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ABSTRACT

We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a ge-
ometric extension of Variational Flow Matching (VFM) for generative modeling
on manifolds. Motivated by the benefits of VFM, we derive a variational flow
matching objective for manifolds with closed-form geodesics based on Rieman-
nian Gaussian distributions. Crucially, in Euclidean space, predicting endpoints
(VFM), velocities (FM), or noise (diffusion) is largely equivalent due to affine in-
terpolations. However, on curved manifolds this equivalence breaks down. For
this reason, we formally analyze the relationship between our model and Rieman-
nian Flow Matching (RFM), revealing that the RFM objective lacks a curvature-
dependent penalty – encoded via Jacobi fields – that is naturally present in RG-
VFM. Based on this relationship, we hypothesize that endpoint prediction pro-
vides a stronger learning signal by directly minimizing geodesic distances. Ex-
periments on synthetic spherical and hyperbolic benchmarks, as well as real-world
tasks in material and protein generation, demonstrate that RG-VFM more effec-
tively captures manifold structure and improves downstream performance over
Euclidean and velocity-based baselines.

1 INTRODUCTION

Generative models play a central role in machine learning, as they provide a way to synthesize data
and learn complex distributions. Diffusion models (Ho et al., 2020; Song et al., 2020) achieve state-
of-the-art performance, but rely on a fixed Gaussian noising process with predetermined variance
schedules. As a result, the reverse process is tied to this prescribed family of Gaussian marginals, and
sampling requires numerical integration with diffusion-specific samplers. In contrast, Continuous
normalizing flows (CNFs) (Chen et al., 2018) directly learn the vector field of an ODE that transports
a base distribution into the data distribution. In principle, this allows the transport path to be fully
learned, but both training and sampling are computationally demanding since likelihood evaluation
involves solving a high-dimensional ODE (Ben-Hamu et al., 2022; Rozen et al., 2021; Grathwohl
et al., 2019). Flow Matching (FM) (Lipman et al., 2023) offers a simulation-free alternative, as it
defines per-sample interpolants between the source and the target samples, and regresses the vector
field to known conditional velocities.

Recent developments have extended flow matching in two key directions. Variational Flow Match-
ing (VFM) (Eijkelboom et al., 2024) reframes the problem as posterior inference over trajectories,
providing a probabilistic perspective with flexible modeling choices. In parallel, Riemannian Flow
Matching (RFM) (Chen & Lipman, 2024) has shown how incorporating non-Euclidean geometry
can improve modeling of distributions supported on manifolds.

VFM has demonstrated advantages over standard FM in discrete domains (e.g., CatFlow) and has
been extended to mixed data modalities (Guzmán-Cordero et al., 2025) as well as molecular gener-
ation tasks (Eijkelboom et al., 2025; Sakalyan et al.). A key strength of the variational formulation
is its flexibility: problem-specific constraints can be incorporated directly into the objective. For
instance, censored flow matching for sea-ice forecasting enforces physical bounds such as non-
negative ice thickness through the variational loss (Finn et al., 2025). The benefits of the variational
flow matching perspective motivate further exploration of its flexibility, for example for incorpo-
rating explicit geometric information on the distribution support into the objective. A natural case
arises when distributions are defined on Riemannian manifolds.
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The geometric extension is particularly relevant for biological and chemical domains where intrinsic
geometric structure governs the data. Recently, generative models have been extensively applied
to material discovery (Jiao et al., 2023; Fu et al., 2023; Kim et al., 2024) and to the generation
of large biomolecules such as protein backbones (Guo et al., 2025; Yue et al., 2025; Yim et al.,
2023a;b). These applications highlight that data often live on heterogeneous manifolds: Euclidean
space for atomic coordinates, rotation groups SOp3q for orientations, and other structured domains.
Early works in crystal generation, such as Jiao et al. (2023), focus purely on Euclidean parameters
without explicitly modeling rotational degrees of freedom. In contrast, recent methods for metal-
organic frameworks (MOFs) and proteins (Yim et al., 2023a; Yue et al., 2025; Kim et al., 2024;
Guo et al., 2025) adopt a mixed approach where Euclidean parameters (e.g., positions) are modeled
with standard FM while non-Euclidean parameters (e.g., rotations) are modeled with RFM. These
methods lack a fully variational treatment across both parameter types, and we address this gap by
demonstrating the benefits of our geometric variational approach on these applications.

When extending from Euclidean space to general Riemannian manifolds, fundamental questions
arise about the relationships between different generative modeling approaches. In Euclidean space,
training a generative model by predicting an endpoint (as in VFM), a velocity (as in FM), or noise
(as in diffusion) is largely equivalent up to affine transformations, since these quantities – noise,
score, velocity field, and endpoints – are interchangeable parameterizations of the same training
signal (Vuong et al., 2025; Lipman et al., 2023; Eijkelboom et al., 2024). On curved manifolds,
however, this equivalence breaks down: tangent spaces vary across points and curvature introduces
higher-order deviations, preventing any explicit closed-form relation between the velocity-based and
endpoint-based perspectives. This naturally raises two questions: does some relationship between
these perspectives still exist, and if so, what is its nature?

In this paper, we develop Riemannian Gaussian Variational Flow Matching (RG-VFM), which ex-
tends VFM to Riemannian manifolds with closed-form metrics, thereby bridging the variational and
geometric extensions of flow matching. Our contributions are threefold:

• We define a variational flow matching objective for general geometries, extending
endpoint-based training to manifolds.

• We formally analyze its properties, establishing how RG-VFM relates to RFM and showing
that the gap between them encodes curvature through Jacobi fields.

• We demonstrate that variationalizing existing geometric generative models in material and
protein design consistently improves performance, highlighting the practical advantages of
endpoint-based training.

2 BACKGROUND

Flow Matching. Modern generative modeling interprets sampling from a target distribution p1
as transporting a base distribution p0 by learning dynamics. Typically, p0 is a standard Gaussian,
and the transformation follows a time-dependent mapping φt : r0, 1s ˆ RD Ñ RD where φ0 is the
identity and φ1 pushes p0 onto p1. E.g., normalizing flows (Chen et al., 2018) use an ODE governed
by some time-dependent velocity field ut. Though likelihood training is possible through the change
of variables formula, solving an ODE during training is expensive.

Flow Matching (FM) (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) bypasses this by
defining an interpolation between noise and data, and directly learning the associated velocity field
in a self-supervised manner. Though the goal is to learn the intractable objective

LFMpθq “ Et,x

“

}utpxq ´ vθt pxq}2
‰

, (1)

this can be made computationally feasible by reformulating ut with a conditional velocity field
(i.e. assumed dynamics towards a given x1, or time derivative of the interpolation), giving rise to
Conditional Flow Matching (CFM):

LCFMpθq “ Et,x1,x

“

}utpx | x1q ´ vθt pxq}2
‰

. (2)

Minimizing eq. (2) provides an unbiased estimate of ∇θLFM, allowing efficient per-sample training.
As FM can be seen as regressing directly onto the derivative of an interpolant between source and
target in a self-supervised manner, it provides a unifying framework: by choosing different interpo-
lations, dynamics, or conditioning structures, it can be adapted to various data types and constraints.
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Riemannian Flow Matching. Riemannian Flow Matching (RFM) (Chen & Lipman, 2024) ex-
tends FM to Riemannian manifolds. Given a smooth Riemannian manifold M with closed-form
geodesics and metric g, RFM learns a vector field vt:

LRFMpθq “ Et,x1,x

”

›

›vθt pxq ´ logxpx1q{p1 ´ tq
›

›

2

g

ı

, (3)

with logxpx1q denoting the Riemannian log map, which returns the initial velocity vector of the
geodesic connecting x to x1 (more details on Riemannian manifolds are in section C.1).

Unlike Euclidean Flow Matching, RFM respects the curvature and geodesics of the underlying space
M. Through geodesic or spectral distances, it enables simulation-free training when manifold op-
erations are available, and can utilize approximate distances when closed-form geodesics are in-
tractable, maintaining theoretical guarantees while enabling efficient generative modeling.

Variational Flow Matching. Variational Flow Matching (VFM) (Eijkelboom et al., 2024) refor-
mulates FM by introducing a variational distribution qθt px1 | xq to approximate the unknown poste-
rior ptpx1 | xq, where the learned velocity vθt is expressed as the expectation of the condition velocity
under this variational approximation over trajectories. Then, the VFM objective is to minimize the
KL divergence between joint distributions, i.e.:

LVFMpθq “ Et

“

KL
`

ptpx1, xq || qθt px1, xq
˘‰

“ ´Et,x1,x

“

log qθt px1 | xq
‰

` const. (4)

When utpx | x1q is linear in x1 – e.g. a straight-line interpolation – the expectation depends only on
marginal distributions, implying this objective reduces to a series of D univariate tasks:

LVFMpθq “ ´Et,x1,x

«

D
ÿ

d“1

log qθt pxd
1 | xq

ff

, e.g. LVFMpθq “ Et,x1,x

“

}µθ
t pxq ´ x1}2

‰

, (5)

if qθt is Gaussian, relating VFM directly back to FM (see Eijkelboom et al. (2024) for details). For
sampling with the standard flow matching case of linear interpolation, the vector field reduces to the
first moment of the variational approximation:

vθt pxq “ Eqθt px1|xq

„

x1 ´ x

1 ´ t

ȷ

“
Eqθt px1|xqrx1s ´ x

1 ´ t
“

µθ
t pxq ´ x

1 ´ t
. (6)

A key feature of VFM is its flexibility in choosing qθt , as different choices allow adaptation to
various geometries and data types, improving efficiency and expressiveness.

3 RIEMANNIAN GAUSSIAN VARIATIONAL FLOW MATCHING

The geometric generalization of the VFM framework stems from the observation that the posterior
probability ptpx1 | xq implicitly encodes the geometry of the distribution’s support. For example, in
CatFlow (Eijkelboom et al., 2024), defining qθt px1 | xq as a categorical distribution ensures that the
velocities point towards the probability simplex. This raises the question of whether other geometric
information about the support of p1 can be similarly encoded in qθt px1 | xq.

CFM VFM

RFM RG-VFM

Geometric
generalization

Geometric
generalization

Variational
generalization

Variational
perspective

Figure 1: Overview of the models relevant for
our framework. The square represents Euclidean
space, while the sphere represents a general M.

To investigate this, we consider the case where
ptpx1 | xq is defined as a Gaussian distri-
bution with its support on a general manifold
M :“ supppp1q rather than being restricted to
Euclidean space. In this setting, the Rieman-
nian Gaussian distribution naturally arises as
a generalization of the Gaussian to a Rieman-
nian manifold. We refer to velocity-inferring
methods (CFM and RFM) as vanilla models
and endpoint-inferring methods (VFM and RG-
VFM) as variational models.

The advantages of the variational perspective in a geometric setting are twofold:

• Flexibility on the support of the distribution: the prior p0 can be defined either on M (in-
trinsic) or in the ambient Euclidean space (extrinsic), while vanilla RFM only supports the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: a: Representation of a shooting family of geodesics on S2 with corresponding Jacobi field.
b: Visualization of predictions (color-coded to match the name colors) of each model relevant to our
framework, for a target distribution p1 supported on the sphere S2.

intrinsic viewpoint. The extrinsic framework maintains the simplicity and efficiency of a
linear flow in Euclidean space, avoiding the need for the manifold’s exponential and loga-
rithmic maps, while encoding more geometric information than purely Euclidean methods
(section 3.1). Note that while “intrinsic” and “extrinsic” traditionally refer to the manifold’s
internal geometry versus its embedding, we use these terms to distinguish whether points
lie on the manifold or in the ambient space, rather than coordinate choices. For example,
our intrinsic framework can be expressed using ambient coordinates.

• Supervision on the endpoints, rather than on the velocities, by minimizing their geodesic
distance on the manifold, which in practice leads to more effective learning of the signal.
We show this in section 4, by reformulating the objective through Jacobi fields.

3.1 THE RIEMANNIAN GAUSSIAN VFM OBJECTIVE

To extend VFM to the geometric case, one first needs to define a relevant variational posterior with
support over the manifold. In contrast to Euclidean settings, we need to take particular care to ensure
the distribution is properly defined on the manifold. Let M be a Riemannian manifold with metric
g: the Riemannian Gaussian (RG) distribution (Pennec, 2006) is defined as the maximum–entropy
distribution specified by its mean value and covariance, formally

NRiempz | σ, µq “
1

C
exp

ˆ

´
distgpz, µq2

2σ2

˙

, (7)

where z, µ P M (with µ as the mean), σ ą 0 is a scale parameter, and distgpz, µq denotes the
geodesic distance determined by g. The constant C depends on both z and µ, and it normalizes the
distribution over M. A more detailed geometric explanation can be found in section C.2.

