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ABSTRACT

Technological advancements in noninvasive imaging facilitate the construction of whole brain interconnected networks, known as brain con-
nectivity. Existing approaches to analyze brain connectivity frequently disaggregate the entire network into a vector of unique edges or summary
measures, leading to a substantial loss of information. Motivated by the need to explore the effect mechanism among genetic exposure, brain
connectivity, and time to disease onset with maximum information extraction, we propose a Bayesian approach to model the effect pathway be-
tween each of these components while quantifying the mediating role of brain networks. To accommodate the biological architectures of brain
connectivity constructed along white matter fiber tracts, we develop a structural model which includes a symmetric matrix-variate accelerated
failure time model for disease onset and a symmetric matrix response regression for the network-variate mediator. We further impose within-
graph sparsity and between-graph shrinkage to identify informative network configurations and eliminate the interference of noisy components.
Simulations are carried out to confirm the advantages of our proposed method over existing alternatives. By applying the proposed method to the
landmark Alzheimer’s Disease Neuroimaging Initiative study, we obtain neurobiologically plausible insights that may inform future intervention
strategies.

KEYWORDS: accelerated failure time model; brain connectivity; imaging genetics; mediation analysis; natural indirect effect; shrinkage and

regularization.

1 INTRODUCTION

The field of network neuroscience acknowledges that a brain
nervous system is defined by interconnections of its neuronal
units. Through advances in noninvasive imaging techniques,
one could establish a cartography of these neuronal intercon-
nections known as brain connectivity. Compared with regional
neuroimaging measurements that characterize brain structure
or function at separate locations, whole-brain connectivity pro-
vides unique descriptions of neuronal patterns, and is expected
to align with different types of brain activities.

Although successes have been achieved in relating connectiv-
ity with human behavior, most of these studies were based on
healthy individuals. It is likely that important disease metrics,
such as time to disease onset, are associated with altered brain
patterns and their relationship may further be shaped by po-
tential exposure factors. The methods proposed in this article
are motivated by Alzheimer’s disease (AD), a neurodegenerative
disease where brain atrophy leads to cognitive decline. Besides
neurological changes, the risk and progression of AD are strongly
influenced by genetics. The most prominent genetic risk factor
identified is the €4 allele of the APOE gene (APOE4), which
is known to substantially increase the disease risk and lower

the onset age of AD. Recent advances in neuroimaging genetics
have started to substitute disease phenotypes with imaging en-
dophenotypes to explore the potentially associated genetic vari-
ants (Hashimoto et al., 2015). However, the pathological mech-
anism among genetic factors, neuroimaging traits, and disease
outcomes is yet to be fully elucidated.

To uncover the effect mechanism among the genetic exposure,
brain structural connectivity defined by white matter fiber traits,
and time to AD onset, we propose a Bayesian mediation frame-
work with a time-to-event outcome and a network-variate medi-
ator. Mediation analysis has been developed to understand the
mechanisms relating to how one phenomenon exerts its influ-
ence on another, via an intermediate variable. By partitioning the
overall effect on a dependent variable into a direct effect com-
ing from an independent variable and an indirect effect pass-
ing through a mediator, one is able to dissect the effect path-
ways functioning among different components. The initial im-
plementations of mediation analysis focus on a single mediator
with a continuous outcome (Imai and Yamamoto, 2013), with
extensions to accommodate multivariate or high-dimensional
mediators (Derkach et al., 2019; Song et al.,, 2020) and other
types of outcomes, including binary (Wang et al., 2013) and
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time-to-event (Huang and Yang, 2017) outcomes. Most of the
studies applying these methods to neuroimaging data consider
mediating traits in a scalar or vector form summarized by re-
gional imaging measurements (Lindquist, 2012; Zhao and Luo,
2019; Chén et al., 2018; Zhao et al., 2021). More recently, Zhao
et al. (2022) initiated an early effort to handle brain functional
connectivity as a mediator. However, they considered a contin-
uous outcome and assumed a stochastic block structure for the
mediating networks, which is not applicable for our motivating
example as it involves brain structural connectivity with distinct
network architectures and a time-to-event outcome subject to
right censoring.

To properly model this complicated neurobiological mecha-
nism, it is essential to characterize the unique topological form
of structural connectivity with biological interpretability. Cur-
rent analyses on structural connectivity primarily represent the
whole network as a vector of unique edges or summary measures
(Ballester-Plané et al., 2017; Chen et al., 2022), resulting in a
loss of topological information. Wang et al. (2021) summarize
the connectivity via a number of small clique subgraphs, which
aligns with the biological architecture of white matter fiber traits.
Taking this idea further, we propose that structural connectiv-
ity mediates the relationship through a set of signaling subgraphs
that are influenced by the genotype and affect the disease onset
outcome. To uncover the effect mechanism, we propose a struc-
tural modeling framework including a symmetric matrix-variate
accelerated failure time (AFT) model for the effect pathway from
brain connectivity to the outcome, and a symmetric matrix re-
sponse regression for the effect pathway from the genetic expo-
sure to brain connectivity. Under a Bayesian paradigm, we im-
pose within-graph sparsity to select important network configu-
rations, along with between-graph shrinkage to eliminate unde-
sirable interference from noisy elements. To our best knowledge,
each of the above novel modeling components itself has not yet
been considered in previous brain imaging studies.

