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Abstract

Recently, large language models (LLMs) have001
demonstrated remarkable reasoning abilities,002
augmented by recent advances in prompting003
techniques and reasoning frameworks. Many004
popular frameworks (Du et al., 2023; Yao et al.,005
2023; Shinn et al., 2023) rely on the assump-006
tion that models are able to give effective feed-007
back on their own generations. This feedback008
is partly predicated on being able to correctly009
validate, or classify, the generated prediction010
as either correctly or incorrectly solving the011
given problem. While in traditional computer012
science settings validation has been shown to013
be as difficult as correct generation, we find014
empirically that language models may be bet-015
ter discriminators than generators. Our work016
studies whether leading language models are017
better at solving problems or validating solu-018
tions, and we attempt to gain a better under-019
standing of why this happens. We quantify this020
by measuring the understanding gap — the dif-021

ference between generative and discriminative 022
accuracy. First, we further corroborate recent 023
work (West et al., 2024) showing surprisingly 024
that models are better generators than discrimi- 025
nators on some datasets. Second, we discover 026
that understanding gaps can be closed or signif- 027
icantly narrowed through prompting and pro- 028
vide an estimate of the upper bound ϵ on the 029
understanding gap across datasets. Third, we 030
apply our findings to predict the settings where 031
self-correction is most effective. This contin- 032
ues the conversation started by (Huang et al., 033
2023), where we instead show that LLMs can 034
self-correct reasoning, and establish a link be- 035
tween a feature of the dataset and the language 036
model’s ability to self-correct. 037

1 Introduction 038

Language models have recently begun to demon- 039

strate human-like reasoning capabilities, driven 040

in large part by zero shot prompting-based self- 041

correction algorithms. This brings to bear the ques- 042

Generative Discriminative

(free-form)

There are 4 roses in  
the vase. There are 7 
more dahlias than 
roses in the vase. How 
many flowers  are 
there in the vase in 
total?

A:  15

Q:

(multiple choice)

Which of the following is the 
lymphoid organ that is a reservoir 
for red blood cells and filters 
organisms from the blood?


A. Appendix


B. Gallbladder


C. Pancreas


D. Spleen

Q: 

A:  D

Respond 'TRUE' if the answer is correct and 'FALSE' if 
incorrect. 



Question: A small group of people are seen 
swimming around a pool. The people throw a ball 
around the water. The people


A.continue playing with one another in the pool.


B.continue to throw the balls around while walking 
around with bottles of water.


C.continue swimming around and back to the 
camera.


D.continue swimming around and play with one 
another.



Answer: C

Q: 

A:  FALSE

Figure 1: How do we assess "generative" and "discriminative" abilities of models? For the generative modality,
we provide the model with free-form and multiple choice problems and assess based on solution accuracy. For
discriminative, we provide the model with a question-answer pair and ask the model to assign a binary "TRUE" or
"FALSE" label depending on whether it believes the predicted answer p to be correct given the question q.
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tion, why does the research community expect —043

