

RIEMANNIAN VARIATIONAL FLOW MATCHING FOR MATERIAL AND PROTEIN DESIGN

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a ge-
012 ometric extension of Variational Flow Matching (VFM) for generative modeling
013 on manifolds. Motivated by the benefits of VFM, we derive a variational flow
014 matching objective for manifolds with closed-form geodesics based on Rieman-
015 nian Gaussian distributions. Crucially, in Euclidean space, predicting endpoints
016 (VFM), velocities (FM), or noise (diffusion) is largely equivalent due to affine in-
017 terpolations. However, on curved manifolds this equivalence breaks down. For
018 this reason, we formally analyze the relationship between our model and Rieman-
019 nian Flow Matching (RFM), revealing that the RFM objective lacks a curvature-
020 dependent penalty – encoded via Jacobi fields – that is naturally present in RG-
021 VFM. Based on this relationship, we hypothesize that endpoint prediction pro-
022 vides a stronger learning signal by directly minimizing geodesic distances. Ex-
023 periments on synthetic spherical and hyperbolic benchmarks, as well as real-world
024 tasks in material and protein generation, demonstrate that RG-VFM more effec-
025 tively captures manifold structure and improves downstream performance over
026 Euclidean and velocity-based baselines.
027

1 INTRODUCTION

028 Generative models play a central role in machine learning, as they provide a way to synthesize data
029 and learn complex distributions. Diffusion models (Ho et al., 2020; Song et al., 2020) achieve state-
030 of-the-art performance, but rely on a fixed Gaussian noising process with predetermined variance
031 schedules. As a result, the reverse process is tied to this prescribed family of Gaussian marginals, and
032 sampling requires numerical integration with diffusion-specific samplers. In contrast, Continuous
033 normalizing flows (CNFs) (Chen et al., 2018) directly learn the vector field of an ODE that transports
034 a base distribution into the data distribution. In principle, this allows the transport path to be fully
035 learned, but both training and sampling are computationally demanding since likelihood evaluation
036 involves solving a high-dimensional ODE (Ben-Hamu et al., 2022; Rozen et al., 2021; Grathwohl
037 et al., 2019). Flow Matching (FM) (Lipman et al., 2023) offers a simulation-free alternative, as it
038 defines per-sample interpolants between the source and the target samples, and regresses the vector
039 field to known conditional velocities.
040

041 Recent developments have extended flow matching in two key directions. Variational Flow Match-
042 ing (VFM) (Eijkelboom et al., 2024) reframes the problem as posterior inference over trajectories,
043 providing a probabilistic perspective with flexible modeling choices. In parallel, Riemannian Flow
044 Matching (RFM) (Chen & Lipman, 2024) has shown how incorporating non-Euclidean geometry
045 can improve modeling of distributions supported on manifolds.
046

047 VFM has demonstrated advantages over standard FM in discrete domains (e.g., *CatFlow*) and has
048 been extended to mixed data modalities (Guzmán-Cordero et al., 2025) as well as molecular gener-
049 ation tasks (Eijkelboom et al., 2025; Sakalyan et al.). A key strength of the variational formulation
050 is its flexibility: problem-specific constraints can be incorporated directly into the objective. For
051 instance, censored flow matching for sea-ice forecasting enforces physical bounds such as non-
052 negative ice thickness through the variational loss (Finn et al., 2025). The benefits of the variational
053 flow matching perspective motivate further exploration of its flexibility, for example for incorpo-
rating explicit geometric information on the distribution support into the objective. A natural case
arises when distributions are defined on Riemannian manifolds.
054

The geometric extension is particularly relevant for biological and chemical domains where intrinsic geometric structure governs the data. Recently, generative models have been extensively applied to material discovery (Jiao et al., 2023; Fu et al., 2023; Kim et al., 2024) and to the generation of large biomolecules such as protein backbones (Guo et al., 2025; Yue et al., 2025; Yim et al., 2023a;b). These applications highlight that data often live on heterogeneous manifolds: Euclidean space for atomic coordinates, rotation groups $SO(3)$ for orientations, and other structured domains. Early works in crystal generation, such as Jiao et al. (2023), focus purely on Euclidean parameters without explicitly modeling rotational degrees of freedom. In contrast, recent methods for metal-organic frameworks (MOFs) and proteins (Yim et al., 2023a; Yue et al., 2025; Kim et al., 2024; Guo et al., 2025) adopt a mixed approach where Euclidean parameters (e.g., positions) are modeled with standard FM while non-Euclidean parameters (e.g., rotations) are modeled with RFM. These methods lack a fully variational treatment across both parameter types, and we address this gap by demonstrating the benefits of our geometric variational approach on these applications.

When extending from Euclidean space to general Riemannian manifolds, fundamental questions arise about the relationships between different generative modeling approaches. In Euclidean space, training a generative model by predicting an endpoint (as in VFM), a velocity (as in FM), or noise (as in diffusion) is largely equivalent up to affine transformations, since these quantities – noise, score, velocity field, and endpoints – are interchangeable parameterizations of the same training signal (Vuong et al., 2025; Lipman et al., 2023; Eijkelboom et al., 2024). On curved manifolds, however, this equivalence breaks down: tangent spaces vary across points and curvature introduces higher-order deviations, preventing any explicit closed-form relation between the velocity-based and endpoint-based perspectives. This naturally raises two questions: does some relationship between these perspectives still exist, and if so, what is its nature?

In this paper, we develop Riemannian Gaussian Variational Flow Matching (RG-VFM), which extends VFM to Riemannian manifolds with closed-form metrics, thereby bridging the variational and geometric extensions of flow matching. Our contributions are threefold:

- We define a variational flow matching objective for general geometries, extending endpoint-based training to manifolds.
- We formally analyze its properties, establishing how RG-VFM relates to RFM and showing that the gap between them encodes curvature through Jacobi fields.
- We demonstrate that *variationalizing* existing geometric generative models in material and protein design consistently improves performance, highlighting the practical advantages of endpoint-based training.

2 BACKGROUND

Flow Matching. Modern generative modeling interprets sampling from a target distribution p_1 as transporting a base distribution p_0 by learning dynamics. Typically, p_0 is a standard Gaussian, and the transformation follows a time-dependent mapping $\varphi_t: [0, 1] \times \mathbb{R}^D \rightarrow \mathbb{R}^D$ where φ_0 is the identity and φ_1 pushes p_0 onto p_1 . E.g., normalizing flows (Chen et al., 2018) use an ODE governed by some time-dependent velocity field u_t . Though likelihood training is possible through the change of variables formula, solving an ODE during training is expensive.

Flow Matching (FM) (Lipman et al., 2023; Liu et al., 2023; Albergo et al., 2023) bypasses this by defining an interpolation between noise and data, and directly learning the associated velocity field in a self-supervised manner. Though the goal is to learn the intractable objective

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,x} [\|u_t(x) - v_t^\theta(x)\|^2], \quad (1)$$

this can be made computationally feasible by reformulating u_t with a conditional velocity field (i.e. assumed dynamics towards a given x_1 , or time derivative of the interpolation), giving rise to Conditional Flow Matching (CFM):

$$\mathcal{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,x_1,x} [\|u_t(x | x_1) - v_t^\theta(x)\|^2]. \quad (2)$$

Minimizing eq. (2) provides an unbiased estimate of $\nabla_\theta \mathcal{L}_{\text{FM}}$, allowing efficient per-sample training. As FM can be seen as regressing directly onto the derivative of an interpolant between source and target in a self-supervised manner, it provides a unifying framework: by choosing different interpolations, dynamics, or conditioning structures, it can be adapted to various data types and constraints.

108 **Riemannian Flow Matching.** Riemannian Flow Matching (RFM) (Chen & Lipman, 2024) ex-
 109 tends FM to Riemannian manifolds. Given a smooth Riemannian manifold \mathcal{M} with closed-form
 110 geodesics and metric g , RFM learns a vector field v_t :

$$112 \quad \mathcal{L}_{\text{RFM}}(\theta) = \mathbb{E}_{t,x_1,x} \left[\|v_t^\theta(x) - \log_x(x_1)/(1-t)\|_g^2 \right], \quad (3)$$

114 with $\log_x(x_1)$ denoting the Riemannian log map, which returns the initial velocity vector of the
 115 geodesic connecting x to x_1 (more details on Riemannian manifolds are in section C.1).

116 Unlike Euclidean Flow Matching, RFM respects the curvature and geodesics of the underlying space
 117 \mathcal{M} . Through geodesic or spectral distances, it enables simulation-free training when manifold op-
 118 erations are available, and can utilize approximate distances when closed-form geodesics are in-
 119 tractable, maintaining theoretical guarantees while enabling efficient generative modeling.

120 **Variational Flow Matching.** Variational Flow Matching (VFM) (Eijkelboom et al., 2024) refor-
 121 mulates FM by introducing a variational distribution $q_t^\theta(x_1 | x)$ to approximate the unknown poste-
 122 rior $p_t(x_1 | x)$, where the learned velocity v_t^θ is expressed as the expectation of the condition velocity
 123 under this variational approximation over trajectories. Then, the VFM objective is to minimize the
 124 KL divergence between joint distributions, i.e.:

$$126 \quad \mathcal{L}_{\text{VFM}}(\theta) = \mathbb{E}_t [\text{KL}(p_t(x_1, x) || q_t^\theta(x_1, x))] = -\mathbb{E}_{t,x_1,x} [\log q_t^\theta(x_1 | x)] + \text{const.} \quad (4)$$

127 When $u_t(x | x_1)$ is linear in x_1 – e.g. a straight-line interpolation – the expectation depends only on
 128 marginal distributions, implying this objective reduces to a series of D univariate tasks:

$$130 \quad \mathcal{L}_{\text{VFM}}(\theta) = -\mathbb{E}_{t,x_1,x} \left[\sum_{d=1}^D \log q_t^\theta(x_1^d | x) \right], \text{ e.g. } \mathcal{L}_{\text{VFM}}(\theta) = \mathbb{E}_{t,x_1,x} [\|\mu_t^\theta(x) - x_1\|^2], \quad (5)$$

133 if q_t^θ is Gaussian, relating VFM directly back to FM (see Eijkelboom et al. (2024) for details). **For**
 134 **sampling with the standard flow matching case of linear interpolation, the vector field reduces to the**
 135 **first moment of the variational approximation:**

$$136 \quad v_t^\theta(x) = \mathbb{E}_{q_t^\theta(x_1 | x)} \left[\frac{x_1 - x}{1-t} \right] = \frac{\mathbb{E}_{q_t^\theta(x_1 | x)}[x_1] - x}{1-t} = \frac{\mu_t^\theta(x) - x}{1-t}. \quad (6)$$

139 A key feature of VFM is its flexibility in choosing q_t^θ , as different choices allow adaptation to
 140 various geometries and data types, improving efficiency and expressiveness.

3 RIEMANNIAN GAUSSIAN VARIATIONAL FLOW MATCHING

144 The geometric generalization of the VFM framework stems from the observation that *the posterior*
 145 *probability $p_t(x_1 | x)$ implicitly encodes the geometry of the distribution’s support*. For example, in
 146 CatFlow (Eijkelboom et al., 2024), defining $q_t^\theta(x_1 | x)$ as a categorical distribution ensures that the
 147 velocities point towards the probability simplex. This raises the question of whether other geometric
 148 information about the support of p_1 can be similarly encoded in $q_t^\theta(x_1 | x)$.

149 To investigate this, we consider the case where
 150 $p_t(x_1 | x)$ is defined as a Gaussian distri-
 151 bution with its support on a general manifold
 152 $\mathcal{M} := \text{supp}(p_1)$ rather than being restricted to
 153 Euclidean space. In this setting, the Rieman-
 154 nian Gaussian distribution naturally arises as
 155 a generalization of the Gaussian to a Rieman-
 156 nian manifold. We refer to velocity-inferring
 157 methods (CFM and RFM) as *vanilla* models
 158 and endpoint-inferring methods (VFM and RG-
 159 VFM) as *variational* models.

160 The advantages of the variational perspective in a geometric setting are twofold:

161 • *Flexibility on the support of the distribution:* the prior p_0 can be defined either on \mathcal{M} (*in-*
 162 *trinsic*) or in the ambient Euclidean space (*extrinsic*), while vanilla RFM only supports the

Figure 1: Overview of the models relevant for our framework. The square represents Euclidean space, while the sphere represents a general \mathcal{M} .

Figure 2: **a:** Representation of a shooting family of geodesics on \mathbb{S}^2 with corresponding Jacobi field. **b:** Visualization of predictions (color-coded to match the name colors) of each model relevant to our framework, for a target distribution p_1 supported on the sphere \mathbb{S}^2 .

intrinsic viewpoint. The extrinsic framework maintains the simplicity and efficiency of a linear flow in Euclidean space, avoiding the need for the manifold’s exponential and logarithmic maps, while encoding more geometric information than purely Euclidean methods (section 3.1). Note that while “intrinsic” and “extrinsic” traditionally refer to the manifold’s internal geometry versus its embedding, we use these terms to distinguish whether points lie on the manifold or in the ambient space, rather than coordinate choices. For example, our intrinsic framework can be expressed using ambient coordinates.

- *Supervision on the endpoints*, rather than on the velocities, by minimizing their geodesic distance on the manifold, which in practice leads to more effective learning of the signal. We show this in section 4, by reformulating the objective through Jacobi fields.

3.1 THE RIEMANNIAN GAUSSIAN VFM OBJECTIVE

To extend VFM to the geometric case, one first needs to define a relevant variational posterior with support over the manifold. In contrast to Euclidean settings, we need to take particular care to ensure the distribution is properly defined on the manifold. Let \mathcal{M} be a Riemannian manifold with metric \mathbf{g} : the Riemannian Gaussian (RG) distribution (Pennec, 2006) is defined as the maximum-entropy distribution specified by its mean value and covariance, formally

$$\mathcal{N}_{\text{Riem}}(z \mid \sigma, \mu) = \frac{1}{C} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(z, \mu)^2}{2\sigma^2}\right), \quad (7)$$

where $z, \mu \in \mathcal{M}$ (with μ as the mean), $\sigma > 0$ is a scale parameter, and $\text{dist}_{\mathbf{g}}(z, \mu)$ denotes the geodesic distance determined by \mathbf{g} . The constant C depends on both z and μ , and it normalizes the distribution over \mathcal{M} . A more detailed geometric explanation can be found in section C.2.

We define the Riemannian Gaussian VFM objective by using the Riemannian Gaussian as our variational approximation, i.e.

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[-\log \mathcal{N}_{\text{Riem}}(x_1 \mid \mu_t^\theta(x), \sigma_t(x)) \right]. \quad (8)$$

In the Euclidean Gaussian VFM case, this setting reduces to a straightforward mean squared error optimization, so it is natural to wonder whether a similar simplification holds here. In fact, such a simplification exists under two assumptions: (1) the manifold is homogeneous – that is, any point can be transformed into any other by a distance-preserving symmetry (a formal definition is provided in section C.1); and (2) we have access to a closed-form expression for its geodesics. Notably, these requirements are not too restrictive, as most manifolds used in deep learning satisfy them, including S^n , \mathbb{H}^n , \mathbb{T}^n , and $SO(n)$. Formally, the following holds (see section D.1 for details):

Proposition 3.1. *Let \mathcal{M} be a homogeneous manifold with closed-form geodesics. Then, the RG-VFM objective reduces to*

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2 \right] = \mathbb{E}_{t, x_1, x} \left[\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2 \right], \quad (9)$$

where \log denotes the **logarithmic map** on the manifold and $\text{dist}_{\mathbf{g}}$ is the geodesic distance.

