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ABSTRACT

Training vision-language models (VLMs) efficiently is crucial for advancing mul-
timodal understanding, yet remains challenging due to the heterogeneity of train-
ing data. Variations in sequence lengths and modality composition significantly
degrade the performance of pipeline parallelism (PP), leading to increased idle
times and low hardware utilization.
We present PipeTune, a unified framework that systematically mitigates these in-
efficiencies by jointly optimizing micro-batch construction, ordering, size, and
vision encoder computation. PipeTune adopts a computation-aware packing al-
gorithm to balance workloads, dynamically adjusts micro-batch sizes based on
sampled data, reorders execution to minimize stalls, and exploits idle times for
encoder pre-computation. A lightweight simulator guides runtime decisions, en-
abling performance optimization without altering training semantics.
Across diverse model sizes, dataset mixtures, and hardware configurations,
PipeTune consistently accelerates training, achieving up to 40.7% reduction in
iteration time. Our evaluation demonstrates that each optimization component
contributes complementary gains, and the overall overhead remains minimal. By
holistically addressing data-induced inefficiencies, PipeTune enables more scal-
able and efficient training of VLMs.

1 INTRODUCTION

The emergence of vision-language models (VLMs) significantly expands the capabilities of large
language models (LLMs). By augmenting the LLM backbone with a vision encoder, VLMs enable
the joint understanding of both textual and visual information, thereby unlocking a wide range of
multimodal applications such as visual question answering (Antol et al., 2015), multimodal dialogue
(Team et al., 2024), and embodied AI (Driess et al., 2023). However, training VLMs efficiently still
remains challenging.

A key difficulty in VLM training arises from data heterogeneity. Modern VLMs rely on mixtures
of multimodal and textual datasets to achieve broad capabilities. This heterogeneity results in sig-
nificant variation in sequence lengths and modality composition, both within and across training
iterations. Such variability significantly complicates efficient training, especially under pipeline
parallelism (PP), a widely adopted approach for scaling model across multiple devices.

In particular, heterogeneous inputs exacerbate three main sources of inefficiency: (1) micro-batch
imbalance, where uneven computation across micro-batches leads to stragglers and stalls; (2) inter-
iteration fluctuation, where shifting data distributions cause inconsistent pipeline utilization; and (3)
modality composition variance, where uneven visual workloads make the vision encoding a bottle-
neck. Together, these issues increase pipeline bubbles, reduce hardware utilization, and ultimately
degrade training throughput.

Existing approaches attempt to mitigate parts of these inefficiencies. For instance, WLB-LLM
(Wang et al., 2025) introduces a variable-length packing method to balance computation across
micro-batches, Optimus (Feng et al., 2025) exploits pipeline bubble times for encoder computation,
and OrchMLLM (Zheng et al., 2025) dispatches batches to improve modality coherence. However,
these solutions focus on specific aspects of the problem and fall short of providing a holistic solution.
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In this paper, we introduce PipeTune, a unified framework that systematically optimizes pipeline
parallelism for efficient VLM training. PipeTune jointly tunes micro-batch construction, ordering,
size, and vision encoder scheduling to address the above inefficiencies.

Specifically, PipeTune adopts a computation-aware packing algorithm that balances workloads
across micro-batches, mitigating stragglers caused by uneven sequences. It further dynamically
adjusts micro-batch sizes according to the characteristics of sampled data, ensuring better pipeline
filling and higher utilization. To reduce stalls, PipeTune reorders micro-batch execution and lever-
ages idle periods for vision encoder pre-computation, overlapping computation that would otherwise
delay downstream stages. Finally, a lightweight pipeline simulator guides these decisions at runtime,
enabling optimization without affecting convergence behavior. Extensive experiments show that
PipeTune consistently accelerates training across diverse model scales, data mixtures, and hardware
setups, achieving up to 40.7% reduction in iteration time.

2 VISION-LANGUAGE MODEL TRAINING

Figure 1: Overview of a vision-
language model (VLM) workflow.

Figure 1 illustrates the workflow of vision-language mod-
els (VLMs). A VLM typically builds upon a large lan-
guage model (LLM) backbone. By integrating a vision en-
coder—commonly a Vision Transformer (ViT)—alongside a
lightweight projection module, it enables the LLM to jointly
reason over both textual and visual modalities. Given the in-
put images and texts, the vision encoder first transforms the
images into feature embeddings. These embeddings are then
mapped by the projector into token space and interleaved with
text tokens to form the input sequences. The backbone model
then processes the sequences and generate the outputs.

