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A B S T R A C T  

Techno lo gical adv a nce me n ts in noninvasive imagin g fa cilitate the construction of whole brain in te rc onne cte d netw orks, known as brain c on- 
nect ivity. Exist in g approa ches to analyze brain c onne ctivity fre que n tly disaggr ega te the e n tire network in to a v e ctor of unique e dges or s umm ary 
me asures, le a din g to a subs ta n ti al los s of information . Motiv ated by the need to explore the effect mechanism among genetic exposure, brain 

c onne ct ivity, and t ime to dis eas e on s e t with m aximum inform at ion extract ion, we propose a Bayesia n a pproach to model the effect pa th way be- 
tw e en each of these components while quantifying the mediating role of brain netw orks . To ac c ommodate the biological ar chitectur es of brain 

c onne ctivity c onstructe d along white ma t te r fibe r tracts, w e dev e lop a structural mode l which include s a symmetric matrix-v ari ate ac c elerate d 

failure time model for dis eas e on s e t and a symmetr ic matr ix respon s e regres sion for the ne twork-v ari ate medi ator. We further impos e within- 
gra ph spa rsity a nd betw e e n-gra ph shrinkage to ide n ti fy infor m ativ e netw ork c onfigurations a nd eliminate the in te rfe re nce of no is y compone n ts. 
Simul ation s are carried out to confirm the adva n t age s of our proposed method over existing altern ativ es . By applying the proposed method to the 
la ndma rk Alzheime r’s Dis eas e Neuroimaging Initi ativ e study, w e obt ain ne urobiologically plausible insi gh ts that may inform future in te rve n tion 

strate gies . 

KEY W OR DS : ac c elerate d failure time model; brain c onne ctivity; im aging genetics; me diation an alysis; n atural indire ct effe ct; shrinkage and 

r egulariza tion. 
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1 I N T R O D U C T I O N 

he field of ne twork neuros cienc e acknowle dges th at a brain
e rvous sys te m is defined b y in te rc onne ctions of its neuron al
nits . Through advanc es in noninvasive imaging techniques,
ne could e st ablish a carto grap hy of thes e neuronal in te rcon-
ections known as brain connectivity. Compared with regional
euroim aging meas ure me n ts th at ch a racte rize brain structure
r function at separate location s, who le-brain c onne ctivity pro-
ides unique des cription s of neuronal patte rns, a nd is expe cte d
o align with diffe re n t types of brain act ivit ies. 

Although s uc c es s es h av e be en achiev e d in r ela ting c onne ctiv-
ty with h uma n behavior, mos t of these s tudies we re based on
ealthy individual s. It i s like ly that import a n t dis eas e me trics,
uch as time to dis eas e on s e t, are as s oci at ed with alt ered brain
a t te rns a nd their r ela tionship may further be shaped by po-

e n tial exposure factors. The methods proposed in this article
r e motiva ted by Alzheimer’s dis eas e (AD), a neurodege ne rative
is eas e where brain atrophy leads to c ognitiv e de cline. Be side s
euro lo gical changes, the risk and pr ogr ession of AD are strongly

nfluenc e d by genetics . The most prominent genetic risk factor
de n tified is the ε4 allele of the APOE gene (APOE4), which
s known to subs ta n ti ally increas e the dis eas e risk and lower
e c eiv e d: Nov e mbe r 28, 2022; Revise d: July 27, 2024; Ac c epte d: O ctober 22, 2024 
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he on s e t age of AD. Re c e n t adva nce s in ne uroimaging genetics
 av e s ta rt ed t o substitut e dis eas e p he notypes with imaging e n-
ophenotypes to explore the pote n tially associated genetic va ri -
 n ts (Hashimoto et al., 2015 ). How ev er, the patho lo gical mech-
 nism a mong ge netic fa ctors, neuroimagin g traits, and dis eas e
utcomes is yet to be fully elucidated. 
To unc ov er the effe ct me ch a nism a mong the ge netic exposure,

r ain structur al c onne ctivity define d by white ma t te r fibe r traits,
nd time to AD on s e t, we propos e a Bayesi an medi ation frame-
ork with a time-to-eve n t outcome a nd a ne twork-v ari ate medi-
 tor. Media tion analysis has been developed to unde rs ta nd the
e ch anis ms re lating to how one phe nome non exe rts its influ-

 nce on a nothe r, via a n in te rmedi ate v ari ab le. By part it ioning the
v erall effe ct on a depe nde n t va riable in to a direct effect com-

