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ABSTRACT

We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a ge-
ometric extension of Variational Flow Matching (VFM) for generative modeling
on manifolds. Motivated by the benefits of VFM, we derive a variational flow
matching objective for manifolds with closed-form geodesics based on Rieman-
nian Gaussian distributions. Crucially, in Euclidean space, predicting endpoints
(VFEM), velocities (FM), or noise (diffusion) is largely equivalent due to affine in-
terpolations. However, on curved manifolds this equivalence breaks down. For
this reason, we formally analyze the relationship between our model and Rieman-
nian Flow Matching (RFM), revealing that the RFM objective lacks a curvature-
dependent penalty — encoded via Jacobi fields — that is naturally present in RG-
VFM. Based on this relationship, we hypothesize that endpoint prediction pro-
vides a stronger learning signal by directly minimizing geodesic distances. Ex-
periments on synthetic spherical and hyperbolic benchmarks, as well as real-world
tasks in material and protein generation, demonstrate that RG-VFM more effec-
tively captures manifold structure and improves downstream performance over
Euclidean and velocity-based baselines.

1 INTRODUCTION

Generative models play a central role in machine learning, as they provide a way to synthesize data
and learn complex distributions. Diffusion models (Ho et al., 2020; Song et al., 2020) achieve state-
of-the-art performance, but rely on a fixed Gaussian noising process with predetermined variance
schedules. As a result, the reverse process is tied to this prescribed family of Gaussian marginals, and
sampling requires numerical integration with diffusion-specific samplers. In contrast, Continuous
normalizing flows (CNFs) (Chen et al., 2018)) directly learn the vector field of an ODE that transports
a base distribution into the data distribution. In principle, this allows the transport path to be fully
learned, but both training and sampling are computationally demanding since likelihood evaluation
involves solving a high-dimensional ODE (Ben-Hamu et al., 2022; Rozen et al., 2021} Grathwohl
et al., 2019). Flow Matching (FM) (Lipman et al., 2023) offers a simulation-free alternative, as it
defines per-sample interpolants between the source and the target samples, and regresses the vector
field to known conditional velocities.

Recent developments have extended flow matching in two key directions. Variational Flow Match-
ing (VEM) (Eijkelboom et al., 2024) reframes the problem as posterior inference over trajectories,
providing a probabilistic perspective with flexible modeling choices. In parallel, Riemannian Flow
Matching (RFM) (Chen & Lipman, 2024) has shown how incorporating non-Euclidean geometry
can improve modeling of distributions supported on manifolds.

VFM has demonstrated advantages over standard FM in discrete domains (e.g., CatFlow) and has
been extended to mixed data modalities (Guzman-Cordero et al., 2025) as well as molecular gener-
ation tasks (Eijkelboom et al.l 2025 Sakalyan et al.). A key strength of the variational formulation
is its flexibility: problem-specific constraints can be incorporated directly into the objective. For
instance, censored flow matching for sea-ice forecasting enforces physical bounds such as non-
negative ice thickness through the variational loss (Finn et al., 2025). The benefits of the variational
flow matching perspective motivate further exploration of its flexibility, for example for incorpo-
rating explicit geometric information on the distribution support into the objective. A natural case
arises when distributions are defined on Riemannian manifolds.
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The geometric extension is particularly relevant for biological and chemical domains where intrinsic
geometric structure governs the data. Recently, generative models have been extensively applied
to material discovery (Jiao et al., 2023; Fu et al., 2023} Kim et al., 2024) and to the generation
of large biomolecules such as protein backbones (Guo et al., 2025; Yue et al., 2025; Yim et al.,
2023aib). These applications highlight that data often live on heterogeneous manifolds: Euclidean
space for atomic coordinates, rotation groups SO(3) for orientations, and other structured domains.
Early works in crystal generation, such as Jiao et al. (2023), focus purely on Euclidean parameters
without explicitly modeling rotational degrees of freedom. In contrast, recent methods for metal-
organic frameworks (MOFs) and proteins (Yim et al., [2023a; |Yue et al., 2025; Kim et al., 2024;
Guo et al., 2025) adopt a mixed approach where Euclidean parameters (e.g., positions) are modeled
with standard FM while non-Euclidean parameters (e.g., rotations) are modeled with RFM. These
methods lack a fully variational treatment across both parameter types, and we address this gap by
demonstrating the benefits of our geometric variational approach on these applications.

When extending from Euclidean space to general Riemannian manifolds, fundamental questions
arise about the relationships between different generative modeling approaches. In Euclidean space,
training a generative model by predicting an endpoint (as in VFM), a velocity (as in FM), or noise
(as in diffusion) is largely equivalent up to affine transformations, since these quantities — noise,
score, velocity field, and endpoints — are interchangeable parameterizations of the same training
signal (Vuong et al., 2025} [Lipman et al., 2023} Eijkelboom et al., [2024). On curved manifolds,
however, this equivalence breaks down: tangent spaces vary across points and curvature introduces
higher-order deviations, preventing any explicit closed-form relation between the velocity-based and
endpoint-based perspectives. This naturally raises two questions: does some relationship between
these perspectives still exist, and if so, what is its nature?

In this paper, we develop Riemannian Gaussian Variational Flow Matching (RG-VFM), which ex-
tends VFM to Riemannian manifolds with closed-form metrics, thereby bridging the variational and
geometric extensions of flow matching. Our contributions are threefold:

* We define a variational flow matching objective for general geometries, extending
endpoint-based training to manifolds.

* We formally analyze its properties, establishing how RG-VFM relates to RFM and showing
that the gap between them encodes curvature through Jacobi fields.

* We demonstrate that variationalizing existing geometric generative models in material and
protein design consistently improves performance, highlighting the practical advantages of
endpoint-based training.

2 BACKGROUND

Flow Matching. Modern generative modeling interprets sampling from a target distribution p;
as transporting a base distribution pg by learning dynamics. Typically, py is a standard Gaussian,
and the transformation follows a time-dependent mapping ; : [0, 1] x RP — RP where ¢y is the
identity and 4 pushes py onto p;. E.g., normalizing flows (Chen et al., 2018) use an ODE governed
by some time-dependent velocity field u,. Though likelihood training is possible through the change
of variables formula, solving an ODE during training is expensive.

Flow Matching (FM) (Lipman et al., 2023} Liu et al., 2023; Albergo et al., 2023) bypasses this by
defining an interpolation between noise and data, and directly learning the associated velocity field
in a self-supervised manner. Though the goal is to learn the intractable objective

Len(0) = Era|ue(z) — o/ ()], (D

this can be made computationally feasible by reformulating u; with a conditional velocity field
(i.e. assumed dynamics towards a given x1, or time derivative of the interpolation), giving rise to
Conditional Flow Matching (CFM):

Lorm(0) = Eay o [Jue(z | 1) — U?(x)HQ] : )

Minimizing eq. (2) provides an unbiased estimate of Vy Ly, allowing efficient per-sample training.
As FM can be seen as regressing directly onto the derivative of an interpolant between source and
target in a self-supervised manner, it provides a unifying framework: by choosing different interpo-
lations, dynamics, or conditioning structures, it can be adapted to various data types and constraints.
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Riemannian Flow Matching. Riemannian Flow Matching (RFM) (Chen & Lipman, 2024) ex-
tends FM to Riemannian manifolds. Given a smooth Riemannian manifold M with closed-form
geodesics and metric g, RFM learns a vector field v;:

Lrera(0) = Bvpo [[0f (@) — Tog, (1)/(1 = D)2 3)

with log, (1) denoting the Riemannian log map, which returns the initial velocity vector of the
geodesic connecting x to x1 (more details on Riemannian manifolds are in section|C.1).

Unlike Euclidean Flow Matching, RFEM respects the curvature and geodesics of the underlying space
M. Through geodesic or spectral distances, it enables simulation-free training when manifold op-
erations are available, and can utilize approximate distances when closed-form geodesics are in-
tractable, maintaining theoretical guarantees while enabling efficient generative modeling.

Variational Flow Matching. Variational Flow Matching (VFM) (Eijkelboom et al., 2024) refor-
mulates FM by introducing a variational distribution ¢/ (1 | ) to approximate the unknown poste-
rior py (71 | ), where the learned velocity ¢ is expressed as the expectation of the condition velocity
under this variational approximation over trajectories. Then, the VFM objective is to minimize the
KL divergence between joint distributions, i.e.:

Lyrm(0) = E, [KL (pt(:cl,x) I qf(zl,:z:))] =—Ei s o [log qf(xl | x)] + const. 4)

When u;(z | z1) is linear in 1 — e.g. a straight-line interpolation — the expectation depends only on
marginal distributions, implying this objective reduces to a series of D univariate tasks:

D
Lyvem () = —Et a0 lz log qf («{ | x)] ;e Lven(0) = B, o [0 (@) —21]?],  (5)
d=1

if ¢/ is Gaussian, relating VFM directly back to FM (see Eijkelboom et al. (2024) for details). For
sampling with the standard flow matching case of linear interpolation, the vector field reduces to the
first moment of the variational approximation:

r1 — 117:| _ Eq?(wﬂl)[‘ll] - _ ,U/?(‘T) - (6)

19 ‘ =
Q/t(‘r)Eq?(l‘jlil?)[ 1—¢ 1—¢ 1—¢

A key feature of VFM is its flexibility in choosing ¢, as different choices allow adaptation to
various geometries and data types, improving efficiency and expressiveness.

3 RIEMANNIAN GAUSSIAN VARIATIONAL FLOW MATCHING

The geometric generalization of the VFM framework stems from the observation that the posterior
probability p;(x1 | x) implicitly encodes the geometry of the distribution’s support. For example, in
CatFlow (Eijkelboom et al., 2024), defining ¢/ (x; | ) as a categorical distribution ensures that the
velocities point towards the probability simplex. This raises the question of whether other geometric
information about the support of p; can be similarly encoded in ¢/ (x; | z).

To investigate this, we consider the case where
pi(xy | x) is defined as a Gaussian distri-
bution with its support on a general manifold CFM ———> VEM
M := supp(p;) rather than being restricted to
Euclidean space. In this setting, the Rieman- ~ _ =
nian Gaussian distribution naturally arises as RFM > RG-VFM

a generalization of the Gaussian to a Rieman- Po = p1 Do —> D1

nian manifold. We refer to velocity-inferring )

methods (CFM and RFM) as vanilla models Figure 1: Overview of the models relevant for

and endpoint-inferring methods (VFM and RG-  our framework. The square represents Euclidean
VFM) as variational models. space, while the sphere represents a general M.

Po = P1 Po =3 Pi

The advantages of the variational perspective in a geometric setting are twofold:

e Flexibility on the support of the distribution: the prior py can be defined either on M (in-
trinsic) or in the ambient Euclidean space (extrinsic), while vanilla RFM only supports the
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Figure 2: a: Representation of a shooting family of geodesics on S? with corresponding Jacobi field.
b: Visualization of predictions (color-coded to match the name colors) of each model relevant to our
framework, for a target distribution p; supported on the sphere S2.

intrinsic viewpoint. The extrinsic framework maintains the simplicity and efficiency of a
linear flow in Euclidean space, avoiding the need for the manifold’s exponential and loga-
rithmic maps, while encoding more geometric information than purely Euclidean methods
(section|3.1). Note that while “intrinsic” and “extrinsic” traditionally refer to the manifold’s
internal geometry versus its embedding, we use these terms to distinguish whether points
lie on the manifold or in the ambient space, rather than coordinate choices. For example,
our intrinsic framework can be expressed using ambient coordinates.