and indeed observe — that language models can044

improve upon their initial generation?045

1.1 Can models learn new things from046

self-correction?047

Some view self-correction as a form of post-hoc048

prompting (Huang et al., 2023), where generation049

quality improves through self-conversation quite050

simply because, within the confines of its context,051

the model is generating a better "prompt" for itself.052

This correlation between better prompting methods053

and higher generation accuracy has been demon-054

strated in the literature (Wei et al., 2022c,a), further055

supporting the strengths of this explanation.056

In this view, self-correction would be viewed057

as several, iterative turns of a model generating058

prompts for itself. If this is indeed true, the recent059

success of self-correction methods would mean060

that our current prompting methods still fall short061

of optimal prompts. This would highlight the rele-062

vance of pursuing additional research into prompt-063

ing and interpretability of language model self-064

corrections. While self-correction methods work065

well in-practice, we may not fully understanding066

why the model chooses to issue the corrections it067

does, and how it chooses which to accept.068

A question of efficiency also arises. Many self-069

correction algorithms are more computationally ex-070

pensive than generating the correct answer directly071

from a human-specified prompt. Can we simply072

find the optimal prompt and forgo this expensive073

self-correction entirely? Ostensibly, by construc-074

tion the use of this so-called optimal prompt would075

mean that no level of self-correction would im-076

prove upon the quality of the generation; whether077

measured as accuracy, determinism, or safety.078

It is possible that there is a ceiling on the degree079

to which self-correction can improve accuracy. Oth-080

erwise, if the optimal prompt could achieve 100%081

accuracy across all datasets, it would seem prudent082

to direct significant focus towards prompt design.083

Until we have both better understood prompting,084

and we have designed or identified the models that085

can achieve this level of capability, however, we086

will likely have to rely on continued self-prompting.087

These ideas seem to suggest that models are not088

learning new things from self-correction but simply089

positioning themselves in a way to better retrieve090

existing knowledge.091

1.2 Two types of discrimination 092

We identify two broader modalities of generative 093

model output: generation and discrimination (see 094

Figure 1). Generation involves the structure of 095

task used by most datasets: the language model 096

is provided with a free-form or multiple choice 097

question and is asked to generate the correct solu- 098

tion. The model is then evaluated on the accuracy 099

of its solutions. In the discrimination setting, the 100

model is provided the question and a prediction, 101

then is asked to answer TRUE or FALSE depending 102

on whether the answer correctly follows from the 103

question. 104

We hypothesize the existence of two types of 105

bases of discrimination: logical reasoning and re- 106

trieval. The first, logical-reasoning-based discrimi- 107

nation, is largely non-reliant on existing knowledge 108

and validates a solution purely based on whether 109

the solution is valid. For humans, this is equiv- 110

alent to validating a Sudoku solution by check- 111

ing whether each row, column, and sub-grid is 112

duplicate-free. The second, retrieval-based dis- 113

crimination, is knowledge-dependent (hence the 114

"retrieval" moniker) and involves solving the prob- 115

lem, then comparing the solution to the provided 116

answer. For humans, this is equivalent to validat- 117

ing the Sudoku solution by solving the puzzle then 118

comparing the two solutions (assuming only a sin- 119

gle solution exists for the puzzle). 120

The astute reader will likely be contemplating 121

some key characteristics that we would expect to 122

see if this hypothesis were valid. We would expect 123

models relying on retrieval-based discrimination 124

to fail when presented with problems with multi- 125

ple correct solutions (e.g. constraint satisfaction 126

tasks like COLLIE (Yao et al., 2024), and some 127

Sudoku and 24 Game puzzles). A model using 128

retrieval-based discrimination would be expected 129

to perform approximately equivalently on gener- 130

ation and discrimination, since discrimination is 131

simply generation plus a comparison. However, a 132

model using logical-reasoning-based discrimina- 133

tion would be expected typically to more signif- 134

icantly under- or over-perform on discrimination 135

as opposed to generation, since its discrimination 136

ability is decoupled from its generation ability. We 137

believe that when researchers discuss discrimina- 138

tion as a proxy for understanding, they are referring 139

specifically to reasoning-based discrimination as 140

opposed to the more derivative retrieval-based one. 141
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1.3 Discrimination basis is dataset dependent142