ng from an independent v ari ab le and an indire ct effe ct pass-
ng through a mediator, one is able to dis s e ct the effe ct path-

ays functionin g amon g diffe re n t compone n ts. The initial im-
le me n ta tions of media tion analysis focus on a single mediator
ith a con tin uous outcome (Imai and Yamamoto, 2013 ), with

xten sion s to ac c ommod ate multiv ari ate or high-dimensional
ed iator s (Derkach et al., 2019 ; Song et al., 2020 ) and other

ype s of outcome s, including bina ry (Wa ng et al., 2013 ) a nd
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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time-to-eve n t (Hua ng a nd Ya ng, 2017 ) outc omes . Most of the
s tudies a pp lying thes e me thod s to neuroimag ing d ata con sider
mediating traits in a scalar or v e ctor form s umm arize d by re-
gion al im aging meas ure me n ts (Lindquis t, 2012 ; Zhao a nd Luo,
2019 ; Chén et al., 2018 ; Zhao et al., 2021 ). Mor e r e c e n tly, Zhao
et al . ( 2022 ) init iated a n ea rly effort to ha ndle brain functional
c onne ctivity as a me diator. How ev er, they c onsidere d a c ontin-
uous outcome and assumed a s tochas tic block structure for the
medi ating ne tworks, which is not app licab le for our mot ivat ing
example as it inv olv es br ain structur al c onne ctiv ity w ith distinct
netw ork archite ctures and a time-to-event outcome subject to
ri gh t ce n s oring. 

To properly model this c omplicate d neuro bio lo gical me ch a-
ni sm, it i s es s e n tial to cha racte rize the unique topo lo gical form
of structural c onne ctiv ity w ith bio lo gical in te rpretability. Cur-
re n t a nalyses on s tructural c onne ctivity prim arily r epr ese n t the
who le ne tw ork as a v e ctor of unique e dges or s umm ary meas ures
(Balles te r-Pla né et al., 2017 ; Chen et al ., 2022 ), result ing in a
los s of topo lo gical information . Wang e t al. ( 2021 ) s umm arize
the c onne ctiv ity v ia a n umbe r of sm all clique s ub grap h s, which
aligns with the biological ar chitectur e of white ma t te r fibe r traits.
Tak ing thi s idea further, w e propose th at structural c onne ctiv-
ity mediates the rel ation ship through a s e t of signaling sub grap h s
tha t ar e influenc e d by the genotype and affect the dis eas e on s e t
outc ome. To unc ov er the effe ct me ch anism, w e propose a struc-
tur al modeling fr amework including a symmetr ic matr ix-var iate
ac c elerate d failure time (AFT) model for the effect pa th way fr om
brain c onne ctivity t o the out c ome, and a symmetric m a trix r e-
spon s e r egr ession for the effect pa th way fr om the genetic expo-
sure to brain connectivity. Under a Bayesian paradigm, we im-
pos e within-grap h sparsity to s e lect import a n t netw ork c onfigu-
ration s, along with be tw e e n-gra ph shrinkage to eliminate unde-
sirable in te rfe re nce from no is y ele me n ts. To our bes t knowled ge,
each of the above novel modeling compone n ts itself has not yet
be en c onsidere d in previous brain imaging studies. 

The re mainde r of the article is organized as follows . In Se c-
tion 2 , w e introduc e a new netw ork-variate me diation framew ork
with symmetric and hollow structural cons train ts . In Se ction 3 ,
we d isc uss the prior spec i fications and develop the posterior
s amp ling proc e dure s for st at ist ical inference. We conduct sim-
ulation studies to evaluate the model pe rforma nce in Section 4 ,
a nd imple me n t our method to data extracted from Alzheimer’s
Dis eas e Neuroimaging Init iat ive (ADNI) study in Section 5 .
Section 6 concludes. 

2 M ET H O D S  

2.1 Mode l fo rm ulatio n 

We s ta rt with a ge ne ral model form ul ation . For subj ect i (i =
1 , . . . , N) , let T i denote the time to dis eas e on s e t, and C i the
ri gh t ce n s oring time. The o bs erv e d follo w - up time can be re p-
rese n ted as ̃  T i = min { T i , C i } , and we define a cen s oring indica-
tor δi = 1 if a n eve n t is o bs erv e d and 0 if cen s ored. Le t z i rep-
rese n t the binary exposur e, corr esponding to the APOE4 posi-
tivity (APOE4 + ) in our application chara cterizin g the presence
of at least one ε4 al lele. Meanwhi le, x i ∈ R 