We define the Riemannian Gaussian VFM objective by using the Riemannian Gaussian as our vari-
ational approximation, i.e.

LRG-VFMpθq “ Et,x1,x

“

´ logNRiempx1 | µθ
t pxq, σtpxqq

‰

. (8)

In the Euclidean Gaussian VFM case, this setting reduces to a straightforward mean squared error
optimization, so it is natural to wonder whether a similar simplification holds here. In fact, such a
simplification exists under two assumptions: (1) the manifold is homogeneous – that is, any point
can be transformed into any other by a distance-preserving symmetry (a formal definition is provided
in section C.1); and (2) we have access to a closed-form expression for its geodesics. Notably, these
requirements are not too restrictive, as most manifolds used in deep learning satisfy them, including
Sn, Hn, Tn, and SOpnq. Formally, the following holds (see section D.1 for details):

Proposition 3.1. Let M be a homogeneous manifold with closed-form geodesics. Then, the RG-
VFM objective reduces to

LRG-VFMpθq “ Et,x1,x

“

|| logx1
pµθ

t pxqq||2g

‰

“ Et,x1,x

“

distgpx1, µ
θ
t pxqq2

‰

, (9)

where log denotes the logarithmic map on the manifold and distg is the geodesic distance.

4
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Algorithm 1 RG-VFM intrinsic

Require: base p P M, target q P M.
Initialize parameters θ of µt

# Training Phase
while not converged do

sample t „ Up0, 1q, x0 „ p, x1 „ q
compute geodesic interpolation:
xt “ expx1

pt ¨ logx1
px0qq

ℓpθq “ Et,x1,x

“

dist2gpx1, µtpxt; θqq
‰

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p

x1 “solve ODE
´

r0, 1s, x0,
logµtpxt;θqpx1qq

1´t

¯

Algorithm 2 RG-VFM extrinsic

Require: base p P Rd, target q P M.
Initialize parameters θ of µt

# Training Phase
while not converged do

sample t „ Up0, 1q, x0 „ p, x1 „ q
compute linear interpolation:

xt “ t ¨ x1 ` p1 ´ tq ¨ x0

ℓpθq “ Et,x1,x

“

dist2gpx1, µtpxt; θqq
‰

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p

x1 “solve ODE
´

r0, 1s, x0,
µtpxt;θq´xt

1´t

¯

Minimizing this loss is equivalent to computing the Fréchet mean of the distribution, that is: µ‹ “

argminµθPM Ex1

“

distgpx1, µθq2
‰

, averaged over the generative steps t and samples x. In other
words, the point µθ minimizes the expected squared geodesic distance to the target (Fréchet, 1948).
Intuitively, this can be viewed as a generalization of the mean squared error from the Euclidean
setting to a Riemannian framework. We obtain this result by assuming that σtpxq is constant.
Nonetheless, this term could for example be set to σtpxq “ 1 ´ t to achieve time normalization, as
done in our material and protein generation experiments (sections 5.2 and 5.3).

The RG-VFM objective (eq. (9)) minimizes the geodesic distance on M between predicted and
target endpoints, so it only needs to capture the local geometry around p1. This allows for a flexible
choice of p0’s support, leading to two plausible model variants when M is embedded in Rn:

1. RG-VFM-Rn: the prior p0 is Euclidean with M Ĺ supppp0q “ Rn and conditional
velocities use linear interpolation in the ambient Euclidean space Rn;

2. RG-VFM-M: the prior is intrinsic (supppp0q Ď M) with conditional velocities defined
via geodesic interpolation on tangent spaces. Here, no embedding of M in Rn is required.

The extrinsic variant RG-VFM-Rn thus learns a simple linear flow while retaining a geometry-aware
loss, whereas the intrinsic variant RG-VFM-M mirrors the RFM setup but differs in its loss defi-
nition (algorithms 1 and 2). Indeed, Vanilla RFM also requires supppp0q Ď M because its vector
fields depend on the manifold’s intrinsic geometry. Because of these different frameworks, direct
comparison is only meaningful between RG-VFM-M and RFM, a comparison we present in the
next section. The choice between intrinsic and extrinsic versions represents a trade-off: the extrinsic
version can only be used in an ambient space Rd of sufficiently large dimension to embed the man-
ifold without degeneracy. In such cases, linear interpolation simplifies implementation and reduces
computational costs by requiring only the geodesic distance, rather than logarithm and exponential
maps at every step.

4 RG-VFM VS RFM: A COMPARISON BASED ON JACOBI FIELDS

In this section, we refer to RG-VFM-M simply as RG-VFM for brevity. Given a sampled inter-
mediate point at timestep t, our variational loss LRG-VFM measures the geodesic distance between
target and predicted endpoints on the manifold. In contrast, the vanilla loss LRFM in Riemannian
flow matching compares target and predicted velocities in the tangent space at that point.

In Euclidean space, these two formulations coincide since the difference between the endpoints is
directly proportional to the difference between their initial velocities. But in curved space, this
equivalence breaks down: curvature influences how geodesics separate from one another.

In this section, we examine how small changes in initial velocities affect geodesic endpoints by
constructing families of related geodesics. In differential geometry, those variations are described
by Jacobi fields, which characterize how geodesics spread apart on a Riemannian manifold. We

5
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use this framework to establish the connection between the vanilla and variational loss functions.
Specifically, we (1) define a Jacobi field formulation of the RFM and RG-VFM losses in section 4.1,
(2) derive the relation between these field-specific instances (proposition 4.2), and (3) eventually
establish the corresponding loss relationships in proposition 4.3.

4.1 JACOBI FIELD FORMULATION OF THE FLOW MATCHING OBJECTIVES

We consider a smooth family of geodesics tγsu all starting from the same point γsp0q :“ x0 P M,
and determined by an initial velocity of the form 9γsp0q “ vs :“ v0 ` sw, with v0, w P Tx0

M,
where sw represents the perturbation level. A schematic representation is in fig. 2 (a).

Each geodesic ps, τq Ñ γspτq is parametrized by two variables: s P r0, 1s which indexes the
perturbation of its initial velocity, and τ P r0, 1s, the parameter along one geodesic that links the
initial point γsp0q “ x0 to the endpoint γsp1q “ xs

1. For convenience, we denote αps, τq :“ γspτq

the two-parameter map which simultaneously describes the entire family of perturbed geodesics.
Definition 4.1 (Jacobi field at a vanishing starting point). The family of geodesics defined as:

αps, τq :“ γs : τ Ñ expx0
pτpv ` swqq,

with s P r0, 1s and τ P r0, 1s, v, w P Tx0
M, is a smooth family of shooting geodesics with γsp0q “

x0, 9γ0p0q “ v and 9γ1p0q “ v ` w.

For each fixed τ P r0, 1s, there exists a vector field, called Jacobi field,

Jpτq :“ Bsαps, τq
ˇ

ˇ

s“0

along the geodesic γspτq :“ αps, τq satisfying the ODE equation: D2
τJ ` RpJ, 9γsq 9γs “ 0, with R

the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined
by the initial conditions and at τ “ 0 one has the initial conditions: Jp0q “ 0, and DτJp0q “ w.

Borrowing the notations from (Chen & Lipman, 2024), we denote the target velocity v0 “ utpx |

x1q, the predicted velocity v1 “ vθt pxq, and their respective endpoints γ0p1q “ x1 and γ1p1q “

µθ
t pxq. The losses can be formulated in the Jacobi field framework with the following:

Proposition 4.1 (Loss functions as evaluation of Jacobi fields). Consider a Jacobi field Jpτq :“
Bsαps, τq

ˇ

ˇ

s“0
as defined in definition 4.1. We denote LRFM the loss function of the (vanilla) Rie-

mannian Flow Matching (Chen & Lipman, 2024), and LRG-VFM the loss function for our proposed
Riemannian Variational Flow Matching. Then the following equalities hold:

LRFMpθq “ Et,x1,x

“

}utpx | x1q ´ vθt pxq}2g

‰

“ Et,x1,x

“

}DτJp0q}2g

‰

, (10)

LRG-VFMpθq “ Et,x1,x

“

}logx1
pµθ

t pxqq}2g

‰

“ Et,x1,x

“

}Jp1qg}2
‰

. (11)

4.2 RELATION BETWEEN RG-VFM AND RFM OBJECTIVES

Now that we have expressed the losses through the Jacobi fields, we observe that LRFM is a first-
order approximation of LRG-VFM through the following proposition:
Proposition 4.2. DτJp0q is a linear approximation of Jp1q.

The proof essentially consists of deriving the Taylor expansion of Jpτq, centered at τ “ 0 and evalu-
ated at τ “ 1, and identifying DτJp0q as the linear term. By truncating at the linear approximation,
curvature information is absent from DτJp0q but remains implicitly encoded in Jp1q. This distinc-
tion directly affects the relationship between the RFM and RG-VFM losses: while they coincide in
Euclidean space, their difference in curved spaces is generally nonzero and curvature-dependent.

Euclidean case. In Euclidean space, the Taylor expansion reduces to the linear term: Jpτq “

Jp0q ` τ DτJp0q which, for τ “ 1 and Jp0q “ 0, leads to Jp1q “ DτJp0q. As a consequence,

Et,x1,x

“

}DτJp0q}22

‰

“ Et,x1,x

“

}Jp1q}22

‰

(12)

which confirms that LCFM and LVFM can be reduced to one another, with proper normalization terms.

More generally, the two losses differ by a curvature-dependent term on non-flat manifolds, as shown
in the following result as a direct consequence of proposition 4.1 and proposition 4.2:

6
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Proposition 4.3 (Difference of loss functions as a curvature term). Consider a Jacobi field Jpτq :“
Bsαps, τq

ˇ

ˇ

s“0
as defined in definition 4.1 and the equivalences shown in proposition 4.1. The differ-

ence between LRG-VFM and LRFM encodes the manifold curvature through:

LRG-VFMpθq “ LRFMpθq ` Et,x1,xrCpR,DτJp0q, vq ` Ehighers
loooooooooooooooooooomoooooooooooooooooooon

curvature-dependent term

(13)

where the leading-order curvature functional is:

CpR,DτJp0q, vq “ ´
1

3
xRpDτJp0q, vqv,DτJp0qyg ´

1

6
xp∇vRqpDτJp0q, vqv,DτJp0qyg (14)

and Ehigher “ Op}DτJp0q}2}v}3q, (15)

with R the Riemannian curvature tensor and v “ 9γ0 the reference geodesic velocity. The higher-
order term Ehigher encodes curvature variation along geodesics through covariant derivatives of R.
In terms of the RFM loss terms, v “ utpx | x1q and DτJp0q “ vθt pxq ´ utpx | x1q.

Geometric interpretation. The curvature functional C captures how the manifold’s geometry af-
fects the loss comparison, encoding the first- and second-order effects of curvature on geodesic
deviation. Thus, RG-VFM implicitly captures the full geometric structure through the exact Jacobi
field Jp1q, while RFM uses only the linear approximation DτJp0q. This lack of curvature infor-
mation results in weaker, less precise supervision in directing the flow toward the actual endpoint,
leading in practice to RG-VFM learning the signal more effectively than RFM. Special cases are:

• In Euclidean space, R “ 0 implies both C “ 0 and Ehigher “ 0. This leads to LRG-VFM “

LVFM “ LCFM “ LRFM as expected from eq. (12).

• In spaces of constant curvature (e.g. hyperspheres or hyperbolic spaces) ∇R “ 0. In
this setting, we can restate the result of proposition 4.3 in terms of the constant sectional
curvature K. The formulation and proof are given in corollary D.1, and in the experimental
section, we focus primarily on manifolds that fall within this category.

