=
1√
dk

∥∥blockdiag((W⊤
OW⊤

V X⊤
N )(diag(Ai,:)−Ai,:A

⊤
i,:))(XNWQ ⊗XN )

∥∥
F

=
1√
dk

∥∥∥∥∥∥∥
 (XNWQ)

⊤
1,: ⊗W⊤

OW⊤
V X⊤

N (diag(A1,:)−A1,:A
⊤
1,:))XN

...
(XNWQ)

⊤
s,: ⊗W⊤

OW⊤
V X⊤

N (diag(As,:)−As,:A
⊤
s,:))XN


∥∥∥∥∥∥∥
F

≤ 1√
dk

∥WQ∥2∥XN∥F ∥WO∥2∥WV ∥2∥XN∥2
1

2
∥XN∥F

≤ 1

2
√
dk

∥WQ∥2∥WV ∥2∥WO∥2∥XN∥3F

=
(s)3/2

2
√
dk

∥WQ∥2∥WV ∥2∥WO∥2.

Therefore, ∥∥∥∥ ∂S

∂WO

∥∥∥∥
F

= O
(
s
√
d∥WV ∥2

)
,∥∥∥∥ ∂S

∂WV

∥∥∥∥
F

= O (s∥WO∥F ) ,∥∥∥∥ ∂S

∂WQ

∥∥∥∥
F

= O
(
(s)3/2

2
√
dk

∥WK∥2∥WV ∥2∥WO∥2
)
,∥∥∥∥ ∂S

∂WK

∥∥∥∥
F

= O
(
(s)3/2√

dk
∥WQ∥2∥WV ∥2∥WO∥2

)
.

Since the attention with Pre-Norm and QK-Norm lies between Pre-Norm and QKV-Norm, its proof
can be directly derived from those of the other two. Therefore, we defer its proof to the end. As for
the attention with QKV-Norm, we have∥∥∥∥ ∂SN

∂WO

∥∥∥∥
F

= ∥ANVN ⊗ Id∥F = ∥ANVN∥F ∥Id∥F ≤
√
d∥AN∥2∥VN∥F ≤ s

√
d.

For ∂SN

∂WV
, we have ∥∥∥∥ ∂SN

∂WV

∥∥∥∥
F

=

∥∥∥∥(A⊗W⊤
O )

∂VN

∂V
(X ⊗ Idk

)

∥∥∥∥
F
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≤
∥∥A⊗W⊤

O

∥∥
2

∥∥∥∥∂VN

∂V
(X ⊗ Idk

)

∥∥∥∥
F

≤
√
s∥WO∥2

∥∥∥∥∂VN

∂V
(X ⊗ Idk

)

∥∥∥∥
F

.

According to Eq. (21), we get∥∥∥∥∂VN

∂V
(X ⊗ Idk

)

∥∥∥∥
F

=

∥∥∥∥∥blockdiag
( √

dk
∥Vi,:∥2

(
Idk

−
Vi,:V

⊤
i,:

∥Vi,:∥22

))
(X ⊗ Idk

)

∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥∥


X⊤

1,: ⊗
( √

dk

∥V1,:∥2

(
Idk

− V1,:V
⊤
1,:

∥V1,:∥2
2

))
...

X⊤
s,: ⊗

( √
dk

∥Vs,:∥2

(
Idk

− Vs,:V
⊤
s,:

∥Vs,:∥2
2

))


∥∥∥∥∥∥∥∥∥∥∥
F

=

√√√√dk(dk − 1)

s∑
i=1

∥Xi,:∥22
∥Vi,:∥22

=

√√√√dk(dk − 1)

s∑
i=1

∥Xi,:∥22
∥W⊤

V Xi,:∥22

≤
√
sdk

σV
min

.

Similarly, we can get∥∥∥∥∂QN

∂Q
(X ⊗ Idk

)

∥∥∥∥
F

≤
√
sdk

σQ
min

,

∥∥∥∥∂KN

∂K
(X ⊗ Idk

)

∥∥∥∥
F

≤
√
sdk

σK
min

.