We further hypothesize that discrimination is143

dataset dependent, and that models switch — for144

reasons currently beyond the scope of this paper —145

between these two modes when presented solely146

with a problem (without additional prompting such147

as Chain of Thought (Wei et al., 2022c), etc.). We148

expect that when a model attempts to use reasoning-149

based discrimination on a dataset by default and150

this form of discrimination significantly underper-151

forms generation, we can improve discrimination152

accuracy up to the level of generation performance153

through prompting. Indeed, we find that through154

careful prompting (see Appendix B), we are even155

able to significantly improve performance even156

while producing only a single output token. It is157

possible that this prompt "switches" the model from158

reasoning-based to retrieval-based validation.159

This paper seeks to better grasp how and what160

language models understand. Given that self-161

verification, reflection, and most multiagent debate162

algorithms rely on the belief that generative mod-163

els are able to uncover new knowledge through164

repeated generations with themselves, we hope165

that our study on relative generator-discriminator166

performance will help to better understand why167

and when feedback is effective. We refer to this168

generator-discriminator gap the understanding gap169

and seek to find an ϵ that can upper bound the170

understanding gap across all datasets. We will de-171

termine a reasonable estimate for this bound by172

assessing results across 10 popular datasets cov-173

ering a diverse range of skills spanning constraint174

satisfaction, arithmetic, multihop reasoning, com-175

mon sense, and reading comprehension. While176

it is expected that manipulating prompts can im-177

prove performance, the question is whether we can178

completely close the understanding gap through179

prompting. We find, remarkably, that even when180

constraining the model to a single output token dur-181

ing discrimination, prompting can close even the182

large understanding gaps (some originally greater183

than 50%). We further attempt to apply our find-184

ings to predict the settings where self-correction185

is most effective, further engaging the hypotheses186

presented by (Huang et al., 2023) and (West et al.,187

2024). We specifically test the performance of188

multiagent debate (Du et al., 2023), which relies189

on self-correction, and use our learnings to model190

accurate the types of datasets that the algorithm191

performs most effectively on.192

2 Related works 193

Prior work shows that language model performance 194

can depend substantively on the structure of the 195

prompt used. This begs the question of what it 196

means for language models to understand, and 197

whether we can conflate memory with understand- 198

ing. It is possible that models are simply so good at 199

memorizing and interpolating between these mem- 200

orized answers that they appear to give semblances 201

of understanding. Surely we wouldn’t say that a 202

grade school student has fully grasped algebra if 203

they simply score well on problems similar to ones 204

covered in class. That would just be memorization. 205

We expect them instead to successfully answering 206

never-before-seen questions probing understanding 207

would we confidently say that this student under- 208

stands the topic of algebra. Lastly, we look at 209

influential prior work whose effectiveness may de- 210

pend upon the assumption that language models 211

are better validators than generators. 212

Impact of prompting on model performance 213

Prompting can remarkably allow models to adapt to 214

new scenarios even with no task specific data (Wei 215

et al., 2022a). Extending this further, the prompts 216

themselves can be generated by models, which 217

has shown to improve generative performance as 218

compared to human-generated prompts (Gao et al., 219

2021; Guo et al., 2022; Ben-David et al., 2022). 220

The use of previous generations as a prompt for 221

future generations presents a recurring motif under- 222

lying much of the self-reflection and agentic debate 223

space. However, current prompting methods are 224

largely based on classification and generation, high- 225

lighting the need for more research on prompting 226

for information extraction, text analysis or other 227

interrogative understanding based tasks like dis- 228

crimination (Liu et al., 2023). 229

Do language models understand deeply? Prior 230

work has found that some language models have 231

begun to show reasoning capabilities resembling 232

a human-like general intelligence (Bubeck et al., 233

2023). While some studies have shown some of 234

these emergent behaviors to be artifacts of dataset 235

quirks (Wei et al., 2022b), other studies have more 236

carefully investigating how human and model un- 237

derstanding may differ despite comparable genera- 238

tive capabilities (West et al., 2024). Other work has 239

focused on whether language models are able to 240

leverage this understanding to self-correct their gen- 241

erations to improve accuracy or morality (Huang 242
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et al., 2023; Ganguli et al., 2023).243