In summary, we introduced RG-VFM as an alternative to RFM for learning a velocity field on a
manifold, providing a variational formulation whose objective fully captures higher-order curvature
effects, unlike RFM. This results in generally different objectives on curved manifolds. In Euclidean
space, however, the RFM objective reduces to CFM, while RG-VFM reduces to VFM (assuming a
Euclidean Gaussian posterior rather than Riemannian), and the CFM and VFM objectives become
equivalent under appropriate normalization. These relations are schematized in fig. 1 and fig. 2(b),
and their schematic algorithms can be compared in section D.2. In terms of computational costs,
extrinsic RG-VFM has the same complexity as VFM during both training and sampling. The only
difference between the two methods is that VFM computes endpoints using Euclidean distance,
while we use geodesic distance. Since we assume geodesic distance to be in closed-form, this
introduces no additional computational overhead compared to VFM. Similarly, implicit RG-VFM
maintains the same complexity as RFM, with the main difference being that velocity computation
happens during sampling rather than during training (see algorithms 3 to 8).

5 EXPERIMENTS

Goal of the experiments. The goal of our experiments is twofold. First, we aim to observe the
practical implications of proposition 4.3 by studying the behavior of vanilla and variational models,
both Euclidean and Riemannian, in a controlled synthetic setting with a visually precise target dis-
tribution. Second, we conduct real-world experiments on MOF and protein backbone generation,
motivated by a gap in the literature.

Motivation for material and protein generation and common pattern. Existing works on pro-
tein and material generation – often based on diffusion- and flow-based models with structural losses
inspired by Yim et al. (2023b;a), such as Yue et al. (2025); Kim et al. (2024); Guo et al. (2025) –
follow a common pattern. Their generation scheme is split between Euclidean and non-Euclidean
parameters, where Euclidean parameters are learned through a process that effectively corresponds
to variational flow matching, since the model predicts endpoints, minimizes MSE with the target,
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Figure 3: Comparison of the spherical checkerboard distribution generated with CFM, VFM, RFM
and our methods RG-VFM-R3 and RG-VFM-M.

and uses these predictions to compute velocity fields during integration. Non-Euclidean parameters
instead employ a partially but not fully variational form of Riemannian FM: endpoints are still pre-
dicted, but the loss minimizes the squared distance between ground-truth and predicted velocities,
with the latter obtained via the logarithm map of the manifold. This reveals a room for improvement,
as full alignment of the loss components would suggest minimizing the geodesic distance between
predicted and target data points in the non-Euclidean case. Our method directly explores this op-
tion. Furthermore, prior works report that endpoint learning improved empirical performance, and
we interpret our approach, together with Eijkelboom et al. (2024), as providing complementary the-
oretical justification for this choice. In this setting, we choose to variationalize the losses of two
models from distinct applications: MOFFlow (Kim et al., 2024) for MOF generation and ReQFlow
(Yue et al., 2025) for protein backbone generation.

5.1 CURVATURE EFFECTS IN SYNTHETIC DATA

Dataset and experimental setup. Inspired by the planar checkerboard benchmark in generative
modeling (Grathwohl et al., 2018), we introduce two curved checkerboard distributions as our target
p1, whose support is either on the hypersphere S2 Ă R3 or the upper-sheet hyperboloid H2

´1 Ă R3,
which we define in section E.1. The noisy distribution p0 is defined differently for each model: for
CFM, VFM, and RG-VFM-R3, p0 is the standard normal distribution in R3, while for RG-VFM-M
and RFM, it is obtained by wrapping the standard normal distribution on either S2 or H2

´1.

We conduct two sets of experiments: we (1) compare the extrinsic models in their ability to capture
the correct geometry – assessed by the distance of the generated samples to the data manifold – and
(2) evaluate vanilla versus variational models in reproducing the target distribution. For this last
point, the evaluation is based on metrics such as Coverage (% of generated points falling within
the desired checkerboard area) and Classifier 2-Sample Tests (C2ST) metric (Lopez-Paz & Oquab,
2016; Dalmasso et al., 2020; Lueckmann et al., 2021). The C2ST technique utilizes a neural network
classifier to separate true samples from generated ones, where a score of 0.5 indicates the distribu-
tions are indistinguishable to the classifier, while scores approaching 1 suggest the distributions are
easily separable. Additional experimental details are provided in section E.

Results. We observe that (1) Riemannian models better capture manifold geometry by generating
points with minimal distance to the manifold compared to Euclidean ones (see Distance columns
in table 1), and (2) variational models produce sharper and less blurred distributions than vanilla
models, with RG-VFM-R3 and RG-VFM-M showing the best visual performance in fig. 3. This is
reflected in table 1 in Coverage metric results, where variational models – particularly Riemannian
ones – achieve the highest values. For C2ST, no consistent pattern emerges between spherical and
hyperbolic cases, except that in both cases standard VFM demonstrates the strongest performance.
In essence, emphasizing endpoint accuracy enables variational models to capture fine details of the
target distribution’s shape, and additional geometric awareness of RG-VFM further enhances the
result. We tested setting σtpxq “ 1 versus σtpxq “ 1 ´ t in eq. (8) during training and found negli-
gible differences, so we report only the results obtained with σtpxq “ 1. Additionally, preliminary
findings suggest that using L1 loss (which corresponds to using a Riemannian Laplace instead of a
Riemannian Gaussian distribution in eq. (8)) instead of L2 may enhance performance, particularly
in hyperbolic spaces, and we start exploring this option in section E.4.

5.2 MOF GENERATION WITH MOFFLOW

Dataset and experimental setup: from MOFFlow to V-MOFFlow. MOFFlow (Kim et al.,
2024) is a flow-based generative model for MOF structures operating on rigid building blocks. A

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Results of synthetic experiments. Clipping is applied in the variational setting to stabilize
sampling. The distance between generated points and the ground-truth manifold is computed only
for extrinsic models since intrinsic ones generate directly on the manifold. Abbreviations: Eucl. =
Euclidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.

Sphere Hyperboloid

Coverage Ò C2STÓ DistanceÓ Coverage Ò C2STÓ DistanceÓ

Eucl./Ext./Van. (CFM) 64.97 58.36 ± 1.56 0.012 ± 0.099 69.05 57.38 ± 1.30 0.008 ± 0.339
Eucl./Ext./Var. (VFM) 79.08 56.33 ± 0.48 0.044 ± 0.045 75.89 57.03 ± 0.59 0.061 ± 0.140

Riem./Ext./Var. (Ours) 83.10 56.58 ± 0.28 0.010 ± 0.035 78.84 63.55 ± 0.35 0.021 ± 0.056
Riem./Int./Van. (RFM) 66.83 57.99 ± 0.58 - 60.75 61.66 ± 0.92 -
Riem./Int./Var. (Ours) 84.21 59.72 ± 0.87 - 68.38 59.73 ± 0.31 -

MOF is represented as S “ pB, q, τ, ℓq, where B denotes building blocks, and the model learns their
roto-translations pq, τq and lattice parameter ℓ. The conditional normalizing flow pθpq, τ, ℓ | Bq uses
a re-parameterized training objective predicting clean data pq1, τ1, ℓ1q from intermediate structure
Sptq. The Euclidean loss minimizes endpoint L2 distance following VFM, while the rotational part
computes conditional velocities from predictions and minimizes squared distance to ground-truth
velocities, as in RFM. Our contribution makes MOFFlow fully variational by applying our method
to its rotational component. A detailed explanation with loss equations is in section F.1.

We evaluate the resulting model, Variational-MOFFlow (V-MOFFlow) against the original MOF-
Flow and DiffCSP (Jiao et al., 2023) on MOF structure prediction using the large-scale dataset
of Boyd et al. (2019), where structures are decomposed into building blocks and split into
train/validation/test set. We follow the experimental setup of Kim et al. (2024), and performance
is measured by match rate (MR) and RMSE between original structures and generated samples.

Results in structure prediction. We report results in table 2. Our model outperforms all competi-
tors except for MR at stol “ 1.0, which Kim et al. (2024) consider too lenient for practical use. This
validates our theoretical findings that RG-VFM loss guides training more effectively than RVM. We
report additional analyses and experimental details in section F.

Table 2: Structure prediction accuracy. We report results for DiffCSP and MOFFlow with
TimeBatch implementation from Kim et al. (2024), and we reproduce MOFFlow and evaluate
V-MOFFlow with Batch implementation. “stol” is the site-tolerance for matching criteria.

stol = 0.5 stol = 1.0

# of samples MR (%)Ò RMSEÓ MR (%)Ò RMSEÓ

DiffCSP 1 0.09 0.3961 23.12 0.8294
5 0.34 0.3848 38.94 0.7937

MOFFlow (Paper results) 1 31.69 0.2820 87.46 0.5183
5 44.75 0.2694 100.0 0.4645

MOFFlow (Reproduced) 1 30.40 0.2832 83.50 0.5255
5 46.97 0.2717 95.82 0.4603

V-MOFFlow (Ours) 1 33.52 0.2789 89.08 0.5096
5 50.14 0.2629 97.18 0.4384

5.3 PROTEIN BACKBONE GENERATION WITH V-REQFLOW

Dataset and experimental setup: from QFlow & ReQFlow to V-QFlow and V-ReQFlow.
QFlow (Yue et al., 2025) is a flow-based model for protein backbone generation. Unlike previ-
ous methods (Yim et al., 2023b; Bose et al., 2023) that represent SOp3q elements with rotation
matrices, QFlow uses quaternions, which provide improved training stability. Building on this foun-
dation, ReQFlow (Yue et al., 2025) further enhances QFlow by incorporating rectified flow with
re-paired samples and noise, inspired by Liu et al. (2023), improving the designability of generated
protein backbone structures. Similar to MOF structure generation, protein backbone structures are
represented as sequences of SEp3q elements tqi, tiu

N , where qi P SOp3q defines the frame on the
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α-carbon of each amino acid, and ti P R3 represents the zero-mean coordinate of the α-carbon. For
further details, see Yim et al. (2023b). The goal is to learn a conditional flow pθpQ,T |Nq where
Q “ tqiu

N and T “ ttiu
N , with N denoting the number of residues in the desired backbone struc-

ture. Like MOFFlow, both QFlow and ReQFlow employ a re-parametrized training objective that
predicts end points from which vector fields are reconstructed. We apply our method by variation-
alizing the rotational component of their loss function, similarly to section F.1, while maintaining
all other implementation details identical to isolate the benefits of our variational objective.

We tested Variational-QFlow (V-QFlow) and Variational-ReQFlow (V-ReQFlow) on filtered Protein
Data Bank (Berman et al., 2000) dataset with 23366 protein structure with lengths ranging from 60
to 512. The filtering pipeline follows Yue et al. (2025). For evaluation metrics, we follow Yue et al.
(2025), using designability, diversity and novelty to concretely evaluate the quality of the generated
protein backbone structures. We trained our V-QFlow with 4 NVIDIA-H100 GPUs for around 260
epochs. For V-ReQFlow, we further finetuned it on our rectified dataset for 10 epochs.

Results in protein backbone structure generation. From table 3, we observe that V-QFlow and
V-ReQFlow surpass their vanilla counterparts on both designability and folding RMSD, emphasizing
the effectiveness of applying variational objectives when learning probability paths on manifolds.

Table 3: Performance comparison with baseline models on protein backbone gener-
ation on PDB dataset. 50 samples are generated and evaluated for each length in
t50, 100, 150, 200, 250, 300u. For both ReQFlow and V-ReQFlow, we generate the rectified dataset
with 20 samples for each length in r60, 512s. We filter the generated samples following the proce-
dures in the repo provided by Yue et al. (2025). Samples used for evaluation are generated by flow
models trained with 10 epochs on the rectified dataset for both ReQFlow and V-ReQFlow.

