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Abstract ference between generative and discriminative
accuracy. First, we further corroborate recent

Recently, large language models (LLMs) have work (West et al., 2024) showing surpr.isin.gly
demonstrated remarkable reasoning abilities, that models are better generators than d%SCI‘lml—
augmented by recent advances in prompting nators on some datasets. Second, we dlsgov§r
techniques and reasoning frameworks. Many Fhat understanding gaps can be Clos.ed or signif-
popular frameworks (Du et al., 2023; Yao et al., icantly narfowed through prompting and pro-
2023; Shinn et al., 2023) rely on the assump- vide an estl.mate of the upper bound e.on the
tion that models are able to give effective feed- undefsmdmg gap across datasets. _Thlrd’ we
back on their own generations. This feedback apply our ﬁI}dlngs to predict tf}e settings Whe.re
is partly predicated on being able to correctly self-correction is .most effective. This contin-
validate, or classify, the generated prediction ues the conversation started by (Huang et al.,
as either correctly or incorrectly solving the 2023), where we instead show that LLMs can
given problem. While in traditional computer self-correct reasoning, and establish a link be-
science settings validation has been shown to tween a feature of the dataset and the language
be as difficult as correct generation, we find model’s ability to self-correct.
empirically that language models may be bet- .
ter discriminators than generators. Our work 1 Introduction

studies whether leading language models are

better at solving problems or validating solu- Language models have recently begun to demon-

tions, and we attempt to gain a better under- strate human-like reasoning capabilities, driven
standing of why this happens. We quantify this in large part by zero shot prompting-based self-
by measuring the understanding gap — the dif- correction algorithms. This brings to bear the ques-
Generative Discriminative
Q: There are 4 roses in Q: Which of the following is the Q: Respond ‘TRUE' if the answer is correct and 'FALSE' if
the vase. There are 7 lymphoid organ that is a reservoir incorrect.
more dahlias than for red blood cells and filters
roses in the vase. How organisms from the blood? Question: A small group of people are seen
many flowers are A. Appendix swimming around a pool. The people throw a ball
there in the vase in B. Gallbladder around the water. The people
total? C. Pancreas A.continue playing with one another in the pool.
D. Spleen B.continue to throw the balls around while walking
around with bottles of water.
A: 15 C.continue swimming around and back to the
A D camera.
D.continue swimming around and play with one
(free-form) another.
(multiple choice) Answer: C
A: FALSE

Figure 1: How do we assess "generative" and "discriminative" abilities of models? For the generative modality,
we provide the model with free-form and multiple choice problems and assess based on solution accuracy. For
discriminative, we provide the model with a question-answer pair and ask the model to assign a binary "TRUE" or
"FALSE" label depending on whether it believes the predicted answer p to be correct given the question q.



tion, why does the research community expect —
and indeed observe — that language models can
improve upon their initial generation?

1.1 Can models learn new things from
self-correction?

Some view self-correction as a form of post-hoc
prompting (Huang et al., 2023), where generation
quality improves through self-conversation quite
simply because, within the confines of its context,
the model is generating a better "prompt" for itself.
This correlation between better prompting methods
and higher generation accuracy has been demon-
strated in the literature (Wei et al., 2022c,a), further
supporting the strengths of this explanation.

In this view, self-correction would be viewed
as several, iterative turns of a model generating
prompts for itself. If this is indeed true, the recent
success of self-correction methods would mean
that our current prompting methods still fall short
of optimal prompts. This would highlight the rele-
vance of pursuing additional research into prompt-
ing and interpretability of language model self-
corrections. While self-correction methods work
well in-practice, we may not fully understanding
why the model chooses to issue the corrections it
does, and how it chooses which to accept.

A question of efficiency also arises. Many self-
correction algorithms are more computationally ex-
pensive than generating the correct answer directly
from a human-specified prompt. Can we simply
find the optimal prompt and forgo this expensive
self-correction entirely? Ostensibly, by construc-
tion the use of this so-called optimal prompt would
mean that no level of self-correction would im-
prove upon the quality of the generation; whether
measured as accuracy, determinism, or safety.

It is possible that there is a ceiling on the degree
to which self-correction can improve accuracy. Oth-
erwise, if the optimal prompt could achieve 100%
accuracy across all datasets, it would seem prudent
to direct significant focus towards prompt design.
Until we have both better understood prompting,
and we have designed or identified the models that
can achieve this level of capability, however, we
will likely have to rely on continued self-prompting.
These ideas seem to suggest that models are not
learning new things from self-correction but simply
positioning themselves in a way to better retrieve
existing knowledge.