The remainder of the article is organized as follows. In Sec-
tion 2, we introduce a new network-variate mediation framework
with symmetric and hollow structural constraints. In Section 3,
we discuss the prior specifications and develop the posterior
sampling procedures for statistical inference. We conduct sim-
ulation studies to evaluate the model performance in Section 4,
and implement our method to data extracted from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study in Section S.
Section 6 concludes.

2 METHODS
2.1 Model formulation

We start with a general model formulation. For subject i (i =
1,...,N), let T; denote the time to disease onset, and C; the
right censoring time. The observed follow-up time can be rep-
resented as T; = min{T;, C;}, and we define a censoring indica-
tor §; = 1 if an event is observed and 0 if censored. Let z; rep-
resent the binary exposure, corresponding to the APOE4 posi-
tivity (APOE4+) in our application characterizing the presence
of at least one €4 allele. Meanwhile, x; € R2*! represents a set

of covariates to be adjusted for, including an intercept. We as-
sume the brain structural connectivity can be summarized by a
graph G; = (R, &;) with a common set of nodes R and subject-
specific edges &;. Given the graphs are defined under the same
brain atlas, the shared set of nodes is defined by a total of R brain
regions of interest (ROIs) within which we extract data from vox-
els. Subsequently, we represent G; by a symmetric connectivity
matrix A; € RR*R; its (w, 1)th entry a;, is a continuous variable
characterizing the white matter fiber density value between ROIs
wand[,0 < w # [ < R. By construction, A; is a hollow matrix
with a;,; = 0,if0 <w=1<R.

Our goal is to characterize the potential pathways among the
time-to-event outcome, APOE4 genotype, and brain structural
connectivity. Simultaneously, we aim to identify brain subgraph
configurations that function along each effect path where the
neural system is involved. As stated previously, it is important
to maintain the topological architectures of brain connectiv-
ity. On the one hand, different from social networks, each con-
nectivity matrix A; is symmetric and with a hollow structure
corresponding to the bidirectional structural connectivity with
no self-connections. On the other hand, structural connectivity
could operate under distinct topological structures when linked
with genetics and disease profiles. With those considerations, we
propose the following structural models

J
10g<T1) =X,Tﬂx+ Zw]ﬂ]ﬂ]T,A, +,Bzzi+€i; (1)
j=1 F
A = G, — Dg[G] + E;
H
G =M x3x" + Z Moo zi. (2)
h=1

Model (1) captures the effects on the time-to-event outcome
through an AFT model with B, € R¥*! and B, representing
the effects of covariates and exposure on the logarithmic sur-
vival time, respectively. We assume €; ~ N(0, o) in our appli-
cation without loss of generality, as other parametric distribu-
tions such as log-normal or extreme value distributions could
also be adopted with minor modifications. For the mediator
model, given it is common to assume a low-rank structure for
brain connectivity data (Zhao et al.,, 2023), we adopt a sym-
metric tensor rank-] Tucker decomposition (Kolda and Bader,
2009) which is synonymous with an eigenvalue decomposition
for a symmetric matrix by representing the mediator-specific co-
efficient matrix via Zi‘:l w;B; ﬂ]T ; the connectivity matrix then
associates with the outcome by a Frobenius inner product (-, -)s.
From a neurobiological perspective, such a representation allows
us to capture the impact from structural connectivity through
a combination of | network configurations, corresponding to
the aforementioned sub%raphs. Each subgraph j is represented
through a matrix w; B, 8; with coefficients B, € RR*1 describ-
ing the within subgraph effect of each node, and w; capturing the
impact between subgraphs. Given that different brain network
configurations are employed under distinct neuronal processes,
itisassumed each B is sparse to induce a specific clique structure
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contributing to the effect pathway on the outcome. Importantly,
introducing sparsity with a Tucker decomposition will reduce
the burden of estimating parameters over a high-dimensional
feature space. The technical details on sparsity will be discussed
in Section 3.1.