2.1 DATASETS

VLM training requires large-scale, diverse datasets comprising both visual and textual inputs. Many
previous works (Lu et al., 2024; Wu et al., 2024; Wang et al., 2024; Lin et al., 2024; Deitke et al.,
2025) have emphasized the critical role of data construction in determining VLM performance. The
open-source datasets commonly used in these studies can be broadly categorized into two types:

• Image-text pairs: Each sample consists of one or more images paired with textual annotations
or question–answer pairs. Representative datasets include COYO-700M (Byeon et al., 2022b),
LAION (Schuhmann et al., 2022).

• Interleaved image-text corpora: Samples consist of natural language text interspersed with
one or more images, often mimicking real-world multimedia documents. Examples include
MMC4 (Zhu et al., 2023), Wiki (Burns et al., 2023).

To ensure broad coverage of real-world scenarios, datasets are typically mixed together during train-
ing (Lin et al., 2024). This means that at each training iteration, a VLM needs to simultaneously
process the sequences from different datasets, which often vary in the length and the number of
images.

In addition, previous works have also found that training solely on multimodal data may lead to
catastrophic forgetting of language capabilities (Lin et al., 2024; Lu et al., 2024). To address this, a
joint training strategy is often adopted, mixing multimodal data with text-only corpora (e.g., FLAN
(Longpre et al., 2023)). For example, DeepSeek-VL (Lu et al., 2024) found that a multimodal-to-
text mixing ratio of 7:3 yields a favorable trade-off between language retention and multimodal
performance. They further introduced a warm-up strategy that gradually reduces the proportion of
language-only data as training progresses, thereby facilitating a smooth transition.

While data mixture and curriculum strategies may boost VLM performance, they also make the
training data increasingly heterogeneous. Such data heterogeneity brings challenges to the training
efficiency, which we will discuses later.
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2.2 PARALLELISM

Since the language model constitutes the core component of a VLM, the parallelism strategies used
in LLM training are also adopted in VLM training. These strategies include data parallelism (DP;
Li et al. (2020)), tensor parallelism (TP; Shoeybi et al. (2019)), pipeline parallelism (PP; Narayanan
et al. (2021)), and others (Li et al., 2021; Rajbhandari et al., 2020). Among these strategies, PP is
commonly used when we need to support larger models and cross-node scaling.

PP partitions the model vertically into pipeline stages. Each stage typically contains a subset of the
model layers. Input batches are processed sequentially through the pipeline stages in both forward
and backward passes. To improve device utilization and throughput, batches are further divided
into smaller micro-batches so that stages can process different micro-batches at the same time. One
widely adopted scheduling strategy is 1F1B (one-forward–one-backward), in which each stage alter-
nates between forward and backward computations (Narayanan et al., 2021). This method reduces
peak memory usage and pipeline idle time (also known as bubble time).

In VLM training, sequences in input batches come from diverse datasets and vary significantly in
length. Simply padding them to the same maximum length (denoted as max seq len) when con-
structing micro-batches leads to substantial wasted computation and memory. Instead, packing is
often adopted, which concatenates sequences along the sequence dimension to form a longer se-
quence (Jiang et al., 2024). Attention masks are then applied to prevent tokens from attending across
sample boundaries. Recent techniques such as FlashAttention-2 (Dao, 2023) further optimize the
kernels for variable-length inputs, which eliminates redundant attention computations between un-
related tokens. While the micro-batch size (denoted as mbs) is usually predefined before training to
fit within GPU memory constraints, with packing, each micro-batch now comprises a single long
sequence of length mbs×max seq len.

In addition, with visual components introduced in VLMs, their integration into the PP framework
can be handled in different ways. Depending on the relative size of these components and the chosen
strategy, they can either be assigned to standalone pipeline stages (Zhang et al., 2025) or co-located
with existing LLM layers (Lu et al., 2024). In this paper, we adopt the latter approach, as the vision
encoder we use is relatively small (0.4B) compared with the backbone models (3-13B). Figure 2
shows several examples of VLM 1F1B schedules, where the visual components (highlighted in
green) are scheduled within the first PP stage.