* Supervision on the endpoints, rather than on the velocities, by minimizing their geodesic
distance on the manifold, which in practice leads to more effective learning of the signal.
We show this in section 4, by reformulating the objective through Jacobi fields.

3.1 THE RIEMANNIAN GAUSSIAN VFM OBJECTIVE

To extend VEM to the geometric case, one first needs to define a relevant variational posterior with
support over the manifold. In contrast to Euclidean settings, we need to take particular care to ensure
the distribution is properly defined on the manifold. Let M be a Riemannian manifold with metric
g: the Riemannian Gaussian (RG) distribution (Pennec, 2006) is defined as the maximum—entropy
distribution specified by its mean value and covariance, formally

1 distg (2, 1)
Nriem (2 | 0, 1) = P (—lszgm) , (7)

where z, 1 € M (with 4 as the mean), 0 > 0 is a scale parameter, and distg(z, 1) denotes the
geodesic distance determined by g. The constant C' depends on both z and p, and it normalizes the
distribution over M. A more detailed geometric explanation can be found in section C.2!

We define the Riemannian Gaussian VFM objective by using the Riemannian Gaussian as our vari-
ational approximation, i.e.

L:RG—VFM(Q) = Et,ml,x [* 10gNRiem($1 \ Mte(x), Ut(!ﬂ))] . (8)

In the Euclidean Gaussian VFM case, this setting reduces to a straightforward mean squared error
optimization, so it is natural to wonder whether a similar simplification holds here. In fact, such a
simplification exists under two assumptions: (1) the manifold is homogeneous — that is, any point
can be transformed into any other by a distance-preserving symmetry (a formal definition is provided
in section |C.1); and (2) we have access to a closed-form expression for its geodesics. Notably, these
requirements are not too restrictive, as most manifolds used in deep learning satisfy them, including
S™ H"™, T", and SO(n). Formally, the following holds (see section D. 1 for details):

Proposition 3.1. Let M be a homogeneous manifold with closed-form geodesics. Then, the RG-
VFM objective reduces to

Lra-vEm(9) = Ero, o [|[10g,, (17 (2))][5] = Bty o [distg(er, 17 (2))?] ©)

where log denotes the logarithmic map on the manifold and distg is the geodesic distance.
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Algorithm 1 RG-VFEM intrinsic Algorithm 2 RG-VFM extrinsic
Require: base p € M, target ¢ € M. Require: base p € R?, target ¢ € M.
Initialize parameters 6 of ji; Initialize parameters & of i,
# Training Phase # Training Phase
while not converged do while not converged do
sample t ~ U(0,1), o ~ p, 1 ~ q sample t ~ U(0,1), 20 ~ p,z1 ~ ¢
compute geodesic interpolation: compute linear interpolation:
Ty = €XPy, (f : l‘Og;L‘l (J;())) Ty =1 211+ (1 — -[;) - Tg
00) = Bt gy o [dist (z1, (245 0))] 0(0) = B0, o [dist (21, (245 0)) ]
0 = optimizer_step(¢(0)) 6 = optimizer_step({(6))
end while end while
# Generation Phase # Generation Phase
sample noise g ~ p sample noise o ~ p
x1 =solve_ODE ([0, 1], xo, %j)(“))) x1 =solve_ODE ([0, 1], zo, 7“"(37{@7% )

Minimizing this loss is equivalent to computing the Fréchet mean of the distribution, that is: p* =
argmin, e g Bz, [distg(xl, [Lg)z], averaged over the generative steps ¢ and samples x. In other
words, the point iy minimizes the expected squared geodesic distance to the target (Fréchet, |1948)).
Intuitively, this can be viewed as a generalization of the mean squared error from the Euclidean
setting to a Riemannian framework. ~ We obtain this result by assuming that o;(z) is constant.
Nonetheless, this term could for example be set to o¢(x) = 1 — ¢ to achieve time normalization, as
done in our material and protein generation experiments (sections|5.2 and |5.3)).

The RG-VFM objective (eq. (9)) minimizes the geodesic distance on M between predicted and
target endpoints, so it only needs to capture the local geometry around p;. This allows for a flexible
choice of py’s support, leading to two plausible model variants when M is embedded in R™:

1. RG-VFM-R": the prior pg is Euclidean with M < supp(pg) = R”™ and conditional
velocities use linear interpolation in the ambient Euclidean space R";

2. RG-VFM-M: the prior is intrinsic (supp(pg) S M) with conditional velocities defined
via geodesic interpolation on tangent spaces. Here, no embedding of M in R" is required.

The extrinsic variant RG-VFM-R" thus learns a simple linear flow while retaining a geometry-aware
loss, whereas the intrinsic variant RG-VFM-M mirrors the RFM setup but differs in its loss defi-
nition (algorithms |1/ and [2)). Indeed, Vanilla RFM also requires supp(py) S M because its vector
fields depend on the manifold’s intrinsic geometry. Because of these different frameworks, direct
comparison is only meaningful between RG-VFM-M and RFM, a comparison we present in the
next section. The choice between intrinsic and extrinsic versions represents a trade-off: the extrinsic
version can only be used in an ambient space R? of sufficiently large dimension to embed the man-
ifold without degeneracy. In such cases, linear interpolation simplifies implementation and reduces
computational costs by requiring only the geodesic distance, rather than logarithm and exponential
maps at every step.

4 RG-VFM vs RFM: A COMPARISON BASED ON JACOBI FIELDS

In this section, we refer to RG-VFM-M simply as RG-VFM for brevity. Given a sampled inter-
mediate point at timestep ¢, our variational loss Lrg.vrm measures the geodesic distance between
target and predicted endpoints on the manifold. In contrast, the vanilla loss Lrry in Riemannian
flow matching compares target and predicted velocities in the tangent space at that point.

In Euclidean space, these two formulations coincide since the difference between the endpoints is
directly proportional to the difference between their initial velocities. But in curved space, this
equivalence breaks down: curvature influences how geodesics separate from one another.

In this section, we examine how small changes in initial velocities affect geodesic endpoints by
constructing families of related geodesics. In differential geometry, those variations are described
by Jacobi fields, which characterize how geodesics spread apart on a Riemannian manifold. We
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use this framework to establish the connection between the vanilla and variational loss functions.
Specifically, we (1) define a Jacobi field formulation of the RFM and RG-VFM losses in section 4.1,
(2) derive the relation between these field-specific instances (proposition 4.2), and (3) eventually
establish the corresponding loss relationships in proposition 4.3,

4.1 JACOBI FIELD FORMULATION OF THE FLOW MATCHING OBJECTIVES

We consider a smooth family of geodesics {7} all starting from the same point v5(0) := xg € M,
and determined by an initial velocity of the form 45(0) = v® := v% + sw, with v°,w € T,, M,
where sw represents the perturbation level. A schematic representation is in fig. 2/(a).

Each geodesic (s,7) — () is parametrized by two variables: s € [0,1] which indexes the
perturbation of its initial velocity, and 7 € [0, 1], the parameter along one geodesic that links the
initial point v, (0) = z¢ to the endpoint (1) = «%. For convenience, we denote a(s, 7) := v5(7)
the two-parameter map which simultaneously describes the entire family of perturbed geodesics.

Definition 4.1 (Jacobi field at a vanishing starting point). The family of geodesics defined as:
a(s, ) =5 : T — exp, (T(v + sw)),
with s € [0,1] and T € [0,1], v, w € Ty, M, is a smooth family of shooting geodesics with vs(0) =
20, Y0(0) = v and 41 (0) = v + w.
For each fixed T € [0, 1], there exists a vector field, called Jacobi field,
J(1) = (?Sa(sm)‘szo
along the geodesic () := (s, T) satisfying the ODE equation: D2.J + R(J,~s)~s = 0, with R

the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined
by the initial conditions and at T = 0 one has the initial conditions: J(0) = 0, and D.J(0) = w.

Borrowing the notations from (Chen & Lipman, 2024), we denote the target velocity 0 = ug(x
x1), the predicted velocity v* = v?(z), and their respective endpoints 7o(1) = z1 and (1)
pl(x). The losses can be formulated in the Jacobi field framework with the following:

Proposition 4.1 (Loss functions as evaluation of Jacobi fields). Consider a Jacobi field J(T) :=
osals, 7’)‘3:0 as defined in definition 4.1, We denote Lry\ the loss function of the (vanilla) Rie-
mannian Flow Matching (Chen & Lipman, 2024)), and Lrc_-vrw the loss function for our proposed
Riemannian Variational Flow Matching. Then the following equalities hold:

Lrem(9) = By o [fue(@ | 21) = of (@) 5] = Evay o[ | D- T (0) IR ], (10)
Lravim(0) = Bty o[ llog,, (1] (2)) 5] = Eew, o[ 7(1)g]]- (11)

4.2 RELATION BETWEEN RG-VFM AND RFM OBJECTIVES

Now that we have expressed the losses through the Jacobi fields, we observe that Lrpy is a first-
order approximation of Lrg-yvrm through the following proposition:

Proposition 4.2. D J(0) is a linear approximation of J(1).

The proof essentially consists of deriving the Taylor expansion of J(7), centered at 7 = 0 and evalu-
ated at 7 = 1, and identifying D J(0) as the linear term. By truncating at the linear approximation,
curvature information is absent from D, .J(0) but remains implicitly encoded in J(1). This distinc-
tion directly affects the relationship between the RFM and RG-VFM losses: while they coincide in
Euclidean space, their difference in curved spaces is generally nonzero and curvature-dependent.

Euclidean case. In Euclidean space, the Taylor expansion reduces to the linear term: J(7) =

J(0) + 7D.J(0) which, for7 = 1 and J(0) = 0, leads to J(1) = D, J(0). As a consequence,
Et’wl,x [HDTJ(O)Hg] = Et,rl,m [HJ(l)”%] (12)

which confirms that Lcgy and Lygy can be reduced to one another, with proper normalization terms.

More generally, the two losses differ by a curvature-dependent term on non-flat manifolds, as shown
in the following result as a direct consequence of proposition 4.1 and proposition 4.2:
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Proposition 4.3 (Difference of loss functions as a curvature term). Consider a Jacobi field J(7) :=
Osau(s,T) }s=0 as defined in definition 4.1 and the equivalences shown in proposition 4.1, The differ-
ence between Lrc.vrMm and Lrry encodes the manifold curvature through:

Lrevim(0) = Lrrv(0) + Et oy 2[C(R, D J(0),v) + Ehigher] (13)

curvature-dependent term

where the leading-order curvature functional is:
1 1
C(R, D;7(0),v) = =5 (R(D+J(0),0)0, DrJ(0))g = c((VuR)(DrJ(0),0)0, DT (0)g (14)

and  Epigier = O(| D+ J (0)[?[0]*), (15)

with R the Riemannian curvature tensor and v = g the reference geodesic velocity. The higher-
order term Epjgner encodes curvature variation along geodesics through covariant derivatives of R.

In terms of the RFM loss terms, v = u;(x | x1) and D, J(0) = v (z) — us(x | z1).

Geometric interpretation. The curvature functional C captures how the manifold’s geometry af-
fects the loss comparison, encoding the first- and second-order effects of curvature on geodesic
deviation. Thus, RG-VEM implicitly captures the full geometric structure through the exact Jacobi
field J(1), while RFM uses only the linear approximation D, J(0). This lack of curvature infor-
mation results in weaker, less precise supervision in directing the flow toward the actual endpoint,
leading in practice to RG-VFM learning the signal more effectively than RFM. Special cases are:

* In Euclidean space, R = 0 implies both C = 0 and Enigher = 0. This leads to Lrg.vem =
Lvem = Lcrm = Lrem as expected from eq. (12).