Along with model (1), model (2), which consists of 2 sub-
models, captures the impact from the exposure to the connectiv-
ity mediator. With A; on the left-hand side of the equation, we es-
sentially have a network response regression, where the network
is constrained by a symmetric and hollow structure. To align
with the 0 diagonal elements of A;, we first denote the matrix-
variate effect from the covariates and exposure as G;. Within G;,
M € RR*RXQ s the coefficient tensor adjusting for the effects
from the covariates, and we expect M to be semi-symmetric un-
der frontal slices given each M. . ; is symmetric. Similar to the
operation in model (1), we employ a symmetric rank-H Tucker
decomposition such that the impact from exposure to connectiv-
ity functions is through H subgraphs, and that the structural con-
figuration of subgraph F is captured by e, € R**! with weight
1. Since the model formulation for G; only guarantees a sym-
metric structure, to ultimately link G; with the hollow matrix
A;, we will remove the diagonal elements from G; denoted by
Dg[ G;] while keeping the off-diagonal elements unaffected. For
the residual error matrix E; which is also specified to be symmet-
ric and hollow, we represent a collection of its upper-diagonal el-
ements as a vectore; € RRR=1/2X1 andassume e; ~ N(0, ).
In our numerical studies, we consider 3 implementations for co-
variance matrix E by assuming (1) E is a general covariance
matrix to accommodate arbitrary correlations among connec-
tions, (2) a Bayesian factor model (Zhu et al., 2014) that in-
troduces a low-rank representation for E, and (3) E = o1 to
reduce the computational complexity. Finally, as demonstrated
previously in Bayesian tensor regression models, although the
margins for B; and &, may not be identifiable, the coefficient
matrices (Guhaniyogi et al.,, 2017) and subgraph configurations
under our model structure (Tian et al, 2024) are uniquely
determined.

It is worth emphasizing that in practice, different types of brain
connectivity preserve distinct biological architectures. For ex-
ample, brain functional connectivity tends to present a modu-
lar structure to calibrate different functional systems. We study
structural connectivity here by modeling the subgraph struc-
tures along effect pathways, consistent with the densely con-
nected white matter fiber tracks within certain nodes for eflicient
neural support (Bassett and Sporns, 2017). Our approach is in
sharp contrast to Zhao et al. (2022) where functional connectiv-
ity represented by modular structure serves as the mediator for a
continuous outcome.

2.2 Effect pathways

To quantify the effect pathways among the survival outcome,
exposure, and network-variate mediator, we introduce counter-
factual representations to define the effect measures under the
structural modeling framework. Let A(Z) be the value of the
connectivity mediator under exposure Z with Z = z or Z = z*
denoting the 2 possible states. Let T (Z, A(Z)) be the counter-
factual survival time under Z and mediator A(Z). Given the co-
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variates X = x, we define the natural indirect effect (NIE), nat-
ural direct effect (NDE), and total effect (TE) as

NIE = E[log{T (z, A(z)} | X = x]

— Eflog{T (z, A(z")} | X =x];

NDE = E[log{T(z, A(z*)} | X = x]

— Eflog{T (z*, A(z*)} | X = x];

TE = NIE + NDE = E[log{T (z, A(z)} | X = x]

— Eflog{T(z*, A(z")} | X = x]. (3)

Following common practice for time-to-event outcomes (Van-
derWeele, 2011), model (3) defines each effect component on
the log-survival time scale aligning with the AFT model. In
our specific application, NIE quantifies the expected change in
log-survival time when the connectivity mediator changes from
A(z*) to A(z) with fixed genetic exposure; NDE characterizes
the expected change in log-survival time by altering the genetic
exposure when brain connectivity is fixed; and TE is the sum
of NIE and NDE, and hence captures the overall change in log-
survival time under different states of genetic exposure. We have
the following proposition for each effect component.

Proposition 1 Under the proposed structural model represented by
(1) and (2) and definitions of the different effect components in (3),

it can be shown that

NIE=(z—2)) >

j=1 h=1
X <w;‘ﬂ,ﬂ,r, (mnetne, — nhDg[ahocZ])>

NDE = B,(z — z*)

J] H

TE:(z—z*)ZZ

j=1 h=1

9
F

X <w,-/3,-ﬂ,r, (mnenet;, — nyDglotsory; ])>F

+B:(z—2"). (4)

The detailed derivations for the above proposition are provided in We
b Appendix A.2.