Efficiency Designability Diversity Novelty

Step FractionÒ scRMSDÓ TMÓ TMÓ

RFDiffusion 50 0.904 1.102˘1.617 0.382 0.527
Genie2 1000 0.908 1.132˘1.389 0.370 0.475
FoldFlow2 50 0.952 1.083˘1.308 0.373 0.527
FrameFlow 500 0.872 1.380˘1.392 0.346 0.562

QFlow (Reproduced) 500 0.924 1.252˘1.302 0.357 0.641
QFlow (Paper results) 500 0.936 1.163˘0.938 0.356 0.635
V-QFlow (Ours) 500 0.968 0.923˘0.787 0.387 0.647

ReQFlow (Reproduced) 500 0.964 0.939˘0.572 0.400 0.630
ReQFlow (Paper results) 500 0.972 1.071˘0.482 0.377 0.645
V-ReQFlow (Ours) 500 0.980 0.961˘0.832 0.408 0.644

6 CONCLUSION

We introduce Riemannian Gaussian Variational Flow Matching, which extends VFM to general
manifolds through Riemannian Gaussian distributions, unifying RFM and VFM under a common
probabilistic framework. Through a reformulation of their objectives using Jacobi vector fields,
we demonstrate that RG-VFM captures richer curvature-dependent information compared to stan-
dard RFM. In our experiments, we validate that this theoretical advantage translates to more precise
supervision and better learned signals: (1) for synthetic spherical and hyperbolic checkerboard dis-
tributions, enhanced curvature awareness leads to improved sharpness in learned distributions, and
(2) for real-world protein backbone and material generation tasks, applying our variational perspec-
tive through a simple modification to the rotational component of existing flow matching losses
consistently improves generation quality metrics. A current limitation is that our method is defined
for simple geometries with closed-form geodesics. However, most practical tasks involve manifolds
with explicit exponential and logarithmic maps, and we believe this framework can be straight-
forwardly extended to more complex geometries. These results establish RG-VFM as a promising
approach for modeling distributions on complex geometries with minimal implementation overhead.
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ETHICS STATEMENT

This work aims to advance machine learning and AI for science. Material and protein genera-
tion hold great promise for driving scientific discovery and tackling global challenges in medicine,
sustainability, and biotechnology. At the same time, the technology raises ethical considerations, in-
cluding the need for appropriate regulatory oversight as it matures. In terms of readiness, this work
remains at an early stage, focusing on foundational computational methods rather than immediate
applications, and therefore presents no direct benefits or risks at this time.

REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness, all required notation, mathematical background, defi-
nitions, and proofs of mathematical statements are provided in sections B to D. Experimental and
implementation details are included in section 5 and sections E and F.
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Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In Annales
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A DISCLOSURE OF LLM USAGE

We declare that the use of LLMs for writing this paper was limited to general-purpose writing
assistance. Specifically, we used them only to polish the wording of text sections and in no way to
generate the research ideas or technical results and proofs presented in this paper.

B NOTATIONS

In this section, we report the notations that are used in the paper and the rest of the appendix,
summarized in table 4.

Symbol Name Type Description

M manifold object Smooth Riemannian manifold pM,gq.
g metric tensor Riemannian metric; x¨, ¨y “ gp¨, ¨q and | ¨ | “

a

gp¨, ¨q.
p base point point Fixed point in M; normal coordinates are taken

at p.
TpM tangent space vector space Tangent space at p; all v, w, δ, us live here.
expp exponential map map expp : TpM Ą U Ñ M, a diffeomorphism

on a small ball U .
x¨, ¨yg inner product scalar Inner product on pM,gq.
distgp¨, ¨q distance scalar Riemannian distance on pM,gq.
R curvature tensor tensor p1, 3q-tensor RpX,Y qZ “ ∇X∇Y Z ´

∇Y ∇XZ ´ ∇rX,Y sZ.
∇ Levi–Civita connection operator Metric, torsion-free connection; Dt denotes co-

variant derivative along a curve.
K sectional curvature scalar Constant curvature in space forms; for a sphere

of radius r, K “ 1{r2.

v, w tangent vectors vectors Elements of TpM; initial velocities of the two
geodesics.

τ, s parameters scalars τ is the geodesic time (small); s P r´ε, εs

parametrizes the variation within the family of
geodesics.

S2 2-sphere object S2 :“ tx P R3 : xx, xyE “ 1u

H2
´1 2-hyperboloid object H2

K :“ tx P R3 : xx, xyL “ ´1, x0 ą 0u

γspτq geodesic curve γspτq :“ expppτusq, geodesic with initial ve-
locity us at p.

αps, τq ruled surface 2-parameter map αps, τq :“ γspτq; two-parameter family used
for variations.

Jpτq Jacobi field vector field Jpτq :“ Bsαps, τq along γs; Jp0q “ 0,
pDτJqp0q “ δ.

Op¨q remainder notation Big–O with constants uniform for v, w in a
fixed small ball in TpM.

Table 4: Notations of objects mentioned in this paper.

C GEOMETRIC BACKGROUND

C.1 RIEMANNIAN MANIFOLDS

In this section, we provide a comprehensive introduction to Riemannian manifolds, establishing all
necessary definitions from first principles.

Basic definitions. A manifold M is a mathematical structure that appears curved globally but
looks flat when viewed locally. Formally, a d-dimensional manifold can be covered by coordinate
charts, where each chart provides a local parameterization. For any point p P M, there exists a
neighborhood that can be mapped smoothly to an open subset of Rd via coordinate charts.
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The tangent space TpM at a point p P M represents the collection of all possible directions one can
move from p while staying on the manifold. This vector space encodes the local linear approxima-
tion to the manifold at p and maintains the same dimensionality as the ambient manifold.

Riemannian metric. A Riemannian metric g on M is a smoothly varying collection of inner
products, one for each tangent space. Specifically, for each point p P M, the metric g defines an
inner product x¨, ¨yg on the tangent space TpM. This inner product must be:

• Bilinear: xav ` bw, uyg “ axv, uyg ` bxw, uyg for tangent vectors v, w, u P TpM and
scalars a, b,

• Symmetric: xv, wyg “ xw, vyg,

• Positive definite: xv, vyg ą 0 for all non-zero v P TpM.

A manifold M equipped with a Riemannian metric g is called a Riemannian manifold and is denoted
by pM,gq.

The metric enables us to measure lengths of tangent vectors and angles between them. For tangent
vectors v, w P TpM, their lengths are }v}g “

a

xv, vyg and }w}g “
a

xw,wyg, respectively.

Geodesics. Geodesics are the natural generalization of straight lines to curved spaces. On a Rie-
mannian manifold, a geodesic γspτq is a curve that maintains constant “speed” and “direction” in
the sense defined by the Riemannian metric. Mathematically, geodesics are characterized by having
vanishing covariant acceleration.

These curves play a fundamental role as they represent paths of extremal length between nearby
points. Given any point p P M and initial tangent vector v P TpM, there exists a unique geodesic
originating at p with initial direction v.

Distance function. The Riemannian metric induces a natural distance function on the manifold.
The Riemannian distance distgpp, qq between two points p, q P M is defined as the infimum of the
lengths of all piecewise smooth curves connecting p and q:

distgpp, qq “ inf
γ

ż 1

0

›

›

›

›

dγ

dt
ptq

›

›

›

›

g

dt (16)

where the infimum is taken over all piecewise smooth curves γ : r0, 1s Ñ M with γp0q “ p and
γp1q “ q. Under appropriate completeness conditions, this distance is achieved by geodesics.

Exponential map. The exponential map expp : TpM Ñ M provides a canonical way to translate
between the linear tangent space and the curved manifold. For a tangent vector v P TpM, the
exponential map is defined as:

expppvq “ γvp1q (17)

where γvpτq represents the geodesic initiating at p with velocity v, evaluated at parameter value
τ “ 1. This construction allows us to “walk” along geodesics to reach new points on the manifold.

In sufficiently small neighborhoods around any point p, the exponential map establishes a smooth
bijection between a region in the tangent space and a region on the manifold.

Logarithmic map. The logarithmic map logp : M Ñ TpM is the (local) inverse of the exponen-
tial map. For a point q P M sufficiently close to p, the logarithmic map returns the tangent vector
v P TpM such that expppvq “ q.

In regions where the exponential map is a diffeomorphism, we have logppexpppvqq “ v and
exppplogppqqq “ q. The logarithmic map essentially tells us which direction and how far to travel
in the tangent space to reach a given nearby point on the manifold.

In this work, we consider complete, connected, and smooth Riemannian manifolds pM,gq, ensuring
that geodesics can be extended indefinitely and that the exponential map is well-defined globally.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Tangent bundle. By collecting all tangent spaces across the manifold, we obtain the tangent bun-
dle:

TM “
ď

pPM
tpu ˆ TpM (18)

The tangent bundle is itself a smooth manifold of dimension 2d, where d is the dimension of M.
Each element of TM can be written as pp, vq where p P M is a point on the manifold and v P TpM
is a tangent vector at that point.

Vector fields. A vector field on M is a smooth section of the tangent bundle, i.e., a smooth map
u : M Ñ TM such that uppq P TpM for each point p P M. In local coordinates, a vector
field can be expressed as u “

řd
i“1 u

i B
Bxi where the coefficient functions ui are smooth. We

specifically consider time-dependent vector fields tututPI , which are smooth families of vector fields
parameterized by time t. The Riemannian metric g extends naturally to define pointwise inner
products between vector fields: xu,wygppq “ xuppq, wppqyg for any two vector fields u and w.

Homogeneous Manifold. A Riemannian manifold M is homogeneous if its isometry group acts
transitively on M, i.e., for any two points x, y P M, there exists an isometry f : M Ñ M such
that fpxq “ y.

C.2 RIEMANNIAN GAUSSIAN DISTRIBUTIONS

We describe the construction of the Riemannian Gaussian (RG) distribution, which generalizes the
familiar Gaussian distribution to the setting of a Riemannian manifold. The definition of the Rie-
mannian Gaussian is a specific instance of the Normal law presented in Pennec (2006):
Definition C.1 (Normal law Pennec (2006)). We call Normal law on the manifold M the maxi-
mum–entropy distribution specified by its mean value and covariance. Assuming no continuity or
differentiability constraint on the cut locus Cpx̄q and a symmetric domain Dpx̄q, the probability
density function of the Normal law with mean x̄ and concentration matrix Γ is

Npx̄,Γqpyq “ k exp
´

´ 1
2

ÝÑx̄y
J
ΓÝÑx̄y

¯

, (19)

where the normalisation constant k and the covariance Σ are related to Γ by

k´1 “

ż

M
exp

´

´ 1
2

ÝÑx̄y
J
ΓÝÑx̄y

¯

dMpyq, Σ “ k

ż

M

ÝÑx̄y ÝÑx̄y
J
exp

´

´ 1
2

ÝÑx̄y
J
ΓÝÑx̄y

¯

dMpyq.

(20)

By simply defining the concentration matrix Γ as G
σ , where G is the metric tensor associated with

the chosen metric and σ is a fixed variance parameter, we obtain the following definition.
Definition C.2 (Riemannian Gaussian). Let M be a Riemannian manifold endowed with the metric
tensor g. The RG distribution is defined by

NRiempz | σ, µq “
1

C
exp

´

´
distgpz, µq2

2σ2

¯

, (21)

where z P M is a point on the manifold, µ P M plays the role of the mean, and σ ą 0 is a scale
parameter controlling the spread of the distribution. Here, distgpz, µq denotes the geodesic distance
between z and µ as determined by the metric g, and C is a normalization constant chosen so that
the total probability integrates to 1 over M:

C “

ż

M
exp

´

´
distgpz, µq2

2σ2

¯

dMz. (22)

The measure dMz represents the Riemannian volume element, which in local coordinates takes the
form

dMz “
a

detgpzq dz, (23)
with dz being the standard Lebesgue measure in the coordinate chart and gpzq is the Riemannian
metric tensor at the point z. This formulation ensures that the probability density is adapted to the
geometric structure of the manifold.
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Observation. In the special case where M “ Rd and the metric is Euclidean (i.e., gpzq “ I),
the geodesic distance reduces to the usual Euclidean distance, and the RG distribution becomes the
standard multivariate Gaussian with covariance matrix σ2I. On more general manifolds, however,
the curvature and topology are taken into account through the geodesic distance and the volume
element, leading to a natural extension of the Gaussian concept. This construction can be applied to
spaces such as hyperbolic manifolds, where one can define the distribution in the tangent space at a
point µ and then use the exponential map to project it onto the manifold.

Comparison to vMF. A closely related distribution is the von Mises–Fisher (vMF) distribution,
which is traditionally defined on the sphere Sn by

vMFpz | µ, κq9 exp
`

κ xz, µy
˘

,

with µ P Sn and x¨, ¨y denoting the standard dot product. The vMF distribution is based on the
notion of directional data and an inner product structure that measures alignment. In contrast, the
RG distribution is inherently tied to the Riemannian metric, making it applicable to a much wider
class of manifolds. Generalizing the idea behind the vMF distribution to other geometries often
requires embedding the manifold into a larger ambient space and defining a suitable bilinear form
(such as the Minkowski inner product in hyperbolic geometry). In this sense, the RG approach offers
a more natural and geometrically intrinsic formulation.

In summary, the Riemannian Gaussian distribution is defined in terms of the geodesic distance and
the corresponding volume element, and it adapts to the underlying geometry of any Riemannian
manifold.