It follows that ∥∥∥∥ ∂SN

∂WV

∥∥∥∥
F

≤ sdk
σV
min

∥WO∥2. (42)

For ∂SN

∂WQ
, we have∥∥∥∥ ∂SN

∂WQ

∥∥∥∥
F

=

∥∥∥∥(Is ⊗W⊤
O V ⊤

N

) ∂AN

∂MN

(
Is ⊗KN√

dk

)
∂QN

∂Q
(X ⊗ Idk

)

∥∥∥∥
F

≤ 1√
dk

∥∥∥∥(Is ⊗W⊤
O V ⊤

N

) ∂AN

∂MN
(Is ⊗KN )

∥∥∥∥
2

∥∥∥∥∂QN

∂Q
(X ⊗ Idk

)

∥∥∥∥
F

≤ 1√
dk

∥∥(Is ⊗W⊤
O V ⊤

N

)
blockdiag(diag((AN )i,:)− (AN )i,:(AN )⊤i,:) (Is ⊗KN )

∥∥
2

√
sdk

σQ
min

=

√
sdk

σQ
min

∥∥blockdiag(W⊤
O V ⊤

N (diag((AN )i,:)− (AN )i,:(AN )⊤i,:)KN )
∥∥
2

≤
√
sdk

σQ
min

∥WO∥2∥VN∥2
1

2
∥KN∥2

≤ s
√
sdk

2σQ
min

∥WO∥2.

Similarly, for ∂SN

∂WK
, we have ∥∥∥∥ ∂SN

∂WK

∥∥∥∥
F

≤ s
√
sdk

2σK
min

∥WO∥2.
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Therefore, ∥∥∥∥ ∂SN

∂WO

∥∥∥∥
F

= O
(
s
√
d
)
,∥∥∥∥ ∂SN

∂WV

∥∥∥∥
F

= O
(

sdk
σV
min

∥WO∥2
)
,∥∥∥∥ ∂SN

∂WQ

∥∥∥∥
F

= O

(
s
√
sdk

σQ
min

∥WO∥2

)
,∥∥∥∥ ∂SN

∂WK

∥∥∥∥
F

= O
(
s
√
sdk

σK
min

∥WO∥2
)
.

Finally, we present the proof for the attention mechanism with Pre-Norm and QK-Norm. For ∂Ŝ
∂WO

and ∂Ŝ
∂WO

, whose proofs are essentially identical to that of Pre-Norm, we have∥∥∥∥∥ ∂Ŝ
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∂WQ

∥∥∥∥∥
F

=

∥∥∥∥∥(Is ⊗W⊤
OW⊤

V X⊤
N

) ∂ÂN
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Similarly, ∥∥∥∥∥ ∂Ŝ
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∂WV

∥∥∥∥∥
F

= O (s∥WO∥F ) ,

24



∥∥∥∥∥ ∂Ŝ
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B.5 Expand Theoretical Clarifications to LayerNorm

In the following, we demonstrate that RMSNorm and LayerNorm exhibit no fundamental differences,
both in theoretical analysis and empirical observations. It is worth noting that, given the vast majority
of popular LLMs are based on RMSNorm, our experiments and conclusions are broadly applicable to
standard LLM architectures.

Suppose the input is given by X ∈ Rs×d. Let P = I − 1
d1d1

⊤
d . Then

EX = X
1

d
1d1

⊤
d , and X − EX = X −X

1

d
1d1

⊤
d = XP.

For simplicity, we omit the affine transformation in the normalization layers. It follows that

LayerNorm(X) =
X − EX
V ar(X)

=
X − EX

RMS(X − EX)
=

XP

RMS(XP )
= RMSNorm(XP ).