216 **Algorithm 1** RG-VFM **intrinsic**
217 **Require:** base $p \in \mathcal{M}$, target $q \in \mathcal{M}$.
218 Initialize parameters θ of μ_t
219 **# Training Phase**
220 **while** not converged **do**
221 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
222 compute **geodesic** interpolation:
223 $x_t = \exp_{x_1}(t \cdot \log_{x_1}(x_0))$
224 $\ell(\theta) = \mathbb{E}_{t,x_1,x} [\text{dist}_g^2(x_1, \mu_t(x_t; \theta))]$
225 $\theta = \text{optimizer_step}(\ell(\theta))$
226 **end while**
227
228 **# Generation Phase**
229 sample noise $x_0 \sim p$
230 $x_1 = \text{solve_ODE}([0, 1], x_0, \frac{\log_{\mu_t(x_t; \theta)}(x_1)}{1-t})$
231

232 Minimizing this loss is equivalent to computing the Fréchet mean of the distribution, that is: $\mu^* =$
233 $\arg \min_{\mu_\theta \in \mathcal{M}} \mathbb{E}_{x_1} [\text{dist}_g^2(x_1, \mu_\theta)^2]$, averaged over the generative steps t and samples x . In other
234 words, the point μ_θ minimizes the expected squared geodesic distance to the target (Fréchet, 1948).
235 Intuitively, this can be viewed as a generalization of the mean squared error from the Euclidean
236 setting to a Riemannian framework. **We obtain this result by assuming that $\sigma_t(x)$ is constant.**
237 **Nonetheless, this term could for example be set to $\sigma_t(x) = 1 - t$ to achieve time normalization, as**
238 **done in our material and protein generation experiments (sections 5.2 and 5.3).**

239 The RG-VFM objective (eq. (9)) minimizes the geodesic distance on \mathcal{M} between predicted and
240 target endpoints, so it only needs to capture the local geometry around p_1 . This allows for a flexible
241 choice of p_0 's support, leading to two plausible model variants when \mathcal{M} is embedded in \mathbb{R}^n :

242 1. **RG-VFM- \mathbb{R}^n :** the prior p_0 is Euclidean with $\mathcal{M} \subsetneq \text{supp}(p_0) = \mathbb{R}^n$ and conditional
243 velocities use linear interpolation in the ambient Euclidean space \mathbb{R}^n ;
244 2. **RG-VFM- \mathcal{M} :** the prior is intrinsic ($\text{supp}(p_0) \subseteq \mathcal{M}$) with conditional velocities defined
245 via geodesic interpolation on tangent spaces. Here, no embedding of \mathcal{M} in \mathbb{R}^n is required.

247 The extrinsic variant RG-VFM- \mathbb{R}^n thus learns a simple linear flow while retaining a geometry-aware
248 loss, whereas the intrinsic variant RG-VFM- \mathcal{M} mirrors the RFM setup but differs in its loss defi-
249 nition (algorithms 1 and 2). Indeed, Vanilla RFM also requires $\text{supp}(p_0) \subseteq \mathcal{M}$ because its vector
250 fields depend on the manifold's intrinsic geometry. Because of these different frameworks, direct
251 comparison is only meaningful between RG-VFM- \mathcal{M} and RFM, a comparison we present in the
252 next section. **The choice between intrinsic and extrinsic versions represents a trade-off: the extrinsic**
253 **version can only be used in an ambient space \mathbb{R}^d of sufficiently large dimension to embed the**
254 **manifold without degeneracy. In such cases, linear interpolation simplifies implementation and reduces**
255 **computational costs by requiring only the geodesic distance, rather than logarithm and exponential**
256 **maps at every step.**

257

258 4 RG-VFM vs RFM: A COMPARISON BASED ON JACOBI FIELDS

259 In this section, we refer to RG-VFM- \mathcal{M} simply as RG-VFM for brevity. Given a sampled inter-
260 mediate point at timestep t , our variational loss $\mathcal{L}_{\text{RG-VFM}}$ measures the geodesic distance between
261 target and predicted endpoints on the manifold. In contrast, the vanilla loss \mathcal{L}_{RFM} in Riemannian
262 flow matching compares target and predicted velocities in the tangent space at that point.

263

264 In Euclidean space, these two formulations coincide since the difference between the endpoints is
265 directly proportional to the difference between their initial velocities. But in curved space, this
266 equivalence breaks down: curvature influences how geodesics separate from one another.

267

268 In this section, we examine how small changes in initial velocities affect geodesic endpoints by
269 constructing families of related geodesics. In differential geometry, those variations are described
by Jacobi fields, which characterize how geodesics spread apart on a Riemannian manifold. We

507 **Algorithm 2** RG-VFM **extrinsic**
508 **Require:** base $p \in \mathbb{R}^d$, target $q \in \mathcal{M}$.
509 Initialize parameters θ of μ_t
510 **# Training Phase**
511 **while** not converged **do**
512 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
513 compute **linear** interpolation:
514 $x_t = t \cdot x_1 + (1 - t) \cdot x_0$
515 $\ell(\theta) = \mathbb{E}_{t,x_1,x} [\text{dist}_g^2(x_1, \mu_t(x_t; \theta))]$
516 $\theta = \text{optimizer_step}(\ell(\theta))$
517 **end while**
518
519 **# Generation Phase**
520 sample noise $x_0 \sim p$
521 $x_1 = \text{solve_ODE}([0, 1], x_0, \frac{\mu_t(x_t; \theta) - x_t}{1-t})$

use this framework to establish the connection between the vanilla and variational loss functions. Specifically, we (1) define a Jacobi field formulation of the RFM and RG-VFM losses in section 4.1, (2) derive the relation between these field-specific instances (proposition 4.2), and (3) eventually establish the corresponding loss relationships in proposition 4.3.

4.1 JACOBI FIELD FORMULATION OF THE FLOW MATCHING OBJECTIVES

We consider a smooth family of geodesics $\{\gamma_s\}$ all starting from the same point $\gamma_s(0) := x_0 \in \mathcal{M}$, and determined by an initial velocity of the form $\dot{\gamma}_s(0) = v^s := v^0 + sw$, with $v^0, w \in T_{x_0}\mathcal{M}$, where sw represents the perturbation level. A schematic representation is in fig. 2 (a).

Each geodesic $(s, \tau) \rightarrow \gamma_s(\tau)$ is parametrized by two variables: $s \in [0, 1]$ which indexes the perturbation of its initial velocity, and $\tau \in [0, 1]$, the parameter along one geodesic that links the initial point $\gamma_s(0) = x_0$ to the endpoint $\gamma_s(1) = x_1^s$. For convenience, we denote $\alpha(s, \tau) := \gamma_s(\tau)$ the two-parameter map which simultaneously describes the entire family of perturbed geodesics.

Definition 4.1 (Jacobi field at a vanishing starting point). *The family of geodesics defined as:*

$$\alpha(s, \tau) := \gamma_s : \tau \rightarrow \exp_{x_0}(\tau(v + sw)),$$

with $s \in [0, 1]$ and $\tau \in [0, 1]$, $v, w \in T_{x_0}\mathcal{M}$, is a smooth family of shooting geodesics with $\gamma_s(0) = x_0$, $\dot{\gamma}_0(0) = v$ and $\dot{\gamma}_1(0) = v + w$.

For each fixed $\tau \in [0, 1]$, there exists a vector field, called **Jacobi field**,

$$J(\tau) := \partial_s \alpha(s, \tau) \Big|_{s=0}$$

along the geodesic $\gamma_s(\tau) := \alpha(s, \tau)$ satisfying the ODE equation: $D_\tau^2 J + R(J, \dot{\gamma}_s) \dot{\gamma}_s = 0$, with R the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined by the initial conditions and at $\tau = 0$ one has the initial conditions: $J(0) = 0$, and $D_\tau J(0) = w$.

Borrowing the notations from (Chen & Lipman, 2024), we denote the target velocity $v^0 = u_t(x | x_1)$, the predicted velocity $v^1 = v_t^\theta(x)$, and their respective endpoints $\gamma_0(1) = x_1$ and $\gamma_1(1) = \mu_t^\theta(x)$. The losses can be formulated in the Jacobi field framework with the following:

Proposition 4.1 (Loss functions as evaluation of Jacobi fields). *Consider a Jacobi field $J(\tau) := \partial_s \alpha(s, \tau) \Big|_{s=0}$ as defined in definition 4.1. We denote \mathcal{L}_{RFM} the loss function of the (vanilla) Riemannian Flow Matching (Chen & Lipman, 2024), and $\mathcal{L}_{\text{RG-VFM}}$ the loss function for our proposed Riemannian Variational Flow Matching. Then the following equalities hold:*

$$\mathcal{L}_{\text{RFM}}(\theta) = \mathbb{E}_{t, x_1, x} [\|u_t(x | x_1) - v_t^\theta(x)\|_{\mathbf{g}}^2] = \mathbb{E}_{t, x_1, x} [\|D_\tau J(0)\|_{\mathbf{g}}^2], \quad (10)$$

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} [\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2] = \mathbb{E}_{t, x_1, x} [\|J(1)\|_{\mathbf{g}}^2]. \quad (11)$$

4.2 RELATION BETWEEN RG-VFM AND RFM OBJECTIVES

Now that we have expressed the losses through the Jacobi fields, we observe that \mathcal{L}_{RFM} is a first-order approximation of $\mathcal{L}_{\text{RG-VFM}}$ through the following proposition:

Proposition 4.2. *$D_\tau J(0)$ is a linear approximation of $J(1)$.*

The proof essentially consists of deriving the Taylor expansion of $J(\tau)$, centered at $\tau = 0$ and evaluated at $\tau = 1$, and identifying $D_\tau J(0)$ as the linear term. By truncating at the linear approximation, curvature information is absent from $D_\tau J(0)$ but remains implicitly encoded in $J(1)$. This distinction directly affects the relationship between the RFM and RG-VFM losses: while they coincide in Euclidean space, their difference in curved spaces is generally nonzero and curvature-dependent.

Euclidean case. In Euclidean space, the Taylor expansion reduces to the linear term: $J(\tau) = J(0) + \tau D_\tau J(0)$ which, for $\tau = 1$ and $J(0) = 0$, leads to $J(1) = D_\tau J(0)$. As a consequence,

$$\mathbb{E}_{t, x_1, x} [\|D_\tau J(0)\|_2^2] = \mathbb{E}_{t, x_1, x} [\|J(1)\|_2^2] \quad (12)$$

which confirms that \mathcal{L}_{CFM} and \mathcal{L}_{VFM} can be reduced to one another, with proper normalization terms.

More generally, the two losses differ by a curvature-dependent term on non-flat manifolds, as shown in the following result as a direct consequence of proposition 4.1 and proposition 4.2:

324 **Proposition 4.3** (Difference of loss functions as a curvature term). *Consider a Jacobi field $J(\tau) :=$
 325 $\partial_s \alpha(s, \tau) \Big|_{s=0}$ as defined in definition 4.1 and the equivalences shown in proposition 4.1. The differ-
 326 $\mathcal{L}_{\text{RG-VFM}}$ and \mathcal{L}_{RFM} encodes the manifold curvature through:*

327

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathcal{L}_{\text{RFM}}(\theta) + \underbrace{\mathbb{E}_{t, x_1, x} [\mathcal{C}(R, D_\tau J(0), v) + \mathcal{E}_{\text{higher}}]}_{\text{curvature-dependent term}} \quad (13)$$

328

329 where the leading-order curvature functional is:

330

332

$$\mathcal{C}(R, D_\tau J(0), v) = -\frac{1}{3} \langle R(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} - \frac{1}{6} \langle (\nabla_v R)(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} \quad (14)$$

333

334

$$\text{and } \mathcal{E}_{\text{higher}} = O(\|D_\tau J(0)\|^2 \|v\|^3), \quad (15)$$

335

336 with R the Riemannian curvature tensor and $v = \dot{\gamma}_0$ the reference geodesic velocity. The higher-
 337 order term $\mathcal{E}_{\text{higher}}$ encodes curvature variation along geodesics through covariant derivatives of R .
 338 In terms of the RFM loss terms, $v = u_t(x | x_1)$ and $D_\tau J(0) = v_t^\theta(x) - u_t(x | x_1)$.

339

340 **Geometric interpretation.** The curvature functional \mathcal{C} captures how the manifold’s geometry af-
 341 fects the loss comparison, encoding the first- and second-order effects of curvature on geodesic
 342 deviation. Thus, RG-VFM *implicitly* captures the full geometric structure through the exact Jacobi
 343 field $J(1)$, while RFM uses only the linear approximation $D_\tau J(0)$. This lack of curvature infor-
 344 mation results in weaker, less precise supervision in directing the flow toward the actual endpoint,
 345 leading in practice to RG-VFM learning the signal more effectively than RFM. Special cases are:

346

- 347 • In Euclidean space, $R = 0$ implies both $\mathcal{C} = 0$ and $\mathcal{E}_{\text{higher}} = 0$. This leads to $\mathcal{L}_{\text{RG-VFM}} =$
 $\mathcal{L}_{\text{VFM}} = \mathcal{L}_{\text{CFM}} = \mathcal{L}_{\text{RFM}}$ as expected from eq. (12).
- 348 • In spaces of constant curvature (e.g. hyperspheres or hyperbolic spaces) $\nabla R = 0$. In
 349 this setting, we can restate the result of proposition 4.3 in terms of the constant sectional
 350 curvature K . The formulation and proof are given in corollary D.1, and in the experimental
 351 section, we focus primarily on manifolds that fall within this category.

352

353 In summary, we introduced RG-VFM as an alternative to RFM for learning a velocity field on a
 354 manifold, providing a variational formulation whose objective fully captures higher-order curvature
 355 effects, unlike RFM. This results in generally different objectives on curved manifolds. In Euclidean
 356 space, however, the RFM objective reduces to CFM, while RG-VFM reduces to VFM (assuming a
 357 Euclidean Gaussian posterior rather than Riemannian), and the CFM and VFM objectives become
 358 equivalent under appropriate normalization. These relations are schematized in fig. 1 and fig. 2(b),
 359 and their schematic algorithms can be compared in section D.2. In terms of computational costs,
 360 extrinsic RG-VFM has the same complexity as VFM during both training and sampling. The only
 361 difference between the two methods is that VFM computes endpoints using Euclidean distance,
 362 while we use geodesic distance. Since we assume geodesic distance to be in closed-form, this
 363 introduces no additional computational overhead compared to VFM. Similarly, implicit RG-VFM
 364 maintains the same complexity as RFM, with the main difference being that velocity computation
 365 happens during sampling rather than during training (see algorithms 3 to 8).

366

5 EXPERIMENTS

367 **Goal of the experiments.** The goal of our experiments is twofold. First, we aim to observe the
 368 practical implications of proposition 4.3 by studying the behavior of vanilla and variational models,
 369 both Euclidean and Riemannian, in a controlled synthetic setting with a visually precise target dis-
 370 tribution. Second, we conduct real-world experiments on MOF and protein backbone generation,
 371 motivated by a gap in the literature.

372

373 **Motivation for material and protein generation and common pattern.** Existing works on pro-
 374 tein and material generation – often based on diffusion- and flow-based models with structural losses
 375 inspired by Yim et al. (2023b;a), such as Yue et al. (2025); Kim et al. (2024); Guo et al. (2025) –
 376 follow a common pattern. Their generation scheme is split between Euclidean and non-Euclidean
 377 parameters, where Euclidean parameters are learned through a process that effectively corresponds
 378 to variational flow matching, since the model predicts endpoints, minimizes MSE with the target,

Figure 3: Comparison of the spherical checkerboard distribution generated with CFM, VFM, RFM and our methods RG-VFM- \mathbb{R}^3 and RG-VFM- \mathcal{M} .

and uses these predictions to compute velocity fields during integration. Non-Euclidean parameters instead employ a partially but not fully variational form of Riemannian FM: endpoints are still predicted, but the loss minimizes the squared distance between ground-truth and predicted velocities, with the latter obtained via the logarithm map of the manifold. *This reveals a room for improvement, as full alignment of the loss components would suggest minimizing the geodesic distance between predicted and target data points in the non-Euclidean case.* Our method directly explores this option. Furthermore, prior works report that endpoint learning improved empirical performance, and we interpret our approach, together with Eijkelboom et al. (2024), as providing complementary theoretical justification for this choice. In this setting, we choose to *variationalize* the losses of two models from distinct applications: MOFFlow (Kim et al., 2024) for MOF generation and ReQFlow (Yue et al., 2025) for protein backbone generation.

5.1 CURVATURE EFFECTS IN SYNTHETIC DATA

Dataset and experimental setup. Inspired by the planar checkerboard benchmark in generative modeling (Grathwohl et al., 2018), we introduce two curved checkerboard distributions as our target p_1 , whose support is either on the hypersphere $\mathbb{S}^2 \subset \mathbb{R}^3$ or the upper-sheet hyperboloid $\mathbb{H}_{-1}^2 \subset \mathbb{R}^3$, which we define in section E.1. The noisy distribution p_0 is defined differently for each model: for CFM, VFM, and RG-VFM- \mathbb{R}^3 , p_0 is the standard normal distribution in \mathbb{R}^3 , while for RG-VFM- \mathcal{M} and RFM, it is obtained by wrapping the standard normal distribution on either \mathbb{S}^2 or \mathbb{H}_{-1}^2 .