1.2 Two types of discrimination

We identify two broader modalities of generative
model output: generation and discrimination (see
Figure 1). Generation involves the structure of
task used by most datasets: the language model
is provided with a free-form or multiple choice
question and is asked to generate the correct solu-
tion. The model is then evaluated on the accuracy
of its solutions. In the discrimination setting, the
model is provided the question and a prediction,
then is asked to answer TRUE or FALSE depending
on whether the answer correctly follows from the
question.

We hypothesize the existence of two types of
bases of discrimination: logical reasoning and re-
trieval. The first, logical-reasoning-based discrimi-
nation, is largely non-reliant on existing knowledge
and validates a solution purely based on whether
the solution is valid. For humans, this is equiv-
alent to validating a Sudoku solution by check-
ing whether each row, column, and sub-grid is
duplicate-free. The second, retrieval-based dis-
crimination, is knowledge-dependent (hence the
"retrieval" moniker) and involves solving the prob-
lem, then comparing the solution to the provided
answer. For humans, this is equivalent to validat-
ing the Sudoku solution by solving the puzzle then
comparing the two solutions (assuming only a sin-
gle solution exists for the puzzle).

The astute reader will likely be contemplating
some key characteristics that we would expect to
see if this hypothesis were valid. We would expect
models relying on retrieval-based discrimination
to fail when presented with problems with multi-
ple correct solutions (e.g. constraint satisfaction
tasks like COLLIE (Yao et al., 2024), and some
Sudoku and 24 Game puzzles). A model using
retrieval-based discrimination would be expected
to perform approximately equivalently on gener-
ation and discrimination, since discrimination 1is
simply generation plus a comparison. However, a
model using logical-reasoning-based discrimina-
tion would be expected typically to more signif-
icantly under- or over-perform on discrimination
as opposed to generation, since its discrimination
ability is decoupled from its generation ability. We
believe that when researchers discuss discrimina-
tion as a proxy for understanding, they are referring
specifically to reasoning-based discrimination as
opposed to the more derivative retrieval-based one.



1.3 Discrimination basis is dataset dependent

We further hypothesize that discrimination is
dataset dependent, and that models switch — for
reasons currently beyond the scope of this paper —
between these two modes when presented solely
with a problem (without additional prompting such
as Chain of Thought (Wei et al., 2022c), etc.). We
expect that when a model attempts to use reasoning-
based discrimination on a dataset by default and
this form of discrimination significantly underper-
forms generation, we can improve discrimination
accuracy up to the level of generation performance
through prompting. Indeed, we find that through
careful prompting (see Appendix B), we are even
able to significantly improve performance even
while producing only a single output token. It is
possible that this prompt "switches" the model from
reasoning-based to retrieval-based validation.

This paper seeks to better grasp how and what
language models understand. Given that self-
verification, reflection, and most multiagent debate
algorithms rely on the belief that generative mod-
els are able to uncover new knowledge through
repeated generations with themselves, we hope
that our study on relative generator-discriminator
performance will help to better understand why
and when feedback is effective. We refer to this
generator-discriminator gap the understanding gap
and seek to find an e that can upper bound the
understanding gap across all datasets. We will de-
termine a reasonable estimate for this bound by
assessing results across 10 popular datasets cov-
ering a diverse range of skills spanning constraint
satisfaction, arithmetic, multihop reasoning, com-
mon sense, and reading comprehension. While
it is expected that manipulating prompts can im-
prove performance, the question is whether we can
completely close the understanding gap through
prompting. We find, remarkably, that even when
constraining the model to a single output token dur-
ing discrimination, prompting can close even the
large understanding gaps (some originally greater
than 50%). We further attempt to apply our find-
ings to predict the settings where self-correction
is most effective, further engaging the hypotheses
presented by (Huang et al., 2023) and (West et al.,
2024). We specifically test the performance of
multiagent debate (Du et al., 2023), which relies
on self-correction, and use our learnings to model
accurate the types of datasets that the algorithm
performs most effectively on.