Hence, analogous to the gradient of RMSNorm (Eq. 20), the gradient of LayerNorm is given by

∂LayerNorm(X)

∂X
=

∂RMSNorm(XP )

∂X

= blockdiag
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∂RMSNorm((XP )i)

∂Xi

)
= blockdiag

( √
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∥(XP )i∥2

(
Id −

(XP )i(XP )⊤i
∥(XP )i∥22

)
P

)
,

where Xi means that the i-th column of X . Note that P is a positive semidefinite matrix with
eigenvalues bounded between 0 and 1, hence ||P ||2 = 1. As a result, the gradient norms of
LayerNorm and RMSNorm differ only by a constant factor. This implies that the main result,
Theorem 2, also holds for LayerNorm.

On the experimental side, we conducted controlled comparison using models of identical size (550M
parameters), each trained on 400B tokens. Both models adopt the Pre-Norm architecture and employ
the Megatron initialization scheme; the only difference lies in the normalization method—one uses
RMSNorm, while the other uses LayerNorm. As shown in Table 8, the training losses of RMSNorm
and LayerNorm are nearly identical, with a marginal difference of only 0.0008. In the context of
large-scale models, a loss difference smaller than 0.001 is typically considered negligible.

Table 8: Training loss comparison between RMSNorm and LayerNorm under identical training
settings.

Methods Training Loss
RMSNorm 2.7631
LayerNorm 2.7639
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C Details of Experiments

C.1 PyTorch Style Implementation of HybridNorm

We provide a PyTorch-style implementation of HybridNorm below, and a more detailed implementa-
tion can be found at https://github.com/BryceZhuo/HybridNorm.

Algorithm 1 PyTorch style pseudocode for a Transformer block with HybridNorm

# q_norm , k_norm , v_norm , ffn_norm are normalization layers
# attn_proj and attn_out are linear layers
# attn is the attention
# ffn is the feedforward network

def forward(x):
# Attention block
res = x # shape (b, s, d)
q, k, v = attn_proj(x).split((d, d, d), dim=-1) # shape (b, s, d)
# dk = d / h, h is the number of attention heads
q, k, v = q.view(b, s, h, dk)
q, k, v = q_norm(q), k_norm(k), v_norm(v)
x = attn(q,k,v) # shape (b, s, d)
x = attn_out(x) + res

# FFN block
x = ffn_norm(x)
x = ffn(x) + x

return x

C.2 Architectures of Different Models

For dense models, we adopt a decoder-only transformer architecture akin to LLaMA 3.2 [14], with
model sizes ranging from 151M to 1.2B parameters. For the MoE model, we follow the structure
of OLMoE [15]. The specific architecture of models is summarized in Table 9. All experiments are
conducted on NVIDIA A100-80G GPUs, utilizing 32 GPUs for dense models with fewer than 1B
parameters, and 64 GPUs for the 1.2B dense model and MoE-1B-7B. Pretraining durations vary from
one to ten days, depending on the model size and the number of training tokens.

Table 9: Model architecture for dense models and MoE models.

Dense-151M Dense-285M Dense-550M Dense-543M Dense-1.2B MoE-1B-7B

Model Dimension 768 1024 1536 1024 2048 2048
FFN Dimension 2048 4096 4096 4096 9192 1024
Attention heads 16 16 16 16 32 16
Key/Value Heads 4 4 4 4 8 16
Layers 12 12 16 29 16 16
Vocabulary Size 100278 100278 100278 100278 100278 50280
Weight Tying True True True True True False
Context Length 4096 4096 4096 4096 4096 4096
Expert Granularity - - - - - 8 in 64

C.3 Hyperparameters for Pretraining

For the training hyperparameters, we primarily adopt the configuration outlined in OLMo 2 [30]
and OLMoE [15]. The training hyperparameters for our models across different sizes are presented
in Table 10. The model is trained using the AdamW optimizer with a learning rate (LR) of 3e-
4 (4e-4 for MoE), which is scheduled to decay following a cosine function. The minimum LR
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Table 10: Hyperparameters for Pretraining.