We conduct two sets of experiments: we (1) compare the extrinsic models in their ability to capture the correct geometry – assessed by the distance of the generated samples to the data manifold – and (2) evaluate vanilla versus variational models in reproducing the target distribution. For this last point, the evaluation is based on metrics such as Coverage (% of generated points falling within the desired checkerboard area) and Classifier 2-Sample Tests (C2ST) metric (Lopez-Paz & Oquab, 2016; Dalmaso et al., 2020; Lueckmann et al., 2021). The C2ST technique utilizes a neural network classifier to separate true samples from generated ones, where a score of 0.5 indicates the distributions are indistinguishable to the classifier, while scores approaching 1 suggest the distributions are easily separable. Additional experimental details are provided in section E.

Results. We observe that (1) Riemannian models better capture manifold geometry by generating points with minimal distance to the manifold compared to Euclidean ones (see Distance columns in table 1), and (2) variational models produce sharper and less blurred distributions than vanilla models, with RG-VFM- \mathbb{R}^3 and RG-VFM- \mathcal{M} showing the best visual performance in fig. 3. This is reflected in table 1 in Coverage metric results, where variational models – particularly Riemannian ones – achieve the highest values. For C2ST, no consistent pattern emerges between spherical and hyperbolic cases, except that in both cases standard VFM demonstrates the strongest performance. In essence, emphasizing endpoint accuracy enables variational models to capture fine details of the target distribution’s shape, and additional geometric awareness of RG-VFM further enhances the result. **We tested setting $\sigma_t(x) = 1$ versus $\sigma_t(x) = 1 - t$ in eq. (8) during training and found negligible differences, so we report only the results obtained with $\sigma_t(x) = 1$.** Additionally, preliminary findings suggest that using L^1 loss (which corresponds to using a Riemannian Laplace instead of a Riemannian Gaussian distribution in eq. (8)) instead of L^2 may enhance performance, particularly in hyperbolic spaces, and we start exploring this option in section E.4.

5.2 MOF GENERATION WITH MOFFLOW

Dataset and experimental setup: from MOFFlow to V-MOFFlow. MOFFlow (Kim et al., 2024) is a flow-based generative model for MOF structures operating on rigid building blocks. A

432 **Table 1: Results of synthetic experiments.** Clipping is applied in the variational setting to stabilize
 433 sampling. The distance between generated points and the ground-truth manifold is computed only
 434 for extrinsic models since intrinsic ones generate directly on the manifold. Abbreviations: Eucl. =
 435 Euclidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.
 436

	Sphere			Hyperboloid		
	Coverage \uparrow	C2ST \downarrow	Distance \downarrow	Coverage \uparrow	C2ST \downarrow	Distance \downarrow
Eucl./Ext./Van. (CFM)	64.97	58.36 ± 1.56	0.012 ± 0.099	69.05	57.38 ± 1.30	0.008 ± 0.339
Eucl./Ext./Var. (VFM)	79.08	56.33 ± 0.48	0.044 ± 0.045	75.89	57.03 ± 0.59	0.061 ± 0.140
Riem./Ext./Var. (Ours)	83.10	56.58 ± 0.28	0.010 ± 0.035	78.84	63.55 ± 0.35	0.021 ± 0.056
Riem./Int./Van. (RFM)	66.83	57.99 ± 0.58	-	60.75	61.66 ± 0.92	-
Riem./Int./Var. (Ours)	84.21	59.72 ± 0.87	-	68.38	59.73 ± 0.31	-

444
 445 MOF is represented as $S = (\mathcal{B}, q, \tau, \ell)$, where \mathcal{B} denotes building blocks, and the model learns their
 446 roto-translations (q, τ) and lattice parameter ℓ . The conditional normalizing flow $p_\theta(q, \tau, \ell | \mathcal{B})$ uses
 447 a re-parameterized training objective predicting clean data (q_1, τ_1, ℓ_1) from intermediate structure
 448 $S^{(t)}$. The Euclidean loss minimizes endpoint L^2 distance following VFM, while the rotational part
 449 computes conditional velocities from predictions and minimizes squared distance to ground-truth
 450 velocities, as in RFM. Our contribution makes MOFFlow fully variational by applying our method
 451 to its rotational component. A detailed explanation with loss equations is in section F.1.

452 We evaluate the resulting model, Variational-MOFFlow (V-MOFFlow) against the original MOF-
 453 Flow and DiffCSP (Jiao et al., 2023) on MOF structure prediction using the large-scale dataset
 454 of Boyd et al. (2019), where structures are decomposed into building blocks and split into
 455 train/validation/test set. We follow the experimental setup of Kim et al. (2024), and performance
 456 is measured by match rate (MR) and RMSE between original structures and generated samples.

457 **Results in structure prediction.** We report results in table 2. Our model outperforms all competi-
 458 tors except for MR at stol = 1.0, which Kim et al. (2024) consider too lenient for practical use. This
 459 validates our theoretical findings that RG-VFM loss guides training more effectively than RVM. We
 460 report additional analyses and experimental details in section F.

461
 462 **Table 2: Structure prediction accuracy.** We report results for DiffCSP and MOFFlow with
 463 TimeBatch implementation from Kim et al. (2024), and we reproduce MOFFlow and evaluate
 464 V-MOFFlow with Batch implementation. “stol” is the site-tolerance for matching criteria.

	# of samples	stol = 0.5		stol = 1.0	
		MR (%) \uparrow	RMSE \downarrow	MR (%) \uparrow	RMSE \downarrow
DiffCSP	1	0.09	0.3961	23.12	0.8294
	5	0.34	0.3848	38.94	0.7937
MOFFlow (Paper results)	1	31.69	0.2820	87.46	0.5183
	5	44.75	0.2694	100.0	0.4645
MOFFlow (Reproduced)	1	30.40	0.2832	83.50	0.5255
	5	46.97	0.2717	95.82	0.4603
V-MOFFlow (Ours)	1	33.52	0.2789	89.08	0.5096
	5	50.14	0.2629	97.18	0.4384

477 478 5.3 PROTEIN BACKBONE GENERATION WITH V-ReQFlow

479 **Dataset and experimental setup: from QFlow & ReQFlow to V-QFlow and V-ReQFlow.**
 480 QFlow (Yue et al., 2025) is a flow-based model for protein backbone generation. Unlike previous
 481 methods (Yim et al., 2023b; Bose et al., 2023) that represent $SO(3)$ elements with rotation
 482 matrices, QFlow uses quaternions, which provide improved training stability. Building on this founda-
 483 tion, ReQFlow (Yue et al., 2025) further enhances QFlow by incorporating rectified flow with
 484 re-paired samples and noise, inspired by Liu et al. (2023), improving the designability of generated
 485 protein backbone structures. Similar to MOF structure generation, protein backbone structures are
 represented as sequences of $SE(3)$ elements $\{q_i, t_i\}^N$, where $q_i \in SO(3)$ defines the frame on the

486 α -carbon of each amino acid, and $t_i \in \mathbb{R}^3$ represents the zero-mean coordinate of the α -carbon. For
 487 further details, see Yim et al. (2023b). The goal is to learn a conditional flow $p_\theta(Q, T|N)$ where
 488 $Q = \{q_i\}^N$ and $T = \{t_i\}^N$, with N denoting the number of residues in the desired backbone struc-
 489 ture. Like MOFFlow, both QFlow and ReQFlow employ a re-parametrized training objective that
 490 predicts end points from which vector fields are reconstructed. We apply our method by *variation-
 491 alizing* the rotational component of their loss function, similarly to section F.1, while maintaining
 492 all other implementation details identical to isolate the benefits of our variational objective.

493 We tested Variational-QFlow (V-QFlow) and Variational-ReQFlow (V-ReQFlow) on filtered Protein
 494 Data Bank (Berman et al., 2000) dataset with 23366 protein structure with lengths ranging from 60
 495 to 512. The filtering pipeline follows Yue et al. (2025). For evaluation metrics, we follow Yue et al.
 496 (2025), using designability, diversity and novelty to concretely evaluate the quality of the generated
 497 protein backbone structures. We trained our V-QFlow with 4 NVIDIA-H100 GPUs for around 260
 498 epochs. For V-ReQFlow, we further finetuned it on our rectified dataset for 10 epochs.

499 **Results in protein backbone structure generation.** From table 3, we observe that V-QFlow and
 500 V-ReQFlow surpass their vanilla counterparts on both designability and folding RMSD, emphasizing
 501 the effectiveness of applying variational objectives when learning probability paths on manifolds.
 502

503 **Table 3: Performance comparison with baseline models on protein backbone genera-
 504 tion on PDB dataset.** 50 samples are generated and evaluated for each length in
 505 $\{50, 100, 150, 200, 250, 300\}$. For both ReQFlow and V-ReQFlow, we generate the rectified dataset
 506 with 20 samples for each length in $[60, 512]$. We filter the generated samples following the proce-
 507 dures in the repo provided by Yue et al. (2025). Samples used for evaluation are generated by flow
 508 models trained with 10 epochs on the rectified dataset for both ReQFlow and V-ReQFlow.
 509

	Efficiency		Designability		Diversity	Novelty
	Step	Fraction \uparrow	scRMSD \downarrow	TM \downarrow	TM \downarrow	
RFDiffusion	50	0.904	1.102 \pm 1.617	0.382	0.527	
Genie2	1000	0.908	1.132 \pm 1.389	0.370	0.475	
FoldFlow2	50	0.952	1.083 \pm 1.308	0.373	0.527	
FrameFlow	500	0.872	1.380 \pm 1.392	0.346	0.562	
QFlow (Reproduced)	500	0.924	1.252 \pm 1.302	0.357	0.641	
QFlow (Paper results)	500	0.936	1.163 \pm 0.938	0.356	0.635	
V-QFlow (Ours)	500	0.968	0.923 \pm 0.787	0.387	0.647	
ReQFlow (Reproduced)	500	0.964	0.939 \pm 0.572	0.400	0.630	
ReQFlow (Paper results)	500	0.972	1.071 \pm 0.482	0.377	0.645	
V-ReQFlow (Ours)	500	0.980	0.961 \pm 0.832	0.408	0.644	

6 CONCLUSION

524
 525 We introduce Riemannian Gaussian Variational Flow Matching, which extends VFM to general
 526 manifolds through Riemannian Gaussian distributions, unifying RFM and VFM under a common
 527 probabilistic framework. Through a reformulation of their objectives using Jacobi vector fields,
 528 we demonstrate that RG-VFM captures richer curvature-dependent information compared to stand-
 529 ard RFM. In our experiments, we validate that this theoretical advantage translates to more precise
 530 supervision and better learned signals: (1) for synthetic spherical and hyperbolic checkerboard dis-
 531 tributions, enhanced curvature awareness leads to improved sharpness in learned distributions, and
 532 (2) for real-world protein backbone and material generation tasks, applying our variational per-
 533 spective through a simple modification to the rotational component of existing flow matching losses
 534 consistently improves generation quality metrics. A current limitation is that our method is defined
 535 for simple geometries with closed-form geodesics. However, most practical tasks involve manifolds
 536 with explicit exponential and logarithmic maps, and we believe this framework can be straight-
 537 forwardly extended to more complex geometries. These results establish RG-VFM as a promising
 538 approach for modeling distributions on complex geometries with minimal implementation overhead.
 539

540 ETHICS STATEMENT

541

542 This work aims to advance machine learning and AI for science. Material and protein genera-
 543 tion hold great promise for driving scientific discovery and tackling global challenges in medicine,
 544 sustainability, and biotechnology. At the same time, the technology raises ethical considerations, in-
 545 cluding the need for appropriate regulatory oversight as it matures. In terms of readiness, this work
 546 remains at an early stage, focusing on foundational computational methods rather than immediate
 547 applications, and therefore presents no direct benefits or risks at this time.

548 REPRODUCIBILITY STATEMENT

549

550 To ensure reproducibility and completeness, all required notation, mathematical background, defi-
 551 nitions, and proofs of mathematical statements are provided in sections B to D. Experimental and
 552 implementation details are included in section 5 and sections E and F.

553

554 REFERENCES

555

556 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 557 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

558

559 Heli Ben-Hamu, Samuel Cohen, Joey Bose, Brandon Amos, Maximillian Nickel, Aditya Grover,
 560 Ricky T. Q. Chen, and Yaron Lipman. Matching normalizing flows and probability paths on
 561 manifolds. In *Proceedings of the 39th International Conference on Machine Learning*, volume
 562 162 of *Proceedings of Machine Learning Research*, pp. 1749–1763. PMLR, 17–23 Jul 2022.

563

564 Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N.
 565 Shindyalov, and Philip E. Bourne. The protein data bank. *Nucleic Acids Research*, 28(1):235–
 566 242, 01 2000. ISSN 0305-1048. doi: 10.1093/nar/28.1.235. URL <https://doi.org/10.1093/nar/28.1.235>.

567

568 Avishhek Joey Bose, Tara Akhoud-Sadegh, Guillaume Huguet, Kilian Fatras, Jarrid Rector-Brooks,
 569 Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexan-
 570 der Tong. Se (3)-stochastic flow matching for protein backbone generation. *arXiv preprint*
 571 *arXiv:2310.02391*, 2023.

572

573 Peter G Boyd, Arunraj Chidambaram, Enrique García-Díez, Christopher P Ireland, Thomas D Daff,
 574 Richard Bounds, Andrzej Gładysiak, Pascal Schouwink, Seyed Mohamad Moosavi, M Mercedes
 575 Maroto-Valer, et al. Data-driven design of metal–organic frameworks for wet flue gas co2 capture.
 576 *Nature*, 576(7786):253–256, 2019.

577

578 Ricky TQ Chen and Yaron Lipman. Flow matching on general geometries. In *The Twelfth Interna-
 579 tional Conference on Learning Representations*, 2024.

580

581 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 582 differential equations. *Advances in neural information processing systems*, 31, 2018.

583

584 Niccolò Dalmasso, Ann Lee, Rafael Izbicki, Taylor Pospisil, Ilmun Kim, and Chieh-An Lin. Valida-
 585 tion of approximate likelihood and emulator models for computationally intensive simulations. In
 586 *International Conference on Artificial Intelligence and Statistics*, pp. 3349–3361. PMLR, 2020.

587

588 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
 589 van de Meent. Variational flow matching for graph generation. *arXiv preprint arXiv:2406.04843*,
 590 2024.

591

592 Floor Eijkelboom, Heiko Zimmermann, Sharvaree Vadgama, Erik J Bekkers, Max Welling, Chris-
 593 tian A Naesseth, and Jan-Willem van de Meent. Controlled generation with equivariant variational
 594 flow matching. *arXiv preprint arXiv:2506.18340*, 2025.

595

596 Tobias Sebastian Finn, Marc Bocquet, Pierre Rampal, Charlotte Durand, Flavia Porro, Alban Farchi,
 597 and Alberto Carrassi. Generative ai models enable efficient and physically consistent sea-ice
 598 simulations. *arXiv preprint arXiv:2508.14984*, 2025.

594 Maurice Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. In *Annales*
 595 *de l'institut Henri Poincaré*, volume 10, pp. 215–310, 1948.

596

597 Xiang Fu, Tian Xie, Andrew S Rosen, Tommi Jaakkola, and Jake Smith. Mofdiff: Coarse-grained
 598 diffusion for metal-organic framework design. *arXiv preprint arXiv:2310.10732*, 2023.

599

600 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
 601 Free-form continuous dynamics for scalable reversible generative models. *arXiv preprint*
 602 *arXiv:1810.01367*, 2018.

603

604 Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
 605 generative models with free-form continuous dynamics. In *International Conference on Learning*
 606 *Representations*, 2019.

607

608 Hongyu Guo, Yoshua Bengio, and Shengchao Liu. Assembleflow: Rigid flow matching with in-
 609 *ertial frames for molecular assembly*. In *The Thirteenth International Conference on Learning*
 610 *Representations*, 2025.

611

612 Andrés Guzmán-Cordero, Floor Eikelboom, and Jan-Willem van de Meent. Exponential family
 613 variational flow matching for tabular data generation. *arXiv preprint arXiv:2506.05940*, 2025.

614

615 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 616 *neural information processing systems*, 33:6840–6851, 2020.

617

618 Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
 619 structure prediction by joint equivariant diffusion. *Advances in Neural Information Processing*
 620 *Systems*, 36:17464–17497, 2023.

621

622 Nayoung Kim, Seongsu Kim, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Mofflow: Flow match-
 623 ing for structure prediction of metal-organic frameworks. *arXiv preprint arXiv:2410.17270*, 2024.

624

625 John M Lee. *Introduction to Riemannian manifolds*, volume 2. Springer, 2018.

626

627 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 628 matching for generative modeling. In *The Eleventh International Conference on Learning*
 629 *Representations*, 2023.