2 Related works

Prior work shows that language model performance
can depend substantively on the structure of the
prompt used. This begs the question of what it
means for language models to understand, and
whether we can conflate memory with understand-
ing. It is possible that models are simply so good at
memorizing and interpolating between these mem-
orized answers that they appear to give semblances
of understanding. Surely we wouldn’t say that a
grade school student has fully grasped algebra if
they simply score well on problems similar to ones
covered in class. That would just be memorization.
We expect them instead to successfully answering
never-before-seen questions probing understanding
would we confidently say that this student under-
stands the topic of algebra. Lastly, we look at
influential prior work whose effectiveness may de-
pend upon the assumption that language models
are better validators than generators.

Impact of prompting on model performance
Prompting can remarkably allow models to adapt to
new scenarios even with no task specific data (Wei
et al., 2022a). Extending this further, the prompts
themselves can be generated by models, which
has shown to improve generative performance as
compared to human-generated prompts (Gao et al.,
2021; Guo et al., 2022; Ben-David et al., 2022).
The use of previous generations as a prompt for
future generations presents a recurring motif under-
lying much of the self-reflection and agentic debate
space. However, current prompting methods are
largely based on classification and generation, high-
lighting the need for more research on prompting
for information extraction, text analysis or other
interrogative understanding based tasks like dis-
crimination (Liu et al., 2023).

Do language models understand deeply? Prior
work has found that some language models have
begun to show reasoning capabilities resembling
a human-like general intelligence (Bubeck et al.,
2023). While some studies have shown some of
these emergent behaviors to be artifacts of dataset
quirks (Wei et al., 2022b), other studies have more
carefully investigating how human and model un-
derstanding may differ despite comparable genera-
tive capabilities (West et al., 2024). Other work has
focused on whether language models are able to
leverage this understanding to self-correct their gen-
erations to improve accuracy or morality (Huang



et al., 2023; Ganguli et al., 2023).

Methods relying on strong discriminator capa-
bilities A number of effective methods reliant on
strong model discrimination have emerged in the
literature. The first of two types involves improv-
ing factuality of model generations by using self-
generated verification questions or through multi-
agent debate which rely on the ability of models
to probe their own or each other’s understanding
through generations with varying priors (Dhuli-
awala et al., 2023; Du et al., 2023). Inspired in part
by the increase in model reasoning ability when
using its own generations as scaffolding for fu-
ture generation (Wei et al., 2022c), the second of
these types involves improving reasoning through
prompts that allow the model to self reflect (Shinn
et al., 2023; Yao et al., 2023; Madaan et al., 2023).

3 Are language models better generators
or discriminators?

We attempt to formally investigate a phenomena
that has often been assumed to be true — that
discrimination can help improve generation qual-
ity. This belief may arise from our expectations
that the training data used by these models more
closely resembles the generation task paradigm
than the discriminator one. Notably, we specifically
seek to gain a generalized understanding beyond
single datasets, realizing that while models may
achieve very strong discriminative performance rel-
ative to generative on some datasets it is much
more helpful to show that we can get comparable
discriminator-generator performance across most
datasets through carefully crafted prompts.
Suppose we have a question ¢ and a prospec-
tive answer a. For instance, consider a question g
from the GSMS8K dataset, a prediction p, and the
reference answer a (see Table 1). Note that the pre-
diction a may be different from the ground truth,
as it is in this case. The goal of the discriminator
is to identify whether the prediction p is correct,
given the question q. The ground truth discrimina-
tor response is TRUE if p = ¢ and FALSE otherwise.
Intuitively, we expect models to have discrimina-
tive abilities that surpass its generative ones. This is
because given ¢ and p, we can always ask the model
to predict the correct answer to ¢, then compare
this with p. For a simple TRUE/FALSE discrimina-
tor, this would give us a discrimination accuracy
identical to the generation accuracy. Surprisingly,
for a generator with accuracy below 50%, this style

q Jame will turn 27 in 5 years. In 8
years his cousin will be 5 years
younger than twice his age. How
many years separate the age of the
two now?

33
25

Table 1: Example of a question g and prospective answer
a pair. Note that a is actually an incorrect answer in this
case.

of prompting would give us an accuracy that is
worse than random guessing between the two TRUE,
FALSE options (50%).

However, if we want to limit models to roughly
as many tokens when generating vs. discriminating,
we would no longer be able to use this approach,
since discrimination would necessarily take more
tokens than generation. This might cause the model
to generate more hastily, likely reducing generation
quality, since it still needs token space to perform
the comparison between its generated answer and
the prediction p. This is why we might expect that,
in the worst case, that validator performance might
trail generator performance slightly.