Q×1 re pre se n ts a set
of cov ari at es t o be adjust ed for, including a n in te rcept. We as-
sume the brain structural c onne ctivity can be s umm arize d by a 
graph G i = (R , E i ) with a common s e t of nodes R and s ubje ct-
spec i fic edges E i . Given the grap h s are defined under the same 
brain atlas, the sh are d s e t of nodes is defined by a total of R brain 

regions of in te res t (ROIs) within which we extract data from vox- 
els . Subse que n tly, we r epr ese n t G i b y a symmetric c onne ctivity
matrix A i ∈ R 

R×R ; its (w, l) th e n try a iwl is a con tin uous va riable
cha racte rizing the white ma t te r fibe r de n sity v alue be tw e en ROIs
w and l, 0 < w � = l ≤ R. By construction, A i is a hollow matrix 
with a iwl = 0 , if 0 < w = l ≤ R. 

Our goal is t o charact erize the pot ential pa th ways among the 
time-to-eve n t outcome, APOE4 ge notype, a nd brain s tructural 
c onne ctivity. Sim ulta ne ously, w e aim to ide n tify brain sub grap h
c onfigurations th at function along each effect path where the 
neural sys te m is inv olv e d. As state d previously, it is importa n t 
to maintain the topo lo gical ar chitectur es of brain connectiv- 
ity. On the one ha nd, diffe re n t from s oci al ne tw orks, each c on-
ne ctivity m atr ix A i is symmetr ic a nd with a hollow s tructure 
corresponding to the bidire ction al structural c onne ctiv ity w ith 

no self-c onne ctions . On the other hand, structural c onne ctivity 
could ope rate unde r dis tinct topo lo gical s tructures whe n linked 

with ge netics a nd dis eas e profiles. W ith thos e con sideration s, we 
propose the following structural models 

log (T i ) = x T i βx + 

〈 J ∑ 

j=1 

ω j β j β
T 
j , A i 

〉 

F 

+ βz z i + εi ; (1) 

A i = G i − Dg [ G i ] + E i ;

G i = M ×3 x T i + 

H ∑ 

h =1 

ηh αh α
T 
h z i . (2) 

Mode l ( 1 ) capture s the effects on the time-to-eve n t outcome 
through an AFT model with βx ∈ R 

Q×1 and βz r epr ese n ting 
the effects of cov ari ates and exposure on the logarithmic sur- 
vival t ime, respect ively. We assume εi ∼ N (0 , σ 2 

0 ) in our a ppli - 
cation without loss of ge ne rality, as othe r pa ra metric dis tribu- 
tions such as log -norm al or extreme value distributions could 

also be adopted with minor modifications. For the mediator 
model, g iven it i s c ommon to ass ume a lo w -ra nk s tructure for
brain c onne ctivity d ata ( Zhao e t al., 2023 ), we adopt a sym- 
me tric ten s or r ank- J Tuck er de c omposition (Ko ld a and B a der,
2009 ) which is sy nony mous with a n ei ge nvalue de c omposition 

for a symmetric matrix by r epr ese n ting the me diator-spe c i fic co- 
efficie n t matrix via 

∑ J 
j=1 ω j β j β

T 
j ; the connectivity matrix then 

as s oci ates with the outcome by a Frobenius inner product 〈·, ·〉 F . 
Fr om a neur o bio lo gical perspe ctiv e, s uch a r epr ese n tation allows 
us to capture the impact from structural c onne ctivity through 

a c ombin ation of J netw ork c onfigurations, c orresponding to 

the afore me n tione d s ub grap h s . Each s ub grap h j is r epr ese n ted
thr ough a ma trix ω j β j β

T 
j with coefficie n ts β j ∈ R 

R×1 describ- 
ing the within sub grap h effect of each node, and ω j capturing the 
impact betw e en s ubgraphs . Giv en th a t differ ent brain network 
configurations a re e mplo yed unde r dis tinct neur onal pr oces s es, 
it is ass ume d each β j is sparse to induce a spec i fic clique structure 
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ontributing to the effect pa th way on the outcome. Importa n tly,
n troducing spa rsity with a Tucker de c omposition wi l l re duc e
he burden of est imat ing parameters over a high-dimensional
ea tur e space. The technical details on sparsity will be d isc ussed
n Section 3.1 . 