D RG-VFM AND LINK WITH RFM

D.1 DETAILED DERIVATION OF RG-VFM OBJECTIVE

Proposition D.1. If the manifold pM,gq is homogeneous, the normalization constant

C “

ż

M
exp

ˆ

´
distgpz, µq2

2σ2

˙

dMz (24)

is independent of the mean µ.

Proof. We can initially rename the normalization constant C by making the dependency on the
mean explicit, referring to it as Cpµq. In this setting, we want to prove that for two arbitrary mean
values µ̄ and µ̃, we have Cpµ̄q “ Cpµ̃q.

By definition, a Riemannian manifold M is homogeneous if @x, y P M, Df : M Ñ M such that
fpxq “ y and with f being an isometry, meaning that distgpx, yq “ distgpfpxq, fpyqq.

We can then assume that f satisfies µ̄ “ fpµ̃q, getting the following:

Cpµ̃q “

ż

M
exp

ˆ

´
distgpz, µ̃q2

2σ2

˙

dMz,

Cpµ̄q “

ż

M
exp

ˆ

´
distgpy, µ̄q2

2σ2

˙

dMy,

Cpfpµ̃qq “

ż

M
exp

ˆ

´
distgpy, fpµ̃qq2

2σ2

˙

dMy,

with Cpµ̄q “ Cpfpµ̃qq.

Let’s suppose that y :“ fpsq, for some s P M. By the definition of isometry, we have
distgpy, fpµ̃qq “ distgpfpsq, µ̃q “ distgps, µ̄q. Furthermore, for any integrable scalar function
ϕ : M Ñ R and isometry f :

ż

M
ϕpyq dMy “

ż

M
ϕ
`

fpsq
˘

dMs.
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By applying these two facts to our case, we obtain the following series of equalities:

Cpµ̄q “

ż

M
exp

ˆ

´
distgpy, fpµ̃qq2

2σ2

˙

dMy

“

ż

M
exp

ˆ

´
distgpfpsq, fpµ̃qq2

2σ2

˙

dMs

“

ż

M
exp

ˆ

´
distgps, µ̃q2

2σ2

˙

dMs “ Cpµ̃q.

Proposition 3.1. Let M be a homogeneous manifold with closed-form geodesics. Then, the RG-
VFM objective reduces to

LRG-VFMpθq “ Et,x1,x

“

|| logx1
pµθ

t pxqq||2g

‰

“ Et,x1,x

“

distgpx1, µ
θ
t pxqq2

‰

, (9)
where log denotes the logarithmic map on the manifold and distg is the geodesic distance.

Proof. The objective of VFM is defined as

LVFMpθq “ ´Et,x1,x

“

log qθt px1|xq
‰

.

We define the objective function of RG-VFM by setting the posterior probability as the Riemannian
Gaussian, i.e.,

qθt px1|xq “ NRiempx1 | µθ
t pxq, σtpxqq,

so that
LRG-VFMpθq “ ´Et,x1,x

“

logNRiempx1 | µθ
t pxq, σtpxqq

‰

.

More explicitly, we have

LRG-VFMpθq “ ´Et,x1,x

“

log qθt px1|xq
‰

“ ´Et,x1,x

“

logNRiempx1 | µθ
t pxq, σtpxqq

‰

“ ´Et,x1,x

„

log

ˆ

1

Cpµθ
t pxqq

exp

ˆ

´
distgpx1, µ

θ
t pxqq2

2σtpxq2

˙˙ȷ

“ ´Et,x1,x

„

log

ˆ

1

Cpµθ
t pxqq

˙

´
distgpx1, µ

θ
t pxqq2

2σtpxq2

ȷ

“ ´Et,x1,x

„

log

ˆ

1

Cpµθ
t pxqq

˙ȷ

` Et,x1,x

„

distgpx1, µ
θ
t pxqq2

2σtpxq2

ȷ

,

where distgpq denotes the geodesic distance induced by the Riemannian metric g.

Without any regularity assumptions on M, no further simplification is possible. However, under the
following assumptions the objective becomes more tractable:

1. Homogeneity: If the manifold pM,gq is homogeneous, the normalization constant

C “

ż

M
exp

ˆ

´
distgpz, µq2

2σ2

˙

dMz

is independent of the mean µ (see proposition D.1). Hence, defining

K :“ ´Et,x1,x

„

log

ˆ

1

Cpµθ
t pxqq

˙ȷ

,

which is constant with respect to θ, we obtain

LRG-VFMpθq “ K ` Et,x1,x

„

distgpx1, µ
θ
t pxqq2

2σtpxq2

ȷ

.

Since K is a constant that is independent of the model’s parameters θ, the minimization
objective becomes

LRG-VFMpθq “ Et,x1,x

„

distgpx1, µ
θ
t pxqq2

2σtpxq2

ȷ

.
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2. Closed-form Geodesics: If the geometry allows closed-form expressions for geodesics,
namely

γptq “ expx

´

t ¨ logxpyq

¯

,

then the geodesic distance between two points is given by:

distgpz, µq “ } logzpµq}g.

In this setting, we can write

distgpx1, µ
θ
t pxqq2 “ } logx1

pµθ
t pxqq}2g,

so that the objective becomes

LRG-VFMpθq “ ´Et,x1,x

„

log

ˆ

1

Cpµθ
t pxqq

˙ȷ

` Et,x1,x

„

1

2σtpxq2
} logx1

pµθ
t pxqq}2g

ȷ

.

3. Combined Assumptions: If both conditions hold, the objective simplifies to

LRG-VFMpθq “ Et,x1,x

„

1

2σtpxq2
} logx1

pµθ
t pxqq}2g

ȷ

.

If we further assume that σtpxq is constant, this reduces to

LRG-VFMpθq “ Et,x1,x

“

} logx1
pµθ

t pxqq}2g

‰

.

Remark on the definition of σtpxq. In the previous proof, the result is obtained by assuming
σtpxq to be constant. More in general, we could maintain the presence of σtpxq explicit in the loss,
obtaining LRG-VFMpθq “ Et,x1,x

”

1
2σtpxq2

} logx1
pµθ

t pxqq}2g

ı

. By being time dependent, σtpxq can

for example be defined as the normalization constant 1
1´t . Despite the generality that it allows, for

the sake of simplicity we make the choice to assume σtpxq being constant, or implicit in the loss
definition.

Examples of simple geometries. A homogeneous manifold does not necessarily imply that
geodesics admit closed-form expressions. Conversely, the simple geometries with closed-form
geodesics considered in the RFM setting—such as hyperspheres Sn, hyperbolic spaces Hn, flat
tori Tn “ r0, 2πsn, and the space of SPD matrices S`

d with the affine-invariant metric—are ho-
mogeneous. Thus, when restricting to these geometries for comparison with RFM, we are in the
combined case.

Special case: euclidean space. In the Euclidean case (which also falls into the combined case),
the objective simplifies further to

LRG-VFMpθq “ Et,x1,x

“

}µθ
t pxq ´ x1}2

‰

.

D.2 HOW DOES RG-VFM FIT IN THE EXISTING FLOW MATCHING FRAMEWORK?

Figure 2 (left) illustrates how RG-VFM fits within the framework of related FM models. In VFM,
a probabilistic generalization of CFM is obtained by making the posterior distribution explicit and
customizable, obtaining standard CFM under the choice of a specific Gaussian (see Eijkelboom et al.
(2024)). In contrast, RFM serves as a geometric generalization of CFM, where the model and its ob-
jective take into account the intrinsic properties and metric of the underlying Riemannian manifold.
The same happens for the variational models: VFM with a Gaussian posterior is a particular in-
stance of RG-VFM when the geometry is Euclidean. In Euclidean space, } logx1

pµθ
t pxqq}2g reduces

to }µθ
t pxq ´ x1}22, thereby recovering the VFM objective.

A further comparison can be made between the simplified version of RFM and RG-VFM-M, where
M is a homogeneous manifold with closed-form geodesics. The variational model (RG-VFM) is not
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a direct generalization of vanilla RFM because, unlike in Euclidean space, tangent spaces at different
points on a manifold do not coincide. This difference is reflected in the models’ outputs (fig. 2):
vanilla models predict velocity fields, which are integrated as ODEs to construct flows, whereas
variational models predict endpoint distributions, ideally aligning with the target distribution p1.

In Euclidean space, the difference between two vectors starting at x and pointing to different end-
points is simply the vector between those endpoints, leading to identical L2 terms in the objectives,
i.e. }µθ

t pxq ´ x1}22 for VFM and }utpx | x1q ´ vθt pxq}2 for CFM. However, since TxM ‰ Tx1
M

in general, in their geometric counterparts this equivalence no longer holds: indeed, the difference
vector in the RFM objective, vθt pxq ´

logxpx1q

p1´tq , is in TxM, while logx1
pµθ

t pxqq is in Tx1
M. This

fundamental distinction separates RG-VFM from RFM. More details are in the following Section.

Algorithm 3 CFM

Require: base p P Rd, target q P Rd.
# Training Phase
Initialize parameters θ of vt
while not converged do

sample t „ Up0, 1q, x0 „ p, x1 „ q
compute linear interpolation:
xt “ t ¨ x1 ` p1 ´ tq ¨ x0

compute corresponding velocity:
9xt “ px1 ´ xtq{p1 ´ tq

ℓpθq “ Et,x1,x

”

∥vtpxt; θq ´ 9xt∥2g
ı

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
x1 “solve ODEpr0, 1s, x0, vtpxt; θqq

Algorithm 4 VFM

Require: base p P Rd, target q P Rd.
# Training Phase
Initialize parameters θ of µt

while not converged do
sample t „ Up0, 1q, x0 „ p, x1 „ q
compute linear interpolation:

xt “ t ¨ x1 ` p1 ´ tq ¨ x0

ℓpθq “ Et,x1,x

”

∥µtpxt; θq ´ x1∥2g
ı

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
compute corresponding velocity:
9xt “

µtpxt;θq´xt

1´t

x1 “solve ODEpr0, 1s, x0, 9xtq

Algorithm 5 RFM

Require: base p P M, target q P M.
# Training Phase
Initialize parameters θ of vt
while not converged do

sample t „ Up0, 1q, x0 „ p, x1 „ q
compute geodesic interpolation:
xt “ expx1

pt ¨ logx1
px0qq

compute corresponding velocity:
9xt “ PTx0Ñxt

plogx1
px0qq

ℓpθq “ Et,x1,x

”

∥vtpxt; θq ´ 9xt∥2g
ı

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
x1 “solve ODEpr0, 1s, x0, vtpxt; θqq

Algorithm 6 RG-VFM (general)

Require: base p, target q P M.
# Training Phase
Initialize parameters θ of µt

while not converged do
sample t „ Up0, 1q, x0 „ p, x1 „ q
compute interpolation:

xt “ intpt, x0, x1q

ℓpθq “ Et,x1,x

“

dist2gpx1, µtpxt; θqq
‰

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
compute corresponding velocity 9xt

x1 “solve ODEpr0, 1s, x0, 9xtq
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Algorithm 7 RG-VFM intrinsic

Require: base p P M, target q P M.
# Training Phase
Initialize parameters θ of µt

while not converged do
sample t „ Up0, 1q, x0 „ p, x1 „ q
compute geodesic interpolation:
xt “ expx1

pt ¨ logx1
px0qq

ℓpθq “ Et,x1,x

“

dist2gpx1, µtpxt; θqq
‰

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
compute corresponding velocity:
9xt “

logµtpxt;θqpx1qq

1´t

x1 “solve ODEpr0, 1s, x0, 9xtq

Algorithm 8 RG-VFM extrinsic

Require: base p P Rd, target q P M.
# Training Phase
Initialize parameters θ of µt

while not converged do
sample t „ Up0, 1q, x0 „ p, x1 „ q
compute linear interpolation:

xt “ t ¨ x1 ` p1 ´ tq ¨ x0

ℓpθq “ Et,x1,x

“

dist2gpx1, µtpxt; θqq
‰

θ “ optimizer steppℓpθqq

end while

# Generation Phase
sample noise x0 „ p
compute corresponding velocity:
9xt “

µtpxt;θq´xt

1´t

x1 “solve ODEpr0, 1s, x0, 9xtq

D.3 RG-VFM VS RFM ON HOMOGENEOUS SPACES WITH CLOSED-FORM GEODESICS

The objective of RG-VFM is defined as

LRG-VFMpθq “ Et,x1,x

“

} logx1
pµθ

t pxqq}2g

‰

,

while the objective of RFM, in the case of closed-form geodesics, is given by

LRFMpθq “ Et,x1,x

”

›

›vθt pxq ´ logxpx1q{p1 ´ tq
›

›

2

g

ı

,

with g being the metric tensor at x „ ptpx|x1q.