3.1 Reguritation with interpolation

We take the understanding gap to be the differ-
ence between generation and understanding abili-
ties of a language model. Bridging the understand-
ing gap shows that language models understand
their generations, rather than simply performing
what we call regurgitating with interpolation. That
is to say, we expect models to produce correct an-
swers to questions it has never seen before, and
while direct regurgitation of training data would
produce lackluster performance, models may inter-
polate between regurgitations in adjacent areas of
knowledge to produce reasonable or even correct
generations. This phenomenon could be increas-
ingly likely given the large scope and magnitude
of training data. In these cases of regurgitation
with interpolation, we would expect a large gap be-
tween generation and understanding abilities. This
gap would mean poor performance when probing
the language model on why it chose its generation
or asking it to validate a prediction that it’s not
told is its own. The first step to bridging the self-
reflection chasm, the point where models can teach



themselves new information by simply reflecting
on their responses, is to close the understanding
gap.

Where the Generative Al paradox (West et al.,
2024) provides a hypothesis based on relative dis-
criminator performance between humans and mod-
els, we provide a hypothesis that investigates the
discriminative ability of models relative to their
own generation ability. The hypothesis guiding this
paper is as follows:

Hypothesis 1: Models are, approximately, as
good at validating solutions as they are at gener-
ating answers to questions. However, this perfor-
mance requires the careful choice of an appropriate
validator prompt. We state the hypothesis formally
as,

VteT,3pr € P s.t. g(t) —u(t,pt) <e

where ¢ is some task in the set of all possible
tasks 7T, p; is some task-specific prompt in the set
of all possible prompts P, g(t) is the generation
accuracy for a task t, u(t,p) is the understand-
ing (proxied by validation accuracy) on a task ¢
with prompt p, and € is some small non-negative
value; the upper bound on the generator-validator
performance spread across all tasks. We consider
g(t) — u(t, p;) to be a formal definition of the un-
derstanding gap.

To make a strong case supporting this hypothe-
sis, we desire to show that across a diverse range of
datasets there exists an upper bound on generator-
validator accuracy spread. To increase the robust-
ness of our study, we also investigate two subhy-
potheses whose validity we expect to be consistent
with Hypothesis 1. If these two sub-hypotheses are
found to be concurrently valid with those of Hy-
pothesis 1, we believe this presents a strong case
for the latter. These two subhypothesis investigate
the ability of prompting to improve validation per-
formance and whether validation accuracy captures
underlying model understanding well.

3.2 Prompt dependency of validation

While it may seem trivial that prompting has an
effect on generation quality, the extent and nature
of the effect is less clear. Many popular prompting
methods are designed for generation rather than
discriminative settings, and it is unclear whether
prompting improves generations simply because
more computation is performed or whether it is un-
locking an otherwise elusive understanding of the

problem. Further, while a better prompt may im-
prove accuracy on a dataset, it is uncertain whether,
in the eyes of a model, a generation with a better
prompt will allow a model to become a teacher
to itself, producing a single model student-teacher
model configuration.

We take a positive stance on the ability of
prompting to tighten the upper bound. Specifically,
since ¢(t) and v(t, p) are both measures of accu-
racy between 0 and 1, the trivial upper bound € is
1. We also realize that some tasks may naturally
have negative understanding gaps because correct
answers may be especially difficult to generate for
both humans and machines, despite being fairly
easy to validate. These tasks might, for instance,
involve satisfaction of a simply stated mathemati-
cal or textual constraint that has a large state space
of potential answers with non-intuitive mapping of
the answer space to constraint satisfaction.

Sub-hypothesis 1: We can tighten the upper
bound on model error through prompt selection.

3.3 Useful validation as a form of
understanding

We next investigate whether correct validation con-
stitutes understanding, and resultingly whether
such understanding allows self-reflection to im-
prove model performance. If it does, validation cor-
rectness presents a much more simple and objective
metric to assess self-reflection quality, while also
potentially being more accurate since assessments
of intermediate reflection in practice would likely
be human- rather than model-preference-centric.
If correct validation constitutes understanding, we
would expect the following sub-hypothesis to be
true.

Sub-hypothesis 2: Self-correction-based algo-
rithms work best on datasets with lower understand-

ing gap.