630

631 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 632 transfer data with rectified flow. In *The Eleventh International Conference on Learning*
 633 *Representations*, 2023.

634

635 David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. *arXiv preprint*
 636 *arXiv:1610.06545*, 2016.

637

638 Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
 639 marking simulation-based inference. In *International conference on artificial intelligence and*
 640 *statistics*, pp. 343–351. PMLR, 2021.

641

642 Maria G Monera, A Montesinos-Amilibia, and Esther Sanabria-Codesal. The taylor expansion of the
 643 exponential map and geometric applications. *Revista de la Real Academia de Ciencias Exactas,*
 644 *Fisicas y Naturales. Serie A. Matematicas*, 108:881–906, 2014.

645

646 Xavier Pennec. Intrinsic statistics on riemannian manifolds: Basic tools for geometric measure-
 647 ments. *Journal of Mathematical Imaging and Vision*, 25:127–154, 2006.

648

649 Noam Rozen, Aditya Grover, Maximilian Nickel, and Yaron Lipman. Moser flow: Divergence-
 650 based generative modeling on manifolds. *Advances in Neural Information Processing Systems*,
 651 34:17669–17680, 2021.

652

653 Kristiyan Sakalyan, Alessandro Palma, Filippo Guerranti, Fabian J Theis, and Stephan Günemann.
 654 Modeling microenvironment trajectories on spatial transcriptomics with nicheflow. In *ICML 2025*
 655 *Generative AI and Biology (GenBio) Workshop*.

648 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
649 Poole. Score-based generative modeling through stochastic differential equations. In *Internation-
650 al Conference on Learning Representations*, 2020.

651

652 An B Vuong, Michael T McCann, Javier E Santos, and Yen Ting Lin. Are we really learning
653 the score function? reinterpreting diffusion models through wasserstein gradient flow matching.
654 *arXiv preprint arXiv:2509.00336*, 2025.

655

656 Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
657 Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
658 protein backbone generation with se (3) flow matching. *arXiv preprint arXiv:2310.05297*, 2023a.

659

660 Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
661 and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
662 *arXiv preprint arXiv:2302.02277*, 2023b.

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DISCLOSURE OF LLM USAGE**
703704 We declare that the use of LLMs for writing this paper was limited to general-purpose writing
705 assistance. Specifically, we used them only to polish the wording of text sections and in no way to
706 generate the research ideas or technical results and proofs presented in this paper.
707708 **B NOTATIONS**
709710 In this section, we report the notations that are used in the paper and the rest of the appendix,
711 summarized in table 4.
712

713 Symbol	714 Name	715 Type	716 Description
\mathcal{M}	manifold	object	Smooth Riemannian manifold $(\mathcal{M}, \mathbf{g})$.
\mathbf{g}	metric	tensor	Riemannian metric; $\langle \cdot, \cdot \rangle = \mathbf{g}(\cdot, \cdot)$ and $ \cdot = \sqrt{\mathbf{g}(\cdot, \cdot)}$.
p	base point	point	Fixed point in \mathcal{M} ; normal coordinates are taken at p .
$T_p\mathcal{M}$	tangent space	vector space	Tangent space at p ; all v, w, δ, u_s live here.
\exp_p	exponential map	map	$\exp_p : T_p\mathcal{M} \supset U \rightarrow \mathcal{M}$, a diffeomorphism on a small ball U .
$\langle \cdot, \cdot \rangle_{\mathbf{g}}$	inner product	scalar	Inner product on $(\mathcal{M}, \mathbf{g})$.
$\text{dist}_{\mathbf{g}}(\cdot, \cdot)$	distance	scalar	Riemannian distance on $(\mathcal{M}, \mathbf{g})$.
R	curvature tensor	tensor	$(1, 3)$ -tensor $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$.
∇	Levi–Civita connection	operator	Metric, torsion-free connection; D_t denotes covariant derivative along a curve.
K	sectional curvature	scalar	Constant curvature in space forms; for a sphere of radius r , $K = 1/r^2$.
v, w	tangent vectors	vectors	Elements of $T_p\mathcal{M}$; initial velocities of the two geodesics.
τ, s	parameters	scalars	τ is the geodesic time (small); $s \in [-\varepsilon, \varepsilon]$ parametrizes the variation within the family of geodesics.
\mathbb{S}^2	2-sphere	object	$\mathbb{S}^2 := \{x \in \mathbb{R}^3 : \langle x, x \rangle_E = 1\}$
\mathbb{H}^2_{-1}	2-hyperboloid	object	$\mathbb{H}^2_{-1} := \{x \in \mathbb{R}^3 : \langle x, x \rangle_{\mathcal{L}} = -1, x_0 > 0\}$
$\gamma_s(\tau)$	geodesic	curve	$\gamma_s(\tau) := \exp_p(\tau u_s)$, geodesic with initial velocity u_s at p .
$\alpha(s, \tau)$	ruled surface	2-parameter map	$\alpha(s, \tau) := \gamma_s(\tau)$; two-parameter family used for variations.
$J(\tau)$	Jacobi field	vector field	$J(\tau) := \partial_s \alpha(s, \tau)$ along γ_s ; $J(0) = 0$, $(D_{\tau} J)(0) = \delta$.
$O(\cdot)$	remainder	notation	Big–O with constants uniform for v, w in a fixed small ball in $T_p\mathcal{M}$.

743 Table 4: Notations of objects mentioned in this paper.
744745 **C GEOMETRIC BACKGROUND**
746748 **C.1 RIEMANNIAN MANIFOLDS**
749750 In this section, we provide a comprehensive introduction to Riemannian manifolds, establishing all
751 necessary definitions from first principles.
752753 **Basic definitions.** A manifold \mathcal{M} is a mathematical structure that appears curved globally but
754 looks flat when viewed locally. Formally, a d -dimensional manifold can be covered by coordinate
755 charts, where each chart provides a local parameterization. For any point $p \in \mathcal{M}$, there exists a
neighborhood that can be mapped smoothly to an open subset of \mathbb{R}^d via coordinate charts.

The tangent space $T_p\mathcal{M}$ at a point $p \in \mathcal{M}$ represents the collection of all possible directions one can move from p while staying on the manifold. This vector space encodes the local linear approximation to the manifold at p and maintains the same dimensionality as the ambient manifold.

Riemannian metric. A Riemannian metric \mathbf{g} on \mathcal{M} is a smoothly varying collection of inner products, one for each tangent space. Specifically, for each point $p \in \mathcal{M}$, the metric \mathbf{g} defines an inner product $\langle \cdot, \cdot \rangle_{\mathbf{g}}$ on the tangent space $T_p\mathcal{M}$. This inner product must be:

- *Bilinear*: $\langle av + bw, u \rangle_{\mathbf{g}} = a\langle v, u \rangle_{\mathbf{g}} + b\langle w, u \rangle_{\mathbf{g}}$ for tangent vectors $v, w, u \in T_p\mathcal{M}$ and scalars a, b ,
- *Symmetric*: $\langle v, w \rangle_{\mathbf{g}} = \langle w, v \rangle_{\mathbf{g}}$,
- *Positive definite*: $\langle v, v \rangle_{\mathbf{g}} > 0$ for all non-zero $v \in T_p\mathcal{M}$.

A manifold \mathcal{M} equipped with a Riemannian metric \mathbf{g} is called a *Riemannian manifold* and is denoted by $(\mathcal{M}, \mathbf{g})$.

The metric enables us to measure lengths of tangent vectors and angles between them. For tangent vectors $v, w \in T_p\mathcal{M}$, their lengths are $\|v\|_{\mathbf{g}} = \sqrt{\langle v, v \rangle_{\mathbf{g}}}$ and $\|w\|_{\mathbf{g}} = \sqrt{\langle w, w \rangle_{\mathbf{g}}}$, respectively.

Geodesics. Geodesics are the natural generalization of straight lines to curved spaces. On a Riemannian manifold, a geodesic $\gamma_s(\tau)$ is a curve that maintains constant “speed” and “direction” in the sense defined by the Riemannian metric. Mathematically, geodesics are characterized by having vanishing covariant acceleration.

These curves play a fundamental role as they represent paths of extremal length between nearby points. Given any point $p \in \mathcal{M}$ and initial tangent vector $v \in T_p\mathcal{M}$, there exists a unique geodesic originating at p with initial direction v .

Distance function. The Riemannian metric induces a natural distance function on the manifold. The Riemannian distance $\text{dist}_{\mathbf{g}}(p, q)$ between two points $p, q \in \mathcal{M}$ is defined as the infimum of the lengths of all piecewise smooth curves connecting p and q :

$$\text{dist}_{\mathbf{g}}(p, q) = \inf_{\gamma} \int_0^1 \left\| \frac{d\gamma}{dt}(t) \right\|_{\mathbf{g}} dt \quad (16)$$

where the infimum is taken over all piecewise smooth curves $\gamma : [0, 1] \rightarrow \mathcal{M}$ with $\gamma(0) = p$ and $\gamma(1) = q$. Under appropriate completeness conditions, this distance is achieved by geodesics.

Exponential map. The exponential map $\exp_p : T_p\mathcal{M} \rightarrow \mathcal{M}$ provides a canonical way to translate between the linear tangent space and the curved manifold. For a tangent vector $v \in T_p\mathcal{M}$, the exponential map is defined as:

$$\exp_p(v) = \gamma_v(1) \quad (17)$$

where $\gamma_v(\tau)$ represents the geodesic initiating at p with velocity v , evaluated at parameter value $\tau = 1$. This construction allows us to “walk” along geodesics to reach new points on the manifold.

In sufficiently small neighborhoods around any point p , the exponential map establishes a smooth bijection between a region in the tangent space and a region on the manifold.

Logarithmic map. The logarithmic map $\log_p : \mathcal{M} \rightarrow T_p\mathcal{M}$ is the (local) inverse of the exponential map. For a point $q \in \mathcal{M}$ sufficiently close to p , the logarithmic map returns the tangent vector $v \in T_p\mathcal{M}$ such that $\exp_p(v) = q$.

In regions where the exponential map is a diffeomorphism, we have $\log_p(\exp_p(v)) = v$ and $\exp_p(\log_p(q)) = q$. The logarithmic map essentially tells us which direction and how far to travel in the tangent space to reach a given nearby point on the manifold.

In this work, we consider complete, connected, and smooth Riemannian manifolds $(\mathcal{M}, \mathbf{g})$, ensuring that geodesics can be extended indefinitely and that the exponential map is well-defined globally.

810 **Tangent bundle.** By collecting all tangent spaces across the manifold, we obtain the tangent bundle:
 811

$$812 \quad T\mathcal{M} = \bigcup_{p \in \mathcal{M}} \{p\} \times T_p\mathcal{M} \quad (18)$$

813 The tangent bundle is itself a smooth manifold of dimension $2d$, where d is the dimension of \mathcal{M} .
 814 Each element of $T\mathcal{M}$ can be written as (p, v) where $p \in \mathcal{M}$ is a point on the manifold and $v \in T_p\mathcal{M}$
 815 is a tangent vector at that point.

816 **Vector fields.** A vector field on \mathcal{M} is a smooth section of the tangent bundle, i.e., a smooth map
 817 $u : \mathcal{M} \rightarrow T\mathcal{M}$ such that $u(p) \in T_p\mathcal{M}$ for each point $p \in \mathcal{M}$. In local coordinates, a vector
 818 field can be expressed as $u = \sum_{i=1}^d u^i \frac{\partial}{\partial x^i}$ where the coefficient functions u^i are smooth. We
 819 specifically consider *time-dependent vector fields* $\{u_t\}_{t \in I}$, which are smooth families of vector fields
 820 parameterized by time t . The Riemannian metric \mathbf{g} extends naturally to define pointwise inner
 821 products between vector fields: $\langle u, w \rangle_{\mathbf{g}}(p) = \langle u(p), w(p) \rangle_{\mathbf{g}}$ for any two vector fields u and w .
 822

823 **Homogeneous Manifold.** A Riemannian manifold \mathcal{M} is homogeneous if its isometry group acts
 824 transitively on \mathcal{M} , i.e., for any two points $x, y \in \mathcal{M}$, there exists an isometry $f : \mathcal{M} \rightarrow \mathcal{M}$ such
 825 that $f(x) = y$.
 826

827 C.2 RIEMANNIAN GAUSSIAN DISTRIBUTIONS

828 We describe the construction of the Riemannian Gaussian (RG) distribution, which generalizes the
 829 familiar Gaussian distribution to the setting of a Riemannian manifold. The definition of the Rie-
 830 mannian Gaussian is a specific instance of the Normal law presented in Pennec (2006):
 831

832 **Definition C.1** (Normal law Pennec (2006)). *We call Normal law on the manifold \mathcal{M} the maxi-
 833 mum-entropy distribution specified by its mean value and covariance. Assuming no continuity or
 834 differentiability constraint on the cut locus $C(\bar{x})$ and a symmetric domain $D(\bar{x})$, the probability
 835 density function of the Normal law with mean \bar{x} and concentration matrix Γ is*
 836

$$837 \quad N_{(\bar{x}, \Gamma)}(y) = k \exp\left(-\frac{1}{2} \bar{x}^T \Gamma \bar{x}\right), \quad (19)$$

838 where the normalisation constant k and the covariance Σ are related to Γ by
 839

$$840 \quad k^{-1} = \int_{\mathcal{M}} \exp\left(-\frac{1}{2} \bar{x}^T \Gamma \bar{x}\right) d\mathcal{M}(y), \quad \Sigma = k \int_{\mathcal{M}} \bar{x} \bar{x}^T \exp\left(-\frac{1}{2} \bar{x}^T \Gamma \bar{x}\right) d\mathcal{M}(y). \quad (20)$$

841 By simply defining the concentration matrix Γ as $\frac{\mathbf{G}}{\sigma}$, where \mathbf{G} is the metric tensor associated with
 842 the chosen metric and σ is a fixed variance parameter, we obtain the following definition.
 843

844 **Definition C.2** (Riemannian Gaussian). *Let \mathcal{M} be a Riemannian manifold endowed with the metric
 845 tensor \mathbf{g} . The RG distribution is defined by*
 846

$$847 \quad \mathcal{N}_{Riem}(z | \sigma, \mu) = \frac{1}{C} \exp\left(-\frac{dist_{\mathbf{g}}(z, \mu)^2}{2\sigma^2}\right), \quad (21)$$

848 where $z \in \mathcal{M}$ is a point on the manifold, $\mu \in \mathcal{M}$ plays the role of the mean, and $\sigma > 0$ is a scale
 849 parameter controlling the spread of the distribution. Here, $dist_{\mathbf{g}}(z, \mu)$ denotes the geodesic distance
 850 between z and μ as determined by the metric \mathbf{g} , and C is a normalization constant chosen so that
 851 the total probability integrates to 1 over \mathcal{M} :
 852

$$853 \quad C = \int_{\mathcal{M}} \exp\left(-\frac{dist_{\mathbf{g}}(z, \mu)^2}{2\sigma^2}\right) d\mathcal{M}_z. \quad (22)$$

854 The measure $d\mathcal{M}_z$ represents the Riemannian volume element, which in local coordinates takes the
 855 form
 856

$$857 \quad d\mathcal{M}_z = \sqrt{\det \mathbf{g}(z)} dz, \quad (23)$$

858 with dz being the standard Lebesgue measure in the coordinate chart and $\mathbf{g}(z)$ is the Riemannian
 859 metric tensor at the point z . This formulation ensures that the probability density is adapted to the
 860 geometric structure of the manifold.
 861

Observation. In the special case where $\mathcal{M} = \mathbb{R}^d$ and the metric is Euclidean (i.e., $\mathbf{g}(z) = \mathbf{I}$), the geodesic distance reduces to the usual Euclidean distance, and the RG distribution becomes the standard multivariate Gaussian with covariance matrix $\sigma^2 \mathbf{I}$. On more general manifolds, however, the curvature and topology are taken into account through the geodesic distance and the volume element, leading to a natural extension of the Gaussian concept. This construction can be applied to spaces such as hyperbolic manifolds, where one can define the distribution in the tangent space at a point μ and then use the exponential map to project it onto the manifold.

Comparison to vMF. A closely related distribution is the von Mises–Fisher (vMF) distribution, which is traditionally defined on the sphere S^n by

$$\text{vMF}(z \mid \mu, \kappa) \propto \exp(\kappa \langle z, \mu \rangle),$$

with $\mu \in S^n$ and $\langle \cdot, \cdot \rangle$ denoting the standard dot product. The vMF distribution is based on the notion of directional data and an inner product structure that measures alignment. In contrast, the RG distribution is inherently tied to the Riemannian metric, making it applicable to a much wider class of manifolds. Generalizing the idea behind the vMF distribution to other geometries often requires embedding the manifold into a larger ambient space and defining a suitable bilinear form (such as the Minkowski inner product in hyperbolic geometry). In this sense, the RG approach offers a more natural and geometrically intrinsic formulation.