* In spaces of constant curvature (e.g. hyperspheres or hyperbolic spaces) VR = 0. In
this setting, we can restate the result of proposition 4.3|in terms of the constant sectional
curvature K. The formulation and proof are given in corollary D.1, and in the experimental
section, we focus primarily on manifolds that fall within this category.

In summary, we introduced RG-VFM as an alternative to RFM for learning a velocity field on a
manifold, providing a variational formulation whose objective fully captures higher-order curvature
effects, unlike RFM. This results in generally different objectives on curved manifolds. In Euclidean
space, however, the RFM objective reduces to CFM, while RG-VFM reduces to VFM (assuming a
Euclidean Gaussian posterior rather than Riemannian), and the CFM and VFM objectives become
equivalent under appropriate normalization. These relations are schematized in fig. 1/ and fig. 2(b),
and their schematic algorithms can be compared in section |D.2. In terms of computational costs,
extrinsic RG-VFM has the same complexity as VFM during both training and sampling. The only
difference between the two methods is that VFM computes endpoints using Euclidean distance,
while we use geodesic distance. Since we assume geodesic distance to be in closed-form, this
introduces no additional computational overhead compared to VFM. Similarly, implicit RG-VFM
maintains the same complexity as RFM, with the main difference being that velocity computation
happens during sampling rather than during training (see algorithms |3|to §)).

5 EXPERIMENTS

Goal of the experiments. The goal of our experiments is twofold. First, we aim to observe the
practical implications of proposition 4.3 by studying the behavior of vanilla and variational models,
both Euclidean and Riemannian, in a controlled synthetic setting with a visually precise target dis-
tribution. Second, we conduct real-world experiments on MOF and protein backbone generation,
motivated by a gap in the literature.

Motivation for material and protein generation and common pattern. Existing works on pro-
tein and material generation — often based on diffusion- and flow-based models with structural losses
inspired by Yim et al.| (2023bza), such as |Yue et al. (2025); [Kim et al.| (2024); Guo et al. (2025) —
follow a common pattern. Their generation scheme is split between Euclidean and non-Euclidean
parameters, where Euclidean parameters are learned through a process that effectively corresponds
to variational flow matching, since the model predicts endpoints, minimizes MSE with the target,
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Figure 3: Comparison of the spherical checkerboard distribution generated with CFM, VFM, RFM
and our methods RG-VFM-R? and RG-VFM-M.

and uses these predictions to compute velocity fields during integration. Non-Euclidean parameters
instead employ a partially but not fully variational form of Riemannian FM: endpoints are still pre-
dicted, but the loss minimizes the squared distance between ground-truth and predicted velocities,
with the latter obtained via the logarithm map of the manifold. This reveals a room for improvement,
as full alignment of the loss components would suggest minimizing the geodesic distance between
predicted and target data points in the non-Euclidean case. Our method directly explores this op-
tion. Furthermore, prior works report that endpoint learning improved empirical performance, and
we interpret our approach, together with Eijkelboom et al. (2024), as providing complementary the-
oretical justification for this choice. In this setting, we choose to variationalize the losses of two
models from distinct applications: MOFFlow (Kim et al., 2024) for MOF generation and ReQFlow
(Yue et al., 2025) for protein backbone generation.

5.1 CURVATURE EFFECTS IN SYNTHETIC DATA

Dataset and experimental setup. Inspired by the planar checkerboard benchmark in generative
modeling (Grathwohl et al., 2018)), we introduce two curved checkerboard distributions as our target
p1, whose support is either on the hypersphere S* = R? or the upper-sheet hyperboloid H? ; = R?,
which we define in section E.1. The noisy distribution py is defined differently for each model: for
CFM, VFM, and RG-VFM-R?, p is the standard normal distribution in R3, while for RG-VFM-M
and RFM, it is obtained by wrapping the standard normal distribution on either S? or H? ;.

We conduct two sets of experiments: we (1) compare the extrinsic models in their ability to capture
the correct geometry — assessed by the distance of the generated samples to the data manifold — and
(2) evaluate vanilla versus variational models in reproducing the target distribution. For this last
point, the evaluation is based on metrics such as Coverage (% of generated points falling within
the desired checkerboard area) and Classifier 2-Sample Tests (C2ST) metric (Lopez-Paz & Oquab,
2016; Dalmasso et al., 2020; Lueckmann et al., 2021). The C2ST technique utilizes a neural network
classifier to separate true samples from generated ones, where a score of 0.5 indicates the distribu-
tions are indistinguishable to the classifier, while scores approaching 1 suggest the distributions are
easily separable. Additional experimental details are provided in section E.

Results. We observe that (1) Riemannian models better capture manifold geometry by generating
points with minimal distance to the manifold compared to Euclidean ones (see Distance columns
in table 1), and (2) variational models produce sharper and less blurred distributions than vanilla
models, with RG-VFM-R? and RG-VFM-M showing the best visual performance in fig. 3. This is
reflected in table 1/in Coverage metric results, where variational models — particularly Riemannian
ones — achieve the highest values. For C2ST, no consistent pattern emerges between spherical and
hyperbolic cases, except that in both cases standard VFM demonstrates the strongest performance.
In essence, emphasizing endpoint accuracy enables variational models to capture fine details of the
target distribution’s shape, and additional geometric awareness of RG-VFM further enhances the
result. We tested setting o;(x) = 1 versus o;(x) = 1 — ¢ in eq. (8) during training and found negli-
gible differences, so we report only the results obtained with o, (z) = 1. Additionally, preliminary
findings suggest that using L' loss (which corresponds to using a Riemannian Laplace instead of a
Riemannian Gaussian distribution in eq. (8)) instead of L? may enhance performance, particularly
in hyperbolic spaces, and we start exploring this option in section E.4,

5.2 MOF GENERATION WITH MOFFLOwW

Dataset and experimental setup: from MOFFlow to V-MOFFlow. MOFFlow (Kim et al.,
2024) is a flow-based generative model for MOF structures operating on rigid building blocks. A
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Table 1: Results of synthetic experiments. Clipping is applied in the variational setting to stabilize
sampling. The distance between generated points and the ground-truth manifold is computed only
for extrinsic models since intrinsic ones generate directly on the manifold. Abbreviations: Eucl. =
Euclidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.

Sphere Hyperboloid
Coverage 1 C2ST| Distance | Coverage 1 C2ST| Distance

Eucl./Ext./Van. (CFM) 64.97 58.36£1.56 0.012 +0.099 69.05 57.38 £1.30 0.008 +0.339
Eucl./Ext./Var. (VFEM) 79.08 56.33 £0.48 0.044 +0.045 75.89 57.03£0.59 0.061 +0.140

Riem./Ext./Var. (Ours) 83.10 56.58 £0.28  0.010 = 0.035 78.84 63.55+0.35 0.021 + 0.056

Riem./Int./Van. (RFM) 66.83 57.99 +0.58 - 60.75 61.66 +0.92 -
Riem./Int./Var. (Ours) 84.21 59.72 £ 0.87 - 68.38 59.73 £0.31 -

MOF is represented as S = (B, ¢, 7, £), where 3 denotes building blocks, and the model learns their
roto-translations (g, 7) and lattice parameter ¢. The conditional normalizing flow py(q, 7, ¢ | B) uses
a re-parameterized training objective predicting clean data (g, 71, ¢1) from intermediate structure
S®) The Euclidean loss minimizes endpoint L? distance following VFM, while the rotational part
computes conditional velocities from predictions and minimizes squared distance to ground-truth
velocities, as in RFM. Our contribution makes MOFFlow fully variational by applying our method
to its rotational component. A detailed explanation with loss equations is in section |F.1.

We evaluate the resulting model, Variational-MOFFlow (V-MOFFlow) against the original MOF-
Flow and DiffCSP (Jiao et al., [2023) on MOF structure prediction using the large-scale dataset
of Boyd et al. (2019), where structures are decomposed into building blocks and split into
train/validation/test set. We follow the experimental setup of Kim et al. (2024), and performance
is measured by match rate (MR) and RMSE between original structures and generated samples.

Results in structure prediction. We report results in table 2. Our model outperforms all competi-
tors except for MR at stol = 1.0, which Kim et al.| (2024) consider too lenient for practical use. This
validates our theoretical findings that RG-VFM loss guides training more effectively than RVM. We
report additional analyses and experimental details in section F.

Table 2: Structure prediction accuracy. We report results for DiffCSP and MOFFlow with
TimeBatch implementation from Kim et al. (2024), and we reproduce MOFFlow and evaluate
V-MOFFlow with Bat ch implementation. “stol” is the site-tolerance for matching criteria.

stol = 0.5 stol = 1.0
#of samples MR (%) RMSE| MR (%) RMSE|

0.09 0.3961 23.12 0.8294
0.34 0.3848 38.94 0.7937
31.69 0.2820 87.46 0.5183
44.75 0.2694 100.0 0.4645

30.40 0.2832 83.50 0.5255
46.97 0.2717 95.82 0.4603
33.52 0.2789 89.08 0.5096
50.14 0.2629 97.18 0.4384

DiffCSP

MOFFlow (Paper results)

MOFFlow (Reproduced)

N = = N = =

V-MOFFlow (Ours)

5.3 PROTEIN BACKBONE GENERATION WITH V-REQFLOW

Dataset and experimental setup: from QFlow & ReQFlow to V-QFlow and V-ReQFlow.
QFlow (Yue et al., [2025) is a flow-based model for protein backbone generation. Unlike previ-
ous methods (Yim et al., 2023b; Bose et al., 2023) that represent SO(3) elements with rotation
matrices, QFlow uses quaternions, which provide improved training stability. Building on this foun-
dation, ReQFlow (Yue et al., 2025) further enhances QFlow by incorporating rectified flow with
re-paired samples and noise, inspired by Liu et al. (2023), improving the designability of generated
protein backbone structures. Similar to MOF structure generation, protein backbone structures are
represented as sequences of SE(3) elements {¢;,¢;}", where ¢; € SO(3) defines the frame on the
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a-carbon of each amino acid, and ¢; € R® represents the zero-mean coordinate of the a-carbon. For
further details, see |Yim et al.|(2023b). The goal is to learn a conditional flow pg(Q,T|N) where
Q = {g;}V and T = {t;}V, with N denoting the number of residues in the desired backbone struc-
ture. Like MOFFlow, both QFlow and ReQFlow employ a re-parametrized training objective that
predicts end points from which vector fields are reconstructed. We apply our method by variation-
alizing the rotational component of their loss function, similarly to section |F.1, while maintaining
all other implementation details identical to isolate the benefits of our variational objective.

We tested Variational-QFlow (V-QFlow) and Variational-ReQFlow (V-ReQFlow) on filtered Protein
Data Bank (Berman et al., 2000) dataset with 23366 protein structure with lengths ranging from 60
to 512. The filtering pipeline follows Yue et al.|(2025). For evaluation metrics, we follow Yue et al.
(2025)), using designability, diversity and novelty to concretely evaluate the quality of the generated
protein backbone structures. We trained our V-QFlow with 4 NVIDIA-H100 GPUs for around 260
epochs. For V-ReQFlow, we further finetuned it on our rectified dataset for 10 epochs.

Results in protein backbone structure generation. From table 3, we observe that V-QFlow and
V-ReQFlow surpass their vanilla counterparts on both designability and folding RMSD, emphasizing
the effectiveness of applying variational objectives when learning probability paths on manifolds.