4 Methodology

Benchmarks. We run experiments across
datasets spanning various natural language skills.
We investigate the ability of models to perform
constraint satisfaction through COLLIE (Yao
et al., 2024), arithmetic through 24 Game (Yao
et al., 2023) and GSMS8K (Cobbe et al., 2021), and
multihop reasoning via HotpotQA (Yang et al.,
2018), MultispanQA (Li et al., 2022) and MMLU
(Hendrycks et al., 2021). Equally important are
the abilities to operate in settings of commonsense
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Figure 2: Generation and discimination of GPT 3.5 across various skills, in both the natural dataset settings and the

log probs setting

through CSQA (Talmor et al., 2019), Hellaswag,
(Zellers et al., 2019) and PIQA (Bisk et al., 2020),
and reading comprehension via RACE (Lai et al.,
2017).

Models. Since we are testing the limits of cur-
rent state-of-the-art language model generation and
understanding capabilities, we choose to evalu-
ate on the most popular (among both researchers
and industry users) and capable language mod-
els. To that end we evaluate our hypothesis
primarily on GPT-3.5 and GPT-4, specifically
gpt-3.5-turbo-1106 and gpt-4-1106-preview,
respectively (John Schulman et al., 2022; OpenAl
et al., 2023).

Evaluation. We consider each of the benchmarks
both in their originally intended configurations and
a setting we call log probs, in which we convert
each task into a multiple choice problem and nor-
malize the log probability of each option over all
valid choice generations, taking inspiration from
(Holtzman et al., 2021). For the regular generation
setting, we assess based on the dataset’s accuracy
measure. For regular discrimination, we present the
model with the original question and its own gener-
ation and ask it to respond with TRUE if it believes
the answers to be correct and FALSE otherwise.

For our baselines (see Figure 2), we use a simple

GPT 3.5
GSM8K

Hotpo

—e— Baseline understanding gap
—&— Prompt-improved understanding gap

PIQA

Figure 3: Lowest achieved understanding gap by adjust-
ing validator prompt on GPT 3.5 across various skills,
compared to baseline understanding gap

system prompt with a minimal amount of informa-
tion necessary to instruct the model to complete
each task. To evaluate the effect of prompt, we
try various system prompts following at times ar-
chitectures shown to be effective in past works.
In evaluating the effect of understanding gap on
reflection algorithms, we implement two popular
techniques for self-correcting reasoning: Reflexion
(Shinn et al., 2023) and Multiagent Debate (Du
et al., 2023).
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Figure 4: Lowest achieved understanding gap by ad-
justing validator prompt on GPT 4 across various skills,
compared to baseline understanding gap

5 Discussion

5.1 Arelanguage models better generators or
discriminators?

Of the 10 tasks spanning skills in constraint satis-
faction, arithmetic, multihop reasoning, common
sense, and reading comprehension, 3 have negative
understanding gaps where discrimination perfor-
mance surpasses generation performance on both
models (see Figure 2). Surprisingly, we find that
while GPT-4 generally outperforms GPT-3.5 in gen-
erative capacities, it sometimes surprisingly under-
performs on discrimination on those same tasks,
perhaps suggesting semblances of overfitting in
GPT-4 to more oft seen dataset paradigms. In fact,
GPT-3.5 presents an understanding gap on only 4
of the 10 datasets, while GPT-4 presents a gap on 7
of the 10.

For the tasks with positive understanding gaps
on GPT 3.5, however, the gap is often small. The
exception is GSM8K where the model significantly
underperforms in a discrimination setting, trailing
even random guessing (50% for a TRUE/FALSE con-
figuration) despite high generation accuracy, sug-
gesting anticorrelation. This is promising, since a
trivial (and problematic on principle) solution could
be to prompt the model to answer the opposite of
what it thinks. Ostensibly, this would then give
us a (100%-40.3%=59.7%) accuracy, but wouldn’t
really be faithful to our underlying exploration of
model understanding.

In the baseline setting, the model exhibits under-
standing gaps on multihop reasoning, arithmetic,

reading comprehension, and common sense skills.
We next attempt to close these understanding gaps
through prompting.