Methods relying on strong discriminator capa-244

bilities A number of effective methods reliant on245

strong model discrimination have emerged in the246

literature. The first of two types involves improv-247

ing factuality of model generations by using self-248

generated verification questions or through multi-249

agent debate which rely on the ability of models250

to probe their own or each other’s understanding251

through generations with varying priors (Dhuli-252

awala et al., 2023; Du et al., 2023). Inspired in part253

by the increase in model reasoning ability when254

using its own generations as scaffolding for fu-255

ture generation (Wei et al., 2022c), the second of256

these types involves improving reasoning through257

prompts that allow the model to self reflect (Shinn258

et al., 2023; Yao et al., 2023; Madaan et al., 2023).259

3 Are language models better generators260

or discriminators?261

We attempt to formally investigate a phenomena262

that has often been assumed to be true — that263

discrimination can help improve generation qual-264

ity. This belief may arise from our expectations265

that the training data used by these models more266

closely resembles the generation task paradigm267

than the discriminator one. Notably, we specifically268

seek to gain a generalized understanding beyond269

single datasets, realizing that while models may270

achieve very strong discriminative performance rel-271

ative to generative on some datasets it is much272

more helpful to show that we can get comparable273

discriminator-generator performance across most274

datasets through carefully crafted prompts.275

Suppose we have a question q and a prospec-276

tive answer a. For instance, consider a question q277

from the GSM8K dataset, a prediction p, and the278

reference answer a (see Table 1). Note that the pre-279

diction a may be different from the ground truth,280

as it is in this case. The goal of the discriminator281

is to identify whether the prediction p is correct,282

given the question q. The ground truth discrimina-283

tor response is TRUE if p = q and FALSE otherwise.284

Intuitively, we expect models to have discrimina-285

tive abilities that surpass its generative ones. This is286

because given q and p, we can always ask the model287

to predict the correct answer to q, then compare288

this with p. For a simple TRUE/FALSE discrimina-289

tor, this would give us a discrimination accuracy290

identical to the generation accuracy. Surprisingly,291

for a generator with accuracy below 50%, this style292

q Jame will turn 27 in 5 years. In 8
years his cousin will be 5 years
younger than twice his age. How
many years separate the age of the
two now?

p 33

a 25

Table 1: Example of a question q and prospective answer
a pair. Note that a is actually an incorrect answer in this
case.

of prompting would give us an accuracy that is 293

worse than random guessing between the two TRUE, 294

FALSE options (50%). 295

However, if we want to limit models to roughly 296

as many tokens when generating vs. discriminating, 297

we would no longer be able to use this approach, 298

since discrimination would necessarily take more 299

tokens than generation. This might cause the model 300

to generate more hastily, likely reducing generation 301

quality, since it still needs token space to perform 302

the comparison between its generated answer and 303

the prediction p. This is why we might expect that, 304

in the worst case, that validator performance might 305

trail generator performance slightly. 306

3.1 Reguritation with interpolation 307

We take the understanding gap to be the differ- 308

ence between generation and understanding abili- 309

ties of a language model. Bridging the understand- 310

ing gap shows that language models understand 311

their generations, rather than simply performing 312

what we call regurgitating with interpolation. That 313

is to say, we expect models to produce correct an- 314

swers to questions it has never seen before, and 315

while direct regurgitation of training data would 316

produce lackluster performance, models may inter- 317

polate between regurgitations in adjacent areas of 318

knowledge to produce reasonable or even correct 319

generations. This phenomenon could be increas- 320

ingly likely given the large scope and magnitude 321

of training data. In these cases of regurgitation 322

with interpolation, we would expect a large gap be- 323

tween generation and understanding abilities. This 324

gap would mean poor performance when probing 325

the language model on why it chose its generation 326

or asking it to validate a prediction that it’s not 327

told is its own. The first step to bridging the self- 328

reflection chasm, the point where models can teach 329
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themselves new information by simply reflecting330