In summary, the Riemannian Gaussian distribution is defined in terms of the geodesic distance and the corresponding volume element, and it adapts to the underlying geometry of any Riemannian manifold.

D RG-VFM AND LINK WITH RFM

D.1 DETAILED DERIVATION OF RG-VFM OBJECTIVE

Proposition D.1. *If the manifold $(\mathcal{M}, \mathbf{g})$ is homogeneous, the normalization constant*

$$C = \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(z, \mu)^2}{2\sigma^2}\right) d\mathcal{M}_z \quad (24)$$

is independent of the mean μ .

Proof. We can initially rename the normalization constant C by making the dependency on the mean explicit, referring to it as $C(\mu)$. In this setting, we want to prove that for two arbitrary mean values $\bar{\mu}$ and $\tilde{\mu}$, we have $C(\bar{\mu}) = C(\tilde{\mu})$.

By definition, a Riemannian manifold \mathcal{M} is homogeneous if $\forall x, y \in \mathcal{M}, \exists f : \mathcal{M} \rightarrow \mathcal{M}$ such that $f(x) = y$ and with f being an isometry, meaning that $\text{dist}_{\mathbf{g}}(x, y) = \text{dist}_{\mathbf{g}}(f(x), f(y))$.

We can then assume that f satisfies $\bar{\mu} = f(\tilde{\mu})$, getting the following:

$$\begin{aligned} C(\tilde{\mu}) &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(z, \tilde{\mu})^2}{2\sigma^2}\right) d\mathcal{M}_z, \\ C(\bar{\mu}) &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(y, \bar{\mu})^2}{2\sigma^2}\right) d\mathcal{M}_y, \\ C(f(\tilde{\mu})) &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(y, f(\tilde{\mu}))^2}{2\sigma^2}\right) d\mathcal{M}_y, \end{aligned}$$

with $C(\bar{\mu}) = C(f(\tilde{\mu}))$.

Let's suppose that $y := f(s)$, for some $s \in \mathcal{M}$. By the definition of isometry, we have $\text{dist}_{\mathbf{g}}(y, f(\tilde{\mu})) = \text{dist}_{\mathbf{g}}(f(s), \tilde{\mu}) = \text{dist}_{\mathbf{g}}(s, \tilde{\mu})$. Furthermore, for any integrable scalar function $\phi : \mathcal{M} \rightarrow \mathbb{R}$ and isometry f :

$$\int_{\mathcal{M}} \phi(y) d\mathcal{M}_y = \int_{\mathcal{M}} \phi(f(s)) d\mathcal{M}_s.$$

918 By applying these two facts to our case, we obtain the following series of equalities:
919

$$\begin{aligned}
920 \quad C(\bar{\mu}) &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(y, f(\tilde{\mu}))^2}{2\sigma^2}\right) d\mathcal{M}_y \\
921 \\
922 \quad &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(f(s), f(\tilde{\mu}))^2}{2\sigma^2}\right) d\mathcal{M}_s \\
923 \\
924 \quad &= \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(s, \tilde{\mu})^2}{2\sigma^2}\right) d\mathcal{M}_s = C(\tilde{\mu}).
925 \\
926
\end{aligned}$$

□

928 **Proposition 3.1.** *Let \mathcal{M} be a homogeneous manifold with closed-form geodesics. Then, the RG-
929 VFM objective reduces to*

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t,x_1,x} [\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2] = \mathbb{E}_{t,x_1,x} [\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2], \quad (9)$$

930 where \log denotes the **logarithmic map** on the manifold and $\text{dist}_{\mathbf{g}}$ is the geodesic distance.
931

933 *Proof.* The objective of VFM is defined as
934

$$\mathcal{L}_{\text{VFM}}(\theta) = -\mathbb{E}_{t,x_1,x} [\log q_t^\theta(x_1|x)].$$

936 We define the objective function of RG-VFM by setting the posterior probability as the Riemannian
937 Gaussian, i.e.,

$$q_t^\theta(x_1|x) = \mathcal{N}_{\text{Riem}}(x_1 \mid \mu_t^\theta(x), \sigma_t(x)),$$

938 so that

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = -\mathbb{E}_{t,x_1,x} [\log \mathcal{N}_{\text{Riem}}(x_1 \mid \mu_t^\theta(x), \sigma_t(x))].$$

941 More explicitly, we have

$$\begin{aligned}
942 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) &= -\mathbb{E}_{t,x_1,x} [\log q_t^\theta(x_1|x)] \\
943 \\
944 \quad &= -\mathbb{E}_{t,x_1,x} [\log \mathcal{N}_{\text{Riem}}(x_1 \mid \mu_t^\theta(x), \sigma_t(x))] \\
945 \\
946 \quad &= -\mathbb{E}_{t,x_1,x} \left[\log \left(\frac{1}{C(\mu_t^\theta(x))} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2}{2\sigma_t(x)^2}\right) \right) \right] \\
947 \\
948 \quad &= -\mathbb{E}_{t,x_1,x} \left[\log \left(\frac{1}{C(\mu_t^\theta(x))} \right) - \frac{\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2}{2\sigma_t(x)^2} \right] \\
949 \\
950 \quad &= -\mathbb{E}_{t,x_1,x} \left[\log \left(\frac{1}{C(\mu_t^\theta(x))} \right) \right] + \mathbb{E}_{t,x_1,x} \left[\frac{\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2}{2\sigma_t(x)^2} \right],
951
\end{aligned}$$

952 where $\text{dist}_{\mathbf{g}}()$ denotes the geodesic distance induced by the Riemannian metric \mathbf{g} .
953

954 Without any regularity assumptions on \mathcal{M} , no further simplification is possible. However, under the
955 following assumptions the objective becomes more tractable:

956 1. **Homogeneity:** If the manifold $(\mathcal{M}, \mathbf{g})$ is homogeneous, the normalization constant
957

$$C = \int_{\mathcal{M}} \exp\left(-\frac{\text{dist}_{\mathbf{g}}(z, \mu)^2}{2\sigma^2}\right) d\mathcal{M}_z$$

960 is independent of the mean μ (see proposition D.1). Hence, defining

$$K := -\mathbb{E}_{t,x_1,x} \left[\log \left(\frac{1}{C(\mu_t^\theta(x))} \right) \right],$$

964 which is constant with respect to θ , we obtain

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = K + \mathbb{E}_{t,x_1,x} \left[\frac{\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2}{2\sigma_t(x)^2} \right].$$

967 Since K is a constant that is independent of the model's parameters θ , the minimization
968 objective becomes
969

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t,x_1,x} \left[\frac{\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2}{2\sigma_t(x)^2} \right].$$

972 2. **Closed-form Geodesics:** If the geometry allows closed-form expressions for geodesics,
 973 namely

$$974 \quad 975 \quad \gamma(t) = \exp_x(t \cdot \log_x(y)),$$

976 then the geodesic distance between two points is given by:

$$977 \quad 978 \quad \text{dist}_{\mathbf{g}}(z, \mu) = \|\log_z(\mu)\|_{\mathbf{g}}.$$

979 In this setting, we can write

$$980 \quad 981 \quad \text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))^2 = \|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2,$$

982 so that the objective becomes

$$983 \quad 984 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = -\mathbb{E}_{t, x_1, x} \left[\log \left(\frac{1}{C(\mu_t^\theta(x))} \right) \right] + \mathbb{E}_{t, x_1, x} \left[\frac{1}{2\sigma_t(x)^2} \|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2 \right].$$

985 3. **Combined Assumptions:** If both conditions hold, the objective simplifies to

$$986 \quad 987 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[\frac{1}{2\sigma_t(x)^2} \|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2 \right].$$

988 If we further assume that $\sigma_t(x)$ is constant, this reduces to

$$989 \quad 990 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2 \right].$$

991 \square

992 **Remark on the definition of $\sigma_t(x)$.** In the previous proof, the result is obtained by assuming
 993 $\sigma_t(x)$ to be constant. More in general, we could maintain the presence of $\sigma_t(x)$ explicit in the loss,
 994 obtaining $\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[\frac{1}{2\sigma_t(x)^2} \|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2 \right]$. By being time dependent, $\sigma_t(x)$ can
 995 for example be defined as the normalization constant $\frac{1}{1-t}$. Despite the generality that it allows, for
 996 the sake of simplicity we make the choice to assume $\sigma_t(x)$ being constant, or implicit in the loss
 997 definition.

1000 **Examples of simple geometries.** A homogeneous manifold does not necessarily imply that
 1001 geodesics admit closed-form expressions. Conversely, the simple geometries with closed-form
 1002 geodesics considered in the RFM setting—such as hyperspheres \mathbb{S}^n , hyperbolic spaces \mathbb{H}^n , flat
 1003 tori $T^n = [0, 2\pi]^n$, and the space of SPD matrices \mathcal{S}_d^+ with the affine-invariant metric—are ho-
 1004 mogeneous. Thus, when restricting to these geometries for comparison with RFM, we are in the
 1005 combined case.

1006 **Special case: euclidean space.** In the Euclidean case (which also falls into the combined case),
 1007 the objective simplifies further to

$$1008 \quad 1009 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} \left[\|\mu_t^\theta(x) - x_1\|^2 \right].$$

1010 D.2 HOW DOES RG-VFM FIT IN THE EXISTING FLOW MATCHING FRAMEWORK?

1011 Figure 2 (left) illustrates how RG-VFM fits within the framework of related FM models. In VFM,
 1012 a *probabilistic* generalization of CFM is obtained by making the posterior distribution explicit and
 1013 customizable, obtaining standard CFM under the choice of a specific Gaussian (see Eijkelboom et al.
 1014 (2024)). In contrast, RFM serves as a *geometric* generalization of CFM, where the model and its ob-
 1015 jective take into account the intrinsic properties and metric of the underlying Riemannian manifold.
 1016 The same happens for the variational models: VFM with a Gaussian posterior is a particular in-
 1017 stance of RG-VFM when the geometry is Euclidean. In Euclidean space, $\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2$ reduces
 1018 to $\|\mu_t^\theta(x) - x_1\|_2^2$, thereby recovering the VFM objective.

1019 A further comparison can be made between the simplified version of RFM and RG-VFM- \mathcal{M} , where
 1020 \mathcal{M} is a homogeneous manifold with closed-form geodesics. The variational model (RG-VFM) is *not*

1026 a direct generalization of vanilla RFM because, unlike in Euclidean space, *tangent spaces at different*
 1027 *points on a manifold do not coincide*. This difference is reflected in the models' outputs (fig. 2):
 1028 vanilla models predict velocity fields, which are integrated as ODEs to construct flows, whereas
 1029 variational models predict endpoint distributions, ideally aligning with the target distribution p_1 .
 1030

1031 In Euclidean space, the difference between two vectors starting at x and pointing to different end-
 1032 points is simply the vector between those endpoints, leading to identical L_2 terms in the objectives,
 1033 i.e. $\|\mu_t^\theta(x) - x_1\|_2^2$ for VFM and $\|u_t(x | x_1) - v_t^\theta(x)\|_2^2$ for CFM. However, since $T_x \mathcal{M} \neq T_{x_1} \mathcal{M}$
 1034 in general, in their geometric counterparts this equivalence no longer holds: indeed, the difference
 1035 vector in the RFM objective, $v_t^\theta(x) - \frac{\log_x(x_1)}{(1-t)}$, is in $T_x \mathcal{M}$, while $\log_{x_1}(\mu_t^\theta(x))$ is in $T_{x_1} \mathcal{M}$. This
 1036 fundamental distinction separates RG-VFM from RFM. More details are in the following Section.
 1037

Algorithm 3 CFM

1040 **Require:** base $p \in \mathbb{R}^d$, target $q \in \mathbb{R}^d$.
 1041 # Training Phase
 1042 Initialize parameters θ of v_t
 1043 **while** not converged **do**
 1044 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
 1045 compute linear interpolation:
 1046 $x_t = t \cdot x_1 + (1 - t) \cdot x_0$
 1047 compute corresponding velocity:
 1048 $\dot{x}_t = (x_1 - x_t)/(1 - t)$
 1049 $\ell(\theta) = \mathbb{E}_{t, x_1, x} \left[\|v_t(x_t; \theta) - \dot{x}_t\|_g^2 \right]$
 1050 $\theta = \text{optimizer_step}(\ell(\theta))$
 1051 **end while**
 1052
 1053 # Generation Phase
 1054 sample noise $x_0 \sim p$
 1055 $x_1 = \text{solve_ODE}([0, 1], x_0, v_t(x_t; \theta))$

Algorithm 5 RFM

1058 **Require:** base $p \in \mathcal{M}$, target $q \in \mathcal{M}$.
 1059 # Training Phase
 1060 Initialize parameters θ of v_t
 1061 **while** not converged **do**
 1062 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
 1063 compute geodesic interpolation:
 1064 $x_t = \exp_{x_1}(t \cdot \log_{x_1}(x_0))$
 1065 compute corresponding velocity:
 1066 $\dot{x}_t = \text{PT}_{x_0 \rightarrow x_t}(\log_{x_1}(x_0))$
 1067 $\ell(\theta) = \mathbb{E}_{t, x_1, x} \left[\|v_t(x_t; \theta) - \dot{x}_t\|_g^2 \right]$
 1068 $\theta = \text{optimizer_step}(\ell(\theta))$
 1069 **end while**
 1070
 1071 # Generation Phase
 1072 sample noise $x_0 \sim p$
 1073 $x_1 = \text{solve_ODE}([0, 1], x_0, v_t(x_t; \theta))$

Algorithm 4 VFM

1038 **Require:** base $p \in \mathbb{R}^d$, target $q \in \mathbb{R}^d$.
 1039 # Training Phase
 1040 Initialize parameters θ of μ_t
 1041 **while** not converged **do**
 1042 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
 1043 compute linear interpolation:
 1044 $x_t = t \cdot x_1 + (1 - t) \cdot x_0$
 1045 $\ell(\theta) = \mathbb{E}_{t, x_1, x} \left[\|\mu_t(x_t; \theta) - x_1\|_g^2 \right]$
 1046 $\theta = \text{optimizer_step}(\ell(\theta))$
 1047 **end while**
 1048
 1049 # Generation Phase
 1050 sample noise $x_0 \sim p$
 1051 compute corresponding velocity:
 1052 $\dot{x}_t = \frac{\mu_t(x_t; \theta) - x_t}{1 - t}$
 1053 $x_1 = \text{solve_ODE}([0, 1], x_0, \dot{x}_t)$

Algorithm 6 RG-VFM (general)

1057 **Require:** base p , target $q \in \mathcal{M}$.
 1058 # Training Phase
 1059 Initialize parameters θ of μ_t
 1060 **while** not converged **do**
 1061 sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$
 1062 compute interpolation:
 1063 $x_t = \text{int}(t, x_0, x_1)$
 1064 $\ell(\theta) = \mathbb{E}_{t, x_1, x} \left[\text{dist}_g^2(x_1, \mu_t(x_t; \theta)) \right]$
 1065 $\theta = \text{optimizer_step}(\ell(\theta))$
 1066 **end while**
 1067
 1068 # Generation Phase
 1069 sample noise $x_0 \sim p$
 1070 compute corresponding velocity \dot{x}_t
 1071 $x_1 = \text{solve_ODE}([0, 1], x_0, \dot{x}_t)$

1080

1081

1082

Algorithm 7 RG-VFM *intrinsic*

1083

Require: base $p \in \mathcal{M}$, target $q \in \mathcal{M}$.

1084

Training Phase

1085

Initialize parameters θ of μ_t

1086

while not converged **do**

1087

sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$

1088

compute geodesic interpolation:

1089

$$x_t = \exp_{x_1}(t \cdot \log_{x_1}(x_0))$$

1090

$$\ell(\theta) = \mathbb{E}_{t,x_1,x} [\text{dist}_g^2(x_1, \mu_t(x_t; \theta))]$$

1091

$$\theta = \text{optimizer_step}(\ell(\theta))$$

1092

end while

1093

Generation Phase

1094

sample noise $x_0 \sim p$

1095

compute corresponding velocity:

1096

$$\dot{x}_t = \frac{\log_{\mu_t(x_t; \theta)}(x_1)}{1-t}$$

1097

$$x_1 = \text{solve_ODE}([0, 1], x_0, \dot{x}_t)$$

1098

1099

D.3 RG-VFM vs RFM ON HOMOGENEOUS SPACES WITH CLOSED-FORM GEODESICS

1100

The objective of RG-VFM is defined as

1101

$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t,x_1,x} [\|\log_{x_1}(\mu_t^\theta(x))\|_g^2],$$

1102

while the objective of RFM, in the case of closed-form geodesics, is given by

1103

$$\mathcal{L}_{\text{RFM}}(\theta) = \mathbb{E}_{t,x_1,x} [\|v_t^\theta(x) - \log_x(x_1)/(1-t)\|_g^2],$$

1104

with g being the metric tensor at $x \sim p_t(x|x_1)$.