To ensure the efficiency of pipeline parallelism, it’s critical to make the computation on different
stages overlap effectively over the timeline. This requires that the computation load is evenly dis-
tributed across micro-batches and stages. If there were workload imbalance (as illustrated in Figure
2a), the slowest stage may stall other stages and becomes the straggler (Lin et al., 2025). In addition,
it is also essential to maintain a sufficient number of micro-batches in the schedule (Huang et al.,
2019), otherwise, GPU utilization may remain low even when workloads are balanced. The datasets
used for VLM training, however, pose severe challenges to these requirements.

3 CHALLENGES AND OUR SOLUTIONS

In this section, we discuss the efficiency challenges in vision-language model training and our cor-
responding solutions.

To illustrate, we construct a dataset by sampling from three representative datasets mentioned in
Section 2.1: COYO-700M (Image-text pairs), MMC4-Core (Interleaved image-text corpora), and
FLAN (Text-only corpora). Their characteristics are summarized in the table 1. Using this mixed
dataset, we simulate and visualize some 4-stage pipelines in Figure 2.

3.1 MICRO-BATCH IMBALANCE

The first challenge stems from workload imbalance across micro-batches. As described in Sec-
tion 2.2, at each iteration a data batch is sampled from the mixed dataset and then partitioned into
micro-batches. With packing, each micro-batch comprises a long sequence containing the same
number of tokens.
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# img / sample # text tokens / sample

Dataset Mean Median Max Mean Median Max

COYO-700M 1 1 1 17.24 13 1,523
MMC4-Core 4.08 3 15 408.94 362 16,470
FLAN - - - 154.68 52 222,109

Table 1: Characteristics of three representative datasets used in VLM training.

Device 0
Device 1
Device 2
Device 3

0 0 1 1 2 2 3 3 0 4 4 1 2 3 4
0 1 2 0 3 1 4 2 3 4

0 1 0 2 1 3 2 4 3 4
0 0 1 1 2 2 3 3 4 4

Fwd
Bwd
ViT

(a) Baseline with imbalanced micro-batches.

Device 0
Device 1
Device 2
Device 3

0 0 1 1 2 2 3 3 0 4 4 1 2 3 4
0 1 2 0 3 1 4 2 3 4

0 1 0 2 1 3 2 4 3 4
0 0 1 1 2 2 3 3 4 4

7.35% Fwd
Bwd
ViT

(b) Balanced micro-batches. More uniform workloads alleviate straggler effects.

Device 0
Device 1
Device 2
Device 3

0 011 2 2 3 3 0 44 1 5 5 2 6 6 3 7 7 4 8 8 5 9 9 6 7 8 9
0 1 2 0 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

0 1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

10.93% Fwd
Bwd
ViT

(c) Balanced micro-batches with better micro-batch size. Adjusting the micro-batch size improves
pipeline filling and GPU utilization.

Device 0
Device 1
Device 2
Device 3

1144 5 5 2 2 1 6 4 7 5 9 2 88 6 3 3 7 0 0 9 8 3 0
1 4 5 1 2 4 6 5 7 2 9 6 8 7 3 9 0 8 3 0

1 4 1 5 4 2 5 6 2 7 6 9 7 8 9 3 8 0 3 0
1 1 4 4 5 5 2 2 6 6 7 7 9 9 8 8 3 3 0 0

P P PP

6.05% Fwd
Bwd
ViT

(d) Encoder pre-computation and micro-batch reordering further mitigate encoder bottleneck and
shorten end-to-end latency.

Figure 2: Pipeline parallelism simulation using the mixed dataset sampled from three datasets in
Table 1. The four panels illustrate progressive optimizations addressing inefficiency. Together,
these optimizations achieve a 24.33% performance gain..

However, as shown in Table 1, all three datasets exhibit a long-tail distribution in sequence length.
This means that when sequences are packed, some micro-batches may contain fewer but longer se-
quences, while others may include many shorter sequences. As illustrated in Figure 3, due to the
quadratic complexity of self-attention, micro-batches with longer sequences require disproportion-
ately more computation. These “long-sequence” micro-batches can therefore become stragglers in
pipeline execution. For instance, in Figure 2a, we simulate a scenario in which micro-batches are
imbalanced: Micro-batch 1 requires significantly more time for its forward and backward passes.
This delay stalls subsequent computations and creates pipeline bubbles.