Compared with the effect measures under an existing media-
tion analysis with a scalar or vector mediator, the above proposi-
tion reveals that the structural connectivity mediator contributes
to the TE and NIE by combining subgraphs identified along the
exposure to mediator effect pathway, and those identified along
the mediator to outcome effect pathway. Moreover, we conclude
from (4) that there are subgraphs that absorb impact from the
exposure without changing the outcome; and subgraphs that al-
ter the outcome intrinsically without interacting with the ex-
posure. To further elaborate, Figure 1 illustrates this observa-
tion using a illustrative example of 2 informative subgraphs from
the exposure to mediator pathway, and 2 informative subgraphs
from the mediator to survival outcome pathway. Eventually, the
potential mediators are the overlapping configurations that im-
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ﬂ Subgraphs impacted by exposure \

Subgraphs impacting outcome

Subgraph mediating the effect from exposure to outcome

FIGURE 1 As an illustration, the upper panels show (A) 2 informative subgraphs from the exposure to mediator effect pathway, and (B) 2
informative subgraphs from the mediator to survival outcome effect pathway. The bottom panel provides (C) the active mediating components
contributing to the natural indirect effect (NIE), which consist of the overlapping network configuration.

pact both pathways as shown in the lower panel of Figure 1. In
Web Appendix A.2, we also discuss an alternative definition
for effects using log-expected survival times, and show that the
ultimate formulations for each effect metric are identical un-
der different definitions. It is also worth noting that within
the causal mediation framework, several structural assumptions
(Imai et al., 2010) are required for a causal interpretation un-
der a structural regression framework. However, these assump-
tions are often unverifiable from the observed data, and it is pos-
sible that not all confounders are measured in a single study.
In our brain imaging application, due to the potential for un-
measured confounding, we employ our mediation method as
an exploratory tool for associational analysis to generate use-
ful hypotheses, rather than a conclusive tool for causal in-
ference. Despite our focus on associational analysis, we pro-
vide the identification assumptions for causal interpretation in
Web Appendix A.1.

3 BAYESIAN INFERENCE

3.1 Prior specification
We propose a Bayesian algorithm to estimate the model param-
eters. Compared with mediation methods under a frequentist
paradigm, Bayesian modeling is particularly attractive due to
its ability in automatically capturing the uncertainty for all ef-
fect estimates with complex modeling (Schoot et al., 2013). As
mentioned previously, extracting informative brain subgraphs
for each path captured by {ﬂj, w; }£'=1 and {ay,, r]h}f:1 is as im-
portant as estimating the NIE, NDE, and TE for uncovering

T
B ﬁ]R) and oy =
((xhl, R oehR)T, we assign point mass mixture priors for each
element of B; and e, to impose sparsity as

the effect pathways. Denoting B, = (Bj1s .-

:3}'7 ~ (l - yjr)N(Ov UO) + J/er(O, Ul);
Uy ™~ (1 - Thr)N(09 UO) + thrN(Ov Ul)a (5)

withj=1,...,;h=1,...,H;r=1,..., R Here, v rep-
resents a very small variance component, v; and v, are vari-
ance components with a large value, and yj, and 7, are the
latent selection indicators introduced to identify nonzero ele-
ments within the 2 sets of network-variant coeflicients. Specif-
ically, in the case of y;, = 1, we have B;, # 0, indicating that
the connectionslinked with node r represent an informative sub-
graph impacting the time to disease onset. Similarly, when 7}, =
1, we have oy, 7 0 indicating that connections linked with node
rrepresent an informative subgraph influenced by the genetic ex-
posure.

To specify priors for ¥y = {yy,.... ¥}, and 7=
{ti, ..., ‘L’Hr}le, one can either impose a noninformative
Bernoulli distribution for each of the elements, or resort to a
more informative prior by incorporating knowledge of biologi-
cal structure. Such structural information includes brain regions
located symmetrically between right and left brain hemispheres,
or networks coming from nodes that are connected at the
population level. To first summarize the information, one could
consider an indirected knowledge graph Gy by including an
edge if 2 nodes are symmetric on hemispheres or connected
populationally, and then encourage smoothness on selection
over Gy using a Markov random field (MRF) prior (Sun et al.,
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]
pr. ) ocexpind (D v+
r j=1 h

H

Thr
1

+"Z

r~r'

] H
Z eryjr’ + Z Thr Thy' (6)
=1 h=1

with r ~ 7 indicating a connection at Gy. In model (6), 1 con-
trols the number of nodes selected in a subgraph, and 1 impacts
the smoothness reflected by the degree of confidence to include
both nodes in the informative subgraphs if they are connected
at a prior level. When both &t = v = 0, model (6) degenerates
to noninformative Bernoulli distributions without incorporat-

ing prior structural information. In addition, the weights {w); }i.zl

and {n;,}J_ characterize graph-level effects for the ] subgraphs
impacting the outcome and H subgraphs influenced by the ex-
posure. To distinguish the role each subgraph plays in the effect
mechanism, and more importantly to shrink the effects associ-
ated with subgraphs that link loosely with both outcome and ex-
posure, we assign Laplace priors (Park and Casella, 2008) as

wj~L(w); 1w~ L)
j=1,...,]; h=1,...,H, (7)

with shrinkage parameters A, and A,. Since J and H are un-
known in practice, the Laplace priors, along with the shrinkage
parameters, allow the model to eliminate noise graph for more
efficient inference about the effect pathways.