1105

Ignoring multiplicative constants that depend only on t and x , comparing the two losses reduces to comparing the quantities

1106

$$\|\log_{x_1}(\mu_t^\theta(x))\|_g^2 \quad \text{and} \quad \|v_t^\theta(x) - \log_x(x_1)\|_g^2.$$

1107

Euclidean space. In Euclidean space \mathbb{R}^n , the tangent space at each point is naturally identified with \mathbb{R}^n . In this setting,

1108

$$\log_{x_1}(\mu_t^\theta(x)) = \mu_t^\theta(x) - x_1 \quad \text{and} \quad \log_x(x_1) = x_1 - x.$$

1109

Notice that

1110

$$\mu_t^\theta(x) - x_1 = \mu_t^\theta(x) - x + x - x_1 = (\mu_t^\theta(x) - x) - (x_1 - x) = (\mu_t^\theta(x) - x) - \log_x(x_1).$$

1111

If we define (ignoring multiplicative constants such as $1/(1-t)$)

1112

$$v_t^\theta(x) = \log_x(\mu_t^\theta(x)) = \mu_t^\theta(x) - x,$$

1113

then it follows that

1114

$$\log_{x_1}(\mu_t^\theta(x)) = \log_x(\mu_t^\theta(x)) - \log_x(x_1),$$

1115

implying

1116

$$\|\log_{x_1}(\mu_t^\theta(x))\|_g^2 = \|v_t^\theta(x) - \log_x(x_1)\|_g^2.$$

1117

Thus, $\mathcal{L}_{\text{RG-VFM}}(\theta)$ and $\mathcal{L}_{\text{RFM}}(\theta)$ are equivalent up to an additive constant. This result is consistent with the known equivalence between $\mathcal{L}_{\text{VFM}}(\theta)$ and $\mathcal{L}_{\text{CFM}}(\theta)$.

1118

1119

General geometries. In non-Euclidean spaces, however, the quantities

1120

$$\|\log_{x_1}(\mu_t^\theta(x))\|_g^2 \quad \text{and} \quad \|v_t^\theta(x) - \log_x(x_1)/(1-t)\|_g^2$$

1121

are not necessarily equal. This is because $\log_{x_1}(\mu_t^\theta(x))$ is a vector in $T_{x_1}\mathcal{M}$, while

1122

 $\log_x(\mu_t^\theta(x)) - \log_x(x_1)$ lies in $T_x\mathcal{M}$, and in general $T_{x_1}\mathcal{M} \neq T_x\mathcal{M}$. Establishing a relation between these vectors is not straightforward and can be illustrated by comparing the law of cosines in Euclidean, hyperbolic spaces, and on hyperspheres.

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

Algorithm 8 RG-VFM *extrinsic***Require:** base $p \in \mathbb{R}^d$, target $q \in \mathcal{M}$.

Training Phase

Initialize parameters θ of μ_t **while** not converged **do**sample $t \sim \mathcal{U}(0, 1)$, $x_0 \sim p$, $x_1 \sim q$

compute linear interpolation:

$$x_t = \mathbf{t} \cdot x_1 + (1 - \mathbf{t}) \cdot x_0$$

$$\ell(\theta) = \mathbb{E}_{t,x_1,x} [\text{dist}_g^2(x_1, \mu_t(x_t; \theta))]$$

$$\theta = \text{optimizer_step}(\ell(\theta))$$

end while

Generation Phase

sample noise $x_0 \sim p$

compute corresponding velocity:

$$\dot{x}_t = \frac{\mu_t(x_t; \theta) - x_t}{1-t}$$

$$x_1 = \text{solve_ODE}([0, 1], x_0, \dot{x}_t)$$

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1134 D.4 A COMPARISON BASED ON JACOBI FIELDS
11351136 In this section, we report the notations used for explaining the comparison based on Jacobi fields,
1137 in table 5, as well as the proofs of the propositions in section 4.

1139 Symbol	1140 Name	1141 Description
$x_{\tau=0}^s = x_0^s = x_0$	base point	Base point obtained at $\tau = 0$.
x_1^s, x_1^0	generated and target end point	Predicted and reference data points after training.
v^1, v^0	generated and target vector	Predicted and reference vectors after training.
$\mathcal{L}_{\text{RG-VFM}} = \mathbb{E}_{t,x,x_1}[\text{dist}(x_1^1, x_1^0)^2]$	RG-VFM loss	Geodesic distance used in the Variational Riemannian FM loss function.
$\mathcal{L}_{\text{RFM}} = \mathbb{E}_{t,x,x_1}[\ v^1 - v^0\ _{\mathbf{g}}^2]$	RFM loss	Norm of vector fields used in the Vanilla Riemannian FM loss function.

1151 Table 5: Synthetic notations used in this section for the Jacobi field and Riemannian flow matching
1152 losses.
11531154 **Definition 4.1** (Jacobi field at a vanishing starting point). *The family of geodesics defined as:*

1155
$$\alpha(s, \tau) := \gamma_s : \tau \rightarrow \exp_{x_0}(\tau(v + sw)),$$

1156 with $s \in [0, 1]$ and $\tau \in [0, 1]$, $v, w \in T_{x_0} \mathcal{M}$, is a smooth family of shooting geodesics with
1157 $\gamma_s(0) = x_0$, $\dot{\gamma}_0(0) = v$ and $\dot{\gamma}_1(0) = v + w$.1158 For each fixed $\tau \in [0, 1]$, there exists a vector field, called **Jacobi field**,

1159
$$J(\tau) := \partial_s \alpha(s, \tau) \Big|_{s=0}$$

1160 along the geodesic $\gamma_s(\tau) := \alpha(s, \tau)$ satisfying the ODE equation: $D_\tau^2 J + R(J, \dot{\gamma}_s) \dot{\gamma}_s = 0$, with R
1161 the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined
1162 by the initial conditions and at $\tau = 0$ one has the initial conditions: $J(0) = 0$, and $D_\tau J(0) = w$.1163 *Proof.* Lee (2018)[Lemma 10.9. and Proposition 10.2.] □1164 Since $\tau \rightarrow \alpha(s, \tau)$ is a geodesic for each s , we have $D_\tau^2 \alpha = 0$. Differentiate with respect to s and
1165 use the torsion-free, metric connection to get $D_\tau^2(\partial_s \alpha) + R(\partial_s \alpha, \partial_\tau \alpha) \partial_\tau \alpha = 0$, which is the Jacobi
1166 equation for $J(\tau) = \partial_s \alpha(s, \tau) \Big|_{s=0}$. Because $\alpha(s, 0) = x_0$ for all s , we get $J(0) = 0$. Also
1167 $\partial_\tau \alpha(s, 0) = v + sw$, so $D_\tau J(0) = \partial_s(v + sw) \Big|_{s=0} = w \Big|_{s=0} = w$.1168 The Jacobi equation is a linear second-order ODE along γ with smooth coefficients, there is a
1169 unique solution with any prescribed initial data $(J(0), D_\tau J(0)) = (0, w)$. □1170 For $s = 0$, we are interested in the geodesic $\gamma_0 : \tau \rightarrow \exp_{x_0}(\tau v^0)$, with v^0 the target velocity, and
1171 for $s = 1$, the geodesic $\gamma_1 : \tau \rightarrow \exp_{x_0}(\tau v^1)$ is defined with v^1 the velocity learned by the model.
1172 $w = v^0 - v^1$ corresponds to the discrepancy between the learned and the conditional initial
1173 velocity, and their norm is exactly what is minimized in the vanilla Riemannian Flow Matching
1174 (Chen & Lipman, 2024).1175 **Proposition 4.1** (Loss functions as evaluation of Jacobi fields). *Consider a Jacobi field*1176 $J(\tau) := \partial_s \alpha(s, \tau) \Big|_{s=0}$ *as defined in definition 4.1. We denote \mathcal{L}_{RFM} the loss function of the*
1177 *(vanilla) Riemannian Flow Matching (Chen & Lipman, 2024), and $\mathcal{L}_{\text{RG-VFM}}$ the loss function for*
1178 *our proposed Riemannian Variational Flow Matching. Then the following equalities hold:*

1179
$$\mathcal{L}_{\text{RFM}}(\theta) = \mathbb{E}_{t,x_1,x}[\|u_t(x \mid x_1) - v_t^\theta(x)\|_{\mathbf{g}}^2] = \mathbb{E}_{t,x_1,x}[\|D_\tau J(0)\|_{\mathbf{g}}^2], \quad (10)$$

1180
$$\mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t,x_1,x}[\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2] = \mathbb{E}_{t,x_1,x}[\|J(1)\|_{\mathbf{g}}^2]. \quad (11)$$

1188 *Proof.* In RFM, the goal is to learn a velocity field v_t^θ that transports the base distribution at $t = 0$
 1189 into the target distribution at $t = 1$. The loss penalizes the discrepancy between the conditional
 1190 velocity $u_t(x | x_1)$ and the model's prediction $v_t^\theta(x)$, averaged over all time steps t , target samples
 1191 $x_1 \sim p_{\text{data}}$, and intermediate samples $x \sim p_t(x | x_1)$.

1192 When introducing Jacobi fields, we first define them for a fixed generative step t , a specific target
 1193 point $x_1 = x_1^{s=0}$, and an associated intermediate point. As an abuse of notation, we suppose here
 1194 that the Jacobi fields are obtained for all t, x_1, x , allowing us to take expectations over these
 1195 variables.

1196

1197 1. Let us prove that:

$$1199 \mathcal{L}_{\text{RFM}}(\theta) = \mathbb{E}_{t, x_1, x} [\|u_t(x | x_1) - v_t^\theta(x)\|_{\mathbf{g}}^2] = \mathbb{E}_{t, x_1, x} [\|D_\tau J(0)\|_{\mathbf{g}}^2],$$

1200

1201 By definition of the initial conditions of our Jacobi field, we have the target velocity field
 1202 defined as $\dot{\gamma}_{s=0}(0) := v^0 = u_t(x | x_1)$ and the learned velocity field defined as
 1203 $\dot{\gamma}_{s=1}(0) := v^1 = v_t^\theta(x)$. By definition 4.1,
 1204 $\|u_t(x | x_1) - v_t^\theta(x)\| = \|v^0 - v^1\| = \| - w \| = \|w\| = \|D_\tau J(0)\|$.

1205

2. We want to prove the other equality:

$$1206 \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathbb{E}_{t, x_1, x} [\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}^2] = \mathbb{E}_{t, x_1, x} [\|J(1)\|_{\mathbf{g}}^2].$$

1207

1208 We observe that $\log_{x_1}(\mu_t^\theta(x)) = \log_{\gamma_0(1)}(\gamma_1(1))$. Let $p := \gamma_0(1)$ and $q := \gamma_1(1)$, the
 1209 respective end points of the geodesics γ_0 and γ_1 . If q lies in the injectivity radius of p ,
 1210 then there is a unique minimizing geodesic $\sigma : \rho \in [0, 1] \rightarrow \exp_p(\rho u)$ with $u = \log_p(q)$,
 1211 with $\sigma(0) = p$ to $\sigma(1) = q$.

1212

1213 a) We can then consider the Taylor expansion for the exponential map \exp_p and
 1214 consequently of the geodesic defined from it $\sigma(\rho)$, as in Monera et al. (2014):

1215

$$1216 \sigma(\rho) = \sigma(0) + \sigma'(0) \rho + \frac{1}{2} \sigma''(0) \rho^2 + O(\|\rho u\|^3).$$

1217

By substituting the values, we obtain:

1218

$$1219 \sigma(\rho) = p + u \rho + \frac{1}{2} \sigma''(0) \rho^2 + O(\|\rho u\|^3).$$

1220

1221 We want now to reparametrize the geodesic with respect to the variable s , instead of
 1222 $\rho \in [0, 1]$. For this, we reparametrize it with a new initial velocity vector w such that
 1223 $\sigma_w(s) = \sigma_u(\rho(s))$ for a smooth reparametrization function $\rho = \rho(s)$. In this setting,
 1224 we still have $\sigma_w(0) = p$ and $\sigma_w(1) = q$. Hence

1225

$$1226 \sigma_w(s) = p + w s + \frac{1}{2} \sigma''(0) s^2 + O(\|sw\|^3),$$

1227

and for $s = 1$:

1228

$$1229 q = \sigma_w(1) = p + w + \frac{1}{2} \sigma''(0) + O(\|w\|^3).$$

1230

b) From the perspective of the family of geodesics

1231

$$1232 \gamma_s(\tau) = \exp_{x_0}(\tau(v + sw))$$

1233

and the corresponding Jacobi field $J(\tau)$, we can instead derive:

1234

$$1235 \gamma_s(1) = \gamma_0(1) + J(1)s + \frac{1}{2} J'(1)s^2 + O(\|J(1)s\|^3),$$

1236

that for $s = 1$ gives:

1237

$$1238 q = \gamma_1(1) = p + J(1) + \frac{1}{2} J'(1) + O(\|J(1)\|^3).$$

1239

We can observe that, for $s = 1$, the two Taylor expansions in (a) and (b) coincide, and we
 1240 also have for the linear terms:

1241

$$\log_p q = w = J(1).$$

1242

From this, we derive the fundamental equality $\log_{x_1}(\mu_t^\theta(x)) = \log_p q = J(1)$, which
 1243 exactly corresponds to what we want to prove.

1242

1243

1244 **Proposition 4.2.** $D_\tau J(0)$ is a linear approximation of $J(1)$. □

1245

1246 *Proof.* Let $J^{(k)}(0) := D_\tau^k J(\tau)|_{\tau=0}$ be the k -th derivative of J with respect to τ , then evaluated at 0. The value of the Jacobi field at timestep τ can be computed through Taylor expansion of the Jacobi field centered in $\tau = 0$, as

1249

1250

1251

$$J(\tau) = \tau J^{(1)}(0) + \frac{\tau^2}{2} J^{(2)}(0) + \frac{\tau^3}{6} J^{(3)}(0) + \mathcal{O}(\|w\|\tau^4)$$

1252

1253

1254 Since the exponential map is smooth, the associated geodesics and Jacobi fields are smooth 1255 functions depending on τ . The Taylor's theorem guarantees that we can approximate $J(\tau)$ around 1256 $\tau = 0$, with the big-O term quantifying the size of the error. In particular, the expansion centered at 1257 $\tau = 0$ remains valid when evaluated at any τ , provided that the exponential map stays well-defined 1258 and smooth.

1259

1260

1261 In our setting, $J(0) = 0$, and we are interested in the timestep $\tau = 1$, for which we get

1262

1263

1264

1265

1266

1267

$$J(1) = J^{(1)}(0) + \frac{1}{2} J^{(2)}(0) + \frac{1}{6} J^{(3)}(0) + \mathcal{O}(\|w\|)$$

1268 and if we want to stop at the linear term:

1269

1270

$$J(1) \approx J^{(1)}(0),$$

1271

1272 in the sense that $J^{(1)}(0)$ is a linear approximation of $J(1)$. □

1273

1274 **Proposition 4.3** (Difference of loss functions as a curvature term). *Consider a Jacobi field 1275 $J(\tau) := \partial_s \alpha(s, \tau)|_{s=0}$ as defined in definition 4.1 and the equivalences shown in proposition 4.1. 1276 The difference between $\mathcal{L}_{\text{RG-VFM}}$ and \mathcal{L}_{RFM} encodes the manifold curvature through:*

1277

1278

1279

1280

1281 where the leading-order curvature functional is:

1282

1283

$$\mathcal{C}(R, D_\tau J(0), v) = -\frac{1}{3} \langle R(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} - \frac{1}{6} \langle (\nabla_v R)(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} \quad (14)$$

1284

1285

1286

1287

$$\text{and } \mathcal{E}_{\text{higher}} = \mathcal{O}(\|D_\tau J(0)\|^2 \|v\|^3), \quad (15)$$

1288

1289

1290

1291

1292 with R the Riemannian curvature tensor and $v = \dot{\gamma}_0$ the reference geodesic velocity. The 1293 higher-order term $\mathcal{E}_{\text{higher}}$ encodes curvature variation along geodesics through covariant 1294 derivatives of R . In terms of the RFM loss terms, $v = u_t(x | x_1)$ and 1295 $D_\tau J(0) = v_t^\theta(x) - u_t(x | x_1)$.