Our Solution. To address this, we implement a computation-aware packing algorithm that bal-
ances workloads across micro-batches. Our approach is inspired by the method proposed in Wang
et al. (2025), but instead of relying on a latency estimator, we directly estimate the computational
cost in FLOPs. This yields more reliable estimates, particularly for short sequences, where latency
predictors tend to be inaccurate.

As shown in Algorithm 1, the algorithm takes a batch of input sequences and their lengths, and in-
crementally constructs packed micro-batches under the maximum sequence length constraint Lmax.
For each new sequence, the algorithm first tries to place it into the micro-batch that yields the lowest

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of workload imbalance across micro-batches caused by the quadratic complex-
ity of attention computation. Pink blocks represent visual tokens, while blue blocks indicate textual
tokens in the packed sequences.

computation cost. If no placement satisfies the length constraint, it falls back to the micro-batch
with the smallest current length. This greedy two-stage strategy effectively alleviates the workload
imbalance. As shown in Figure 2b, applying the balance algorithm reduces pipeline bubbles and
achieves a 7.35% reduction in end-to-end training time.

Algorithm 1 Balance Packing Algorithm
Input: Sequences {si}ni=1 with lengths {li}, max length Lmax, model config C
Output: Packed micro-batches B

1 Sort sequences by length in descending order B ← [ ]

2 foreach sequence (s, l) do
3 target← ∅ minF← +∞
4 foreach micro-batch b ∈ B do
5 if len(b) + l ≤ Lmax then
6 F ← compute flops(b ∪ {l}, C) if F < minF then
7 minF← F target← b

8 if target = ∅ then
9 target← arg min

b: len(b)+l≤Lmax

len(b)

10 if target = ∅ then
11 Create new micro-batch with (s)

12 else
13 Append s to target

14 return B

3.2 INTER-ITERATION FLUCTUATION

Data heterogeneity can also cause fluctuation across iterations. As mentioned in Section 2.2, the
micro-batch size (mbs) is typically defined during initialization and remains fixed throughout train-
ing. However, this static configuration may not be optimal. Consider the MMC4 and FLAN datasets
listed in Table 1. If each image is transformed into 576 visual tokens by the encoder, then the
average sequence length of MMC4 samples is 17.83 times longer than that of FLAN samples. Con-
sequently, when using the same micro-batch size, FLAN samples yield far fewer tokens per step
and therefore fewer micro-batches. When sampling from such heterogeneous datasets, the aver-
age sequence length and the number of micro-batches after packing may fluctuate across iterations,
leading to under-utilization of pipeline parallelism. While the micro-batches have been balanced in
the pipeline shown in Figure 2b, the pipeline is still insufficiently filled. In contrast, as shown in
Figure 2c, simply reducing the micro-batch size by half accelerates the pipeline by 10.93%.

Our Solution. Instead of relying on the static configuration, at each iteration, we use a pipeline
simulator to estimate the latency and search for the optimal micro-batch size based on the data
sampled.

5
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3.3 MODALITY COMPOSITION VARIANCE

Another source of inefficiency arises from variance in modality composition, meaning that the pro-
portion of visual and textual tokens can differ significantly across micro-batches. As illustrated in
Figure 3, the first packed sequence contains a much higher proportion of visual tokens than the
second. This issue can persist even with balance algorithm, as a sequence comprises purely textual
tokens and another sequence with purely visual tokens can have identical computation workload for
the LLM backbone. However, the processing time required by the vision encoder can vary sub-
stantially. Thus, micro-batches with a large proportion of images can cause the vision encoder to
become a performance bottleneck. As shown in Figure 2c, both micro-batch 5 and 7 suffer from
encoder-induced delays, which propagate through the pipeline.

Our Solution. We identify two opportunities to mitigate this issue. First, following Feng et al.
(2025), idle device times can be exploited for encoder pre-computation. During such periods, we
pre-fetch images from subsequent micro-batches and perform encoder computation in advance, as
highlighted in gray in Figure 2d.

Second, we can permute the execution order of micro-batches within the pipeline. For example,
injecting micro-batch 5 earlier in the schedule reduces the delay caused by its higher encoding
overhead. Because gradients from different micro-batches are accumulated throughout training, this
reordering preserves the original convergence semantics. With these two techniques applied, we
observe a further 6.05% improvement in training efficiency.