Table 3: Performance comparison with baseline models on protein backbone gener-
ation on PDB dataset. 50 samples are generated and evaluated for each length in
{50,100, 150, 200, 250, 300}. For both ReQFlow and V-ReQFlow, we generate the rectified dataset
with 20 samples for each length in [60, 512]. We filter the generated samples following the proce-
dures in the repo provided by [Yue et al.[(2025). Samples used for evaluation are generated by flow
models trained with 10 epochs on the rectified dataset for both ReQFlow and V-ReQFlow.

Efficiency Designability Diversity  Novelty

Step Fraction]  scRMSD| ™| ™|
RFDiffusion 50 0.904 1.10241 617 0.382 0.527
Genie2 1000 0.908 1.13241 389 0.370 0.475
FoldFlow?2 50 0.952 1.08341 308 0.373 0.527
FrameFlow 500 0.872 1.380+1 302 0.346 0.562
QFlow (Reproduced) 500 0.924 1.252 11 302 0.357 0.641
QFlow (Paper results) 500 0.936 1.16310.938 0.356 0.635
V-QFlow (Ours) 500 0.968 0.923 ¢ 787 0.387 0.647
ReQFlow (Reproduced) 500 0.964 0.9391¢.572 0.400 0.630
ReQFlow (Paper results) 500 0.972 1.071+0.482 0.377 0.645
V-ReQFlow (Ours) 500 0.980 0.961+0.832 0.408 0.644

6 CONCLUSION

We introduce Riemannian Gaussian Variational Flow Matching, which extends VFM to general
manifolds through Riemannian Gaussian distributions, unifying RFM and VFM under a common
probabilistic framework. Through a reformulation of their objectives using Jacobi vector fields,
we demonstrate that RG-VFM captures richer curvature-dependent information compared to stan-
dard RFM. In our experiments, we validate that this theoretical advantage translates to more precise
supervision and better learned signals: (1) for synthetic spherical and hyperbolic checkerboard dis-
tributions, enhanced curvature awareness leads to improved sharpness in learned distributions, and
(2) for real-world protein backbone and material generation tasks, applying our variational perspec-
tive through a simple modification to the rotational component of existing flow matching losses
consistently improves generation quality metrics. A current limitation is that our method is defined
for simple geometries with closed-form geodesics. However, most practical tasks involve manifolds
with explicit exponential and logarithmic maps, and we believe this framework can be straight-
forwardly extended to more complex geometries. These results establish RG-VFM as a promising
approach for modeling distributions on complex geometries with minimal implementation overhead.

10
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ETHICS STATEMENT

This work aims to advance machine learning and Al for science. Material and protein genera-
tion hold great promise for driving scientific discovery and tackling global challenges in medicine,
sustainability, and biotechnology. At the same time, the technology raises ethical considerations, in-
cluding the need for appropriate regulatory oversight as it matures. In terms of readiness, this work
remains at an early stage, focusing on foundational computational methods rather than immediate
applications, and therefore presents no direct benefits or risks at this time.

REPRODUCIBILITY STATEMENT

To ensure reproducibility and completeness, all required notation, mathematical background, defi-
nitions, and proofs of mathematical statements are provided in sections B|to D. Experimental and
implementation details are included in section |5/ and sections |E and F.
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A DISCLOSURE OF LLM USAGE

We declare that the use of LLMs for writing this paper was limited to general-purpose writing
assistance. Specifically, we used them only to polish the wording of text sections and in no way to
generate the research ideas or technical results and proofs presented in this paper.

B NOTATIONS

In this section, we report the notations that are used in the paper and the rest of the appendix,
summarized in table 4.

Symbol Name Type Description

M manifold object Smooth Riemannian manifold (M, g).

g metric tensor Riemannian metric; {-,-) = g(-,-) and | - | =

P base point point Fixed point in M; normal coordinates are taken
at p.

TpM tangent space vector space Tangent space at p; all v, w, 6, us live here.

exp,, exponential map map exp, : TpM o U — M, a diffeomorphism
on a small ball U.

(e inner product scalar Inner product on (M, g).

distg(+,-) distance scalar Riemannian distance on (M, g).

R curvature tensor tensor (1,3)-tensor R(X,Y)Z = VxVyZ —
VyVxZ —-VixyZ.

v Levi—Civita connection  operator Metric, torsion-free connection; D; denotes co-
variant derivative along a curve.

K sectional curvature scalar Constant curvature in space forms; for a sphere
of radius 7, K = 1/r2.

v, W tangent vectors vectors Elements of T, M; initial velocities of the two
geodesics.

T, S parameters scalars 7 is the geodesic time (small); s € [—e,¢]
parametrizes the variation within the family of
geodesics.

S? 2-sphere object S?:={zeR?: (z,2)p = 1}

HZ, 2-hyperboloid object H% = {x e R®: (z,x)r = —1,20 > 0}

~s(T) geodesic curve vs(7) := exp,(Tus), geodesic with initial ve-
locity us at p.

als,T) ruled surface 2-parameter map  «(s,T) := vs(7); two-parameter family used
for variations.

J(1) Jacobi field vector field J(1) = dsa(s,7) along ~vs; J(0) = 0,
(D, J)(0) = 5.

o(+) remainder notation Big-O with constants uniform for v,w in a
fixed small ball in T, M.

Table 4: Notations of objects mentioned in this paper.

C GEOMETRIC BACKGROUND

C.1 RIEMANNIAN MANIFOLDS

In this section, we provide a comprehensive introduction to Riemannian manifolds, establishing all
necessary definitions from first principles.

Basic definitions. A manifold M is a mathematical structure that appears curved globally but
looks flat when viewed locally. Formally, a d-dimensional manifold can be covered by coordinate
charts, where each chart provides a local parameterization. For any point p € M, there exists a
neighborhood that can be mapped smoothly to an open subset of R? via coordinate charts.
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The tangent space 1}, M at a point p € M represents the collection of all possible directions one can
move from p while staying on the manifold. This vector space encodes the local linear approxima-
tion to the manifold at p and maintains the same dimensionality as the ambient manifold.

Riemannian metric. A Riemannian metric g on M is a smoothly varying collection of inner
products, one for each tangent space. Specifically, for each point p € M, the metric g defines an
inner product (-, - )¢ on the tangent space 7, M. This inner product must be:

* Bilinear: {av + bw,uyg = a{v,u)g + b{w, u)g for tangent vectors v, w,u € T, M and
scalars a, b,

* Symmetric: {v,w)g = {w, v)g,

* Positive definite: (v, v)g > 0 for all non-zero v € T, M.

A manifold M equipped with a Riemannian metric g is called a Riemannian manifold and is denoted

by (M, g).
The metric enables us to measure lengths of tangent vectors and angles between them. For tangent

vectors v, w € T, M, their lengths are [v|g = 1/{v, v)g and |w|g = +/{w, w)g, respectively.

Geodesics. Geodesics are the natural generalization of straight lines to curved spaces. On a Rie-
mannian manifold, a geodesic v5(7) is a curve that maintains constant “speed” and “direction” in
the sense defined by the Riemannian metric. Mathematically, geodesics are characterized by having
vanishing covariant acceleration.

These curves play a fundamental role as they represent paths of extremal length between nearby
points. Given any point p € M and initial tangent vector v € T, M, there exists a unique geodesic
originating at p with initial direction v.

Distance function. The Riemannian metric induces a natural distance function on the manifold.
The Riemannian distance distg(p, ¢) between two points p, ¢ € M is defined as the infimum of the
lengths of all piecewise smooth curves connecting p and g:

. oMy
distg(p, q) = 1gfL E(t)

dt (16)
g

where the infimum is taken over all piecewise smooth curves «y : [0,1] — M with v(0) = p and
~(1) = ¢. Under appropriate completeness conditions, this distance is achieved by geodesics.

Exponential map. The exponential map exp,, : 7, M — M provides a canonical way to translate
between the linear tangent space and the curved manifold. For a tangent vector v € T, M, the
exponential map is defined as:

exp,(v) = 7, (1) (17)

where 7, (7) represents the geodesic initiating at p with velocity v, evaluated at parameter value
7 = 1. This construction allows us to “walk” along geodesics to reach new points on the manifold.

In sufficiently small neighborhoods around any point p, the exponential map establishes a smooth
bijection between a region in the tangent space and a region on the manifold.

Logarithmic map. The logarithmic map log,, : M — T}, M is the (local) inverse of the exponen-
tial map. For a point ¢ € M sufficiently close to p, the logarithmic map returns the tangent vector
v € T, M such that exp,,(v) = ¢.

In regions where the exponential map is a diffeomorphism, we have log,(exp,(v)) = v and
exp,(log,(q)) = ¢. The logarithmic map essentially tells us which direction and how far to travel
in the tangent space to reach a given nearby point on the manifold.

In this work, we consider complete, connected, and smooth Riemannian manifolds (M, g), ensuring
that geodesics can be extended indefinitely and that the exponential map is well-defined globally.
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Tangent bundle. By collecting all tangent spaces across the manifold, we obtain the tangent bun-
dle:
M= | J{p} x T,M (18)
peEM

The tangent bundle is itself a smooth manifold of dimension 2d, where d is the dimension of M.
Each element of T'M can be written as (p, v) where p € M is a point on the manifold and v € T, M
is a tangent vector at that point.

Vector fields. A vector field on M is a smooth section of the tangent bundle, i.e., a smooth map
u : M — TM such that u(p) € T, M for each point p € M. In local coordinates, a vector

field can be expressed as u = Zf Lul aai where the coefficient functions u® are smooth. We

specifically consider time-dependent vector fields {u;} 1, which are smooth families of vector fields
parameterized by time ¢t. The Riemannian metric g extends naturally to define pointwise inner
products between vector fields: (u, w)g(p) = (u(p), w(p))g for any two vector fields v and w.

Homogeneous Manifold. A Riemannian manifold M is homogeneous if its isometry group acts
transitively on M, i.e., for any two points x,y € M, there exists an isometry f : M — M such

that f(x) =
C.2 RIEMANNIAN GAUSSIAN DISTRIBUTIONS

We describe the construction of the Riemannian Gaussian (RG) distribution, which generalizes the
familiar Gaussian distribution to the setting of a Riemannian manifold. The definition of the Rie-
mannian Gaussian is a specific instance of the Normal law presented in Pennec (2006):

Definition C.1 (Normal law Pennec| (2006)). We call Normal law on the manifold M the maxi-
mum—entropy distribution specified by its mean value and covariance. Assuming no continuity or
differentiability constraint on the cut locus C(Z) and a symmetric domain D(Z), the probability
density function of the Normal law with mean & and concentration matrix T is

Nery(y) = kexp( 375 T7), (19)

where the normalisation constant k and the covariance 3. are related to T by

et = [ eo(-4@ TE)aMe), ® - kf T exp( 47 D) dM).
M M
(20)
By simply defining the concentration matrix I" as =, where G is the metric tensor associated with
the chosen metric and o is a fixed variance parameter we obtain the following definition.