For the remaining parameters, most of them will be as-
signed canonical priors chosen by analytical convenience in-
cluding B, ~ N(0,Io) and B, ~ N(0, o). We further as-
sume the coefficient tensor M, which associates the covariates
with the connectivity mediator, follows a symmetric rank-K ten-
sor decomposition as M= ZkE[K] ajp 0 ay, o ay, with aj €
RRX1 a5, € RY*! to downsize the number of parameters and
air ~ N(0,I6?) and ay, ~ N(0,I6?) for k=1, ..., K. For
the covariance matrix =, we consider 3 different implementa-
tions and assign corresponding priors accordingly. When assum-
ing an unstructured covariance, we assign an Inverse Wishart

—

prior IW (I, @) to E. For working independence, where
E= 0121 , we specify noninformative inverse gamma (IG) pri-
ors with shape and scale parameters both set to 0.01 for . Ad-
ditionally, detailed prior specifications for E using the Bayesian
factor model are provided in Web Appendix B. We then assign
1G(0.01,0.01) for variances 0%, 0, and set a large value (ie, 10)
for the remaining variance hyper-parameters 032 , O'xZ.

Finally, there are a few tuning parameters required to be pre-
specified, including H and ], decomposition rank K, and spar-
sity and smoothness parameters ;¢ and v when the MRF prior
is used. Given M is a nuisance parameter, we directly specify
K to be a finite number. In our application, we set K = 3 to
capture sufficient information in M. For the rest of the tun-
ing parameters, we consider a grid of values, and implement our
model under all parameter combinations. Then, we empirically
choose the optimal fit using the Bayesian information criterion
(BIC). We name our model Bayesian SuGraph-based Mediation
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(BSGM) analysis with a diagonal E, and refer to the more com-
plex version with an Bayesian factor model for Z as Bayesian
SuGraph-based Mediation with factor model (BSGMg,, ) analy-
sis. We also include a version with unstructured E as Bayesian
SuGraph-based Mediation with correlation (BSGM,,,) analy-
sis. We present a schematic illustration of our analytical frame-
work in Web Figure 1.

3.2 Posterior inference
Given the observed data O = {T,», ALx,zi,0i=1,..., N},
the  unknown  parameters @O = [, B., {a, nh}le,
J K 2 2 2 0=
B, wYizr, T v a, anh,, 07, 05, 07, E] follow the
joint posterior distribution:

F(@IO) [ J18:f(Ti | ©)+(1-8)S(T; | @)} [ | f(Ai1©)
< TTTTC Om) () fanl) F(B1v) £(v,) £ (1))
b

X F(B)F(B)F(2) f(0?) f(02) f(02)
< T] {f<a1k>f<a2k)},
k

where f(T;| ©) and S(T; | ©) are the density and survival
functions for the time to disease onset implied from our struc-
tural AFT model, respectively. Under our current model as-
sumptions, with no shared parameters between model (1) and
(2), the joint posterior distribution of the 2 models can be ex-
pressed as the product of the posterior distributions of each in-
dividual model. To draw samples from the posterior distribution
for inference, we develop a tractable Markov chain Monte Carlo
(MCMC) algorithm through Gibbs samplers. In particular, we
address censored values using data augmentation, where the un-
observed survival times are imputed in every Gibbs iteration. A
brief overview of the sampling steps for BSGM, BSGM,,,, and
BSGM,,;, along with the detailed sampling procedure, can be
found in Web Appendix B.

After obtaining the posterior samples from the above MCMC
algorithm, based on the marginal posterior probability for the
elements in y and 7, and the posterior mean for each {w; }i.:l
and {n;, }f: » we are able to identify the informative brain sub-
graph configurations along each effect pathway. The informa-
tive connections within the subgraph are then determined based
on the posterior probability of y and 7 using a cutoft value of
0.5 in the spirit of the median probability model (Barbieri and
Berger, 2004). Subsequently, the posterior mean estimates for
the NIE, NDE, and TE and the corresponding 95% credible in-
tervals can be obtained directly according to the identification
formulas given in (4).