on their responses, is to close the understanding331

gap.332

Where the Generative AI paradox (West et al.,333

2024) provides a hypothesis based on relative dis-334

criminator performance between humans and mod-335

els, we provide a hypothesis that investigates the336

discriminative ability of models relative to their337

own generation ability. The hypothesis guiding this338

paper is as follows:339

Hypothesis 1: Models are, approximately, as340

good at validating solutions as they are at gener-341

ating answers to questions. However, this perfor-342

mance requires the careful choice of an appropriate343

validator prompt. We state the hypothesis formally344

as,345

∀t ∈ T, ∃pt ∈ P s.t. g(t)− u(t, pt) < ϵ346

where t is some task in the set of all possible347

tasks T , pt is some task-specific prompt in the set348

of all possible prompts P , g(t) is the generation349

accuracy for a task t, u(t, p) is the understand-350

ing (proxied by validation accuracy) on a task t351

with prompt p, and ϵ is some small non-negative352

value; the upper bound on the generator-validator353

performance spread across all tasks. We consider354

g(t)− u(t, pt) to be a formal definition of the un-355

derstanding gap.356

To make a strong case supporting this hypothe-357

sis, we desire to show that across a diverse range of358

datasets there exists an upper bound on generator-359

validator accuracy spread. To increase the robust-360

ness of our study, we also investigate two subhy-361

potheses whose validity we expect to be consistent362

with Hypothesis 1. If these two sub-hypotheses are363

found to be concurrently valid with those of Hy-364

pothesis 1, we believe this presents a strong case365

for the latter. These two subhypothesis investigate366

the ability of prompting to improve validation per-367

formance and whether validation accuracy captures368

underlying model understanding well.369

3.2 Prompt dependency of validation370

While it may seem trivial that prompting has an371

effect on generation quality, the extent and nature372

of the effect is less clear. Many popular prompting373

methods are designed for generation rather than374

discriminative settings, and it is unclear whether375

prompting improves generations simply because376

more computation is performed or whether it is un-377

locking an otherwise elusive understanding of the378

problem. Further, while a better prompt may im- 379

prove accuracy on a dataset, it is uncertain whether, 380

in the eyes of a model, a generation with a better 381

prompt will allow a model to become a teacher 382

to itself, producing a single model student-teacher 383

model configuration. 384

We take a positive stance on the ability of 385

prompting to tighten the upper bound. Specifically, 386

since g(t) and v(t, p) are both measures of accu- 387

racy between 0 and 1, the trivial upper bound ϵ is 388

1. We also realize that some tasks may naturally 389

have negative understanding gaps because correct 390

answers may be especially difficult to generate for 391

both humans and machines, despite being fairly 392

easy to validate. These tasks might, for instance, 393

involve satisfaction of a simply stated mathemati- 394

cal or textual constraint that has a large state space 395

of potential answers with non-intuitive mapping of 396

the answer space to constraint satisfaction. 397

Sub-hypothesis 1: We can tighten the upper 398

bound on model error through prompt selection. 399

3.3 Useful validation as a form of 400

understanding 401

We next investigate whether correct validation con- 402

stitutes understanding, and resultingly whether 403

such understanding allows self-reflection to im- 404

prove model performance. If it does, validation cor- 405

rectness presents a much more simple and objective 406

metric to assess self-reflection quality, while also 407

potentially being more accurate since assessments 408

of intermediate reflection in practice would likely 409

be human- rather than model-preference-centric. 410

If correct validation constitutes understanding, we 411

would expect the following sub-hypothesis to be 412

true. 413

Sub-hypothesis 2: Self-correction-based algo- 414

rithms work best on datasets with lower understand- 415

ing gap. 416

4 Methodology 417

Benchmarks. We run experiments across 418

datasets spanning various natural language skills. 419

We investigate the ability of models to perform 420

constraint satisfaction through COLLIE (Yao 421

et al., 2024), arithmetic through 24 Game (Yao 422

et al., 2023) and GSM8K (Cobbe et al., 2021), and 423

multihop reasoning via HotpotQA (Yang et al., 424

2018), MultispanQA (Li et al., 2022) and MMLU 425

(Hendrycks et al., 2021). Equally important are 426

the abilities to operate in settings of commonsense 427
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Figure 2: Generation and discimination of GPT 3.5 across various skills, in both the natural dataset settings and the
log probs setting

through CSQA (Talmor et al., 2019), Hellaswag,428

(Zellers et al., 2019) and PIQA (Bisk et al., 2020),429

and reading comprehension via RACE (Lai et al.,430

2017).431

Models. Since we are testing the limits of cur-432

rent state-of-the-art language model generation and433

understanding capabilities, we choose to evalu-434

ate on the most popular (among both researchers435

and industry users) and capable language mod-436

els. To that end we evaluate our hypothesis437

primarily on GPT-3.5 and GPT-4, specifically438

gpt-3.5-turbo-1106 and gpt-4-1106-preview,439

respectively (John Schulman et al., 2022; OpenAI440

et al., 2023).441

Evaluation. We consider each of the benchmarks442

both in their originally intended configurations and443

a setting we call log probs, in which we convert444

each task into a multiple choice problem and nor-445

malize the log probability of each option over all446

valid choice generations, taking inspiration from447

(Holtzman et al., 2021). For the regular generation448

setting, we assess based on the dataset’s accuracy449

measure. For regular discrimination, we present the450

model with the original question and its own gener-451

ation and ask it to respond with TRUE if it believes452

the answers to be correct and FALSE otherwise.453

For our baselines (see Figure 2), we use a simple454

HotpotQA

GSM8K

RACE

PIQA

10%

30%

50%

GPT 3.5

Baseline understanding gap
Prompt-improved understanding gap

Figure 3: Lowest achieved understanding gap by adjust-
ing validator prompt on GPT 3.5 across various skills,
compared to baseline understanding gap