Ignoring multiplicative constants that depend only on t and x, comparing the two losses reduces to
comparing the quantities

} logx1
pµθ

t pxqq}2g and }vθt pxq ´ logxpx1q}2g.

Euclidean space. In Euclidean space Rn, the tangent space at each point is naturally identified
with Rn. In this setting,

logx1
pµθ

t pxqq “ µθ
t pxq ´ x1 and logxpx1q “ x1 ´ x.

Notice that
µθ
t pxq ´ x1 “ µθ

t pxq ´ x ` x ´ x1 “ pµθ
t pxq ´ xq ´ px1 ´ xq “ pµθ

t pxq ´ xq ´ logxpx1q.

If we define (ignoring multiplicative constants such as 1{p1 ´ tq)

vθt pxq “ logxpµθ
t pxqq “ µθ

t pxq ´ x,

then it follows that
logx1

pµθ
t pxqq “ logxpµθ

t pxqq ´ logxpx1q,

implying
} logx1

pµθ
t pxqq}2g “ }vθt pxq ´ logxpx1q}2g.

Thus, LRG-VFMpθq and LRFMpθq are equivalent up to an additive constant. This result is consistent
with the known equivalence between LVFMpθq and LCFMpθq.

General geometries. In non-Euclidean spaces, however, the quantities

} logx1
pµθ

t pxqq}2g and }vθt pxq ´ logxpx1q{p1 ´ tq}2g

are not necessarily equal. This is because logx1
pµθ

t pxqq is a vector in Tx1
M, while

logxpµθ
t pxqq ´ logxpx1q lies in TxM, and in general Tx1

M ‰ TxM. Establishing a relation
between these vectors is not straightforward and can be illustrated by comparing the law of cosines
in Euclidean, hyperbolic spaces, and on hyperspheres.
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D.4 A COMPARISON BASED ON JACOBI FIELDS

In this section, we report the notations used for explaining the comparison based on Jacobi fields,
in table 5, as well as the proofs of the propositions in section 4.

Symbol Name Description

xs
τ“0 “ xs

0 “ x0 base point Base point obtained at τ “ 0.
x1
1, x

0
1 generated and target end point Predicted and reference data

points after training.
v1, v0 generated and target vector Predicted and reference vectors

after training.

LRG-VFM “ Et,x,x1 rdistpx1
1, x

0
1q

2
s RG-VFM loss Geodesic distance used in the

Variational Riemannian FM loss
function.

LRFM “ Et,x,x1 r
∥∥v1 ´ v0

∥∥2

g
s RFM loss Norm of vector fields used in

the Vanilla Riemannian FM loss
function.

Table 5: Synthetic notations used in this section for the Jacobi field and Riemannian flow matching
losses.

Definition 4.1 (Jacobi field at a vanishing starting point). The family of geodesics defined as:

αps, τq :“ γs : τ Ñ expx0
pτpv ` swqq,

with s P r0, 1s and τ P r0, 1s, v, w P Tx0
M, is a smooth family of shooting geodesics with

γsp0q “ x0, 9γ0p0q “ v and 9γ1p0q “ v ` w.

For each fixed τ P r0, 1s, there exists a vector field, called Jacobi field,

Jpτq :“ Bsαps, τq
ˇ

ˇ

s“0

along the geodesic γspτq :“ αps, τq satisfying the ODE equation: D2
τJ ` RpJ, 9γsq 9γs “ 0, with R

the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined
by the initial conditions and at τ “ 0 one has the initial conditions: Jp0q “ 0, and DτJp0q “ w.

Proof. Lee (2018)[Lemma 10.9. and Proposition 10.2.]

Since τ Ñ αps, τq is a geodesic for each s, we have D2
τα “ 0. Differentiate with respect to s and

use the torsion-free, metric connection to get D2
τ pBsαq ` RpBsα, BταqBτα “ 0, which is the Jacobi

equation for Jpτq “ Bsαps, τq|s“0. Because αps, 0q “ x0 for all s, we get Jp0q “ 0. Also
Bταps, 0q “ v ` sw, so DτJp0q “ Bspv ` swq|s“0 “ w|s“0 “ w.

The Jacobi equation is a linear second-order ODE along γ with smooth coefficients, there is a
unique solution with any prescribed initial data pJp0q, DτJp0qq “ p0, wq.

For s “ 0, we are interested in the geodesic γ0 : τ Ñ expx0
pτv0q, with v0 the target velocity, and

for s “ 1, the geodesic γ1 : τ Ñ expx0
pτv1q is defined with v1 the velocity learned by the model.

w “ v0 ´ v1 corresponds to the discrepancy between the learned and the conditional initial
velocity, and their norm is exactly what is minimized in the vanilla Riemannian Flow Matching
(Chen & Lipman, 2024).

Proposition 4.1 (Loss functions as evaluation of Jacobi fields). Consider a Jacobi field
Jpτq :“ Bsαps, τq

ˇ

ˇ

s“0
as defined in definition 4.1. We denote LRFM the loss function of the

(vanilla) Riemannian Flow Matching (Chen & Lipman, 2024), and LRG-VFM the loss function for
our proposed Riemannian Variational Flow Matching. Then the following equalities hold:

LRFMpθq “ Et,x1,x

“

}utpx | x1q ´ vθt pxq}2g

‰

“ Et,x1,x

“

}DτJp0q}2g

‰

, (10)

LRG-VFMpθq “ Et,x1,x

“

}logx1
pµθ

t pxqq}2g

‰

“ Et,x1,x

“

}Jp1qg}2
‰

. (11)
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Proof. In RFM, the goal is to learn a velocity field vθt that transports the base distribution at t “ 0
into the target distribution at t “ 1. The loss penalizes the discrepancy between the conditional
velocity utpx | x1q and the model’s prediction vθt pxq, averaged over all time steps t, target samples
x1 „ pdata, and intermediate samples x „ ptpx | x1q.

When introducing Jacobi fields, we first define them for a fixed generative step t, a specific target
point x1 “ xs“0

1 , and an associated intermediate point. As an abuse of notation, we suppose here
that the Jacobi fields are obtained for all t, x1, x, allowing us to take expectations over these
variables.

1. Let us prove that:

LRFMpθq “ Et,x1,x

“

}utpx | x1q ´ vθt pxq}2g

‰

“ Et,x1,x

“

}DτJp0q}2g

‰

,

By definition of the initial conditions of our Jacobi field, we have the target velocity field
defined as 9γs“0p0q :“ v0 “ utpx | x1q and the learned velocity field defined as
9γs“1p0q :“ v1 “ vθt pxq. By definition 4.1,
}utpx | x1q ´ vθt pxq} “ }v0 ´ v1} “ } ´ w} “ }w} “ }DτJp0q}.

2. We want to prove the other equality:

LRG-VFMpθq “ Et,x1,x

“

}logx1
pµθ

t pxqq}2g

‰

“ Et,x1,x

“

}Jp1q}2g

‰

.

We observe that logx1
pµθ

t pxqq “ logγ0p1qpγ1p1qq. Let p :“ γ0p1q and q :“ γ1p1q, the
respective end points of the geodesics γ0 and γ1. If q lies in the injectivity radius of p,
then there is a unique minimizing geodesic σ : ρ P r0, 1s Ñ expppρuq with u “ logppqq,
with σp0q “ p to σp1q “ q.

a) We can then consider the Taylor expansion for the exponential map expp and
consequently of the geodesic defined from it σpρq, as in Monera et al. (2014):

σpρq “ σp0q ` σ1p0q ρ ` 1
2 σ

2p0q ρ2 ` Op∥ρu∥3q.

By substituting the values, we obtain:

σpρq “ p ` u ρ ` 1
2 σ

2p0q ρ2 ` Op∥ρu∥3q.

We want now to reparametrize the geodesic with respect to the variable s, instead of
ρ P r0, 1s. For this, we reparametrize it with a new initial velocity vector w such that
σwpsq “ σupρpsqq for a smooth reparametrization function ρ “ ρpsq. In this setting,
we still have σwp0q “ p and σwp1q “ q. Hence

σwpsq “ p ` w s ` 1
2 σ

2p0q s2 ` Op∥sw∥3q,

and for s “ 1:

q “ σwp1q “ p ` w ` 1
2 σ

2p0q ` Op∥w∥3q.

b) From the perspective of the family of geodesics

γspτq “ expx0
pτpv ` swqq

and the corresponding Jacobi field Jpτq, we can instead derive:

γsp1q “ γ0p1q ` Jp1q s ` 1
2 J

1p1q s2 ` Op∥Jp1qs∥3q,

that for s “ 1 gives:

q “ γ1p1q “ p ` Jp1q ` 1
2 J

1p1q ` Op∥Jp1q∥3q.

We can observe that, for s “ 1, the two Taylor expansions in (a) and (b) coincide, and we
also have for the linear terms:

logp q “ w “ Jp1q.

From this, we derive the fundamental equality logx1
pµθ

t pxqq “ logp q “ Jp1q, which
exactly corresponds to what we want to prove.
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Proposition 4.2. DτJp0q is a linear approximation of Jp1q.

Proof. Let J pkqp0q :“ Dk
τJpτq|τ“0 be the k-th derivative of J with respect to τ , then evaluated at

0. The value of the Jacobi field at timestep τ can be computed through Taylor expansion of the
Jacobi field centered in τ “ 0, as

Jpτq “ τJ p1qp0q `
τ2

2
J p2qp0q `

τ3

6
J p3qp0q ` Op}w}τ4q

Since the exponential map is smooth, the associated geodesics and Jacobi fields are smooth
functions depending on τ . The Taylor’s theorem guarantees that we can approximate Jpτq around
τ “ 0, with the big-O term quantifying the size of the error. In particular, the expansion centered at
τ “ 0 remains valid when evaluated at any τ , provided that the exponential map stays well-defined
and smooth.

In our setting, Jp0q “ 0, and we are interested in the timestep τ “ 1, for which we get

Jp1q “ J p1qp0q `
1

2
J p2qp0q `

1

6
J p3qp0q ` Op}w}q

and if we want to stop at the linear term:

Jp1q « J p1qp0q,

in the sense that J p1qp0q is a linear approximation of Jp1q.

Proposition 4.3 (Difference of loss functions as a curvature term). Consider a Jacobi field
Jpτq :“ Bsαps, τq

ˇ

ˇ

s“0
as defined in definition 4.1 and the equivalences shown in proposition 4.1.

The difference between LRG-VFM and LRFM encodes the manifold curvature through:

LRG-VFMpθq “ LRFMpθq ` Et,x1,xrCpR,DτJp0q, vq ` Ehighers
loooooooooooooooooooomoooooooooooooooooooon

curvature-dependent term

(13)

where the leading-order curvature functional is:

CpR,DτJp0q, vq “ ´
1

3
xRpDτJp0q, vqv,DτJp0qyg ´

1

6
xp∇vRqpDτJp0q, vqv,DτJp0qyg (14)

and Ehigher “ Op}DτJp0q}2}v}3q, (15)

with R the Riemannian curvature tensor and v “ 9γ0 the reference geodesic velocity. The
higher-order term Ehigher encodes curvature variation along geodesics through covariant
derivatives of R. In terms of the RFM loss terms, v “ utpx | x1q and
DτJp0q “ vθt pxq ´ utpx | x1q.

Proof. The proof consists of three steps: (1) we will detail the Taylor series of the norm of the
Jacobi field, noted S :“ ∥J∥2, (2) we will compute up to the 5th order of those terms evaluated at
τ “ 0, and (3) we will simplify the expression to have the approximation.

1. Let’s look at the Taylor expansion of the Jacobi fields. The Jacobi fields are indefinitely
differentiable at a point τ “ 0, and so have a Taylor series on this point. They can be
expressed as

Jpτq “

n
ÿ

k“0

τk

k!
J pkqp0q `

ż τ

0

pτ ´ ρqn

n!
Jn`1pρqdρ,

with J pkqp0q :“ Dk
τJpτq|τ“0, the k-th derivative of J with respect to τ , then evaluated at

0. Rn “
şτ

0
pτ´ρq

n

n! J pn`1qpρqdρ is the remainder term.
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We further note Spτq the linear product of two Jacobi fields, defined as:

Spτq :“ ∥Jpτq∥2 “ xJpτq, Jpτqy “ x
ÿ

mě0

τm

m!
J pmqp0q,

ÿ

ně0

τn

n!
J pnqp0qy.