4 SIMULATION STUDY

We carry out simulation studies to evaluate the performance of
the proposed mediation methods. To mimic the data dimen-
sion in our application, we consider sample sizes of N = 100
and 500 with each subject’s brain connectivity R = 100. For the
exposure, we generate z; ~ Bern(0.5) and consider 3 covari-
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ates in addition to the intercept with the first 2 covariates gener-
ated from N(0, 1) and the last generated from Bern(0.65). We
setB, = 1.4,B, = (1.4,0.8,0.5)T and generate the coefficient
tensor M based on a rank-3 symmetric decomposition with
a;r ~ N(0, 0.4), ay, ~ N(0, 0.4) for k = 1, 2, 3. For the in-
formative network configurations linked with the exposure and
outcome, we consider 2 clique subgraphs with each of them con-
taining 8 nodes for the effect pathway to the outcome and an-
other separate subgraph containing 10 nodes for the pathway
from the exposure. For the effect coeflicients associated with
each subgraph which are represented by a symmetric matrix, in-
stead of generating them through the vector outer product as as-
sumed by our model, we simulate them from a Wishart distri-
bution using a Toeplitz matrix as the scale matrix. For the ran-
dom errors of the network mediator, we consider 2 scenarios—
one where the potentially correlated errors (Cor) are generated
from a Wishart distribution with a randomly simulated Toeplitz
scale matrix, and one where the independent errors (Ind) are
drawn from a Normal density with o = 0.8. Such different data
generating processes could facilitate the comparison between
BSGM and its variations—BSGM,,;, BSGMg,—under differ-
ent underlying correlation structures of the network mediator.
To assess the model fit under different censoring schemes, we
generate the censoring time C; under 2 scenarios: (1) indepen-
dent censoring with C; ~ £(0.04) where £(+) denotes an Ex-
ponential distribution; and (2) covariate-dependent censoring
with C; ~ £(¢"x;), where ¢ = (0.03, 0.02, 0.04)". After ob-
taining T}, we compare with C; and directly determine the cen-
soring indicator ;. The censoring rates for scenarios A and B are
35% and 30%, respectively. For each setting, we calculate the true
effect measures (NIE, NDE, and TE) according to the identifi-
cation formulas (4) as our true estimands. In total, we consider
8 simulated settings, and we generate 250 Monte Carlo datasets
for each setting for evaluation.

To implement the proposed BSGM along its 2 variations
BSGMgs;,, and BSGM,,,, we adopt noninformative Bernoulli pri-
ors for y and 7. The MCMC algorithm runs under random ini-
tials for 5000 iterations with 1000 burn-in. The posterior con-
vergence is monitored using both trace plots and the Gelman—
Rubin method (Gelman et al., 1992). The optimal value of |
and H is determined by BIC under a grid search from $ to 12.
The computational time to complete the full posterior inference
for BSGM, BSGMy,,, and BSGM,,, is approximately 8 h, 13 h,
and 17 h, respectively (Yale High-Performance Computing, one
CPU core, 3GB RAM). Given none of the existing methods
can incorporate a network mediator with a survival outcome, we
first consider existing univariate or multivariate mediator meth-
ods for comparison. Specifically, we vectorize the upper diago-
nal elements of each A; and include each connection as a me-
diator for univarijate-mediator mediation analyses under the R
package mediation (UMA), as well as all of them jointly for
multivariate-mediator mediating analysis implemented by the R
package mma (MMA). In addition, we consider the Bayesian
network mediation model (BNMM) (Zhao et al., 2022), which
is to our best knowledge, the only method that can handle a
network mediator. Given the BNMM is designed for contin-
uous outcomes, we adapt its model formulation to accommo-
date survival outcomes (detailed in Web Appendix B.1). Finally,

to evaluate the performance of each method, we consider the
mean or posterior mean (Mean), percentage bias (Bias), and fre-
quentist coverage rate ( Coverage) by the 95% confidence interval
(UMA, MMA) or the 95% credible interval (BSGM, BSGMg,,
BSGM,,;, BNMM) for estimating NIE, NDE, and TE, as well as
the Sensitivity and Specificity for selecting the active mediators.
To maintain consistency, the identified mediating subgraphs or
edges are always mapped back to the same input connectivity
matrix before compared with the ground truth. The simulation
results are summarized in Table 1.

Based on the simulation results, we observe that our pro-
posed BSGM, BSGMj,, and BSGM,,, outperform all compet-
ing methods in uncovering effect mechanisms across all set-
tings. Our methods achieve a small percentage bias, close to
90%~95% coverage for all the effect components (NIE, NDE
and TE), and close to 100% sensitivity and specificity for identi-
tying the active mediating subgraphs. These results indicate the
strong capacity of our methods to uncover each effect pathway
and its related brain network signals. For the competing meth-
ods, UMA and MMA have unsatisfactory performance, present-
ing much larger estimation bias and more conservative identi-
fication of mediators. This is expected given the network con-
figurations along each effect pathway are completely eliminated
in these methods. The BNMM, though considering a network
mediator as a whole unit before decomposing it via stochastic
block structures, fails to reflect the underlying subgraph con-
figurations, leading to compromised accuracy in estimation and
identification under our data generating mechanisms. As for the
comparison among BSGM, BSGM,,, and BSGM,,, the perfor-
mance of BSGM and its variations is highly consistent regardless
of the true correlation structure for the network mediator. No-
tably, in settings with a smaller sample size, BSGM even slightly
outperforms BSGMjs, and BSGM,,, when the network media-
tor has a non-independent correlation structure, possibly due to
the reduced number of unknown parameters required to be esti-
mated under a parsimonious specification.