5.2 Can we make up for the understanding
gap through prompting?

On GPT-3.5, we close the understanding gap on
HotpotQA by using prompt P1 (see Appendix A).
We find remarkably that despite the model still only
outputting a single token (TRUE or FALSE), vali-
dation accuracy surpasses the generator accuracy;
closing the gap and even resulting in a negative
understanding gap. We are able to reduce both
understanding gaps for RACE and PIQA below
0.5%, however, the model continues to discrim-
inate poorly on GSM8K, meaning our observed
understanding bound e remains large at 0.412.

On GPT-4, we close the understanding gap on
2 datasets (HotpotQA and MultispanQA) and re-
duce the gap on 3 others to below 5.5%. However,
discrimination continues to lag on GSM8K and
Hellaswag datasets. In both HotpotQA and Multi-
span settings, we find remarkably that the model
significantly outperforms the baseline disciminator
as a result of prompting without outputting addi-
tional tokens.

We discover a prompting technique we refer to
as Constrained Thought (see Figure 6), which
involves encouraging the model to reason and re-
flect while simultaneously constraining the model
to outputting a single token (e.g. in our case, TRUE
or FALSE, but which could also be a final numer-
ical or textual answer). We compare its perfor-
mance to standard and chain of thought perfor-
mance in Table 2. We note that on these datasets,
Constrained Thought (CnT) outperforms Chain
of Thought while simultaneously being signifi-
cantly more output-token-efficient. We caveat,
however, that the exact mechanism of this tech-
nique is still fairly elusive, and hence we do not
give it much attention in this paper.

We show that we can make up a substantial por-
tion of the understanding gap through prompting
and are able to reach an upper bound on the under-
standing gap across all 10 datasets of 0.412. This
performance in addition to the near-zero under-
standing gap produced suggests that it is possible
to prompt the model to transition from reasoning-
based to retrieval-based discrimination.



5.3 'When self-correction algorithms work
better?

Do algorithms based on models’ self-correction
perform better on tasks with smaller understanding
gaps? We find in the literature that the tasks with
greatest improvement from prompting (41% boost
over CoT in 24 game (Yao et al., 2023)). More cu-
riously, however, some reflection-based algorithms
31% over CoT in MultispanQA (Dhuliawala et al.,
2023))

6 Conclusion

Whereas prior works shed light onto the perfor-
mance of language models on discrimination tasks
relative to humans for tasks with generative accu-
racy parity, we present a hypothesis that specifically
aims to better understand the understanding gap,
the difference between generative and discrimina-
tive accuracies. We find most importantly, that
even when we restrict the model to outputting only
a single token, we can significantly improve dis-
crimination accuracy to rival or surpass generation
capabilities, even on tasks where the model is —
in absence of any additional prompting — a much
better generator.

Further study is required to investigate the gen-
eralizability of the estimated upperbound on the
understanding gap, e = 0.412, established across
the 10 datasets.



7 Ethical Considerations

We do not foresee any ethical considerations in di-
rect relation to our work. While there are broader
risks from general intelligence systems, and this
research contributes towards our understanding of
language models and ultimately our grasp of this
goal, we hope that our paper provides interpretabil-
ity to language model understanding. We hope to
further the pursuit of gradually peeling back the
black box that constitute many aspects of modern
large language models.

8 Limitations

A result of our choice to evaluate understanding
on the most capable and popular language mod-
els is that we experiment primarily on GPT-3.5
and GPT-4. We foresee potential limitations with
evaluating solely on closed source language mod-
els. We also attempt to estimate the upper bound
e and other behaviour through a limited number
of datasets. While we attempt to choose datasets
spanning a broad range of skills, choose datasets
before performing any experiments, and report re-
sults on all datasets regardless of performance, we
ultimately only evaluate on 10 datasets which is
a fraction of the full dataset space. HotpotQA is
licensed under Apache-2.0, MultispanQA: no li-
cense and publicly available by authors, 24 Game:
MIT, GSM8K: MIT, MMLU: MIT, COLLIE: MIT,
CSQA: no license and publicly available, Hel-
laswag: MIT, RACE: no license and publicly avail-
able, and PIQA: Apache-2.0. Usage of benchmarks
is consistent with intended use. All benchmarks are
in English, and train/test/dev splits are as originally
used on each dataset. We evaluate primarily on test
splits, but use validation splits where ground truth
is unavailable in the test split.
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A Prompts used in Sub-Hypothesis 1

We use a number of prompts to encourage the lan-
guage model to match or surpass generation perfor-
mance, when validating answers.