Note that here and in the following, x¨, ¨y :“ x¨, ¨yg, but we omit g to avoid overcharging
equations.

By bilinearity and using the Cauchy product, we have:

Spτq “
ÿ

m,ně0

τm`n

m!n!
xJ pmqp0q, J pnqp0qy “

ÿ

rě0

τ r

r!
Sprqp0q

with Sprqp0q :“
řr

l“0

`

r
l

˘

xJ plqp0q, J pr´lqp0qy.

2. Let us compute the Jacobi terms J pkqp0q :“ Dk
τJpτq|τ“0 and their norm Skp0q.

We know that the Jacobi fields satisfy the following ODE equation

J p2q ` AJ “ 0,

with ApτqJpτq “ RpJpτq, 9γpτqq 9γpτq, with 9γp0q “ v is the initial velocity and
Dτ 9γpτq “ 0 since γ is a geodesic. We know the initial condition Jp0q “ 0 and
J p1qp0q :“ DτJp0q “ w. Noting Apkq :“ Dk

τApτq, we can compute with the chain rule:

DτApτqJpτq “ ∇ 9γ rRpJpτq, 9γq 9γs

“ p∇ 9γRqpJpτq, 9γq 9γ ` RpDτJpτq, 9γq 9γ ` RpJpτq, Dτ 9γq 9γ ` RpJpτq, 9γqDτ 9γ

“ p∇ 9γRqpJpτq, 9γq 9γ ` RpDτJpτq, 9γq 9γ since Dτ 9γ “ 0

D2
τApτqJpτq “ Dτ p∇ 9γRqpJpτq, 9γq 9γ ` Dτ pRpDτJpτq, 9γq 9γq

“ p∇2
9γRqpJpτq, 9γq 9γ ` p∇ 9γRqpDτJpτq, 9γq 9γ ` p∇ 9γRqpDτJpτq, 9γq 9γ ` RpD2

τJpτq, 9γq 9γ

“ p∇2
9γRqpJpτq, 9γq 9γ ` 2p∇ 9γRqpDτJpτq, 9γq 9γ ` RpD2

τJpτq, 9γq 9γ

For all t, we can express the derivatives of ApτqJpτq as
Dτ rApτqJpτqs “ Dτ rApτqs Jpτq ` ApτqDτ rJpτqs, with in general:
Dk

τ rApτqs Jpτq “ p∇k
9γRqpJpτq, 9γq 9γ and ApτqDk

τ rJpτqs “ RpDk
τJpτq, 9γq 9γ.

J p0qp0q “ 0

J p1qp0q “ w

J p2qp0q “ ´Ap0qJp0q “ 0

J p3qp0q “ ´Ap1qp0qJp0q ´ Ap0qJ p1qp0q “ ´Rpw, vqv

J p4qp0q “ ´Ap2qp0qJp0q ´ 2Ap1qp0qJ p1qp0q ´ Ap0qJ p2qp0q “ ´2p∇vRqpw, vqv

And we have the following norms:
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Sp0qp0q “ xJp0q, Jp0qy “ 0

Sp1qp0q “ 2xJp0q, J p1qp0qy “ 0

Sp2qp0q “ 2xJp0q, J p2qp0qy ` 2xJ p1qp0q, J p1qp0qy “ 2∥w∥2

Sp3qp0q “ 2xJp0q, J p3qp0qy ` 6xJ p1qp0q, J p2qp0qy “ 0

Sp4qp0q “ 2xJp0q, J p4qp0qy ` 8xJ p1qp0q, J p3qp0qy ` 6xJ p2qp0q, J p2qp0qy

“ 8xJ p1qp0q, J p3qp0qy “ ´8xRpw, vqv, wy

Sp5qp0q “ 2xJp0q, J p5qp0qy ` 10xJ p1qp0q, J p4qp0qy ` 20xJ p2qp0q, J p3qp0qy

“ 10xJ p1qp0q, J p4qp0qy “ ´20xp∇vRqpw, vqv, wy

3. We can finally express ∥J∥2 in terms of Taylor series

∥Jpτq∥2 “
ÿ

rě0

τ r

r!
Sprqp0q

“ Sp0qp0q ` τSp1qp0q `
τ2

2
Sp2qp0q `

τ3

6
Sp3qp0q `

τ4

24
Sp4qp0q `

τ5

120
Sp5qp0q ` remainder

“ τ2∥w∥2 ´ τ4
1

3
xpRpw, vqv, wy ´ τ5

1

6
xp∇vRqpw, vqv, wy ` Opτ6∥w∥2∥v∥3q

with xp∇vRqpw, vqv, wy ď ∥∇R∥∥v∥3∥w∥2, and we assume the curvature of our
manifold being bounded, so ∇R ď M , with M P R. Setting now τ “ 1 and
w “ DτJp0q, we get

∥Jpτq∥2 “ ∥DτJp0q∥2 ` CpR,DτJp0q, vq ` Ehigher

with

CpR,DτJp0q, vq “ ´
1

3
xRpDτJp0q, vqv,DτJp0qyg ´

1

6
xp∇vRqpDτJp0q, vqv,DτJp0qyg

and Ehigher “ Op}DτJp0q}2}v}3q,

where the higher-order term Ehigher encodes curvature variation along geodesics through
covariant derivatives of R.

Taking the expectation with respect to the variables t, x1, x and considering the result of
proposition 4.1, we obtain the desired result

LRG-VFMpθq “ LRFMpθq ` Et,x1,xrCpR,DτJp0q, vq ` Ehighers. (25)

Corollary D.1. For v0 “ utpx | x1q and v1 “ vθt pxq, the following holds:

CpR,DτJp0q, vq “ CpR, v0, v1q “ ´
1

3
Kpv1, v0q

∥∥v1 ^ v0
∥∥2 ´

1

6
xp∇v0Rqpv1, v0qv0, v1y. (26)

with K the sectional curvature, ^ the wedge-product, R the Riemannian curvature and ∇ the
covariant derivative. For constant sectional curvature K, we further have ∇v0R “ 0:

LRG-VFMpθq “ LRFMpθq ´
1

3
K
∥∥v1 ^ v0

∥∥2 ` Op
∥∥v0∥∥3∥∥v1∥∥2q. (27)

Proof. The sectional curvature is a way to measure locally the normalized deviation between two
geodesics. It is defined as:

Kpw, vq :“
xRpw, vqv, wy

∥w ^ v∥2
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with ∥w ^ v∥ the area spanned by the vector w and v. Furthermore, for the sphere and the
hyperboloid, the sectional curvature is constant, being K “ 1 and K “ ´1 respectively.

With this definition, we can first of all re-express, in point (2) of proposition 4.3:

Sp4qp0q “ ´8xRpw, vqv, wy “ ´8Kpw, vq∥w ^ v∥2.

Consequently, we get the following expression in part (3):

∥Jpτq∥2 “
ÿ

rě0

τ r

r!
Sprqp0q

“ Sp0qp0q ` τSp1q `
τ2

2
Sp2qp0q `

τ3

6
Sp3qp0q `

τ4

24
Sp4qp0q `

τ5

120
Sp5qp0q ` remainder

“ τ2∥w∥2 ´ τ4
1

3
Kpw, vq∥w ^ v∥2 ´ τ5

1

6
xp∇vRqpw, vqv, wy ` Opτ6∥w∥2∥v∥3q

With the initial velocity vectors v “ v0 and w “ v1 ´ v0, we can express the Riemannian curvature
tensor xRpw, vqv, wy “ xRpv1, v0qv0, v1y

∥Jpτq∥2 “ τ2
∥∥v1 ´ v0

∥∥2´τ4
1

3
Kpv1, v0q

∥∥v1 ^ v0
∥∥2´τ5

1

6
xp∇v0Rqpv1, v0qv0, v1y`Opτ6

∥∥v0∥∥3∥∥v1∥∥2q

Hence, we have, evaluating the Taylor expansion at τ “ 1 and considering it in expectation:

LRG-VFM “ LRFM´Et,x1,x

„

1

3
Kpv1, v0q

∥∥v1 ^ v0
∥∥2 `

1

6
xp∇v0Rqpv1, v0qv0, v1y ` Op

∥∥v0∥∥3∥∥v1∥∥2q

ȷ

.

with K the sectional curvature, ^ the wedge-product, R the Riemannian curvature and ∇ the
covariant derivative.

For constant sectional curvature K, we further have ∇v0R “ 0:

LRG-VFM “ LRFM ´
1

3
K
∥∥v1 ^ v0

∥∥2 ` Op
∥∥v0∥∥3∥∥v1∥∥2q.

Let us consider the angle between the vectors defined as cospθq “
xv0,v1

y

∥v0∥∥v1∥ . In that case:∥∥v1 ^ v0
∥∥2 “ }v1}2 }v0}2 ´

`

}v1} }v0} cos θ
˘2

“ }v1}2 }v0}2
`

1 ´ cos2 θ
˘

“ }v1}2 }v0}2 sin2 θ

For a sphere S2 (K “ `1), we have:

distpγ0p1q, γ1p1qq2 “
∥∥v1 ´ v0

∥∥2 ´
1

3

∥∥v1∥∥2∥∥v0∥∥2 sin2 θ ` Op
∥∥v0∥∥3∥∥v1∥∥2q.

For a hyperboloid H2 (K “ ´1), we have:

distpγ0p1q, γ1p1qq2 “
∥∥v1 ´ v0

∥∥2 `
1

3

∥∥v1∥∥2∥∥v0∥∥2 sin2 θ ` Op
∥∥v0∥∥3∥∥v1∥∥2q.
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E SYNTHETIC EXPERIMENTS ON HYPERSPHERE AND HYPERBOLOID

In this section, we present further results from the experiments described in section 5.1.

E.1 DEFINITION OF THE MANIFOLDS

The hypersphere is defined as Sn :“ tx P Rn`1 : xx, xyE “ 1u, with the standard Euclidean inner
product xx, yyE “ x0y0 ` x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn. Instead, we adopt the Lorentz model for the
hyperbolic space, which is defined as the upper sheet of the hyperboloid embedded in Minkowski
space. The Minkowski space is the manifold Rn`1 equipped with the Lorentzian inner product
xx, yyL “ ´x0y0 ` x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn. In this setting, the Lorentz hyperbolic model is
defined as Hn

K :“ tx P Rn`1 : xx, xyL “ 1{K,x0 ą 0,K ă 0u, where we set K “ ´1.

E.2 EXPERIMENTAL SETUP

In all experiments, the target distribution p1 is the spherical checkerboard, so its support is S2. The
noisy distribution p0 varies by model: for CFM, VFM, and RG-VFM-R3, p0 is the standard normal
distribution in R3, while for RG-VFM-M and RFM, it is obtained by wrapping the standard
normal distribution on either S2 or H2

´1. In every case, we train a five-layer MLP with 64/128
hidden features for 3000 epochs on 10000 training samples, that we use to generate 10000 samples
using a Euler ODE solver. For the intrinsic geometric models, the Euler solver is manifold-aware,
meaning that it’s defined with the log and exp maps on the manifold. Additionally, for the
variational models we used a clipping technique during sampling, in order to make sure that the
normalization term 1

1´t would not be too high for values of t approaching 1.

E.3 RESULTS

Figure 4, fig. 10 and fig. 11 illustrate the generative flow trajectories over time, from the initial
distribution p0 to the generated distribution at t “ 1.

Figures 6 and 13 displays the generated distributions unwrapped onto a flat surface for easier
visualization and comparison. These results visually confirm the observations presented in
section 5.1.

Finally, figs. 8 and 15 show histograms of the norm values of the generated samples. As discussed
in section 5.1, this metric differentiates the Euclidean models (CFM and VFM) from the others.
Ideally, points should have a Euclidean norm of 1 if lying on S2, or a Minkowski norm of -1 if on
H2

´1. However, because the Euclidean models lack explicit geometric information, their points
deviate slightly from the ideal norm, with CFM exhibiting a larger divergence. In contrast, the
geometric models consistently generate points that lie almost exactly on the sphere.