Along with model ( 1 ), model ( 2 ), which consists of 2 sub-
ode ls, capture s the impact from the exposure to the c onne ctiv-

ty medi ator. W ith A i on the left-hand side of the e quation, w e es-
e n tially h av e a netw ork r esponse r egr ession, wher e the network
s c onstraine d by a symmetric and hollow structure. To align

ith the 0 diagonal ele me n ts of A i , we firs t de note the matrix-
 ari a te effect fr om the cov ari a tes and exposur e as G i . Within G i ,

 ∈ R 

R ×R ×Q is the coefficie n t te n s or a djustin g for the effects
rom the cov ari ates, and we expect M to be se mi -symmetric un-
e r fron t al slice s g iven each M : , : ,q i s symme tric. Simil ar to the
peration in model ( 1 ), we employ a symmetric rank- H Tucker
e c omposition s uch th a t the impact fr om exposur e to c onne ctiv-

ty functions is through H subgra phs, a nd that the structural con-
gur ation of subgr aph h is captured by αh ∈ R 

R×1 with weight
h . Since the model formulation for G i only gua ra n tees a sym-
etric structure, to ultimately link G i with the hollow matrix
 i , we wi l l remove the diagonal ele me n ts from G i denoted by
g [ G i ] while keeping the off-diagonal ele me n ts unaffected. For

he residual error matrix E i which is also spec i fied to be symmet-
ic and hollow, we r epr ese n t a c olle ction of its u pper-d iagonal el-
 me n ts as a v e ctor e i ∈ R 

R (R −1) / 2 ×1 , and ass ume e i ∼ N ( 0 , �) .
n our n ume rical s tudies, w e c on sider 3 imp le me n tations for co-
 ari anc e m atrix � by ass uming (1) � is a ge ne ral cova ria nce
 atrix to ac c ommodate a rbitra ry corr ela tions among c onne c-

ions, (2) a B ayesian fa ctor model (Zhu et al., 2014 ) that in-
roduces a lo w -rank r epr ese n tation for �, a nd (3) � = σ 2 

1 I to
e duc e the c omputation al c omplexity. Fin ally, as de mons trated
reviously in Bayesian ten s or r egr e ssion mode ls, althou gh the
argins for β j and αh may not be identifiab le, the coefficie n t
 atric es (Guh aniyo gi e t al., 2017 ) a nd subgra ph configurations

nder our model structure (Tian et al., 2024 ) are uniquely
etermined. 
It is worth emphasizing that in practice, diffe re n t types of brain

 onne ctivity preserv e distinct bio lo gical ar chitectur es. For ex-
mple, brain function al c onne ctivity t ends t o prese n t a modu-
a r s tructur e to calibra te differ ent function al systems . We study
tructural c onne ctivity here by modeling the sub grap h struc-
ures along effe ct pathways, c onsis te n t with the densely con-
e cte d white m a t te r fibe r tracks within ce rt ain node s for efficie n t
eural support (Bas s e tt and Sporn s, 2017 ). Our approach is in
h arp c ontrast to Zh ao et al . ( 2022 ) where funct ion al c onne ctiv-
ty r epr ese n ted b y modula r s tructure se rv es as the me diator for a
on tin uous outcome. 

2.2 Effect pathways 
o qua n tify the effect pa th w ays among the surviv al outcome,
xpos ure, and netw ork-v ari ate medi ator, w e introduc e c oun te r-
actual r epr ese n tations to define the effect measures under the
tructural modeling framework. Let A(Z) be the value of the
 onne ctivity me diator under expos ure Z with Z = z or Z = z ∗
enoting the 2 pos sib le st ate s. Let T ( Z, A( Z)) be the coun te r-

actual survival time under Z and mediator A(Z) . Given the co-
 ari ates X = x, we define the natural indire ct effe ct (NIE), nat-
ral direct effect (NDE), and total effect (TE) as 

NIE = E [ log { T ( z, A( z ) } | X = x] 

− E [ log { T ( z, A( z ∗) } | X = x] ;
NDE = E [ log { T ( z, A( z ∗) } | X = x] 

− E [ log { T ( z ∗, A( z ∗) } | X = x] ;
TE = NIE + NDE = E [ log { T ( z, A( z ) } | X = x] 

− E [ log { T ( z ∗, A( z ∗) } | X = x] . (3)

Followin g common pra ctice for time-to-eve n t outcomes (Va n-
er We ele, 2011 ), model ( 3 ) defines each effect compone n t on

he log -s urvival time scale aligning with the AFT model. In
ur spec i fic applicat ion, NI E quant ifies the expe cte d ch ange in

og -s urvival time when the c onne ctivity me diator ch anges from
(z ∗) to A(z ) with fixed genetic exposure; NDE cha racte rizes

he expe cte d ch ange in log -s urvival time by altering the genetic
xposure when brain connectivity is fixed; and TE is the sum
f NIE and NDE, and hence captures the overall change in log-

survival time unde r diffe re n t s t ate s of genetic exposure. We h av e
he following proposition for each effect compone n t. 