Definition C.2 (Riemannian Gaussian). Let M be a Riemannian manifold endowed with the metric
tensor g. The RG distribution is defined by
diste (2, 11)?
Nriem(2 | 0, 1) = 5€XP<—%)7 @21
where z € M is a point on the manifold, ;1 € M plays the role of the mean, and o > 0 is a scale
parameter controlling the spread of the distribution. Here, distg(z, |1) denotes the geodesic distance

between z and i as determined by the metric g, and C' is a normalization constant chosen so that
the total probability integrates to 1 over M.:

C= f d’s’gQ(ZQ . 1)° ) dM.. 22)

The measure dM, represents the Riemannian volume element, which in local coordinates takes the

form
— \/dotg(z) dz, 23)

with dz being the standard Lebesgue measure in the coordinate chart and g(z) is the Riemannian
metric tensor at the point z. This formulation ensures that the probability density is adapted to the
geometric structure of the manifold.
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Observation. In the special case where M = R? and the metric is Euclidean (i.e., g(z) =D,
the geodesic distance reduces to the usual Euclidean distance, and the RG distribution becomes the
standard multivariate Gaussian with covariance matrix o?I. On more general manifolds, however,
the curvature and topology are taken into account through the geodesic distance and the volume
element, leading to a natural extension of the Gaussian concept. This construction can be applied to
spaces such as hyperbolic manifolds, where one can define the distribution in the tangent space at a
point 1 and then use the exponential map to project it onto the manifold.

Comparison to vMF. A closely related distribution is the von Mises—Fisher (vMF) distribution,
which is traditionally defined on the sphere S™ by

VMF(z |, k)ocexp(r (2, 1)),

with 4 € S™ and (-, -) denoting the standard dot product. The vMF distribution is based on the
notion of directional data and an inner product structure that measures alignment. In contrast, the
RG distribution is inherently tied to the Riemannian metric, making it applicable to a much wider
class of manifolds. Generalizing the idea behind the vMF distribution to other geometries often
requires embedding the manifold into a larger ambient space and defining a suitable bilinear form
(such as the Minkowski inner product in hyperbolic geometry). In this sense, the RG approach offers
a more natural and geometrically intrinsic formulation.

In summary, the Riemannian Gaussian distribution is defined in terms of the geodesic distance and
the corresponding volume element, and it adapts to the underlying geometry of any Riemannian
manifold.

D RG-VFM AND LINK WITH RFM

D.1 DETAILED DERIVATION OF RG-VFM OBJECTIVE

Proposition D.1. If the manifold (M, g) is homogeneous, the normalization constant

o= J ( dlstg(z w)? >d/\/lz 24)

25 2
is independent of the mean .

Proof. We can initially rename the normalization constant C' by making the dependency on the
mean explicit, referring to it as C'(u). In this setting, we want to prove that for two arbitrary mean
values fi and fi, we have C(1) = C'(f1).

By definition, a Riemannian manifold M is homogeneous if Vz,y € M,3f : M — M such that
f(z) = y and with f being an isometry, meaning that distg (z, y) = distg(f(), f(y)).

We can then assume that f satisfies @ = f(ji), getting the following:

. distg (2, i1)?
C(a) = JM exp (—g202 dM.,
_ distg(y, 1)°
C) = [ e (—302 M,
: ~1)2
Ct(@) = [ enp (~SLLETY gug,
M 20
with C(g) = C(f(71))-
Let’s suppose that y := f(s), for some s € M. By the definition of isometry, we have

distg (y, f(@t)) = distg(f(s), ) = distg(s, i). Furthermore, for any integrable scalar function
¢ : M — R and isometry f:

fM o)A, = [ df(s)am..

M

17
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By applying these two facts to our case, we obtain the following series of equalities:

) - [exp (~SSTEY

202

et f(/l))Q) .

202
distg (s, f1)2 .
= f exp <_g2(2/~L)) dMs = C(ji).
M ag

Proposition 3.1. Let M be a homogeneous manifold with closed-form geodesics. Then, the RG-
VFM objective reduces to

Lra-vrm(0) = Ete1 2 [H Ingl (Mte(x))||§] =FEtu [diStg(xlv M?(CC))Q] ) )]
where log denotes the logarithmic map on the manifold and distg is the geodesic distance.

O

Proof. The objective of VFM is defined as
Lyim(0) = ~Ei .z, 0 [log ¢f (21]2)] -
We define the objective function of RG-VFM by setting the posterior probability as the Riemannian

Gaussian, i.e.,
@/ (x1]2) = Nriem(21 | 1f (2), 0¢(2)),

ERG-VFM(a) = *Et,xl,z [IOgNRiem(»Tl | ,u?(x),(ft(ﬂf))] .
More explicitly, we have
Lrcvim(8) = —Ei 0, o [log Qf(xl\l’)]
= —Eiy 2 [10g Nriem(21 | 1f (2), 04(2))]

= ~Eisiq |log (O(MI(I)) P (‘WD]
z)

6
= Erae ;log (C(;é(@)) - dimgéfri&z)t; )2]
. (W)] + Bty [W] ,

where distg () denotes the geodesic distance induced by the Riemannian metric g.

so that

Without any regularity assumptions on M, no further simplification is possible. However, under the
following assumptions the objective becomes more tractable:

1. Homogeneity: If the manifold (M, g) is homogeneous, the normalization constant

o J ( dlstg2(22p) )sz

is independent of the mean u (see proposition D.1). Hence, defining

IR Y N

which is constant with respect to 6, we obtain

dist 0 2
Crovm(0) = K +Ea, [wg@flut@))] _

20’15(1')2

Since K is a constant that is independent of the model’s parameters 6, the minimization
objective becomes

distg (z1, pf ())?
Lrcvim(0) = By o) 2 [g(lw] .

20¢(x)?

18
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2. Closed-form Geodesics: If the geometry allows closed-form expressions for geodesics,
namely

) = exp, (¢ 1og, (1) ).

then the geodesic distance between two points is given by:

distg (2, 1) = || log., ()| g-

In this setting, we can write

distg (21, 11 (2))* = [[log,, (1 (x)) g,

so that the objective becomes
L ) = —E log (—— )| +E L Iog,,. (1 (x))|
: =—E; 4, »|lo - 0g,, T .
RG-VFM t,x1, g C(M? (.13)) t,x1, 2Ut (l’)Q g 1 M g

3. Combined Assumptions: If both conditions hold, the objective simplifies to

Erevm(0) = Ere, s | 5 Vot ()12
If we further assume that o () is constant, this reduces to
Lrovim(0) = B o [ [ log,, (17 () 7]
O

Remark on the definition of o,(x). In the previous proof, the result is obtained by assuming
ot(x) to be constant. More in general, we could maintain the presence of o;(x) explicit in the loss,

obtaining Lrg.vim(0) = Et 2, « [m | log,, (uf(x))Hé] . By being time dependent, o;(z) can

for example be defined as the normalization constant %_t Despite the generality that it allows, for

the sake of simplicity we make the choice to assume o (x) being constant, or implicit in the loss
definition.

Examples of simple geometries. A homogeneous manifold does not necessarily imply that
geodesics admit closed-form expressions. Conversely, the simple geometries with closed-form
geodesics considered in the RFM setting—such as hyperspheres S™, hyperbolic spaces H", flat
tori 7" = [0, 2x]", and the space of SPD matrices Sj with the affine-invariant metric—are ho-
mogeneous. Thus, when restricting to these geometries for comparison with RFM, we are in the
combined case.

Special case: euclidean space. In the Euclidean case (which also falls into the combined case),
the objective simplifies further to

Lrevim(0) = E¢ 2, o [HM?(I) —z1]?].

D.2 How DOES RG-VFM FIT IN THE EXISTING FLOW MATCHING FRAMEWORK?

Figure 2 (left) illustrates how RG-VFM fits within the framework of related FM models. In VFM,
a probabilistic generalization of CFM is obtained by making the posterior distribution explicit and
customizable, obtaining standard CFM under the choice of a specific Gaussian (see Eijkelboom et al.
(2024)). In contrast, RFM serves as a geometric generalization of CFM, where the model and its ob-
jective take into account the intrinsic properties and metric of the underlying Riemannian manifold.
The same happens for the variational models: VFM with a Gaussian posterior is a particular in-
stance of RG-VFM when the geometry is Euclidean. In Euclidean space, | log,, (1 (x))|Z reduces

to | (z) — 1|3, thereby recovering the VFM objective.

A further comparison can be made between the simplified version of RFM and RG-VFM-M, where
M is ahomogeneous manifold with closed-form geodesics. The variational model (RG-VEM) is not
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a direct generalization of vanilla RFM because, unlike in Euclidean space, tangent spaces at different
points on a manifold do not coincide. This difference is reflected in the models’ outputs (fig. 2):
vanilla models predict velocity fields, which are integrated as ODEs to construct flows, whereas
variational models predict endpoint distributions, ideally aligning with the target distribution p; .

In Euclidean space, the difference between two vectors starting at = and pointing to different end-
points is simply the vector between those endpoints, leading to identical L, terms in the objectives,
ie. ||pf(x) — 1|2 for VFM and |us(x | 1) — ¢ (x)|? for CFM. However, since T, M # Ty, M
in general, in their geometric counterparts this equivalence no longer holds: indeed, the difference

vector in the RFM objective, v¢ (2) — lo(gf_(f)l), is in 7}, M, while log,, (uf(2)) is in T;;, M. This

fundamental distinction separates RG-VFM from RFM. More details are in the following Section.

Algorithm 3 CFM Algorithm 4 VFM
Require: base p € RY, target ¢ € R Require: base p € RY, target ¢ € R,
# Training Phase # Training Phase

Initialize parameters 6 of v;
while not converged do
sample t ~ U(0,1), zg ~ p,x1 ~q
compute linear interpolation:
Tt :tll+(1*t).’lo

Initialize parameters 6 of /.
while not converged do
sample t ~ U(0,1), xo ~ p,x1 ~ ¢
compute linear interpolation:
Ty = t- r] + (1 — YL) X0

compute corresponding velocity: 00) = Eipyn [H/’/ (24;0) — a1 Hz]
Ty = (x1 — ) /(1 — 1) o / g
2 0 = optimizer_step({(0))
6(9) = Et,wl,w |:H1)t(17t; 9) — ‘TtHg] end while

0 = optimizer_step({(6))
end while # Generation Phase
sample noise g ~ p
# Generation Phase compute corresponding velocity:
sample noise xg ~ p iy = He(@ef)—ae

1
x1 =solve_ODE([0, 1], zg, ve(z4;0)) 1 :solve/,ODE([O,1],.%07(1“/)

Algorithm 5 RFM
Require: base p € M, target ¢ € M.

Algorithm 6 RG-VFM (general)
Require: base p, target g € M.

# Training Phase
Initialize parameters 6 of
while not converged do
sample t ~ U(0,1), zg ~ p,x1 ~ ¢
compute interpolation:
Tt =

€0) = Frare | ]
0 = optimizer_step({(0))
end while

# Generation Phase
sample noise g ~ p
x1 =solve_ODE([0, 1], zo, )

# Training Phase
Initialize parameters 6 of 1,
while not converged do
sample t ~ U(0,1), zg ~ p,x1 ~ ¢
compute interpolation:
Tt = il’lt(t, o, CEl)
00) =Ei 4, 4 [disti(xl, pe(z4;0))]
6 = optimizer_step({())
end while

# Generation Phase

sample noise xg ~ p

compute corresponding velocity ¢
x1 =solve_ODE([0, 1], zg, +)




Under review as a conference paper at ICLR 2026

Algorithm 7 RG-VFM intrinsic Algorithm 8 RG-VFM extrinsic
Require: base p € M, target ¢ € M. Require: base p € RY, target ¢ € M.
# Training Phase # Training Phase
Initialize parameters ¢ of i Initialize parameters 6 of 1,
while not converged do while not converged do
sample ¢t ~U(0,1), xo ~ p,x1 ~ ¢ sample t ~ U(0,1), xo ~ p,z1 ~ ¢
compute geodesic interpolation: compute linear interpolation:
Ty = exp,, (t- l(ngl(-TU)) xp=1 21+ (1—1) 20
00) =FEi s, o [distj(arl, pe(z4;0))] 00) =Et 4 o [distﬁ(:cl,m(mt; 9))]
6 = optimizer_step((9)) 0 = optimizer_step({(6))
end while end while
# Generation Phase # Generation Phase
sample noise xg ~ p sample noise g ~ p
compute corresponding velocity: compute corresponding velocity:
g 109/14(-?%10)@71 ) s e (wef) -y
Ty = T Ty = -t
x1 =solve_ODE([0, 1], zq, d¢) x1 =solve_ODE([0, 1], zo, ¢)

D.3 RG-VFM vs RFM oON HOMOGENEOUS SPACES WITH CLOSED-FORM GEODESICS

The objective of RG-VFM is defined as

Lrovim(0) = Bz, o [[ 1og,, (1] (2))]2] .
while the objective of RFM, in the case of closed-form geodesics, is given by

2
Lrea(0) = Evp o [[0f (@) — Tog, (1)/(1 = D)
with g being the metric tensor at x ~ p;(x|z1).

Ignoring multiplicative constants that depend only on ¢ and x, comparing the two losses reduces to
comparing the quantities

[ log,,, (nf (2)lz and [lvf () —log,(x1)[Z.