E.4 LAPLACE POSTERIOR PROBABILITY

We explore the definition of the VFM training loss as the absolute value of the geodesic distance,
instead of the squared geodesic distance, which would be obtained by ideally defining the posterior
distribution qθt in the VFM loss (eq. (5)) as the Riemannian version of the Laplace distribution.
This would be defined as in eq. (7), by replacing the L2 norm of the geodesic distance with the L1

norm, obtaining

LLap
RG-VFMpθq “ Et,x1,x

“

|| logx1
pµθ

t pxqq||g
‰

“ Et,x1,x

“

distgpx1, µ
θ
t pxqq

‰

. (28)

We observe that using a Laplace distribution as the posterior for the Riemannian VFM models
yields better results, both visually and with respect to the considered metrics. This effect is
particularly evident in the hyperbolic case, and we hypothesize that it arises from the different
impacts of using L1 versus L2 norms in this space. The numerical results are reported in table 6,
the probability paths in figs. 5 and 12, the sampled densities in figs. 7 and 14 and the norm
histograms in figs. 9 and 16.
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Table 6: Results of synthetic experiments with Laplace posterior. Abbreviations: Eucl. = Eu-
clidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.

Sphere Hyperboloid

Coverage Ò C2STÓ DistanceÓ Coverage Ò C2STÓ DistanceÓ

Eucl/Ext/Var (VFM) 89.92 59.98 ± 0.56 0.034 ± 0.042 87.63 57.26 ± 0.59 0.001 ± 0.133
Riem/Ext/Var (Ours) 95.04 61.33 ± 0.23 0.008 ± 0.034 91.98 62.55 ± 0.30 0.041 ± 0.113

Riem/Int/Var (Ours) 90.56 57.39 ± 0.70 - 86.23 56.04 ± 0.41 -
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(a) Model: CFM; supppp0q :“ R3, p0: standard normal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(d) Model: RFM; supppp0q :“ S2; p0: standard normal distribution on S2.

(e) Model: RG-VFM; supppp0q :“ S2; p0: standard normal distribution on S2.

Figure 4: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p0 at t “ 0,
evolving to reach their final configuration by t “ 1. In all variational cases, the posterior distribution
is Normal, and p1 is the checkerboard distribution on S2.
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(a) Model: VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ S2; p0: standard normal distribution on S2.

Figure 5: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p0 at t “ 0,
evolving to reach their final configuration by t “ 1. In all variational cases, the posterior distribution
is Laplace, and p1 is the checkerboard distribution on S2.
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(a) Model: CFM; supppp0q :“ R3, p0: standard nor-
mal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(d) Model: RFM; supppp0q :“ S2; p0: standard nor-
mal distribution on S2.

(e) Model: RG-VFM; supppp0q :“ S2; p0: standard
normal distribution on S2.

Figure 6: Sample distributions generated by different models (representing the flow configuration at
t “ 1) unwrapped from S2 to R2 for improved visualization. The true checkerboard distribution is
shown in gray in the background. In all variational cases, the posterior distribution is Normal, and
p1 is the checkerboard distribution on S2.
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(a) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ S2; p0: standard
normal distribution on S2.

Figure 7: Sample distributions generated by different models (representing the flow configuration at
t “ 1) unwrapped from S2 to R2 for improved visualization. The true checkerboard distribution is
shown in gray in the background. In all variational cases, the posterior distribution is Laplace, and
p1 is the checkerboard distribution on S2.
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(a) Model: CFM; supppp0q :“ R3, p0: standard nor-
mal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(d) Model: RFM; supppp0q :“ S2; p0: standard nor-
mal distribution on S2.

(e) Model: RG-VFM; supppp0q :“ S2; p0: standard
normal distribution on S2.

Figure 8: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Normal, and p1 is the checkerboard distribution
on S2.
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(a) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ S2; p0: standard
normal distribution on S2.

Figure 9: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Laplace, and p1 is the checkerboard distribution
on S2.
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(a) Model: CFM; supppp0q :“ R3, p0: standard normal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

Figure 10: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p0 at
t “ 0, evolving to reach their final configuration by t “ 1. In all variational cases, the posterior
distribution is Normal, and p1 is the checkerboard distribution on H2

´1.
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(a) Model: RFM; supppp0q :“ H2
´1; p0: standard normal distribution on H2

´1.

(b) Model: RG-VFM; supppp0q :“ H2
´1; p0: standard normal distribution on H2

´1.

Figure 11: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p0 at
t “ 0, evolving to reach their final configuration by t “ 1. In all variational cases, the posterior
distribution is Normal, and p1 is the checkerboard distribution on H2

´1.
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(a) Model: VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ H2
´1; p0: standard normal distribution on H2

´1.

Figure 12: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p0 at
t “ 0, evolving to reach their final configuration by t “ 1. In all variational cases, the posterior
distribution is Laplace, and p1 is the checkerboard distribution on H2

´1.
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(a) Model: CFM; supppp0q :“ R3, p0: standard nor-
mal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(d) Model: RFM; supppp0q :“ H2
´1; p0: standard

normal distribution on H2
´1.

(e) Model: RG-VFM; supppp0q :“ H2
´1; p0: stan-

dard normal distribution on H2
´1.

Figure 13: Sample distributions generated by different models (representing the flow configuration
at t “ 1) unwrapped from H2

´1 to R2 for improved visualization. The true checkerboard distribution
is shown in gray in the background. In all variational cases, the posterior distribution is Normal,
and p1 is the checkerboard distribution on H2

´1.
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(a) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ H2
´1; p0: stan-

dard normal distribution on H2
´1.

Figure 14: Sample distributions generated by different models (representing the flow configuration
at t “ 1) unwrapped from H2

´1 to R2 for improved visualization. The true checkerboard distribution
is shown in gray in the background. In all variational cases, the posterior distribution is Laplace,
and p1 is the checkerboard distribution on H2

´1.
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(a) Model: CFM; supppp0q :“ R3, p0: standard nor-
mal distribution in R3.

(b) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(d) Model: RFM; supppp0q :“ H2
´1; p0: standard

normal distribution on H2
´1.

(e) Model: RG-VFM; supppp0q :“ H2
´1; p0: stan-

dard normal distribution on H2
´1.

Figure 15: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Normal, and p1 is the checkerboard distribution
on H2

´1.
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(a) Model: VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(b) Model: RG-VFM; supppp0q :“ R3; p0: standard
normal distribution in R3.

(c) Model: RG-VFM; supppp0q :“ H2
´1; p0: stan-

dard normal distribution on H2
´1.

Figure 16: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Laplace, and p1 is the checkerboard distribution
on H2

´1.
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F MOF GENERATION WITH MOFFLOW

F.1 EXPERIMENTAL SETUP

MOFFlow. MOFFlow (Kim et al., 2024) is a flow-based generative model for MOF structures
that operates at the level of rigid building blocks, i.e., metal nodes and organic linkers. A MOF is
represented as S “ pB, q, τ, ℓq, where B denotes the set of building blocks, and the model learns
their roto-translations pq, τq together with the lattice parameter ℓ. Instead of predicting atom-level
coordinates, MOFFlow (Kim et al., 2024) treats building blocks as rigid bodies, reducing the
search space. The generative model is defined as a conditional normalizing flow pθpq, τ, ℓ | Bq,
trained with the Riemannian flow matching framework. Specifically, conditional flows are defined
along geodesics in SEp3q and the lattice space as

qptq “ expqp0q

`

t logqp0q pqp1qq
˘

, τ ptq “ p1 ´ tqτ p0q ` tτ p1q, ℓptq “ p1 ´ tqℓp0q ` tℓp1q, (29)

leading to the conditional vector fields

utpq
ptq | qp1qq “

log
qptq pqp1q

q

1´t , utpτ
ptq | τ p1qq “ τp1q

´τptq

1´t , utpℓ
ptq | ℓp1qq “ ℓp1q

´ℓptq

1´t . (30)

Rather than directly modeling these vector fields, Kim et al. (2024) uses a re-parameterized training
objective that predicts the clean data pq1, τ1, ℓ1q from an intermediate structure Sptq:

LMOFFlowpθq “ ESp1q„D,t„Up0,1q rλ1Lqpθq ` λ2Lτ pθq ` λ3Llpθqs “ (31)

“ ESp1q„D,t„Up0,1q

»

—

–

λ1

›

›logqptq pq̂1q ´ logqptq pq1q
›

›

2

SOp3q

p1 ´ tq2
` λ2

}τ̂1 ´ τ1}
2
R3

p1 ´ tq2
` λ3

›

›

›
ℓ̂1 ´ ℓ1

›

›

›

2

R3

p1 ´ tq2

fi

ffi

fl

At generation time, samples are drawn from priors on rotations, translations, and lattice parameters,
which are then mapped to the full MOF structure by applying the predicted blockwise
roto-translations to the input building blocks.

V-MOFFlow. Our contribution consists in adopting a variational perspective in the rotational
component of LV-MOFFlowpθq, by only substituting Lqpθq with the following:

L̃qpθq “
›

›logq̂1pq1q
›

›

2

SOp3q
, (32)

which corresponds to the squared geodesic distance between q1 and q̂1 in SOp3q. The definition of
the vector fields is unchanged from eqs. (29) and (30), as well as the sampling algorithm.

Implementation details. For reproducing the MOFFlow results (training from scratch) and
evaluating our V-MOFFlow model, we follow the exact experimental procedure described in Kim
et al. (2024) using their codebase and hyperparameter values, with only the following differences:

1. We use the Batch implementation introduced in Kim et al. (2024) instead of
TimeBatch (Yim et al., 2023b), which processes multiple data instances per batch,
leading to reduced computational requirements in terms of training and generation time in
GPU hours.

2. In terms of computational resources, we use 2 ˆ 24GB NVIDIA RTX A5000 GPUs
instead of 8 ˆ 24GB RTX 3090 GPUs.

Regarding dataset details and train/validation/test split information, we refer the reader to Kim
et al. (2024). Furthermore, we choose not to report inference times in table 2, as we find the
differences negligible compared to the reported MOFFlow values.

F.2 ADDITIONAL RESULTS

Results in property evaluation. Following Kim et al. (2024), we evaluate the quality of
generated MOF structures beyond match rate and RMSE by analyzing eight key properties:
volumetric surface area (VSA), gravimetric surface area (GSA), largest cavity diameter (LCD),
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pore limiting diameter (PLD), void fraction (VF), density (DST), accessible volume (AV), and unit
cell volume (UCV). We use the same experimental implementation and code as MOFFlow,
evaluating models with RMSE and distributional differences.

Results in table 7 compare our model against reported DiffCSP and MOFFlow results from Kim
et al. (2024), as well as our reproduced MOFFlow model trained with the Batch implementation.
V-MOFFlow achieves improved RMSE for half the properties compared to the original MOFFlow
paper. Moreover, the reproduced MOFFlow yields slightly higher property values than both the
original MOFFlow and V-MOFFlow results. Overall, we believe that the magnitude of most values
is too high for meaningful comparison across methods.

Table 7: Property evaluation. We report results for DiffCSP and MOFFlow as they are in Kim
et al. (2024), and we compute from scratch the properties of the generated samples with the re-
trained MOFFlow and V-MOFFlow, that make use of the Batch implementation. Average RMSE
is computed between the ground-truth and generated structures.

RMSE Ó

DiffCSP MOFFlow (Paper) MOFFlow (Reproduced) V-MOFFlow (Ours)

VSA (m2{cm3) 796.9 264.5 289.9 265.0
GSA (m2{g) 1561.9 331.6 473.2 328.8
AV (Å3) 3010.2 530.5 1935.1 714.2
UCV (Å3) 3183.4 569.5 2108.5 785.8
VF 0.2167 0.0285 0.0379 0.0263
PLD (Å) 4.0581 1.0616 1.2434 1.0337
LCD (Å) 4.5180 1.1083 1.2613 1.0888
DST (g{cm3) 0.3711 0.0442 0.0747 0.0446

Effect on integration steps. Following Kim et al. (2024), we investigate how the number of
sampling integration steps affects both V-MOFFlow and our reproduced MOFFlow model (the one
from section 5.2). We randomly select 1000 structures from the test set and evaluate match rate and
RMSE across varying integration steps: [2, 5, 7, 10, 50, 100, 200, 500, 1000], using the same
experimental procedure as Kim et al. (2024). The results in fig. 17 show that both models exhibit
similar trends, with performance peaking around 10 and 50 integration steps before slightly
declining at higher step counts. The main difference between the models is the performance gap
rather than the overall trend, reflecting the difference in accuracies obtained on the entire test set
(table 2).
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Figure 17: Comparison between MOFFlow (the reproduced one from section 5.2) and V-MOFFlow
in terms of match rate and RMSE over different timestep values: [2, 5, 7, 10, 50, 100, 200, 500,
1000].
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