roposition 1 Under the pro p osed structu ral model r epr e sented b y
 1 ) and ( 2 ) and definit io n s of th e different effe ct co mpo nents in ( 3 ),
t can be shown that 

NIE = (z − z ∗) 
J ∑ 

j=1 

H ∑ 

h =1 

×
〈 
ω j β j β

T 
j , (ηh αh α

T 
h − ηh Dg [ αh α

T 
h ]) 

〉 
F 
, 

NDE = βz (z − z ∗) 

TE = (z − z ∗) 
J ∑ 

j=1 

H ∑ 

h =1 

×
〈 
ω j β j β

T 
j , (ηh αh α

T 
h − ηh Dg [ αh α

T 
h ]) 

〉 
F 

+ βz (z − z ∗) . (4)

 he deta iled deriva t io ns fo r the a bo ve pro p osit io n ar e pr ovide d i n We
 Appendix A.2 . 

Compared with the effect measures under an existing media-
ion analysis with a s cal ar or v e ctor me diator, the abov e proposi-
ion reveals that the structural connectivity mediator contributes
o the TE and NIE by c ombining s ub grap h s identified along the
xposure to mediator effect pa th w ay, and thos e ide n tified along
he mediat or t o out c ome effe ct pa th way. Mor e ov er, w e c onclude
r om ( 4 ) tha t ther e ar e sub grap h s that abs orb impact from the
xposure without chan gin g the outcome; and sub grap h s that al-
er the outcome intrinsically without intera ctin g with the ex-
osure. To further elaborate, Figure 1 i l lustrates this o bs erv a-

ion using a i l lus trative exa mple of 2 inform ativ e s ub grap h s from
he exposure to mediator pathway, and 2 inform ativ e s ub grap h s
r om the media t or t o survival out come pa th way. Eve n tually, the
ote n ti al medi a tors ar e the ove rla pping configura tions tha t im-

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data


4 � Biometrics , 2024, Vol. 80, No. 4 

FIGURE 1 As an i l lustration, the upper panels show (A) 2 inform ativ e s ub grap h s from the exposure to mediator effect pathway, and (B) 2 
inform ativ e s ub grap h s from the medi at or t o survival out c ome effe ct pa th way. The bot tom panel pr o vides (C) the a ctiv e me diating c ompone n ts 
contributing to the natural indirect effect (NIE), which consist of the ove rla pping network configuration. 
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p act both p a th ways as sho wn in the lo we r pa nel of Fi gure 1 . In
Web A ppendix A .2 , we al so di s cus s a n alte rn ativ e definition
for effects using log-expected survival times, and show that the
ultima te formula tions for each effect metric are identical un-
de r diffe re n t definitions. It i s al so worth noting that within
the causal mediation framew ork, sev e ral s tructural as sumption s
(Imai et al., 2010 ) are re quire d for a causal in te rpretation un-
de r a s tructural r egr e ssion frame work. However, the s e as sump-
tions are often unverifiab le from the o bs erv e d data, and it is pos-
sible that not all confounders are meas ure d in a single study.
In our brain imaging application, due to the pote n tial for un-
meas ure d c onfounding, w e e mplo y our mediation method as
an exploratory tool for association al an alysis to generate use-
ful hypothe se s, rathe r tha n a c onclusiv e too l for caus al in-
fe re nc e. D espite our focus on as s oci ation al an alysis, w e pro-
vide the ide n t ificat ion assumpt ions for causal in te rpr eta tion in
Web A ppendix A .1 . 

3 B AY E  S I A  N  I N F E R E N C E 

3.1 Prior sp eci fication 

We propose a Bayesian algorithm to estimate the model param-
ete rs. Compa r ed with media tion methods under a freque n tis t
pa radi gm, Bayesia n modeling is pa rticula rly a t tractive due to
its ability in automatically capturing the uncertainty for all ef-
fe ct estim ates with c omp lex modeling (Schoot e t al., 2013 ). As
me n t ioned previously, extract ing informat ive brain sub grap h s
for each pa th captur ed by { β j , ω j } J j=1 and { αh , ηh } H 

h =1 is as im-
porta n t as es t imat ing the NI E, NDE, and TE for unc ov ering
the effect pa th ways. De noting β j = (β j1 , . . . , β jR ) T a nd αh = 