Dense Model MoE-1B-7B

Optimizer AdamW AdamW
Learning Rate (LR) 3e-4 4e-4
Minimum LR 3e-5 5e-5
LR Schedule cosine cosine
Weight Decay 0.1 0.1
β1 0.9 0.9
β2 0.95 0.95
Gradient Clipping 1 1
Batch Size 1024 1024
Warmup Tokens 8,388,608,000 10,485,760,000
Init Distribution Megatron Megatron
Init std 1/

√
2.5d 1/

√
2.5d

Init Truncation 3 std 3 std
RoPE θ 500000 10000
Activation SwiGLU SwiGLU
Load Balancing Loss Weight - 0.01
Router z-loss Weight - 0.001

is set to 3e-5 (5e-5 for MoE) to prevent excessively small updates in the later stages of training.
A weight decay of 0.1 is applied to regularize the model and prevent overfitting. The AdamW
optimizer employs β1 = 0.9 and β2 = 0.95 to control the first and second momentum estimates,
respectively. Gradient clipping is utilized with a threshold of 1 to mitigate the impact of large
gradients during optimization. The model’s training also incorporates a warmup phase with a total of
8,388,608,000 tokens (10,485,760,000 for MoE). The initialization of the model’s parameters follows
a normal distribution with a standard deviation defined as 1/

√
2.5d, where d is the model dimension.

Furthermore, the initialization is truncated at 3 standard deviations to ensure a more stable starting
point for training. The RoPE (Rotary Position Embedding) parameter θ is set to 500,000 (10000 for
MoE), controlling the scale of position encodings. Finally, the activation function used in the model
is SwiGLU, which has been shown to outperform traditional activation functions in various tasks.

D Computational Overhead

The direct contribution of RMSNorm to the overall parameter count and computational cost of a large
Transformer is, in fact, negligible. Below, we provide a detailed analysis to support this claim.

For simplicity, we consider only the MHA and the SwiGLU activation function, excluding the
Embedding and Output layers. Suppose the hidden dimension is d, the intermediate FFN size is
8
3d, the number of layers is L, and sequence length is s. As shown in the table below, RMSNorm
constitutes only a negligible fraction of the actual runtime and memory consumption in Transformer
under both Pre-Norm and HybridNorm configurations. And the ratio decreases as the model size
increases. Moreover, when employing GQA, the relative overhead of RMSNorm in HybridNorm is
further diminished.

Parameters Each RMSNorm layer introduces d parameters. In a Pre-Norm architecture, there are
two RMSNorm layers per Transformer layer, resulting in a total of 2dL parameters. In HybridNorm,
there are four RMSNorm layers per Transformer layer, yielding 4dL parameters in total. Each
attention block has four weight matrices (for Q, K, V, and O projections), thereby contributing 4d2L
parameters in total for the MHA component. Similarly, the FFN component introduces an additional
8d2L parameters.

Computation The FLOPs for RMSNorm to process a single token vector of dimension d is (4d+4).
Since the constant term becomes negligible for any reasonably large d, this can be simplified to 4d.
Accordingly, for Pre-Norm, the 2L RMSNorm operations incur a total cost of approximately 8sdL,
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Table 11: Parameter and computation cost comparison between Pre-Norm and HybridNorm architec-
tures. L denotes the number of layers, d the hidden dimension, and s the sequence length.