system prompt with a minimal amount of informa- 455

tion necessary to instruct the model to complete 456

each task. To evaluate the effect of prompt, we 457

try various system prompts following at times ar- 458

chitectures shown to be effective in past works. 459

In evaluating the effect of understanding gap on 460

reflection algorithms, we implement two popular 461

techniques for self-correcting reasoning: Reflexion 462

(Shinn et al., 2023) and Multiagent Debate (Du 463

et al., 2023). 464
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HotpotQA

MultispanQA

GSM8K

MMLU

Hellaswag

RACE

PIQA

10%
30%

50%

GPT 4

Baseline understanding gap
Prompt-improved understanding gap

Figure 4: Lowest achieved understanding gap by ad-
justing validator prompt on GPT 4 across various skills,
compared to baseline understanding gap

5 Discussion465

5.1 Are language models better generators or466

discriminators?467

Of the 10 tasks spanning skills in constraint satis-468

faction, arithmetic, multihop reasoning, common469

sense, and reading comprehension, 3 have negative470

understanding gaps where discrimination perfor-471

mance surpasses generation performance on both472

models (see Figure 2). Surprisingly, we find that473

while GPT-4 generally outperforms GPT-3.5 in gen-474

erative capacities, it sometimes surprisingly under-475

performs on discrimination on those same tasks,476

perhaps suggesting semblances of overfitting in477

GPT-4 to more oft seen dataset paradigms. In fact,478

GPT-3.5 presents an understanding gap on only 4479

of the 10 datasets, while GPT-4 presents a gap on 7480

of the 10.481

For the tasks with positive understanding gaps482

on GPT 3.5, however, the gap is often small. The483

exception is GSM8K where the model significantly484

underperforms in a discrimination setting, trailing485

even random guessing (50% for a TRUE/FALSE con-486

figuration) despite high generation accuracy, sug-487

gesting anticorrelation. This is promising, since a488

trivial (and problematic on principle) solution could489

be to prompt the model to answer the opposite of490

what it thinks. Ostensibly, this would then give491

us a (100%-40.3%=59.7%) accuracy, but wouldn’t492

really be faithful to our underlying exploration of493

model understanding.494

In the baseline setting, the model exhibits under-495

standing gaps on multihop reasoning, arithmetic,496

reading comprehension, and common sense skills. 497

We next attempt to close these understanding gaps 498

through prompting. 499

5.2 Can we make up for the understanding 500

gap through prompting? 501

On GPT-3.5, we close the understanding gap on 502

HotpotQA by using prompt P1 (see Appendix A). 503

We find remarkably that despite the model still only 504

outputting a single token (TRUE or FALSE), vali- 505

dation accuracy surpasses the generator accuracy; 506

closing the gap and even resulting in a negative 507

understanding gap. We are able to reduce both 508

understanding gaps for RACE and PIQA below 509

0.5%, however, the model continues to discrim- 510

inate poorly on GSM8K, meaning our observed 511

understanding bound ϵ remains large at 0.412. 512

On GPT-4, we close the understanding gap on 513

2 datasets (HotpotQA and MultispanQA) and re- 514

duce the gap on 3 others to below 5.5%. However, 515

discrimination continues to lag on GSM8K and 516

Hellaswag datasets. In both HotpotQA and Multi- 517

span settings, we find remarkably that the model 518

significantly outperforms the baseline disciminator 519

as a result of prompting without outputting addi- 520

tional tokens. 521

We discover a prompting technique we refer to 522

as Constrained Thought (see Figure 6), which 523

involves encouraging the model to reason and re- 524

flect while simultaneously constraining the model 525

to outputting a single token (e.g. in our case, TRUE 526

or FALSE, but which could also be a final numer- 527

ical or textual answer). We compare its perfor- 528

mance to standard and chain of thought perfor- 529

mance in Table 2. We note that on these datasets, 530

Constrained Thought (CnT) outperforms Chain 531

of Thought while simultaneously being signifi- 532

cantly more output-token-efficient. We caveat, 533

however, that the exact mechanism of this tech- 534

nique is still fairly elusive, and hence we do not 535

give it much attention in this paper. 536

We show that we can make up a substantial por- 537