(αh 1 , . . . , αhR ) T , we assign point mass mixture priors for each 

ele me n t of β j and αh to impose sparsity as 

β jr ∼ (1 − γ jr ) N (0 , υ0 ) + γ jr N (0 , υ1 ) ;
αhr ∼ (1 − τhr ) N (0 , υ0 ) + τhr N (0 , υ2 ) , (5) 

with j = 1 , . . . , J; h = 1 , . . . , H; r = 1 , . . . , R. Her e, υ0 r ep-
rese n ts a ve ry small va ria nc e c ompone n t, υ1 a nd υ2 a re va ri -
anc e c omponents with a large value, and γ jr and τhr are the 
late n t selection ind icator s introduc e d to ide n tify nonze ro ele- 
me n ts within the 2 s e ts of ne twork-v ari ant c oefficients . Spe c i f-
ically, in the case of γ jr = 1 , w e h av e β jr � = 0 , indicating that
the c onne ctions linke d with node r r epr ese n t a n inform ativ e s ub- 
graph impa ctin g the time to dis eas e on s e t. Simil a rly, whe n τhr =
1 , w e h av e αhr � = 0 indica ting tha t connections linked with node 
r r epr ese n t a n inform ativ e s ub grap h influenc e d b y the ge netic ex-
posure. 

To spec i fy priors for γ = { γ1 r , . . . , γJr } R r=1 and τ = 

{ τ1 r , . . . , τHr } R r=1 , one can either impose a noninform ativ e 
Bernoull i d istribution for each of the elements, or resort to a 
mor e informa tive prior by incorporating kno wledg e of bio lo gi- 
cal structure. Such structural information includes brain regions 
located symme trically be twee n ri gh t a nd left brain he misphe res, 
or netw orks c oming from nodes th a t ar e c onne cte d at the 
populat ion level . To first s umm arize the information, one could 

conside r a n indire cte d knowle d ge gra ph G 0 b y including a n 

edge if 2 nodes are symmetric on hemispheres or c onne cte d 

populationally, a nd the n e ncourage s moothne s s on s election 

over G 0 using a Markov random field (MRF) prior (Sun et al., 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
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018 ) 

p( γ, τ) ∝ exp 

⎧ ⎨ ⎩ 

μ
∑ 

r 

⎛ ⎝ 

J ∑ 

j=1 

γ jr + 

H ∑ 

h =1 

τhr 

⎞ ⎠ 

+ ν
∑ 

r ∼r ′ 

⎛ ⎝ 

J ∑ 

j=1 

γ jr γ jr ′ + 

H ∑ 

h =1 

τhr τhr ′ 

⎞ ⎠ 

⎫ ⎬ ⎭ 

(6) 

ith r ∼ r ′ indicating a c onne ction at G 0 . In model ( 6 ), μ con-
rols the n umbe r of nodes sele cte d in a subgra ph, a nd η impacts
he s moothne ss refle cte d by the de gre e of c onfidenc e to include
oth nodes in the inform ativ e s ub grap h s if they are c onne cte d
t a prior level. When both μ = ν = 0 , model ( 6 ) dege ne rates
o noninform ativ e Bernoull i d istributions without incorporat-
ng prior structural information. In addition, the wei gh ts { ω j } J j=1 
 nd { ηh } H 

h =1 cha racte rize gra ph-lev el effe cts for the J s ub grap h s
mpa ctin g the outcome and H sub grap h s influenc e d by the ex-
osure. To di stingui sh the ro le each sub grap h p l ays in the effect
e ch a nism, a nd more importa n tly to shrink the effects as s oci-

te d with s ub grap h s that link loos ely with both outcome and ex-
os ure, w e assi gn La p l ace priors (Pa rk a nd Cas ell a, 2008 ) as 

ω j ∼ L (λω ) ; ηh ∼ L (λη) ;
j = 1 , . . . , J; h = 1 , . . . , H, (7) 

ith shrinkage pa ra mete rs λω a nd λη . Since J a nd H a re un-
nown in practice, the Lap l ace priors, along with the shrinkage
a ra mete rs, allow the model to eliminate noise graph for more
fficie n t infe re nc e about the effe ct pa th ways. 
For the remaining parameters, most of them wi l l be as-

i gned ca nonical priors chose n b y a n alytical c onv e nie nce in-
luding βx ∼ N ( 0 , I σ 2 

x ) and βz ∼ N(0 , σ 2 
z ) . We further as-

 ume the c oefficie n t te n s or M , which as s oci ates the cov ari ates
ith the c onne ctivity me di ator, fo llows a symme tric rank- K ten-