Type Architecture RMSNorm
Main Transformer

Components
(MHA & FFN)

Ratio
(RMSNorm / Total)

Parameter Pre-Norm 2dL 12d2L
2dL

12d2L+ 2dL
≈ 1

6d

HybridNorm 4dL 12d2L
4dL

12d2L+ 4dL
≈ 1

3d

Computation
(FLOPs)

Pre-Norm 8sdL (24sd2 + 4s2d)L
8sdL

(24sd2 + 4s2d)L
=

2

6d+ s

HybridNorm 16sdL (24sd2 + 4s2d)L
16sdL

(24sd2 + 4s2d)L
=

4

6d+ s

whereas HybridNorm incurs 16sdL. In practice, however, the dominant computational overhead in
a Transformer stems from matrix-vector multiplications, primarily within MHA and FFN modules.
Specifically, the FLOPs for MHA amount to (8sd2+4s2d)L, while the FLOPs for FFN total 16sd2L.

E Additional Experimental Results

E.1 Comparison with Other Methods

We compare the downstream evaluation results of 1.2B dense models trained on 200B tokens using
five normalization strategies: Post-Norm, Pre-Norm, Mix-LN, HybridNorm, and HybridNorm∗. As
shown in Table 12, HybridNorm∗ consistently delivers the highest average performance across
eight downstream tasks, outperforming all other methods both on average and in the majority of
individual cases.

In particular, HybridNorm∗ achieves the top scores on HellaSwag (59.56), SciQ (90.70), ARC-C
(36.15), PIQA (73.83, and COPA (80.40), while remaining competitive on the remaining tasks. In
contrast to Post-Norm and Pre-Norm, which show strong results on select benchmarks but suffer
from variability elsewhere, HybridNorm∗ exhibits robust and consistently balanced performance.
Notably, it attains an average score of 60.67, surpassing the second-best method (Pre-Norm, 59.56)
by over one point, underscoring its effectiveness in enhancing generalization across a diverse set of
evaluation tasks.

We also observe that Post-Norm underperforms Pre-Norm in both Table 12 and Table 6. This can be
attributed to the fact that, although Post-Norm generally offers a higher performance upper bound, it
suffers from reduced training stability and requires extensive hyperparameter tuning [4, 6, 40]. In
our experiments, we adopt the default hyperparameters from OLMo 2 without performing extensive
hyperparameter search; hence, it is unsurprising that Post-Norm does not outperform Pre-Norm under
these settings. This observation motivates us to combine the higher performance ceiling of Post-Norm
with the superior training stability and hyperparameter robustness of Pre-Norm. Our experimental
results show that HybridNorm achieves stronger robustness to hyperparameters, enabling a balanced
trade-off between stability and performance without the need for extensive tuning.

We also have extended Table 6 to include DeepNorm [7], Sandwich-LN [43], and OutputNorm (OLMo
2 [30]), as shown in Table 13. We have also clarified in the revised manuscript that OutputNorm
refers to the normalization strategy employed in OLMo 2, where RMSNorm is applied to the outputs
of attention and MLP sublayers.

It shows that HybridNorm consistently outperforms all other normalization strategies, including the
aforementioned advanced methods, across all metrics. This highlights the strength of our approach in
both generative perplexity tasks and HellaSwag.
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Table 12: Downstream evaluation results of 1.2B dense models with Post-Norm, Pre-Norm, Mix-LN,
HybridNorm, and HybridNorm∗ under 200B training tokens. OQA refers to OpenbookQA.

Methods BasicArithmetic HellaSwag SciQ ARC-C ARC-E PIQA OQA COPA Avg.↑
Post-Norm 37.07 57.44 88.86 35.85 66.32 73.23 37.62 75.80 59.02
Pre-Norm 40.06 57.38 89.78 32.14 67.12 73.04 36.58 80.40 59.56
Mix-LN 33.23 56.91 89.20 33.78 69.30 72.25 37.00 79.00 58.83
HybridNorm 35.29 58.24 88.36 35.69 68.63 73.45 37.02 76.80 59.18
HybridNorm∗ 39.46 59.56 90.70 36.15 68.25 73.83 37.00 80.40 60.67

Table 13: Comparison of normalization methods on 550M models.