Lastly, we also perform additional simulations in the presence
of noise subgraphs included in the data generation and consider
different sample sizes and censoring schemes. The detailed re-
sults of this set of simulations are presented in Web Appendix C.
The findings there are in line with the conclusions from our pri-
mary simulations.

S APPLICATION TO THE ADNI STUDY

We apply our method to the data extracted from the ADNI
database (adniloni.usc.edu). The ADNI including ADNII,
ADNI GO/2, and ADNI3 was launched in 2003 by the NIA,
NIBIB, FDA, private pharmaceutical companies, and nonprofit
organizations, as a public—private partnership. The goal of the
study was to test whether serial magnetic resonance imaging
(MRI), positron emission tomography, other biological mark-
ers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment
and early AD. In our current application, we are interested in
exploring the effect pathways among APOE+-, brain structural
connectivity and time to AD onset right-censored by death or
loss to follow-up. We focus on the 119 ADNI2 participants who
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TABLE 2 Identified sub-networks from the mediation analyses and their overlaps with the functional system.

Exposure Outcome Active

Functional system Subgraph 1 Subgraph 2 Subgraph Subgraph 1 Subgraph 2
Default mode 10 14 7 S 4
Dorsal attention 2 2 0 0 0
Frontoparietal 3 S 0 0 0
Limbics 12 10 3 3 3
Somatomotor 10 11 4 4 4
Subcortical 12 12 2 1 2
Ventral attention 3 6 1 0 1
Visual 8 8 1 0 1
#of nodes 60 68 18 13 15
Weight mean 0.57 0.73 0.21 0.11 0.14

have both baseline MRI and diffusion tensor imaging (DTI)
data collected in order to extract white matter fiber tracts to cre-
ate structural connectivity. Among these participants, 26 experi-
enced AD onset with the rest censored by death or loss of follow-
up. In our analyses, we include gender, age at the screening visit,
and years of education as covariates.

To construct structural connectivity for each subject, we first
perform anatomical parcellation on the high-resolution T1-
weighted anatomical MRI scan to obtain 68 gyral-based ROIs
through the FreeSurfer. We employ the Lausanne parcellation
scheme to subdivide these ROIs into 83 small ROIs. After pre-
possessing, including correction for motion and eddy current ef-
fects in DTTimages, the DTI data are output to Diffusion Toolkit
for fiber tracking. The FACT (fiber assignment by continuous
tracking) algorithm is performed to initialize tracks from many
seed points. It propagates these tracks along the most signifi-
cant principal axis vector within each voxel until specific termi-
nation criteria are met. In this application, following previous
structural connectivity studies (Zhao et al.,, 2023), we charac-
terize each connection by the number of fiber tracks connect-
ing the 2 ROIs divided by the mean volume of the correspond-
ing ROI pairs. This induces a continuous measure for structural
connection with each subject’s structural connectivity summa-
rized by an 83 x 83 connectivity matrix. As a demonstration,
we randomly select a subject and show the fiber traits and the
summarized connectivity matrix in Web Figure S3. For our ge-
netic exposure APOE4+-, we directly use the APOE genotyping
data provided by the ADNI database. The data was generated for
each participant at the time of enrollment using DNA extracted
by Cogenics from a 3 mL aliquot of EDTA blood, and different
APOE alleles were defined by SNPs rs429358 and rs7412. After
summarizing the binary indicator for the presence of APOE €4
allele, the prevalence of APOE4+- is 0.48 across the cohort.

We perform mediation analysis using our proposed BSGM,
which may be preferred over BSGM,, given the sample size. The
implementation details follow those in the simulations, and we
visualize the normality of errors by residual Q-Q plots in We
b Appendix D.2. Notably, a proportion of structural connections
are 0 across all samples. To avoid model misspecification, we ex-
clude these entries, along with the diagonal ones, following the
procedure in model (1) for the connectivity matrix A, as well as
random error vector e;. Eventually, we identify 2 subgraphs influ-