Euclidean space. In Euclidean space R"”, the tangent space at each point is naturally identified
with R™. In this setting,

log,, (4(2)) = p(x) — @1 and log,(z1) = @1 — .
Notice that
pi(x) — = pf () — 2+ 2 — 21 = (4] (2) —2) — (21 — 2) = (uf (x) — ) — log, (21).
If we define (ignoring multiplicative constants such as 1/(1 — t))

v (2) = log, () (x)) = pf (2) -z,

then it follows that
log,., (1 (x)) = log, (1] (x)) —log,(z1),
implying
[log,, (17 ()5 = [lvf (x) —log, (1)[Z
Thus, Lrg.vem(0) and Lrrm () are equivalent up to an additive constant. This result is consistent
with the known equivalence between Lypym(6) and Lcpm(6).

General geometries. In non-Euclidean spaces, however, the quantities
|log,, (u{(z))z and |vf(x) —log,(z1)/(1—t)[3
are not necessarily equal. This is because log,,, (¢ (x)) is a vector in T}, M, while

log, (¥ (z)) — log, (1) lies in T, M, and in general T,, M # T, M. Establishing a relation
between these vectors is not straightforward and can be illustrated by comparing the law of cosines
in Euclidean, hyperbolic spaces, and on hyperspheres.
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D.4 A COMPARISON BASED ON JACOBI FIELDS

In this section, we report the notations used for explaining the comparison based on Jacobi fields,
in table 5, as well as the proofs of the propositions in section 4.

Symbol Name Description

Ti_g =5 = Xo base point Base point obtained at 7 = 0.

zt,z? generated and target end point Predicted and reference data
points after training.

vt 00 generated and target vector Predicted and reference vectors
after training.

Lrovim = By o [dist(z1,29)?]  RG-VEM loss Geodesic distance used in the
Variational Riemannian FM loss
function.

2 .

Lrrv = Et,z,zl[Hvl —UOHg] RFM loss Norm of vector fields used in
the Vanilla Riemannian FM loss
function.

Table 5: Synthetic notations used in this section for the Jacobi field and Riemannian flow matching
losses.

Definition 4.1 (Jacobi field at a vanishing starting point). The family of geodesics defined as:
afs, T) =75 : T = exp, (T(v + sw)),

with s € [0,1] and 7 € [0, 1], v, w € Ty, M, is a smooth family of shooting geodesics with
7s(0) = o, 70(0) = v and 1(0) = v + w.

For each fixed T € [0, 1], there exists a vector field, called Jacobi field,

J(1) = Osa(s,T)‘szo
along the geodesic vs(7) := a(s, T) satisfying the ODE equation: D>.J + R(J,¥s)¥s = 0, with R
the Riemannian curvature tensor of the manifold. In particular, this Jacobi field is uniquely defined
by the initial conditions and at T = 0 one has the initial conditions: J(0) = 0, and D, J(0) = w.

Proof. Lee (2018)[Lemma 10.9. and Proposition 10.2.]

Since 7 — «(s, T) is a geodesic for each s, we have D2a = 0. Differentiate with respect to s and
use the torsion-free, metric connection to get D2(0sa) + R(dsa, 0, a)d-cv = 0, which is the Jacobi
equation for J(7) = dsa(s, T)|s—o. Because «(s,0) = x for all s, we get J(0) = 0. Also
0ra(s,0) = v+ sw, s0 D J(0) = 05(v + sw)|s=0 = W|s=0 = w.

The Jacobi equation is a linear second-order ODE along ~ with smooth coefficients, there is a
unique solution with any prescribed initial data (J(0), D,J(0)) = (0, w). O

For s = 0, we are interested in the geodesic v : 7 — exp,, (1v?), with v° the target velocity, and

for s = 1, the geodesic v, : 7 — exp,, (7v!) is defined with v! the velocity learned by the model.

w = v® — v! corresponds to the discrepancy between the learned and the conditional initial

velocity, and their norm is exactly what is minimized in the vanilla Riemannian Flow Matching
(Chen & Lipman, 2024).

Proposition 4.1 (Loss functions as evaluation of Jacobi fields). Consider a Jacobi field

J(1) = dsau(s,T) }5:0 as defined in definition 4.1, We denote Lryw the loss function of the
(vanilla) Riemannian Flow Matching (Chen & Lipman, 2024), and Lrg-vrm the loss function for
our proposed Riemannian Variational Flow Matching. Then the following equalities hold:

Lrem(9) = By o [fue(@ | 21) = of (@) 5] = Evy o[ | D- T (0)IZ], (10)
Lravem(8) = By o [l0g,, (148 (2))3] = Evwyo[1T(1)g]?]- (11)
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Proof. In RFM, the goal is to learn a velocity field v that transports the base distribution at ¢ = 0
into the target distribution at ¢ = 1. The loss penalizes the discrepancy between the conditional
velocity u;(x | 1) and the model’s prediction v? (), averaged over all time steps ¢, target samples
X1 ~ Pdana, and intermediate samples x ~ py(z | z1).

When introducing Jacobi fields, we first define them for a fixed generative step ¢, a specific target
point 77 = x5=°, and an associated intermediate point. As an abuse of notation, we suppose here
that the Jacobi fields are obtained for all £, z1, x, allowing us to take expectations over these
variables.

1. Let us prove that:
Lrrm(0) = Et’xhx[uut(x ‘ ry) — Ute(x)”é] = Et,zhw[”DTJ(O)H;]v

By definition of the initial conditions of our Jacobi field, we have the target velocity field
defined as 45—0(0) := v° = w;(z | z1) and the learned velocity field defined as

4s=1(0) := v! = v¢(z). By definition 4.1,

Jue(@ | 21) = vf ()] = [v° =o' = [ —w] = |w]| = [ D-J(0)].

2. We want to prove the other equality:

Lre-vEM(0) = Bty 1oy, (1] ()] = Bty [ 7(1)5]-

We observe that log,, (1f(z)) = log,1)(71(1)). Let p := 7(1) and q := 71 (1), the
respective end points of the geodesics 7 and ~;. If ¢ lies in the injectivity radius of p,
then there is a unique minimizing geodesic o : p € [0, 1] — exp,,(pu) with u = log,(q),
with o(0) = ptoo(l) = gq.

a) We can then consider the Taylor expansion for the exponential map exp,, and
consequently of the geodesic defined from it o(p), as in Monera et al. (2014):

a(p) = o(0) + o'(0)p + 30"(0)p* + O(llpul®).
By substituting the values, we obtain:
alp) = p + up + 5"(0)p* + O(|lpul).

We want now to reparametrize the geodesic with respect to the variable s, instead of
p € [0, 1]. For this, we reparametrize it with a new initial velocity vector w such that
ow(8) = ou(p(s)) for a smooth reparametrization function p = p(s). In this setting,
we still have 0,,(0) = p and 0,,(1) = ¢. Hence

ow(s) = p + ws + $3"(0)s* + O(|sw|’),
and for s = 1:

¢ =o0u(l) =p+w + 300 + O(wl).

b) From the perspective of the family of geodesics
Vs () = exp,, (T(v + sw))
and the corresponding Jacobi field J(7), we can instead derive:
(1) = 70(1) + J)s + 571 s* + O(lT(V)s]*),

that for s = 1 gives:

g =) =p+ J1) + 370) + O(JO).

We can observe that, for s = 1, the two Taylor expansions in (a) and (b) coincide, and we
also have for the linear terms:
log,q=w=J(1).

From this, we derive the fundamental equality log,,, (11f (x)) = log, ¢ = J(1), which
exactly corresponds to what we want to prove.
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Proposition 4.2. D, J(0) is a linear approximation of J(1).

Proof. Let J*)(0) := DF.J(7)|,—o be the k-th derivative of J with respect to 7, then evaluated at
0. The value of the Jacobi field at timestep 7 can be computed through Taylor expansion of the
Jacobi field centered in 7 = 0, as

2 3
J(r) = 7JD(0) + %J@(O) + %J@(O) + O(Jw|)

Since the exponential map is smooth, the associated geodesics and Jacobi fields are smooth
functions depending on 7. The Taylor’s theorem guarantees that we can approximate J(7) around
7 = 0, with the big-O term quantifying the size of the error. In particular, the expansion centered at
7 = 0 remains valid when evaluated at any 7, provided that the exponential map stays well-defined
and smooth.

In our setting, J(0) = 0, and we are interested in the timestep 7 = 1, for which we get

1 1
J(1) = JH(0) + 5I(0) + £T(0) + O(Jwl)
and if we want to stop at the linear term:

J(1) ~ JM(0),

in the sense that J()(0) is a linear approximation of .J(1). O

Proposition 4.3 (Difference of loss functions as a curvature term). Consider a Jacobi field
J(7) := 0sa(s, 7) }S=0 as defined in definition 4.1 and the equivalences shown in proposition 4.1,
The difference between Lra-vim and Lryy encodes the manifold curvature through:

Lravim(0) = Lrrm(0) + Et 2, 2[C(R, D+ J(0),v) + Enigher] (13)

curvature-dependent term

where the leading-order curvature functional is:
1 1
C(R, D (0),v) = =5 (R(D+J(0),0)0, DrJ (0))g = 5{(VuR)(DrJ(0),0)0, DI (0))g (14)

and  Enigner = O(|D-J(0)*[v]*), (15)

with R the Riemannian curvature tensor and v = *y the reference geodesic velocity. The
higher-order term Eigher encodes curvature variation along geodesics through covariant
derivatives of R. In terms of the RFM loss terms, v = u(x | x1) and

D, J(0) = vl(z) — us(z | z1).

Proof. The proof consists of three steps: (1) we will detail the Taylor series of the norm of the

Jacobi field, noted S := ||J 2, (2) we will compute up to the Sth order of those terms evaluated at
7 = 0, and (3) we will simplify the expression to have the approximation.

1. Let’s look at the Taylor expansion of the Jacobi fields. The Jacobi fields are indefinitely
differentiable at a point 7 = 0, and so have a Taylor series on this point. They can be
expressed as

n k T n
) = T k) (T=0)" i1
J(7) k§:0 w0 +J0 " (p)dp,

with J*)(0) := DFJ(7)|,—¢, the k-th derivative of .J with respect to 7, then evaluated at
0.R, =] o) j(n+1) (p)dp is the remainder term.

n
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We further note S(7) the linear product of two Jacobi fields, defined as:

S(r) = [J@)* = (I (), J(r)) = <Z 0). >, %J(”)(O))

m>0 n=0

Note that here and in the following, (-, ) := (-, -)g, but we omit g to avoid overcharging
equations.