or de c omposition as M = 

∑ 

k∈ [ K] a 1 k ◦ a 1 k ◦ a 2 k with a 1 k ∈
 

R×1 , a 2 k ∈ R 

Q×1 to downsize the n umbe r of pa ra mete rs a nd
 1 k ∼ N ( 0 , I σ 2 

a ) and a 2 k ∼ N ( 0 , I σ 2 
a ) for k = 1 , . . . , K. For

he cov ari anc e m atrix �, w e c onside r 3 diffe re n t imple me n t a -
ion s and as sign corresponding priors ac c ordingly. When ass um-
ng a n uns tructure d c ov ari anc e, w e assign an Inverse Wishart
rior IW (I , R (R −1) 

2 ) to �. For working indepe nde nce, whe re
= σ 2 

1 I , w e spe c i fy noninfor m ativ e inv e rse ga mma (IG) pri -
rs with shape and scale parameters both s e t to 0.01 for σ 2 

1 . Ad-
itional ly, detai led prior spec i fications for � using the Bayesian

actor model are provided in Web Appe ndix B . We the n assi gn
G(0.01, 0.01) for v ari ances σ 2 

z , σ
2 
0 , and s e t a l arge v alue (ie, 10)

or the remaining v ari ance hyper-parame ters σ 2 
a , σ

2 
x . 

Finally, the re a re a few tuning pa ra mete rs r equir ed to be pre-
spec i fied, including H and J, decomposition rank K, and spar-
ity and s moothne s s parame ters μ and ν when the MRF prior
s us ed. G iven M is a n uisa nce pa ra mete r, w e dire ctly spe c i fy

to be a finite n umbe r. In our a pp lication, we s e t K = 3 to
apture su ffic ient infor mation in M . For the rest of the tun-
ng pa ra mete rs, w e c onsider a grid of values, and imple me n t our

odel under all parameter c ombin ations . Then, w e empirically
hoose the optimal fit using the Bayesian information cr iter ion
BIC). We name our model B ay esian S u G r ap h-bas e d M e diation
BSGM) analysis with a diagonal �, and refer to the more com-
lex version with an B ayesian fa ctor model for � as B ayesian
 u G rap h-bas e d M e diation with f actor m ode l (B SGM fm 

) analy-
i s. We al so include a version with unstructured � as B ayesian
 u G rap h-bas e d M e diation with c o r rel ation (BSGM cor ) analy-
is. We prese n t a sche matic i l lustration of our a nalytical fra me-
ork in Web Figure 1 . 

3.2 Poste rio r infe re nce 
 iven the o bs erv e d data O = 

{˜ T i , A i , x i , z i , δi ; i = 1 , . . . , N 

}
,

he unknown pa ra mete rs � = [ βx , βz , { αh , ηh } H 

h =1 ,

 β j , ω j } J j=1 , τ, γ, { a 1 k , a 2 k } K k=1 , σ
2 
z , σ

2 
0 , σ

2 
1 , �] follow the

oin t pos te rior dis tribution: 

f ( �|O) 
∏ 

i 

{ δi f ( ̃  T i | �) + (1 −δi ) S ( ̃  T i | �) } 
∏ 

i 

f (A i | �) 

×
∏ 

h 

∏ 

j 

{ f (ηh ) f (ω j ) f ( αh | τh ) f ( β j | γ j ) f ( γ j ) f ( τh ) } 

× f ( βx ) f (βz ) f ( �) f (σ 2 
1 ) f (σ

2 
0 ) f (σ

2 
z ) 

×
∏ 

k 

{
f (a 1 k ) f (a 2 k ) 

}
, 

he re f ( ̃  T i | �) a nd S ( ̃  T i | �) a re the de nsity a nd survival
unctions for the time to dis eas e on s e t imp lied from our struc-
ural AFT mode l, re spe ctiv ely. Under our current model as-
 umptions, with no sh are d pa ra mete rs betw e en model ( 1 ) and
 2 ), the joint poster ior distr ibution of the 2 models can be ex-
res s ed as the product of the pos te rior dis tributions of each in-
ividual model. To draw s amp les from the pos te rior dis tribution

or infe re nc e, w e dev e lop a tract able Ma rkov chain Mon te Ca rlo
MC MC) algorithm throu gh G ib bs s amp ler s. In partic ular, we
ddres s cen s ored v alues using d at a au gme n tation, whe re the un-
 bs erv e d s urvival times are imputed in every G ib bs iteration . A
rief overview of the s amp ling steps for BSGM, BSGM fm 