Methods Training Loss↓ C4 PPL↓ Pile PPL↓ HellaSwag↑
Post-Norm 2.760 20.43 10.57 51.20
Pre-Norm 2.751 20.30 10.48 51.97
Mix-LN 2.760 20.43 10.56 51.29
DeepNorm 2.746 20.34 10.48 52.11
Sandwich-LN 2.751 20.45 10.58 52.07
OutputNorm (OLMo 2) 2.750 20.34 10.44 52.82

HybridNorm 2.737 20.00 10.29 53.35
HybridNorm∗ 2.731 19.85 10.25 53.36

E.2 Signal Propagation

Following [45], we plotted the evolution of the cosine similarity between tokens during pretraining.
As shown in Figure 7, both Pre-Norm and Mix-LN exhibit a notable increase in token similarity in
certain layers, indicating a tendency toward representation degeneration. In contrast, HybridNorm
maintains consistently lower similarity across most layers, suggesting better capabilities in informa-
tion representation [45]. This highlights the benefit of employing QKV-Norm in the attention module
and Post-Norm in FFN to improve information flow.

E.3 Entropy Dynamics

Following [49], we also examine the layerwise entropy evolution during pre-training. From Figure 8,
HybridNorm maintains entropy within a relatively stable range, avoiding the sharp fluctuations
observed in other methods. A stable entropy distribution is known to correlate with smoother training
dynamics and improved optimization stability [49], providing further empirical support for the
robustness of HybridNorm.

E.4 Overall Results for Dense Models

Overall results for the dense model are presented in Figure 9, depicting validation losses and
downstream evaluations over 1T training tokens. The comparison includes models with Pre-Norm,
HybridNorm, and HybridNorm∗. One can see that both HybridNorm and HybridNorm∗ outperform
Pre-Norm, with HybridNorm∗ achieving the lowest training and validation losses while delivering
the best downstream performance on average.

E.5 Overall Results for MoE Models

Overall results for the MoE model are presented in Figure 10, illustrating validation losses and
downstream evaluations over 500 billion training tokens. The comparison focuses on models
employing Pre-Norm and HybridNorm∗. From the figures, we can see that HybridNorm∗ achieves
lower training loss and validation loss compared to Pre-Norm on all datasets, such as C4, Books, and
Pile. Additionally, HybridNorm∗ outperforms Pre-Norm on most downstream tasks, though there
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Figure 7: Evolution of the cosine similarity between tokens for Post-Norm, Pre-Norm, Mix-LN, and
HybridNorm at different layers.

are some cases where it underperforms. On average, however, HybridNorm∗ demonstrates superior
downstream performance.

F Essential Differences Between Pre-Norm and Post-Norm

To facilitate a unified analysis of the various normalization variants, we propose a categorization
of Pre-Norm and Post-Norm based on their distinct approaches to residual connections (refer to
Figure 11, particularly the sections highlighted by the dashed boxes). From this perspective, the
FFN sublayer in HybridNorm can be considered as adopting a connection scheme similar to the
Post-Norm.
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Figure 8: Evolution of the layerwise entropy for Post-Norm, Pre-Norm, Mix-LN, and HybridNorm at
different layers.

Figure 11: A unified view of Pre-Norm and Post-Norm
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Figure 9: Overall loss and downstream evaluations for the 1.2B dense models with 1T training tokens.

G Formulas for Different Positions of Normalization Layers

In this section, we present the mathematical formulations for various normalization techniques. We
begin by introducing the normalization layer within the attention mechanism.
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Figure 10: Overall loss and downstream evaluations for the MoE models with 500B training tokens.