By bilinearity and using the Cauchy product, we have:

50 (o)

s = Y T ), 100 = Y.

m,n=0 r=0

with S™(0) := >3 (1)¢JV(0), J=D(0)).
2. Let us compute the Jacobi terms .J(¥) (0) := D¥.J(7)| ¢ and their norm S*(0).
We know that the Jacobi fields satisfy the following ODE equation

J? 1+ AT =0,

with A(7)J(7) = R(J(7),~(7))¥(T), with 4(0) = v is the initial velocity and
D,#(7) = 0 since 7 is a geodesic. We know the initial condition J(0) = 0 and
JM(0) := D,J(0) = w. Noting A*) := D* A(7), we can compute with the chain rule:

D A(7)J (1) = V5 [R(J(7),7)7]
= (V5R)(J (1), 7)y + R(D-J(7), 7)Y + R(J(7), D-¥)Y + R(J(7),7) D7
(V4R)(J(7),%)y + R(DJ(T), ) since D,y=0
DIA(1)J (1) = D-(V5R)(J(7),%)F + Dr(R(D-J (1), %)7)
= (VZR)(J(1),%)F + (V5 R)(D+J (1), 4)F + (V4 R)(D-J (7),7)F + R(DZJ(7), %)%
= (VER)(J(7),%)F + 2(V4R) (D7 J (1), 7))y + R(DZJ(7),%)¥

For all t, we can express the derlvatlves of A (r)J(7) as
D, [A(r)J(7)] = D £A(T)] J(T) JgCT h in general
DA S0 — (SR A and 405 R(DEJ(r),4)3.

Ay

= —AM(0)J(0) — A(0)J )(0) = —R(w,v)v
= —A<2>(0)J(0) 2AM(0)JD(0) — A(0)JP(0) = —2(V,R)(w, v)v

And we have the following norms:
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JE(

TP (0)) +2¢J(0), 7D (0)) = 2||w|?

J3(0)) + 6TV (0), T2 (0)) =0

JD(0)y +8IH(0), ¥ (0)) + 612 (0), 7 (0))
(

SG)(0) = 2(7(0), JO(0)) + 10¢TD(0), TP (0)) + 20{T2(0), J® (0))
= 10(JV(0), JD(0)) = —20{(V, R) (w, v)v, w)

3. We can finally express ||.J|| in terms of Taylor series

I = Y T 500)

r=0

2 3 4 5
— S©(0) + rSM(0) + %s@)(()) + %5(3> (0) + ;;45@*)(0) + 17‘2705@ (0) + remainder

= 72wl ~ 74 SR (w, 0)o,w) — 77 S (Vo R)w, v)o, ) + O ful o)

with ((V,R)(w, v)v,w) < | VR]||[v]|*|wl||®, and we assume the curvature of our
manifold being bounded, so VR < M, with M € R. Setting now 7 = 1 and
w = D, J(0), we get

1T()* = DT (0)[* + C(R, D7J (0),v) + Enigher
with
C(R, D,J(0), ) = ~5(R(DeT(0),0)0, DI (0)) ~ (Vo R)(D,I(0), ), Dy J(0)g
and  Enigher = O(| D-J(0)[?[0]*),

where the higher-order term &pigner €ncodes curvature variation along geodesics through
covariant derivatives of R.

Taking the expectation with respect to the variables ¢, x1, x and considering the result of
proposition 4.1, we obtain the desired result

Lravim(0) = Lrrv(0) + Et o, 2[C(R, D J(0),v) + Enigher]- (25)
O

Corollary D.1. For v = w;(x | 1) and v' = v¥(x), the following holds:
C(R,D,J(0),v) = C(R,v°,v") = —%K(vl,vo)Hvl A - %<(VU0R)(’UI,UO)’UO,1)1>. (26)

with K the sectional curvature, A the wedge-product, R the Riemannian curvature and V the
covariant derivative. For constant sectional curvature K, we further have V ,o R = 0:

1
Lravem(0) = Lerm(0) = 3K [[o' A v+ O, 27)

Proof. The sectional curvature is a way to measure locally the normalized deviation between two

geodesics. It is defined as:
_ AR(w,v)v,w)

K(w,v): 5
[w A v
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with ||jw A v|| the area spanned by the vector w and v. Furthermore, for the sphere and the
hyperboloid, the sectional curvature is constant, being K = 1 and K = —1 respectively.

With this definition, we can first of all re-express, in point (2) of proposition 4.3:

SW(0) = —8(R(w,v)v,w) = —8K (w,v)||w A v|*.

Consequently, we get the following expression in part (3):

T (r
1@ =Y =570
r=0 "’
2 3 4 5
— g (CS IR <T6) T g0 T T
SYN0) + 1S +25 (0)+GS (O)+24 120
-1

1
= 72lw||* TS K (w,0)]w A ol* - 75V R)(w, v)v, w) + o0 |wl*||oll*)

S@(0) + S®)(0) + remainder

With the initial velocity vectors v = v* and w = v! — v°, we can express the Riemannian curvature

tensor ( R(w, v)v, w) = (R(v,v9)v? v!)

HJ(T)H2 = 7'2||v1 — UO‘}2—74%K(017UO)||01 A UOH2—75é<(VUoR)(U1,vo)vo,vl>+(’)(76’|vo||3“vl||2)

Hence, we have, evaluating the Taylor expansion at 7 = 1 and considering it in expectation:

1 1
Lra-viMm = LREM—E¢ o, o *K(Ulva)HUl A UOH2 + 6<(VUOR)(U1,UO)UOW1> + O(HUOHSHUIHZ)] .

3

with K the sectional curvature, A the wedge-product, R the Riemannian curvature and V the
covariant derivative.

For constant sectional curvature K, we further have V 0 R = 0:
1 B
Engevent = Caest — LKt a0+ (o] o).

1

0
Hfﬁ’ H’Hv'u1>|\ . In that case:

Let us consider the angle between the vectors defined as cos() =
[oF A 00 = Jo 2 02 = (o' [0 cos0)” = o' |2 002 (1 = cos? 6) = [o[* [o°)? sin 0
For a sphere S? (K = +1), we have:
dist(y0(1), 11(1))” = [[o! = o°* - %Hvl||2!|vollzsin2 0+ (|| [[*).

For a hyperboloid H? (KX = —1), we have:

1
dist(30(1). 11 (1)* = [[o* = o [* + 3| [e " sin® 0 + O[0! |-
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E SYNTHETIC EXPERIMENTS ON HYPERSPHERE AND HYPERBOLOID

In this section, we present further results from the experiments described in section 5.1.

E.1 DEFINITION OF THE MANIFOLDS

The hypersphere is defined as S™ := {z € R"™! : (x,x)p = 1}, with the standard Euclidean inner
product {z, y>r = Toyo + T1Y1 + T2y + - - - + TnYn. Instead, we adopt the Lorentz model for the
hyperbolic space, which is defined as the upper sheet of the hyperboloid embedded in Minkowski
space. The Minkowski space is the manifold R™*! equipped with the Lorentzian inner product
{(x,y)r = —xoYo + T1Y1 + T2y + - - - + T, Yyn. In this setting, the Lorentz hyperbolic model is
defined as HY := {z e R" ™! : (z,z); = 1/K, 20 > 0, K < 0}, where we set K = —1.

E.2 EXPERIMENTAL SETUP

In all experiments, the target distribution p, is the spherical checkerboard, so its support is S2. The
noisy distribution pg varies by model: for CFM, VFM, and RG-VFM-R?, Po is the standard normal
distribution in R3, while for RG-VFM-M and RFM, it is obtained by wrapping the standard
normal distribution on either S? or H? ;. In every case, we train a five-layer MLP with 64/128
hidden features for 3000 epochs on 10000 training samples, that we use to generate 10000 samples
using a Euler ODE solver. For the intrinsic geometric models, the Euler solver is manifold-aware,
meaning that it’s defined with the log and exp maps on the manifold. Additionally, for the
variational models we used a clipping technique during sampling, in order to make sure that the
normalization term ﬁ would not be too high for values of ¢ approaching 1.

E.3 RESULTS

Figure 4, fig. 10 and fig. 11|illustrate the generative flow trajectories over time, from the initial
distribution py to the generated distribution at t = 1.

Figures |6 and 13| displays the generated distributions unwrapped onto a flat surface for easier
visualization and comparison. These results visually confirm the observations presented in
section 5.1.

Finally, figs. 8 and 15 show histograms of the norm values of the generated samples. As discussed
in section 3.1, this metric differentiates the Euclidean models (CFM and VFM) from the others.
Ideally, points should have a Euclidean norm of 1 if lying on S?, or a Minkowski norm of -1 if on
H? ;. However, because the Euclidean models lack explicit geometric information, their points
deviate slightly from the ideal norm, with CFM exhibiting a larger divergence. In contrast, the
geometric models consistently generate points that lie almost exactly on the sphere.

E.4 LAPLACE POSTERIOR PROBABILITY

We explore the definition of the VFM training loss as the absolute value of the geodesic distance,
instead of the squared geodesic distance, which would be obtained by ideally defining the posterior
distribution qf in the VFM loss (eq. (5)) as the Riemannian version of the Laplace distribution.
This would be defined as in eq. (7), by replacing the L? norm of the geodesic distance with the L'
norm, obtaining

L vin(0) = Evr o [|110g,, (1 (@)llg] = Bty o [distg (@1, uf (2))] - (28)

We observe that using a Laplace distribution as the posterior for the Riemannian VFM models
yields better results, both visually and with respect to the considered metrics. This effect is
particularly evident in the hyperbolic case, and we hypothesize that it arises from the different
impacts of using L' versus L? norms in this space. The numerical results are reported in table 6,
the probability paths in figs. 5|and 12, the sampled densities in figs. 7/ and 14 and the norm
histograms in figs. 9/and 16,
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Table 6: Results of synthetic experiments with Laplace posterior. Abbreviations: Eucl. = Eu-
clidean, Riem. = Riemannian, Ext. = extrinsic, Int. = intrinsic, Van. = vanilla, Var. = variational.

Sphere Hyperboloid
Coverage 1 C2ST| Distance | Coverage 1 C2ST| Distance |
Eucl/Ext/Var (VEM) 89.92 59.98 £0.56 0.034 £0.042 87.63 5726 £0.59 0.001 + 0.133
Riem/Ext/Var (Ours) 95.04 61.33+£0.23  0.008 £+ 0.034 91.98 62.55+0.30 0.041+£0.113
Riem/Int/Var (Ours) 90.56 57.39 £ 0.70 - 86.23 56.04 + 0.41 -
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(a) Model: CFM; supp(po) := R?, po: standard normal distribution in R*.

(b) Model: VEM; supp(po) := R?; po: standard normal distribution in R?.

(c) Model: RG-VFM; supp(po) := R?; po: standard normal distribution in R

(d) Model: RFM; supp(po) := S?; po: standard normal distribution on S

w000 0 s 10

® ® ® © @

(e) Model: RG-VFM; supp(po) := S?; po: standard normal distribution on S
Figure 4: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution pg att = 0,

evolving to reach their final configuration by ¢ = 1. In all variational cases, the posterior distribution
is Normal, and p; is the checkerboard distribution on S2.
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(c) Model: RG-VFM; supp(po) := S?; po: standard normal distribution on S2.