4 PIPETUNE

Integrating the aforementioned solutions, we present PipeTune, a framework designed to system-
atically enhance the efficiency of pipeline parallelism in vision-language model training. PipeTune
revises the packing strategy and adopts the balance algorithm to evenly distribute workloads across
micro-batches. It then adaptively tunes pipeline parallelism along three key dimensions: (i) micro-
batch order, which determines the execution sequence of micro-batches within the pipeline; (ii)
micro-batch size, which controls the number of micro-batches and affects pipeline utilization; and
(iii) encoder computation, which governs the scheduling of visual encoder processing. These di-
mensions are jointly optimized through a simulator-driven approach, enabling PipeTune to evaluate
candidate configurations and select those that minimize pipeline latency at runtime.

To efficiently explore the configuration space, PipeTune first performs offline profiling to character-
ize the relationship between computation time and input sequence length for both the backbone and
encoder models. Based on these profiling results, and given the input sequences in each iteration, it
estimates each micro-batch’s stage latency. It then employs a directed acyclic graph (DAG)-based
simulator to approximate the overall pipeline latency. Specifically, the computation of micro-batch
i at stage j is abstracted as a node in the DAG, and dependencies between nodes are determined
by the 1F1B schedule. With m micro-batches in an n-stage pipeline, the DAG contains mn nodes,
and topological sorting can be performed in O(mn) time. Using this simulator, PipeTune searches
for the optimal micro-batch sizes and ordering that minimize latency, while rescheduling encoder
computation to better exploit idle times. We will discuss the search overhead in Section 5.2.

5 EVALUATION

We develop PipeTune atop the open-sourced, PyTorch-native framework TorchTitan (Liang et al.,
2024) and evaluate its training performance across various VLMs, with backbone language model
sizes of 3B, 7B, and 13B. The backbone models adopt architectures similar to the LLaMA series
models (Touvron et al., 2023). The configurations are detailed in the table 4.

For the ViT-based image encoder, we use the Siglip-so400m model and connect it to the back-
bone via a two-layer MLP projector. In all experiments, input images are rescaled to a resolution of
336 pixels, resulting in each image being encoded into 576 patch tokens by the vision encoder.

Testbed: We conduct our experiments on two super-computing clusters to evaluate PipeTune under
diverse hardware environments:

6
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Model # of
Layers

Embed
Dim

FFN
Hidden

Dim

# of
Attn.
Heads

3B 24 2560 6912 32
7B 32 4096 11008 32
13B 40 5120 13824 40

Figure 4: Backbone model specifications used in
the evaluations.

0 2000 4000 6000 8000

DataMix1
DataMix2
DataMix3

Figure 5: Sequence length distribu-
tions of different data mixtures.

• Cluster A: Each node contains 4 NVIDIA A100-80GB GPUs, connected via high-bandwidth
NVLinks, and a single 64-core AMD CPU with 256GB DRAM. For inter-node communication,
each node is equipped with 4 NICs delivering 200Gbps of bandwidth via PCIe 4.0.

• Cluster B: Each node contains a single NVIDIA H200 GPU (96GB HBM3) and a 72-core
Grace CPU with 120GB DRAM. Nodes are connected via NVIDIA InfiniBand, providing up
to 400Gbps of internode bandwidth.

All the experiments are conducted using pipeline parallelism across 4 nodes (PP = 4). On Cluster A,
we additionally enable tensor parallelism (TP = 4) within each node to maximize NVLink bandwidth
utilization. The global batch size (i.e., total number of samples per iteration) is fixed at 128. We set
max seq len to 4,096 for PP = 4 experiments. For experiments with TP = 4 and PP = 4, max seq len
is increased to 8,192. Micro-batch sizes (mbs) are tuned per configuration to fully utilize available
GPU memory.