Prompt P1 Think step by step. First
generate your own answer to the question
and then compare this with the provided
answer. Check, then double check your
thinking. The last word of your response
should be *TRUE’ if the answer is correct
and ’'FALSE’ if the answer is incorrect,
given the question.

The effect of the prompts most effective at clos-
ing these understanding gaps across our trials are
shown in Figure 5.

Prompting to reduce understanding gaps
model = gpt-4
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Figure 5: Reducing the understanding gap through
prompting on GPT-4
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B Prompting phenomena

We notice a remarkable phenomena when attempt-
ing to investigate our subhypothesis 1 on prompt-
ing. Despite prompting the model in a typical man-
ner to generate a well-reasoned explanation and
to engage in self-reflection, the model outputs a
single token TRUE or FALSE answer (see Figure 6.
While we are unsure of why this happens, we note
that it allows us to achieve or surpass generator
performance on many tasks.

The technique performs well in practice, out-
performing the classical Chain of Thought (CoT)
without require additional output tokens. The GPT-
4 with Chain of Thought configuration surprisingly
scores 0% because instead of responding with TRUE
or FALSE, the most simply responds with a nu-
merical answer to the problem itself. We try two
different prompts You are given a question

and a prediction. Answer ’'TRUE’ if the
predicted answer is correct and ’FALSE’
if the answer is incorrect. Think step

by step. and Answer ’TRUE’ if the answer
is correct and ’FALSE’ if the answer is
incorrect. Think step by step.. In both in-
stances, we do not receive a single generation that
contains TRUE or FALSE which is very surprising
and warrants future investigation. We do note that
we use the latest gpt-4-1106-preview, so perhaps
this is the result of recent changes to the model.

Regular prompting Chain of Thought

HotpotQA | MultispanQA | GSMSK
GPT-3.5 60% 73% 40.30%
GPT-4 66% 63% 21.50%
CoT (GPT-4) 71% 63% 0%
CnT (ours) (GPT-4) 80% 69% 67 %

Table 2: Performance of Constrained Thought on GPT-
4 measured against standard and Chain of Thought
prompting on validation across each dataset. Note that
GPT-3.5 performance actually outperforms GPT-4 on
MultispanQA, despite achieving roughly similar perfor-
mance in a generative mode.

Constrained Thought (ours)

Model input ~— Model input

Sys: Answer TRUE' if the answer is correct and

Sys: Answer TRUE' if the answer is correct and 'FALSE' if the answer is

~— Model input
Sys: Think step by step. First generate your own

'FALSE' if the answer is incorrect.

Q: Question: Roy has saved 40% more in
money earned by chores than his brother
Anthony. Anthony has saved $10.00 more
than their sister Eva. Eva has saved
$20.00. How much money does Roy have?
Answer: 42

Model output
[— A: FALSE X

incorrect. Think step by step.

Q: Question: Roy has saved 40% more in money earned by chores
than his brother Anthony. Anthony has saved $10.00 more than
their sister Eva. Eva has saved $20.00. How much money does
Roy have?

Answer: 42

— Model output

A: FALSE.
Let's calculate it step by step:

1. Eva has saved $20.00.

2. Anthony has saved $10.00 more than Eva, so Anthony has
saved $20.00 + $10.00 = $30.00.

3. Roy has saved 40% more in money earned by chores than
Anthony. So, Roy has saved 40% of $30.00 more than Anthony.
40% of $30.00 is $12.00.

4. So, Roy has saved $30.00 + $12.00 = $42.00.

Given the calculation, the correct answer is that Roy has saved

$42.00, making the original statement TRUE. v

answer to the question and then compare
this with the provided answer. Check, then
double check your thinking. The last word of
your response should be 'TRUE' if the answer
is correct and 'FALSE' if the answer is
incorrect, given the question.

Q: Question: Roy has saved 40% more in
money earned by chores than his brother
Anthony. Anthony has saved $10.00 more
than their sister Eva. Eva has saved
$20.00. How much money does Roy have?
Answer: 42

C

Model output
A: TRUE v

Figure 6: Constrained Thought, a prompting technique rivalling Chain of Thought without the additional output.
As seen here, on more challenging problems, Chain of Thought may output more than one answer, which does not
occur during our trials with Constrained Thought. The technique consists primarily of prompting the model to
think and perform complex reasoning, but to then restrict the model to outputting a single character
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