Figure 5: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution pg att = 0,
evolving to reach their final configuration by ¢ = 1. In all variational cases, the posterior distribution
is Laplace, and p; is the checkerboard distribution on S2.
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(a) Model: CFM; supp(po) := R?, po: standard nor-  (b) Model: VEM; supp(po) := R?; po: standard
mal distribution in R3. normal distribution in R®.
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-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

(c) Model: RG-VEM; supp(po) := R?; po: standard  (d) Model: REM; supp(po) := S?; po: standard nor-
normal distribution in R®. mal distribution on S2.

0.5

0.0

-1.0

(e) Model: RG-VFM; supp(po) := S?; po: standard
normal distribution on S

Figure 6: Sample distributions generated by different models (representing the flow configuration at
t = 1) unwrapped from S? to R? for improved visualization. The true checkerboard distribution is
shown in gray in the background. In all variational cases, the posterior distribution is Normal, and
p1 is the checkerboard distribution on S2.
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(a) Model: VFM: supp(po) := R3; po: standard
normal distribution in R®.
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(b) Model: RG-VFM; supp(po) := R?; po: standard
normal distribution in R2.
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(c) Model: RG-VFM; supp(po) := S?; po: standard
normal distribution on S

Figure 7: Sample distributions generated by different models (representing the flow configuration at
t = 1) unwrapped from S? to R? for improved visualization. The true checkerboard distribution is
shown in gray in the background. In all variational cases, the posterior distribution is Laplace, and

p1 is the checkerboard distribution on S2.
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Distribution of Point Norms (Should be ~1.0 for Sphere)
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(a) Model: CFM; supp(po) := R?, po: standard nor-
mal distribution in R.
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(c) Model: RG-VFM; supp(po) := R?; po: standard
normal distribution in R®.
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(b) Model: VFM; supp(po) := R?; po: standard
normal distribution in R®.
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(d) Model: REM; supp(po) := S?; po: standard nor-
mal distribution on S2.
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(e) Model: RG-VEM; supp(po) := S?; po: standard
normal distribution on S

Figure 8: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Normal, and p; is the checkerboard distribution
on S2.

34



Under review as a conference paper at ICLR 2026

Distribution of Point Norms (Should be ~1.0 for Sphere)
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(a) Model: VFM: supp(po) := R3; po: standard
normal distribution in R®.
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(b) Model: RG-VFM; supp(po) := R?; po: standard
normal distribution in R2.
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(c) Model: RG-VEM; supp(po) := S?; po: standard
normal distribution on S

Figure 9: Histogram of the norm values of the 10,000 samples describing the generated distribution.

In all variational cases, the posterior distribution is Laplace, and p; is the checkerboard distribution
on S2.
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(b) Model: VEM; supp(po) := R?; po: standard normal distribution in R?.

(c) Model: RG-VFM; supp(po) := R?; po: standard normal distribution in R
Figure 10: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution pq at

t = 0, evolving to reach their final configuration by ¢ = 1. In all variational cases, the posterior
distribution is Normal, and p; is the checkerboard distribution on H2_1.
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xxxxx =100

(b) Model: RG-VFM; supp(po) := H?2 ,; po: standard normal distribution on HZ ;.
Figure 11: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution pg at

t = 0, evolving to reach their final configuration by ¢ = 1. In all variational cases, the posterior
distribution is Normal, and p, is the checkerboard distribution on Hz_l.
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(c) Model: RG-VFM; supp(po) := H2 1; po: standard normal distribution on HZ ;.

Figure 12: Flow trajectories of 10,000 samples, initially drawn from the noisy distribution pg at
t = 0, evolving to reach their final configuration by ¢ = 1. In all variational cases, the posterior
distribution is Laplace, and p; is the checkerboard distribution on H? ;.
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(a) Model: CFM; supp(po) := R?, po: standard nor-  (b) Model: VEM; supp(po) := R?; po: standard
mal distribution in R3. normal distribution in R®.
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(c) Model: RG-VEM; supp(po) := R®; po: standard  (d) Model: REM; supp(po) := H2;; po: standard
normal distribution in R®. normal distribution on H2 ;.

1.0

0.5

0.0

(e) Model: RG-VEM; supp(po) := H24; po: stan-
dard normal distribution on H? ;.

Figure 13: Sample distributions generated by different models (representing the flow configuration
att = 1) unwrapped from H? ; to R? for improved visualization. The true checkerboard distribution
is shown in gray in the background. In all variational cases, the posterior distribution is Normal,
and p; is the checkerboard distribution on H? ;.
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(a) Model: VFM: supp(po) := R3; po: standard
normal distribution in R®.
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(b) Model: RG-VFM; supp(po) := R?; po: standard
normal distribution in R2.
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(c) Model: RG-VEM; supp(po) := H21; po: stan-
dard normal distribution on H? ;.

Figure 14: Sample distributions generated by different models (representing the flow configuration
att = 1) unwrapped from H2 ,; to R? for improved visualization. The true checkerboard distribution
is shown in gray in the background. In all variational cases, the posterior distribution is Laplace,

and p; is the checkerboard distribution on H? ;.
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(c) Model: RG-VFM; supp(po) := R?; po: standard  (d) Model: RFM; supp(po) := H2,; po: standard
normal distribution in R®. normal distribution on ]HI2_1.
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(e) Model: RG-VEM; supp(po) := H2;; po: stan-
dard normal distribution on H? ;.

Figure 15: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Normal, and p; is the checkerboard distribution
on H?2 .
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(b) Model: RG-VFM; supp(po) := R?; po: standard
normal distribution in R®.
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(c) Model: RG-VEM; supp(po) := H21; po: stan-
dard normal distribution on H2 ;.

Figure 16: Histogram of the norm values of the 10,000 samples describing the generated distribution.
In all variational cases, the posterior distribution is Laplace, and p; is the checkerboard distribution

on H?,.
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F MOF GENERATION WITH MOFFLOwW

F.1 EXPERIMENTAL SETUP

MOFFlow. MOFFlow (Kim et al., 2024) is a flow-based generative model for MOF structures
that operates at the level of rigid building blocks, i.e., metal nodes and organic linkers. A MOF is
represented as S = (B, ¢, 7, £), where B denotes the set of building blocks, and the model learns
their roto-translations (g, 7) together with the lattice parameter ¢. Instead of predicting atom-level
coordinates, MOFFlow (Kim et al., 2024) treats building blocks as rigid bodies, reducing the
search space. The generative model is defined as a conditional normalizing flow py(q, T, £ | B),
trained with the Riemannian flow matching framework. Specifically, conditional flows are defined
along geodesics in SF(3) and the lattice space as

g = expyo (tlogyo (1)), 7 =1 —t)7@ +trM 0@ = (1 —4)e@ + 1M, (29

leading to the conditional vector fields

log_(¢) (¢7)
ut(q(t) | q(l)) — %7

up(r® | 70y = 2O @) | )y — €D 3

1-t 1-t

Rather than directly modeling these vector fields, Kim et al.|(2024) uses a re-parameterized training
objective that predicts the clean data (g1, 71, /1) from an intermediate structure S ®).

Laiorrion(0) = Esoroppsiony MLg(0)  + AaLo(0) +  AsLi(0)] = (1)
2
A 2 j
[log 0 (d1) —logy (a1) [ 5, |71 = 71z bh-h HR3
= ES(1)~’D,t~L[(O,1) 1 (1 — t)2 )\2 (1 7 t)Q >\3 (1 _ t)2

At generation time, samples are drawn from priors on rotations, translations, and lattice parameters,
which are then mapped to the full MOF structure by applying the predicted blockwise
roto-translations to the input building blocks.

V-MOFFlow. Our contribution consists in adopting a variational perspective in the rotational
component of Ly.morriow(8), by only substituting £,(#) with the following:

£4(60) = [logg, (41)[5 0 - (32)

which corresponds to the squared geodesic distance between ¢; and ¢; in SO(3). The definition of
the vector fields is unchanged from eqs. (29) and (30), as well as the sampling algorithm.

Implementation details. For reproducing the MOFFlow results (training from scratch) and
evaluating our V-MOFFlow model, we follow the exact experimental procedure described in Kim
et al.| (2024) using their codebase and hyperparameter values, with only the following differences:

1. We use the Bat ch implementation introduced in Kim et al.| (2024)) instead of
TimeBatch (Yim et al., 2023b), which processes multiple data instances per batch,
leading to reduced computational requirements in terms of training and generation time in
GPU hours.

2. In terms of computational resources, we use 2 x 24GB NVIDIA RTX A5000 GPUs
instead of 8 x 24GB RTX 3090 GPUs.

Regarding dataset details and train/validation/test split information, we refer the reader to Kim
et al.|(2024). Furthermore, we choose not to report inference times in table 2, as we find the
differences negligible compared to the reported MOFFlow values.

F.2 ADDITIONAL RESULTS
Results in property evaluation. Following Kim et al. (2024), we evaluate the quality of

generated MOF structures beyond match rate and RMSE by analyzing eight key properties:
volumetric surface area (VSA), gravimetric surface area (GSA), largest cavity diameter (LCD),
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pore limiting diameter (PLD), void fraction (VF), density (DST), accessible volume (AV), and unit
cell volume (UCV). We use the same experimental implementation and code as MOFFlow,
evaluating models with RMSE and distributional differences.

Results in table 7 compare our model against reported DiffCSP and MOFFlow results from Kim
et al.|(2024), as well as our reproduced MOFFlow model trained with the Bat ch implementation.
V-MOFFlow achieves improved RMSE for half the properties compared to the original MOFFlow
paper. Moreover, the reproduced MOFFlow yields slightly higher property values than both the
original MOFFlow and V-MOFFlow results. Overall, we believe that the magnitude of most values
is too high for meaningful comparison across methods.

Table 7: Property evaluation. We report results for Diff CSP and MOFFlow as they are in Kim
et al.| (2024), and we compute from scratch the properties of the generated samples with the re-
trained MOFFlow and V-MOFFlow, that make use of the Bat ch implementation. Average RMSE
is computed between the ground-truth and generated structures.

RMSE |
DiffCSP MOFFlow (Paper) MOFFlow (Reproduced) V-MOFFlow (Ours)
VSA (m?/em?) 796.9 264.5 289.9 265.0
GSA (m?/g) 1561.9 331.6 473.2 328.8
AV (A3) 3010.2 530.5 1935.1 714.2
UCV (A?) 3183.4 569.5 2108.5 785.8
VF 0.2167 0.0285 0.0379 0.0263
PLD (A) 4.0581 1.0616 1.2434 1.0337
LCD (A) 4.5180 1.1083 1.2613 1.0888
DST (g/cm?) 0.3711 0.0442 0.0747 0.0446

Effect on integration steps. Following Kim et al.| (2024), we investigate how the number of
sampling integration steps affects both V-MOFFlow and our reproduced MOFFlow model (the one
from section |5.2). We randomly select 1000 structures from the test set and evaluate match rate and
RMSE across varying integration steps: [2, 5, 7, 10, 50, 100, 200, 500, 1000], using the same
experimental procedure as Kim et al. (2024). The results in fig. 17 show that both models exhibit
similar trends, with performance peaking around 10 and 50 integration steps before slightly
declining at higher step counts. The main difference between the models is the performance gap
rather than the overall trend, reflecting the difference in accuracies obtained on the entire test set
(table 2).

Integration Steps Comparison: MOFFlow vs V-MOFFlow
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Figure 17: Comparison between MOFFlow (the reproduced one from section 5.2) and V-MOFFlow

in terms of match rate and RMSE over different timestep values: [2, 5, 7, 10, 50, 100, 200, 500,
1000].
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