Datasets: Following prior work (Lin et al., 2024), we adopt a combination of interleaved image–text
corpora (MMC4-Core (Zhu et al., 2023)), image–text pairs (COYO-700M (Byeon et al., 2022a)),
and text-only corpora (FLAN (Chung et al., 2024)). To evaluate PipeTune under different data
heterogeneity conditions, we construct three mixed datasets with varying sampling ratios:

• DataMix1: MMC4 : COYO : FLAN = 5 : 5 : 90
• DataMix2: MMC4 : COYO : FLAN = 30 : 30 : 40
• DataMix3: MMC4 : COYO : FLAN = 45 : 45 : 10

The sequence length distributions of these three mixtures are shown in Figure 5. DataMix1 simulates
a language-dominant setting, with text-only data comprising 90% of the training corpus. In contrast,
DataMix2 and DataMix3 progressively increase the proportion of multimodal data to 60% and 90%,
respectively. As the multimodal content increases, both the average sequence length and its variance
grow substantially, intensifying the heterogeneity challenges addressed by PipeTune.

Baselines: We compare PipeTune against two baselines — Original and Balanced — both of which
fix the micro-batch size to the maximum value permitted by GPU memory throughout training. Nei-
ther baseline employs micro-batch reordering nor encoder pre-computation. We use training itera-
tion time (excluding data loading) as the performance metric. All configurations are implemented
within the same framework to ensure a fair comparison.

• Original: Samples are randomly packed into micro-batches without any workload balancing.
• Balanced: Samples are packed using the balance algorithm introduced in Section 3.1.

5.1 OVERALL PERFORMANCE

We first compare PipeTune with the baselines in terms of average iteration time. As shown in
Figure 6, PipeTune improves training throughput by 18.40%–40.72% compared with the original
setting, with consistent gains across model sizes and dataset mixtures. Improvement over the bal-
anced setting can also reach 19.32%, underscoring the effectiveness of PipeTune’s joint optimization
strategy.

Performance improvements are more pronounced with larger GPU configurations (TP = 4, PP =
4). Tensor parallelism allows for larger micro-batch sizes within GPU memory limits, thereby ex-
panding the search space for better configurations. PipeTune exploits this flexibility by dynamically
identifying optimal settings across different iterations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DataMix 1 DataMix 2 DataMix 30

2

4

6

8

10

Ite
ra

tio
n 

Ti
m

e 
(s

ec
)

0.87x
0.91x 0.95x

0.82x
0.85x

0.94x

3B - PP=4

DataMix 1 DataMix 2 DataMix 3

0.81x

0.90x
0.96x

0.78x

0.87x

0.96x

7B - PP=4

DataMix 1 DataMix 2 DataMix 3

0.69x

0.86x

0.96x

0.70x

0.86x

0.95x

13B - PP=4

DataMix 1 DataMix 2 DataMix 30

5

10

15

20

Ite
ra

tio
n 

Ti
m

e 
(s

ec
)

0.87x
0.83x

0.91x

0.71x
0.70x

0.85x

3B - TP=4, PP=4

DataMix 1 DataMix 2 DataMix 3

0.69x

0.94x 0.93x

0.64x

0.86x 0.88x

7B - TP=4, PP=4

DataMix 1 DataMix 2 DataMix 3

0.69x

0.88x
0.98x

0.59x

0.71x

0.84x

13B - TP=4, PP=4

Original Balanced PipeTune

Figure 6: Average iteration times on three data mixtures across different model sizes and parallelism
settings.
To further analyze these gains, Table 2 presents a breakdown of results for the 13B model on Cluster
A, where we incrementally integrate three key components (balance algorithm, micro-batch reorder-
ing & encoder pre-computation, and adaptive micro-batch sizing) over the original setting. This
breakdown highlights the distinct contributions of each component and shows how their cumulative
effect leads to the end-to-end performance gains.

For DataMix1, the balance algorithm provides the largest initial gain (31.46%). Because 90% of
this dataset consists of text-only samples, the resulting sequences are relatively short, producing
fewer micro-batches per iteration. In this regime, pipeline throughput is highly sensitive to straggler
micro-batches. Eliminating variance through balancing has a direct impact on end-to-end efficiency.
While techniques like reordering and pre-computation yield only marginal improvements here.

For DataMix2 and DataMix3, which include more multimodal data, sequence lengths are longer and
more heterogeneous. In these settings, balancing alone provides moderate benefits but does not fully
address the imbalance across modality and iterations. Here, adaptive micro-batch sizing emerges as
the dominant contributor, yielding improvements of 11.8% and 9.1% respectively. Moreover, with a
larger number of micro-batches in the pipeline, reordering them and leveraging idle time within the
pipeline for encoder pre-computation also bring more benefits.