1296

1297

1298

1299

1300

1301 *Proof.* The proof consists of three steps: (1) we will detail the Taylor series of the norm of the 1302 Jacobi field, noted $S := \|J\|^2$, (2) we will compute up to the 5th order of those terms evaluated at 1303 $\tau = 0$, and (3) we will simplify the expression to have the approximation.

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1296
1297We further note $S(\tau)$ the linear product of two Jacobi fields, defined as:1298
1299
1300
1301

$$S(\tau) := \|J(\tau)\|^2 = \langle J(\tau), J(\tau) \rangle = \left\langle \sum_{m \geq 0} \frac{\tau^m}{m!} J^{(m)}(0), \sum_{n \geq 0} \frac{\tau^n}{n!} J^{(n)}(0) \right\rangle.$$

1302
1303
1304Note that here and in the following, $\langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_g$, but we omit g to avoid overcharging equations.1305
1306

By bilinearity and using the Cauchy product, we have:

1307
1308
1309

$$S(\tau) = \sum_{m,n \geq 0} \frac{\tau^{m+n}}{m!n!} \langle J^{(m)}(0), J^{(n)}(0) \rangle = \sum_{r \geq 0} \frac{\tau^r}{r!} S^{(r)}(0)$$

1310
1311
1312

$$\text{with } S^{(r)}(0) := \sum_{l=0}^r \binom{r}{l} \langle J^{(l)}(0), J^{(r-l)}(0) \rangle.$$

1313
1314
13152. Let us compute the Jacobi terms $J^{(k)}(0) := D_\tau^k J(\tau)|_{\tau=0}$ and their norm $S^k(0)$.

We know that the Jacobi fields satisfy the following ODE equation

1316
1317
1318

$$J^{(2)} + AJ = 0,$$

1319
1320
1321
1322
1323with $A(\tau)J(\tau) = R(J(\tau), \dot{\gamma}(\tau))\dot{\gamma}(\tau)$, with $\dot{\gamma}(0) = v$ is the initial velocity and $D_\tau \dot{\gamma}(\tau) = 0$ since γ is a geodesic. We know the initial condition $J(0) = 0$ and $J^{(1)}(0) := D_\tau J(0) = w$. Noting $A^{(k)} := D_\tau^k A(\tau)$, we can compute with the chain rule:

1324

$$\begin{aligned} D_\tau A(\tau)J(\tau) &= \nabla_{\dot{\gamma}} [R(J(\tau), \dot{\gamma})\dot{\gamma}] \\ &= (\nabla_{\dot{\gamma}} R)(J(\tau), \dot{\gamma})\dot{\gamma} + R(D_\tau J(\tau), \dot{\gamma})\dot{\gamma} + R(J(\tau), D_\tau \dot{\gamma})\dot{\gamma} + R(J(\tau), \dot{\gamma})D_\tau \dot{\gamma} \\ &= (\nabla_{\dot{\gamma}} R)(J(\tau), \dot{\gamma})\dot{\gamma} + R(D_\tau J(\tau), \dot{\gamma})\dot{\gamma} \quad \text{since } D_\tau \dot{\gamma} = 0 \end{aligned}$$

1328

$$\begin{aligned} D_\tau^2 A(\tau)J(\tau) &= D_\tau(\nabla_{\dot{\gamma}} R)(J(\tau), \dot{\gamma})\dot{\gamma} + D_\tau(R(D_\tau J(\tau), \dot{\gamma})\dot{\gamma}) \\ &= (\nabla_{\dot{\gamma}}^2 R)(J(\tau), \dot{\gamma})\dot{\gamma} + (\nabla_{\dot{\gamma}} R)(D_\tau J(\tau), \dot{\gamma})\dot{\gamma} + (\nabla_{\dot{\gamma}} R)(D_\tau J(\tau), \dot{\gamma})\dot{\gamma} + R(D_\tau^2 J(\tau), \dot{\gamma})\dot{\gamma} \\ &= (\nabla_{\dot{\gamma}}^2 R)(J(\tau), \dot{\gamma})\dot{\gamma} + 2(\nabla_{\dot{\gamma}} R)(D_\tau J(\tau), \dot{\gamma})\dot{\gamma} + R(D_\tau^2 J(\tau), \dot{\gamma})\dot{\gamma} \end{aligned}$$

1332
1333
1334For all t , we can express the derivatives of $A(\tau)J(\tau)$ as1335
1336
1337
1338
1339

$$\begin{aligned} D_\tau [A(\tau)J(\tau)] &= D_\tau [A(\tau)] J(\tau) + A(\tau)D_\tau [J(\tau)], \text{ with in general:} \\ D_\tau^k [A(\tau)] J(\tau) &= (\nabla_{\dot{\gamma}}^k R)(J(\tau), \dot{\gamma})\dot{\gamma} \text{ and } A(\tau)D_\tau^k [J(\tau)] = R(D_\tau^k J(\tau), \dot{\gamma})\dot{\gamma}. \end{aligned}$$

$$J^{(0)}(0) = 0$$

$$J^{(1)}(0) = w$$

$$J^{(2)}(0) = -A(0)J(0) = 0$$

$$J^{(3)}(0) = -A^{(1)}(0)J(0) - A(0)J^{(1)}(0) = -R(w, v)v$$

$$J^{(4)}(0) = -A^{(2)}(0)J(0) - 2A^{(1)}(0)J^{(1)}(0) - A(0)J^{(2)}(0) = -2(\nabla_v R)(w, v)v$$

1347
1348
1349

And we have the following norms:

$$\begin{aligned}
1350 \quad & S^{(0)}(0) = \langle J(0), J(0) \rangle = 0 \\
1351 \quad & S^{(1)}(0) = 2\langle J(0), J^{(1)}(0) \rangle = 0 \\
1352 \quad & S^{(2)}(0) = 2\langle J(0), J^{(2)}(0) \rangle + 2\langle J^{(1)}(0), J^{(1)}(0) \rangle = 2\|w\|^2 \\
1353 \quad & S^{(3)}(0) = 2\langle J(0), J^{(3)}(0) \rangle + 6\langle J^{(1)}(0), J^{(2)}(0) \rangle = 0 \\
1354 \quad & S^{(4)}(0) = 2\langle J(0), J^{(4)}(0) \rangle + 8\langle J^{(1)}(0), J^{(3)}(0) \rangle + 6\langle J^{(2)}(0), J^{(2)}(0) \rangle \\
1355 \quad & \quad = 8\langle J^{(1)}(0), J^{(3)}(0) \rangle = -8\langle R(w, v)v, w \rangle \\
1356 \quad & S^{(5)}(0) = 2\langle J(0), J^{(5)}(0) \rangle + 10\langle J^{(1)}(0), J^{(4)}(0) \rangle + 20\langle J^{(2)}(0), J^{(3)}(0) \rangle \\
1357 \quad & \quad = 10\langle J^{(1)}(0), J^{(4)}(0) \rangle = -20\langle (\nabla_v R)(w, v)v, w \rangle
\end{aligned}$$

1363
1364 3. We can finally express $\|J\|^2$ in terms of Taylor series
1365

$$\begin{aligned}
1366 \quad & \|J(\tau)\|^2 = \sum_{r \geq 0} \frac{\tau^r}{r!} S^{(r)}(0) \\
1367 \quad & = S^{(0)}(0) + \tau S^{(1)}(0) + \frac{\tau^2}{2} S^{(2)}(0) + \frac{\tau^3}{6} S^{(3)}(0) + \frac{\tau^4}{24} S^{(4)}(0) + \frac{\tau^5}{120} S^{(5)}(0) + \text{remainder} \\
1368 \quad & = \tau^2 \|w\|^2 - \tau^4 \frac{1}{3} \langle (R(w, v)v, w) \rangle - \tau^5 \frac{1}{6} \langle (\nabla_v R)(w, v)v, w \rangle + \mathcal{O}(\tau^6 \|w\|^2 \|v\|^3)
\end{aligned}$$

1373
1374 with $\langle (\nabla_v R)(w, v)v, w \rangle \leq \|\nabla R\| \|v\|^3 \|w\|^2$, and we assume the curvature of our
1375 manifold being bounded, so $\nabla R \leq M$, with $M \in \mathbb{R}$. Setting now $\tau = 1$ and
1376 $w = D_\tau J(0)$, we get
1377

$$1378 \quad \|J(\tau)\|^2 = \|D_\tau J(0)\|^2 + \mathcal{C}(R, D_\tau J(0), v) + \mathcal{E}_{\text{higher}}$$

1379 with
1380

$$\begin{aligned}
1381 \quad & \mathcal{C}(R, D_\tau J(0), v) = -\frac{1}{3} \langle R(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} - \frac{1}{6} \langle (\nabla_v R)(D_\tau J(0), v)v, D_\tau J(0) \rangle_{\mathbf{g}} \\
1382 \quad & \quad \text{and } \mathcal{E}_{\text{higher}} = \mathcal{O}(\|D_\tau J(0)\|^2 \|v\|^3),
\end{aligned}$$

1383 where the higher-order term $\mathcal{E}_{\text{higher}}$ encodes curvature variation along geodesics through
1384 covariant derivatives of R .
1385

1386 Taking the expectation with respect to the variables t, x_1, x and considering the result of
1387 proposition 4.1, we obtain the desired result
1388

$$1389 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathcal{L}_{\text{RFM}}(\theta) + \mathbb{E}_{t, x_1, x} [\mathcal{C}(R, D_\tau J(0), v) + \mathcal{E}_{\text{higher}}]. \quad (25)$$

1390 \square
1391

1392 **Corollary D.1.** For $v^0 = u_t(x \mid x_1)$ and $v^1 = v_t^\theta(x)$, the following holds:
1393

$$1394 \quad \mathcal{C}(R, D_\tau J(0), v) = \mathcal{C}(R, v^0, v^1) = -\frac{1}{3} K(v^1, v^0) \|v^1 \wedge v^0\|^2 - \frac{1}{6} \langle (\nabla_{v^0} R)(v^1, v^0)v^0, v^1 \rangle. \quad (26)$$

1395 with K the sectional curvature, \wedge the wedge-product, R the Riemannian curvature and ∇ the
1396 covariant derivative. For constant sectional curvature K , we further have $\nabla_{v^0} R = 0$:
1397

$$1398 \quad \mathcal{L}_{\text{RG-VFM}}(\theta) = \mathcal{L}_{\text{RFM}}(\theta) - \frac{1}{3} K \|v^1 \wedge v^0\|^2 + \mathcal{O}(\|v^0\|^3 \|v^1\|^2). \quad (27)$$

1400 *Proof.* The sectional curvature is a way to measure locally the normalized deviation between two
1401 geodesics. It is defined as:
1402

$$1403 \quad K(w, v) := \frac{\langle R(w, v)v, w \rangle}{\|w \wedge v\|^2}$$

1404 with $\|w \wedge v\|$ the area spanned by the vector w and v . Furthermore, for the sphere and the
 1405 hyperboloid, the sectional curvature is constant, being $K = 1$ and $K = -1$ respectively.
 1406

1407 With this definition, we can first of all re-express, in point (2) of proposition 4.3:

$$1409 \quad S^{(4)}(0) = -8\langle R(w, v)v, w \rangle = -8K(w, v)\|w \wedge v\|^2.$$

1411 Consequently, we get the following expression in part (3):
 1412

$$1413 \quad \|J(\tau)\|^2 = \sum_{r \geq 0} \frac{\tau^r}{r!} S^{(r)}(0) \\ 1414 \quad = S^{(0)}(0) + \tau S^{(1)} + \frac{\tau^2}{2} S^{(2)}(0) + \frac{\tau^3}{6} S^{(3)}(0) + \frac{\tau^4}{24} S^{(4)}(0) + \frac{\tau^5}{120} S^{(5)}(0) + \text{remainder} \\ 1415 \\ 1416 \\ 1417 \\ 1418 \\ 1419 \quad = \tau^2\|w\|^2 - \tau^4 \frac{1}{3} K(w, v)\|w \wedge v\|^2 - \tau^5 \frac{1}{6} \langle (\nabla_v R)(w, v)v, w \rangle + \mathcal{O}(\tau^6\|w\|^2\|v\|^3)$$

1422 With the initial velocity vectors $v = v^0$ and $w = v^1 - v^0$, we can express the Riemannian curvature
 1423 tensor $\langle R(w, v)v, w \rangle = \langle R(v^1, v^0)v^0, v^1 \rangle$

$$1424 \quad \|J(\tau)\|^2 = \tau^2\|v^1 - v^0\|^2 - \tau^4 \frac{1}{3} K(v^1, v^0)\|v^1 \wedge v^0\|^2 - \tau^5 \frac{1}{6} \langle (\nabla_{v^0} R)(v^1, v^0)v^0, v^1 \rangle + \mathcal{O}(\tau^6\|v^0\|^3\|v^1\|^2)$$

1427 Hence, we have, evaluating the Taylor expansion at $\tau = 1$ and considering it in expectation:
 1428

$$1429 \quad \mathcal{L}_{\text{RG-VFM}} = \mathcal{L}_{\text{RFM}} - \mathbb{E}_{t, x_1, x} \left[\frac{1}{3} K(v^1, v^0)\|v^1 \wedge v^0\|^2 + \frac{1}{6} \langle (\nabla_{v^0} R)(v^1, v^0)v^0, v^1 \rangle + \mathcal{O}(\|v^0\|^3\|v^1\|^2) \right].$$

1432 with K the sectional curvature, \wedge the wedge-product, R the Riemannian curvature and ∇ the
 1433 covariant derivative.

1434 For constant sectional curvature K , we further have $\nabla_{v^0} R = 0$:

$$1436 \quad \mathcal{L}_{\text{RG-VFM}} = \mathcal{L}_{\text{RFM}} - \frac{1}{3} K\|v^1 \wedge v^0\|^2 + \mathcal{O}(\|v^0\|^3\|v^1\|^2).$$

1439 Let us consider the angle between the vectors defined as $\cos(\theta) = \frac{\langle v^0, v^1 \rangle}{\|v^0\|\|v^1\|}$. In that case:

$$1441 \quad \|v^1 \wedge v^0\|^2 = \|v^1\|^2\|v^0\|^2 - (\|v^1\|\|v^0\|\cos\theta)^2 = \|v^1\|^2\|v^0\|^2(1 - \cos^2\theta) = \|v^1\|^2\|v^0\|^2\sin^2\theta$$

1443 For a sphere \mathbb{S}^2 ($K = +1$), we have:

$$1445 \quad \text{dist}(\gamma_0(1), \gamma_1(1))^2 = \|v^1 - v^0\|^2 - \frac{1}{3}\|v^1\|^2\|v^0\|^2\sin^2\theta + \mathcal{O}(\|v^0\|^3\|v^1\|^2).$$

1447 For a hyperboloid \mathbb{H}^2 ($K = -1$), we have:

$$1449 \quad \text{dist}(\gamma_0(1), \gamma_1(1))^2 = \|v^1 - v^0\|^2 + \frac{1}{3}\|v^1\|^2\|v^0\|^2\sin^2\theta + \mathcal{O}(\|v^0\|^3\|v^1\|^2).$$