tion of the understanding gap through prompting 538

and are able to reach an upper bound on the under- 539

standing gap across all 10 datasets of 0.412. This 540

performance in addition to the near-zero under- 541

standing gap produced suggests that it is possible 542

to prompt the model to transition from reasoning- 543

based to retrieval-based discrimination. 544
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5.3 When self-correction algorithms work545

better?546

Do algorithms based on models’ self-correction547

perform better on tasks with smaller understanding548

gaps? We find in the literature that the tasks with549

greatest improvement from prompting (41% boost550

over CoT in 24 game (Yao et al., 2023)). More cu-551

riously, however, some reflection-based algorithms552

31% over CoT in MultispanQA (Dhuliawala et al.,553

2023))554

6 Conclusion555

Whereas prior works shed light onto the perfor-556

mance of language models on discrimination tasks557

relative to humans for tasks with generative accu-558

racy parity, we present a hypothesis that specifically559

aims to better understand the understanding gap,560

the difference between generative and discrimina-561

tive accuracies. We find most importantly, that562

even when we restrict the model to outputting only563

a single token, we can significantly improve dis-564

crimination accuracy to rival or surpass generation565

capabilities, even on tasks where the model is —566

in absence of any additional prompting — a much567

better generator.568

Further study is required to investigate the gen-569

eralizability of the estimated upperbound on the570

understanding gap, ϵ = 0.412, established across571

the 10 datasets.572
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7 Ethical Considerations573

We do not foresee any ethical considerations in di-574

rect relation to our work. While there are broader575

risks from general intelligence systems, and this576

research contributes towards our understanding of577

language models and ultimately our grasp of this578

goal, we hope that our paper provides interpretabil-579

ity to language model understanding. We hope to580

further the pursuit of gradually peeling back the581

black box that constitute many aspects of modern582

large language models.583

8 Limitations584

A result of our choice to evaluate understanding585

on the most capable and popular language mod-586

els is that we experiment primarily on GPT-3.5587

and GPT-4. We foresee potential limitations with588

evaluating solely on closed source language mod-589

els. We also attempt to estimate the upper bound590

ϵ and other behaviour through a limited number591

of datasets. While we attempt to choose datasets592

spanning a broad range of skills, choose datasets593

before performing any experiments, and report re-594

sults on all datasets regardless of performance, we595

ultimately only evaluate on 10 datasets which is596

a fraction of the full dataset space. HotpotQA is597

licensed under Apache-2.0, MultispanQA: no li-598

cense and publicly available by authors, 24 Game:599

MIT, GSM8K: MIT, MMLU: MIT, COLLIE: MIT,600

CSQA: no license and publicly available, Hel-601

laswag: MIT, RACE: no license and publicly avail-602

able, and PIQA: Apache-2.0. Usage of benchmarks603

is consistent with intended use. All benchmarks are604

in English, and train/test/dev splits are as originally605

used on each dataset. We evaluate primarily on test606

splits, but use validation splits where ground truth607

is unavailable in the test split.608
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A Prompts used in Sub-Hypothesis 1878

We use a number of prompts to encourage the lan-879

guage model to match or surpass generation perfor-880

mance, when validating answers.881

Prompt P1 Think step by step. First882

generate your own answer to the question883

and then compare this with the provided884

answer. Check, then double check your885

thinking. The last word of your response886

should be ’TRUE’ if the answer is correct887

and ’FALSE’ if the answer is incorrect,888

given the question.889

The effect of the prompts most effective at clos-890

ing these understanding gaps across our trials are891

shown in Figure 5.892
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Figure 5: Reducing the understanding gap through
prompting on GPT-4
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B Prompting phenomena893