Vanilla scaled dot-product attention are show in Eq. 1, and attention with QKV-Norm is defined
in Eq. 5. Similarly, attention with QK-Norm is defined as

attnQK(Q,K, V ) = softmax

(
Norm(Q)Norm(K)⊤√

dk

)
V. (43)
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Attention with KV-Norm is defined as

attnKV (Q,K, V ) = softmax

(
QNorm(K)⊤√

dk

)
Norm(V ). (44)

As mentioned in Section 5.4, we extend traditional normalization approaches by considering not only
the Query (Q), Key (K), and Value (V) components but also the Context (C), which refers to the
output of the attention mechanism. And attention with QKVC-Norm is defined as

attnQKV C(Q,K, V ) = Norm

(
softmax

(
Norm(Q)Norm(K)⊤√

dk

)
Norm(V )

)
. (45)

Attention with QKC-Norm is defined as

attnQKC(Q,K, V ) = Norm

(
softmax

(
Norm(Q)Norm(K)⊤√

dk

)
V

)
. (46)

Attention with KC-Norm is defined as

attnKC(Q,K, V ) = Norm

(
softmax

(
QNorm(K)⊤√

dk

)
V

)
. (47)

Then we denote MHA with attn# as MHA# for # ∈ {QKV C,QKV,QKC,QK,KV,KC},

MHA(X)# = Concat(head1, . . . ,headh)W
O, (48)

where headi = attn#(Qi,Ki, Vi) for i = 1, 2, . . . , h, {•i}hi=1 = Split(XW•) for • ∈ {Q,K, V },
and WQ,WK ,WV ,WO ∈ Rd×d are learnable parameters.

With the aforementioned definitions in hand, we present the mathematical formulations for the
methods discussed in the Ablation Study below (# ∈ {QKV C,QKV,QKC,QK,KV,KC}).

#-Post:

Y l = MHA#(X
l) +X l, (49)

X l+1 = FFN(Norm(Y l)) + Norm(Y l). (50)

#-Pre:

Y l = MHA#(X
l) +X l, (51)

X l+1 = FFN(Norm(Y l)) + Y l. (52)

Pre-#-Post:

Y l = MHA#(Norm(X l)) +X l, (53)

X l+1 = FFN(Norm(Y l)) + Norm(Y l). (54)

Pre-#-Pre:

Y l = MHA#(Norm(X l)) +X l, (55)

X l+1 = FFN(Norm(Y l)) + Y l. (56)

Pre-Post:

Y l = MHA(Norm(X l)) +X l, (57)

X l+1 = FFN(Norm(Y l)) + Norm(Y l). (58)

Post-Pre:

Y l = MHA(Norm(X l)) + Norm(X l), (59)

X l+1 = FFN(Norm(Y l)) + Y l. (60)
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H Broader Impacts and Limitations

H.1 Broader Impacts

This paper proposes HybridNorm, a simple yet effective hybrid normalization technique that improves
the training stability and performance of transformers. It has the potential to assist the LLM
community in advancing transformer architectures and enhancing their overall effectiveness. While
there may be societal implications of our work, none of which we feel must be specifically highlighted
here.

H.2 Limitations

First, due to limited computational resources, our experiments are conducted on models ranging
from 151M to 7B parameters. While our method shows strong effectiveness on smaller models, its
performance on larger-scale models has not yet been empirically validated. Second, although our
theoretical analysis demonstrates improved gradient stability, this does not directly guarantee better
overall model performance.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly discuss the contributions and scope of the paper in both the abstract
and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In Section 4 and Appendix B, we theoretically analyze the improved gradient
stability of our method. All necessary notations and settings are clearly defined, and
complete proofs are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of the experimental settings in Section 5.1
and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed descriptions of the experimental settings in Section 5.1
and Appendix C, including information on baselines, datasets, model architectures, training
hyperparameters, evaluation sets, and other implementation details necessary to understand
and reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the high computational cost of pre-training, we did not repeat experi-
ments to compute error bars. For evaluation, we follow standard practices in prior work by
reporting results on public benchmarks without including error bars or statistical significance
tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the GPU types and provide detailed training information in Ap-
pendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses broader impacts of the work in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

39

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including code, datasets, and models,
are properly credited and used in accordance with their respective licenses. Appropriate
citations and acknowledgments are provided in the manuscript.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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