1451 \square

1452
 1453
 1454
 1455
 1456
 1457

1458 E SYNTHETIC EXPERIMENTS ON HYPERSPHERE AND HYPERBOLOID
14591460 In this section, we present further results from the experiments described in section 5.1.
14611462 E.1 DEFINITION OF THE MANIFOLDS
14631464 The hypersphere is defined as $\mathbb{S}^n := \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle_E = 1\}$, with the standard Euclidean inner
1465 product $\langle x, y \rangle_E = x_0y_0 + x_1y_1 + x_2y_2 + \dots + x_ny_n$. Instead, we adopt the Lorentz model for the
1466 hyperbolic space, which is defined as the upper sheet of the hyperboloid embedded in Minkowski
1467 space. The Minkowski space is the manifold \mathbb{R}^{n+1} equipped with the Lorentzian inner product
1468 $\langle x, y \rangle_{\mathcal{L}} = -x_0y_0 + x_1y_1 + x_2y_2 + \dots + x_ny_n$. In this setting, the Lorentz hyperbolic model is
1469 defined as $\mathbb{H}_K^n := \{x \in \mathbb{R}^{n+1} : \langle x, x \rangle_{\mathcal{L}} = 1/K, x_0 > 0, K < 0\}$, where we set $K = -1$.
14701471 E.2 EXPERIMENTAL SETUP
14721473 In all experiments, the target distribution p_1 is the spherical checkerboard, so its support is \mathbb{S}^2 . The
1474 noisy distribution p_0 varies by model: for CFM, VFM, and RG-VFM- \mathbb{R}^3 , p_0 is the standard normal
1475 distribution in \mathbb{R}^3 , while for RG-VFM- \mathcal{M} and RFM, it is obtained by wrapping the standard
1476 normal distribution on either \mathbb{S}^2 or \mathbb{H}_{-1}^2 . In every case, we train a five-layer MLP with 64/128
1477 hidden features for 3000 epochs on 10000 training samples, that we use to generate 10000 samples
1478 using a Euler ODE solver. For the intrinsic geometric models, the Euler solver is manifold-aware,
1479 meaning that it's defined with the log and exp maps on the manifold. Additionally, for the
1480 variational models we used a clipping technique during sampling, in order to make sure that the
1481 normalization term $\frac{1}{1-t}$ would not be too high for values of t approaching 1.
14821483 E.3 RESULTS
14841485 Figure 4, fig. 10 and fig. 11 illustrate the generative flow trajectories over time, from the initial
1486 distribution p_0 to the generated distribution at $t = 1$.
14871488 Figures 6 and 13 displays the generated distributions unwrapped onto a flat surface for easier
1489 visualization and comparison. These results visually confirm the observations presented in
1490 section 5.1.
14911492 Finally, figs. 8 and 15 show histograms of the norm values of the generated samples. As discussed
1493 in section 5.1, this metric differentiates the Euclidean models (CFM and VFM) from the others.
1494 Ideally, points should have a Euclidean norm of 1 if lying on \mathbb{S}^2 , or a Minkowski norm of -1 if on
1495 \mathbb{H}_{-1}^2 . However, because the Euclidean models lack explicit geometric information, their points
1496 deviate slightly from the ideal norm, with CFM exhibiting a larger divergence. In contrast, the
1497 geometric models consistently generate points that lie almost exactly on the sphere.
14981499 E.4 LAPLACE POSTERIOR PROBABILITY
15001501 We explore the definition of the VFM training loss as the absolute value of the geodesic distance,
1502 instead of the squared geodesic distance, which would be obtained by ideally defining the posterior
1503 distribution q_t^θ in the VFM loss (eq. (5)) as the Riemannian version of the Laplace distribution.
1504 This would be defined as in eq. (7), by replacing the L^2 norm of the geodesic distance with the L^1
1505 norm, obtaining
1506

1507
$$\mathcal{L}_{\text{RG-VFM}}^{Lap}(\theta) = \mathbb{E}_{t,x_1,x} [\|\log_{x_1}(\mu_t^\theta(x))\|_{\mathbf{g}}] = \mathbb{E}_{t,x_1,x} [\text{dist}_{\mathbf{g}}(x_1, \mu_t^\theta(x))]. \quad (28)$$

1508

1509 We observe that using a Laplace distribution as the posterior for the Riemannian VFM models
1510 yields better results, both visually and with respect to the considered metrics. This effect is
1511 particularly evident in the hyperbolic case, and we hypothesize that it arises from the different
1512 impacts of using L^1 versus L^2 norms in this space. The numerical results are reported in table 6,
1513 the probability paths in figs. 5 and 12, the sampled densities in figs. 7 and 14 and the norm
1514 histograms in figs. 9 and 16.
1515

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534

1535 Table 6: **Results of synthetic experiments with Laplace posterior.** Abbreviations: Eucl. = Eu-
 1536 clidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.

1537
 1538
 1539
 1540
 1541
 1542
 1543

	Sphere			Hyperboloid		
	Coverage \uparrow	C2ST \downarrow	Distance \downarrow	Coverage \uparrow	C2ST \downarrow	Distance \downarrow
Eucl/Ext/Var (VFM)	89.92	59.98 ± 0.56	0.034 ± 0.042	87.63	57.26 ± 0.59	0.001 ± 0.133
Riem/Ext/Var (Ours)	95.04	61.33 ± 0.23	0.008 ± 0.034	91.98	62.55 ± 0.30	0.041 ± 0.113
Riem/Int/Var (Ours)	90.56	57.39 ± 0.70	-	86.23	56.04 ± 0.41	-

1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

Figure 4: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p_0 at $t = 0$, evolving to reach their final configuration by $t = 1$. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{S}^2 .

1620

t=0.25

t=0.50

t=0.75

t=1.00

x₁

1621

(a) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

1622

t=0.25

t=0.50

t=0.75

t=1.00

x₁

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

(b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

t=0.25

t=0.50

t=0.75

t=1.00

x₁

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

Figure 5: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p_0 at $t = 0$, evolving to reach their final configuration by $t = 1$. In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution on \mathbb{S}^2 .

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

(a) **Model:** CFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

(b) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

(c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

(d) **Model:** RFM; $\text{supp}(p_0) := \mathbb{S}^2$; p_0 : standard normal distribution on \mathbb{S}^2 .

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

(e) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{S}^2$; p_0 : standard normal distribution on \mathbb{S}^2 .

Figure 6: Sample distributions generated by different models (representing the flow configuration at $t = 1$) unwrapped from \mathbb{S}^2 to \mathbb{R}^2 for improved visualization. The true checkerboard distribution is shown in gray in the background. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{S}^2 .

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

1740 (a) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
1741 normal distribution in \mathbb{R}^3 .

1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753

1754 (b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
1755 normal distribution in \mathbb{R}^3 .

1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767

1768 (c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{S}^2$; p_0 : standard
1769 normal distribution on \mathbb{S}^2 .

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Figure 7: Sample distributions generated by different models (representing the flow configuration at $t = 1$) unwrapped from \mathbb{S}^2 to \mathbb{R}^2 for improved visualization. The true checkerboard distribution is shown in gray in the background. In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution on \mathbb{S}^2 .

Figure 8: Histogram of the norm values of the 10,000 samples describing the generated distribution. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{S}^2 .

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848 (a) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
1849 normal distribution in \mathbb{R}^3 .

1850 (b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
1851 normal distribution in \mathbb{R}^3 .

1852 (b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
1853 normal distribution in \mathbb{R}^3 .

1854 (c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{S}^2$; p_0 : standard
1855 normal distribution on \mathbb{S}^2 .

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876 Figure 9: Histogram of the norm values of the 10,000 samples describing the generated distribution.
1877 In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution
1878 on \mathbb{S}^2 .

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

(a) **Model:** CFM; $\text{supp}(p_0) := \mathbb{R}^3$, p_0 : standard normal distribution in \mathbb{R}^3 .(b) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .(c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

Figure 10: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p_0 at $t = 0$, evolving to reach their final configuration by $t = 1$. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

(a) **Model:** RFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .(b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

Figure 11: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p_0 at $t = 0$, evolving to reach their final configuration by $t = 1$. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Figure 12: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution p_0 at $t = 0$, evolving to reach their final configuration by $t = 1$. In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution on \mathbb{H}^2_{-1} .

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

(a) **Model:** CFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

(b) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

(c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

(d) **Model:** RFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

(e) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

Figure 13: Sample distributions generated by different models (representing the flow configuration at $t = 1$) unwrapped from \mathbb{H}_{-1}^2 to \mathbb{R}^2 for improved visualization. The true checkerboard distribution is shown in gray in the background. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117

2118 (a) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
 2119 normal distribution in \mathbb{R}^3 .

2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131

2132 (b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard
 2133 normal distribution in \mathbb{R}^3 .

2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145

2146 (c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : stan-
 2147 dard normal distribution on \mathbb{H}_{-1}^2 .

2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

Figure 14: Sample distributions generated by different models (representing the flow configuration at $t = 1$) unwrapped from \mathbb{H}_{-1}^2 to \mathbb{R}^2 for improved visualization. The true checkerboard distribution is shown in gray in the background. In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

2160

2172

(a) **Model:** CFM; $\text{supp}(p_0) := \mathbb{R}^3$, p_0 : standard normal distribution in \mathbb{R}^3 .

2175

2190

(c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

2190

(b) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

2175

(d) **Model:** RFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

2190

(e) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

2206

Figure 15: Histogram of the norm values of the 10,000 samples describing the generated distribution. In all variational cases, the posterior distribution is **Normal**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

2210

2211

2212

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

(a) **Model:** VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

(b) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{R}^3$; p_0 : standard normal distribution in \mathbb{R}^3 .

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

(c) **Model:** RG-VFM; $\text{supp}(p_0) := \mathbb{H}_{-1}^2$; p_0 : standard normal distribution on \mathbb{H}_{-1}^2 .

Figure 16: Histogram of the norm values of the 10,000 samples describing the generated distribution. In all variational cases, the posterior distribution is **Laplace**, and p_1 is the checkerboard distribution on \mathbb{H}_{-1}^2 .

2264

2265

2266

2267

2268 **F MOF GENERATION WITH MOFFLOW**
2269

2270 **F.1 EXPERIMENTAL SETUP**
2271

2272 **MOFFlow.** MOFFlow (Kim et al., 2024) is a flow-based generative model for MOF structures
2273 that operates at the level of rigid building blocks, i.e., metal nodes and organic linkers. A MOF is
2274 represented as $S = (\mathcal{B}, q, \tau, \ell)$, where \mathcal{B} denotes the set of building blocks, and the model learns
2275 their roto-translations (q, τ) together with the lattice parameter ℓ . Instead of predicting atom-level
2276 coordinates, MOFFlow (Kim et al., 2024) treats building blocks as rigid bodies, reducing the
2277 search space. The generative model is defined as a conditional normalizing flow $p_\theta(q, \tau, \ell | \mathcal{B})$,
2278 trained with the Riemannian flow matching framework. Specifically, conditional flows are defined
2279 along geodesics in $SE(3)$ and the lattice space as
2280

2281
$$q^{(t)} = \exp_{q^{(0)}}(t \log_{q^{(0)}}(q^{(1)})), \quad \tau^{(t)} = (1-t)\tau^{(0)} + t\tau^{(1)}, \quad \ell^{(t)} = (1-t)\ell^{(0)} + t\ell^{(1)}, \quad (29)$$
2282

2283 leading to the conditional vector fields
2284

2285
$$u_t(q^{(t)} | q^{(1)}) = \frac{\log_{q^{(t)}}(q^{(1)})}{1-t}, \quad u_t(\tau^{(t)} | \tau^{(1)}) = \frac{\tau^{(1)} - \tau^{(t)}}{1-t}, \quad u_t(\ell^{(t)} | \ell^{(1)}) = \frac{\ell^{(1)} - \ell^{(t)}}{1-t}. \quad (30)$$
2286

2287 Rather than directly modeling these vector fields, Kim et al. (2024) uses a re-parameterized training
2288 objective that predicts the clean data (q_1, τ_1, ℓ_1) from an intermediate structure $S^{(t)}$:
2289

2290
$$\begin{aligned} \mathcal{L}_{\text{MOFFlow}}(\theta) &= \mathbb{E}_{\mathbf{S}^{(1)} \sim \mathcal{D}, t \sim \mathcal{U}(0,1)} [\lambda_1 \mathcal{L}_q(\theta) + \lambda_2 \mathcal{L}_\tau(\theta) + \lambda_3 \mathcal{L}_\ell(\theta)] = \\ &= \mathbb{E}_{\mathbf{S}^{(1)} \sim \mathcal{D}, t \sim \mathcal{U}(0,1)} \left[\lambda_1 \frac{\|\log_{q^{(t)}}(\hat{q}_1) - \log_{q^{(t)}}(q_1)\|_{SO(3)}^2}{(1-t)^2} + \lambda_2 \frac{\|\hat{\tau}_1 - \tau_1\|_{\mathbb{R}^3}^2}{(1-t)^2} + \lambda_3 \frac{\|\hat{\ell}_1 - \ell_1\|_{\mathbb{R}^3}^2}{(1-t)^2} \right] \end{aligned} \quad (31)$$
2291

2292 At generation time, samples are drawn from priors on rotations, translations, and lattice parameters,
2293 which are then mapped to the full MOF structure by applying the predicted blockwise
2294 roto-translations to the input building blocks.
2295

2296 **V-MOFFlow.** Our contribution consists in adopting a variational perspective in the rotational
2297 component of $\mathcal{L}_{\text{V-MOFFlow}}(\theta)$, by only substituting $\mathcal{L}_q(\theta)$ with the following:
2298

2299
$$\tilde{\mathcal{L}}_q(\theta) = \|\log_{\hat{q}_1}(q_1)\|_{SO(3)}^2, \quad (32)$$
2300

2301 which corresponds to the squared geodesic distance between q_1 and \hat{q}_1 in $SO(3)$. The definition of
2302 the vector fields is unchanged from eqs. (29) and (30), as well as the sampling algorithm.
2303

2304 **Implementation details.** For reproducing the MOFFlow results (training from scratch) and
2305 evaluating our V-MOFFlow model, we follow the exact experimental procedure described in Kim
2306 et al. (2024) using their codebase and hyperparameter values, with only the following differences:
2307

2308 1. We use the `Batch` implementation introduced in Kim et al. (2024) instead of
2309 `TimeBatch` (Yim et al., 2023b), which processes multiple data instances per batch,
2310 leading to reduced computational requirements in terms of training and generation time in
2311 GPU hours.
2312 2. In terms of computational resources, we use $2 \times 24\text{GB}$ NVIDIA RTX A5000 GPUs
2313 instead of $8 \times 24\text{GB}$ RTX 3090 GPUs.
2314

2315 Regarding dataset details and train/validation/test split information, we refer the reader to Kim
2316 et al. (2024). Furthermore, we choose not to report inference times in table 2, as we find the
2317 differences negligible compared to the reported MOFFlow values.
2318

2319 **F.2 ADDITIONAL RESULTS**
2320

2321 **Results in property evaluation.** Following Kim et al. (2024), we evaluate the quality of
2322 generated MOF structures beyond match rate and RMSE by analyzing eight key properties:
2323 volumetric surface area (VSA), gravimetric surface area (GSA), largest cavity diameter (LCD),
2324

pore limiting diameter (PLD), void fraction (VF), density (DST), accessible volume (AV), and unit cell volume (UCV). We use the same experimental implementation and code as MOFFlow, evaluating models with RMSE and distributional differences.

Results in table 7 compare our model against reported DiffCSP and MOFFlow results from Kim et al. (2024), as well as our reproduced MOFFlow model trained with the `Batch` implementation. V-MOFFlow achieves improved RMSE for half the properties compared to the original MOFFlow paper. Moreover, the reproduced MOFFlow yields slightly higher property values than both the original MOFFlow and V-MOFFlow results. Overall, we believe that the magnitude of most values is too high for meaningful comparison across methods.

Table 7: Property evaluation. We report results for DiffCSP and MOFFlow as they are in Kim et al. (2024), and we compute from scratch the properties of the generated samples with the re-trained MOFFlow and V-MOFFlow, that make use of the `Batch` implementation. Average RMSE is computed between the ground-truth and generated structures.

	RMSE ↓			
	DiffCSP	MOFFlow (Paper)	MOFFlow (Reproduced)	V-MOFFlow (Ours)
VSA (m^2/cm^3)	796.9	264.5	289.9	265.0
GSA (m^2/g)	1561.9	331.6	473.2	328.8
AV (\AA^3)	3010.2	530.5	1935.1	714.2
UCV (\AA^3)	3183.4	569.5	2108.5	785.8
VF	0.2167	0.0285	0.0379	0.0263
PLD (\AA)	4.0581	1.0616	1.2434	1.0337
LCD (\AA)	4.5180	1.1083	1.2613	1.0888
DST (g/cm^3)	0.3711	0.0442	0.0747	0.0446

Effect on integration steps. Following Kim et al. (2024), we investigate how the number of sampling integration steps affects both V-MOFFlow and our reproduced MOFFlow model (the one from section 5.2). We randomly select 1000 structures from the test set and evaluate match rate and RMSE across varying integration steps: [2, 5, 7, 10, 50, 100, 200, 500, 1000], using the same experimental procedure as Kim et al. (2024). The results in fig. 17 show that both models exhibit similar trends, with performance peaking around 10 and 50 integration steps before slightly declining at higher step counts. The main difference between the models is the performance gap rather than the overall trend, reflecting the difference in accuracies obtained on the entire test set (table 2).

Figure 17: Comparison between MOFFlow (the reproduced one from section 5.2) and V-MOFFlow in terms of match rate and RMSE over different timestep values: [2, 5, 7, 10, 50, 100, 200, 500, 1000].