Settings DataMix1 DataMix2 DataMix3
Original 15.35 17.76 17.25

+ Balance algorithm 10.52 (↓31.5%) 15.61 (↓12.1%) 16.82 (↓2.5%)
+ Micro-batch reordering & Encoder
pre-computation 10.34 (↓32.6%) 14.73 (↓17.1%) 16.04 (↓7.0%)

+ Adaptive micro-batch sizing 9.10 (↓40.7%) 12.63 (↓28.9%) 14.47 (↓16.1%)

Table 2: Breakdown of PipeTune’s optimizations on the 13B model (TP = 4). Values denote average
iteration time in seconds, with relative improvements over the original shown in parentheses.

5.2 ABLATION AND ANALYSIS

Effects of adaptive micro-batch size. We further investigate the impact of adaptive micro-batch
size. We conduct experiments using the 3B model with TP = 4, as this configuration has the largest
search space — the maximum micro-batch size can be set to 8. As shown in Figure 7, fixing
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Figure 8: PipeTune’s search overhead
across different global batch sizes.

the micro-batch size at 4 achieves the best static performance across all three data mixtures. For
DataMix1 and DataMix2, PipeTune matches this optimal static performance after searching. How-
ever, in DataMix3, the higher variance in sequence lengths causes more significant inter-iteration
fluctuations. By adaptively selecting the optimal micro-batch size at each step, PipeTune achieves a
further 9.27% improvement compared to static settings.

Overhead of PipeTune optimization. The primary source of PipeTune overhead comes from find-
ing the optimal micro-batch order, as this involves permutation and simulating the corresponding la-
tency. Exhaustive permutation becomes infeasible as the number of micro-batches increases. Thus,
following Jiang et al. (2024), we cluster micro-batches based on their estimated latency and only
permute the order of these clusters. We observe that applying the balance algorithm (§3.1) sig-
nificantly reduces computation variance across micro-batches, enabling us to keep the number of
clusters below six. Figure 8 reports the search overhead as we scale the global batch size. In the
previous experiments, the overhead remains under 0.2 seconds. Even when scaling the global batch
size to 1,024, PipeTune requires less than 1.5 seconds to tune the pipeline parallelism, demonstrating
the efficiency and scalability of our method.

6 RELATED WORKS AND DISCUSSION

Model Heterogeneity. In this work, we primarily focus on mitigating the training inefficiency in-
troduced by data heterogeneity. As discussed in §2.2, the vision encoder used in our experiments
is relatively lightweight compared to the LLM backbone — a common setup in many open-sourced
VLMs (Wang et al., 2024; Lu et al., 2024). However, as the vision encoder scales, model hetero-
geneity can also become a non-negligible challenge. Prior studies (Huang et al., 2024; Zhang et al.,
2025; Jang et al., 2025) have explored strategies for efficiently scheduling heterogeneous modules
during VLM training.

Imbalance across DP groups. Previous work (Zhang et al., 2025; Zheng et al., 2025) has also
investigated methods for re-balancing workloads along the data parallel dimension to eliminate po-
tential bottlenecks. While our method focuses on optimizing pipeline parallelism, these techniques
are generally complementary and have the potential to further optimize the training efficiency.

7 CONCLUSION

In this paper, we presented PipeTune, a framework that accelerates VLM training by tuning pipeline
parallelism. PipeTune balances micro-batch construction and adaptively optimizes micro-batch or-
der, micro-batch size, and encoder computation. Through extensive experiments across diverse
model scales, dataset compositions, and hardware configurations, PipeTune achieves up to 40.7%
reduction in training latency. Our analysis further shows that each component contributes comple-
mentary performance gains, while the optimization overhead remains negligible., highlighting the
effectiveness and scalability of our approach.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we made use of large language models (LLMs) in the following ways:

Writing Assistance: We used the LLM to improve the clarity and fluency of language. But all
content was reviewed, verified, and where necessary, rewritten by the authors to ensure accuracy
and originality.

Technical Support: During the implementation and experiments, we used the LLM for code and
data analysis suggestions. But all the final implementation and experiments were designed and
validated by the authors.

Limitations of Use: At no stage was the LLM used to generate novel research results or survey
related work to make substantive claims.
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