We notice a remarkable phenomena when attempt-894

ing to investigate our subhypothesis 1 on prompt-895

ing. Despite prompting the model in a typical man-896

ner to generate a well-reasoned explanation and897

to engage in self-reflection, the model outputs a898

single token TRUE or FALSE answer (see Figure 6.899

While we are unsure of why this happens, we note900

that it allows us to achieve or surpass generator901

performance on many tasks.902

The technique performs well in practice, out-903

performing the classical Chain of Thought (CoT)904

without require additional output tokens. The GPT-905

4 with Chain of Thought configuration surprisingly906

scores 0% because instead of responding with TRUE907

or FALSE, the most simply responds with a nu-908

merical answer to the problem itself. We try two909

different prompts You are given a question910

and a prediction. Answer ’TRUE’ if the911

predicted answer is correct and ’FALSE’912

if the answer is incorrect. Think step913

by step. and Answer ’TRUE’ if the answer914

is correct and ’FALSE’ if the answer is915

incorrect. Think step by step.. In both in-916

stances, we do not receive a single generation that917

contains TRUE or FALSE which is very surprising918

and warrants future investigation. We do note that919

we use the latest gpt-4-1106-preview, so perhaps920

this is the result of recent changes to the model.921

HotpotQA MultispanQA GSM8K
GPT-3.5 60% 73% 40.30%
GPT-4 66% 63% 21.50%
CoT (GPT-4) 71% 63% 0%
CnT (ours) (GPT-4) 80% 69% 67%

Table 2: Performance of Constrained Thought on GPT-
4 measured against standard and Chain of Thought
prompting on validation across each dataset. Note that
GPT-3.5 performance actually outperforms GPT-4 on
MultispanQA, despite achieving roughly similar perfor-
mance in a generative mode.

Regular prompting
Model input

Answer 'TRUE' if the answer is correct and 
'FALSE' if the answer is incorrect.

Sys:

Question: Roy has saved 40%  more in 
money earned by chores than his brother 
Anthony.  Anthony has saved $10.00 more 
than their  sister Eva.   Eva has saved 
$20.00.  How much money does Roy have?

Answer: 42

Q:

Model output

FALSEA:

Constrained Thought (ours)
Model input

Think step by step. First generate your own 
answer to the question and then compare 
this with the provided answer. Check, then 
double check your thinking. The last word of 
your response should be 'TRUE' if the answer 
is correct and 'FALSE' if the answer is 
incorrect, given the question.

Sys:

Question: Roy has saved 40%  more in 
money earned by chores than his brother 
Anthony.  Anthony has saved $10.00 more 
than their  sister Eva.   Eva has saved 
$20.00.  How much money does Roy have?

Answer: 42

Q:

Model output

TRUEA:

Chain of Thought
Model input

Answer 'TRUE' if the answer is correct and 'FALSE' if the answer is 
incorrect. Think step by step.

Sys:

Question: Roy has saved 40%  more in money earned by chores 
than his brother Anthony.  Anthony has saved $10.00 more than 
their  sister Eva.   Eva has saved $20.00.  How much money does 
Roy have?

Answer: 42

Q:

Model output

A: FALSE. 





Let's calculate it step by step:





1. Eva has saved $20.00.


2. Anthony has saved $10.00 more than Eva, so Anthony has 
saved $20.00 + $10.00 = $30.00.


3. Roy has saved 40% more in money earned by chores than 
Anthony. So, Roy has saved 40% of $30.00 more than Anthony. 
40% of $30.00 is $12.00. 


4. So, Roy has saved $30.00 + $12.00 = $42.00.





Given the calculation, the correct answer is that Roy has saved 
$42.00, making the original statement TRUE.

Figure 6: Constrained Thought, a prompting technique rivalling Chain of Thought without the additional output.
As seen here, on more challenging problems, Chain of Thought may output more than one answer, which does not
occur during our trials with Constrained Thought. The technique consists primarily of prompting the model to
think and perform complex reasoning, but to then restrict the model to outputting a single character
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