enced by the genotype and one impacting the outcome. The me-
diating subgraphs that bridge the genetic exposure to AD onset
are obtained by overlapping these network components. Based
on the posterior samples, we also estimate the NDE, NIE and TE
with 95% credible intervals as —1.36(—2.14, —0.68),—0.04 (
—0.55,0.43) and —1.41(—2.44, —0.60), respectively. These
results quantify the expected change on the log-survival time
when altering genetic exposure, brain connectivity, and both. All
3 estimates are negative, indicating that APOE4+ will induce
faster AD onset through both its direct effect and indirect ef-
fect mediated by brain structural connectivity. The 95% credi-
ble intervals for both the NDE and TE exclude 0. To further in-
vestigate how this effect mechanism functions along the identi-
fied brain subgraphs, we map the nodes in each subgraph to the
canonical brain functional systems summarized in Table 2. As
can be seen, the majority of the identified subgraphs involve the
Default Mode, Limbic and Somatomotor systems. Relatedly, the
existing literature reveals that Default Mode is one of the most
well-known neuroimaging biomarkers for AD (Lee etal., 2016),
and the Limbic system is also severely and routinely affected
during neurodegeneration (Hopper and Vogel, 1976). We also
provide visualizations for the identified subgraphs and the effect
pathways they belong to in Figure 2, and illustrate the identified
subgraphs are filled with cross-system connections. For the ac-
tive mediating subgraphs, most of the cross-system connections
are also among the Default Mode, Limbic, and Somatomotor
systems. In contrast to the cross-system connections, there are
only a small proportion of within-system connections as shown
in Figure 2. This phenomenon is in accordance with the AD lit-
erature (Weiler et al, 2014), which suggests only sparse con-
nections within functional systems in causing clinical symptoms
and cognitive deficits. Finally, Figure 3 shows the components
within the active mediating subgraphs that are negatively and
positively linked with the disease onset outcome. While those
sub-networks within individual subgraphs are not overlapping,
there are common connections within and between canonical
functional systems in both positive and negative sub-networks.
Overall, both the characterization of the AD onset-related imag-
ing genetics effect mechanism and the cartography of mediating
brain network configurations provide important information to
understand the etiology of the disease and direct future neuronal
targets for genetic interventions.
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Identified subgraph(s) from the genetic
exposure to brain connectivity

® Visual Ventral Attention ® Dorsal Attention
® Somatomotor @ Limbic Subcortical
@ Default ® Frontoparietal

Identified subgraph(s) from the brain
connectivity to AD survival

FIGURE 2 The brain network view for the identified subgraphs along each effect pathway as well as the potential mediating subgraphs.

6 DISCUSSION

In this paper, we propose a Bayesian mediation framework with
a right-censored time-to-event outcome and a network-variate
mediator to dissect the effect pathways among brain structural
connectivity, genotype of interest, and time to disease onset.
We develop a symmetric matrix-variate AFT model to charac-
terize the effect pathway from brain connectivity to the out-
come, and a symmetric matrix response regression to capture
the impact from the genetic exposure to brain connectivity.
By assuming structural connectivity operates along different ef-
tect paths through separate sets of clique subgraphs, we im-
pose both within-graph sparsity and between-graph shrinkage
to identify informative subgraph configurations and the active
mediating network elements. We demonstrate the advantages of
our method through extensive simulations and application to the
landmark ADNI study.

In our modeling framework, we adopt the symmetric Tucker
decomposition and assume that structural connectivity medi-
ates the TE through distinct signaling subgraphs. An important
direction for future work is to explore more robust nonpara-
metric options to characterize the topological structure for con-
nectivity. Additionally, because the connectivity matrix A; in-
cluded nonnegative entries, a useful extension of our methodol-
ogy is to allow for a link function in the mediator model. This
would require a reformulation of the pathway effect measures
in Proposition 1 and may increase the computational intensity

of our Bayesian algorithm. In our current application, we assign
the same 0.5 prior probability for each node to be included in
the signaling subgraphs (characterized by the selection indica-
tors 71y, and y]-,). Such a prior specification is noninformative
and does not integrate potential scientific knowledge. Alterna-
tively, should there be robust evidence from prior studies sug-
gesting that certain brain regions are critical, one could assign
a higher prior inclusion probability related to those brain re-
gions to enhance the estimation efliciency and facilitate the in-
terpretation of results. In Web Appendix D.1, we provide com-
parisons with different informative priors based on a predeter-
mined set of nodes under our ADNI application. Our findings
confirm the robustness of the noninformative prior specifica-
tion in estimating the direct and indirect effect, but demonstrate
the sensitivity of the identified subgraphs to the choice of priors
that leverage scientific knowledge. Finally, although our method
currently focuses on a binary exposure, which is the most com-
mon setting in mediation analysis, it can be readily extended
to accommodate a multi-category exposure. With a multi-
category exposure, one can proceed by introducing dummy vari-
ables within the structural modeling framework (Hayes and
Preacher, 2014), and update the identification expressions in
Proposition 1. The proposed Bayesian inferential procedure
should be straightforwardly adapted for pathway analysis with
a multi-category exposure according to the updated mediation
formulas.
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FIGURE 3 The identified sub-networks within the active mediating subgraphs that are negatively and positively linked with time to AD.
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