, and
SGM cor , along with the detailed s amp ling pr ocedur e, can be

ound in Web Appendix B . 
After obtaining the posterior s amp les from the above MCMC

lgorithm, based on the ma rginal pos te rior probability for the
le me n ts in γ and τ, and the posterior mean for each { ω j } J j=1 
nd { ηh } H 

h =1 , we are able to identify the inform ativ e brain s ub-
ra ph configurations alon g ea ch effect pa th way. The informa-
iv e c onne ctions within the subgra ph a re the n dete rmine d base d
n the pos te rior probability of γ and τ using a cutoff value of
.5 in the spirit of the median probability model (Ba rbie ri a nd
e rge r, 2004 ). Subseque n tly, the pos te rior mea n es timates for

he NIE, NDE, and TE and the corresponding 95% credible in-
e rvals ca n be obtaine d dire ctly ac c ording to the ide n t ificat ion
orm ulas give n in ( 4 ). 

4 S I M U L AT I O N  ST U DY  

e carry out simulation studies to evaluate the pe rforma nce of
he propose d me diation methods . To mimic the data dimen-
ion in our application, we consider sample sizes of N = 100
nd 500 with each s ubje ct’s brain c onne ctivity R = 100 . For the
xpos ure, w e ge ne rate z i ∼ Be rn (0 . 5) a nd conside r 3 cova ri -

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
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ates in addition to the in te rcept with the first 2 cov ari ates gener-
a ted fr om N (0 , 1) and the last genera ted fr om Bern (0 . 65) . We
s e t βz = 1 . 4 , βx = (1 . 4 , 0 . 8 , 0 . 5) T a nd ge ne rate the coefficie n t
ten s or M bas ed on a rank-3 symme tric de c omposition with
a 1 k ∼ N (0 , 0 . 4) , a 2 k ∼ N (0 , 0 . 4) for k = 1 , 2 , 3 . For the in-
form ativ e netw ork c onfigur ations link ed with the exposure and
outc ome, w e c onsider 2 clique s ub grap h s with each of them con-
taining 8 nodes for the effect pa th way to the outcome and an-
othe r sepa r ate subgr a ph con taining 10 nodes for the pa th way
from the exposure. For the effect coefficie n ts as s oci ated with
each sub grap h which ar e r epr ese n ted b y a symmetr ic matr ix, in-
ste ad of g enerating them through the v e ct or out er product as as-
s ume d by our model, we simulate them from a Wishart distri-
bution using a Toeplitz matrix as the scale matrix. For the ran-
dom errors of the network mediator, we consider 2 sc en arios—
one where the potentially corr ela ted err ors (Cor ) ar e ge ne rated
from a Wishart distribution with a randomly simulated Toeplitz
scale matrix, and one where the independent errors (I nd ) are
drawn from a Normal density with σ 2 

1 = 0 . 8 . Such diffe re n t data
ge ne ra ting pr oces s es could facilitate the comparison betw e en
BSGM and its v ari ation s—B SGM cor , B SGM fm 

—unde r diffe r-
e n t unde rlying corr ela tion structur es of the netw ork me diator.
To as s es s the model fit unde r diffe re n t ce n s oring s chemes, we
ge ne rate the ce n s oring time C i under 2 sc en arios: (1) indepen-
de n t ce n s oring with C i ∼ E (0 . 04) where E (·) de notes a n Ex-
pone n tial dis tribution; a nd (2) cov ari ate-depe nde n t ce n s oring
with C i ∼ E( φT x i ) , where φ = (0 . 03 , 0 . 02 , 0 . 04) T . Af ter ob -
taining ̃  T i , we compare with C i and directly determine the cen-
soring indicator δi . The censoring rates for sc en arios A and B are
35% and 30%, respe ctiv ely. For each s e tting, we calcul ate the true
effe ct meas ures (NIE, NDE, and TE) ac c ording to the ide n tifi-
cation formulas ( 4 ) as our true estim ands . In total, w e c onsider
8 simul ated s e ttings, a nd we ge ne rate 250 Mon te Ca rlo d atas e ts
for each s e tting for ev aluation . 

To imple me n t the proposed BSGM along its 2 v ari ation s
B SGM fm 

and B SGM cor , w e adopt noninform ativ e Be rnoulli pri -
ors for γ and τ. The MCMC algorithm runs under random ini-
tials for 5000 iterations with 1000 burn-in. The pos te rior con-
ve rge nce is monitored using both trace plots and the Gelman–
Rubin method (Gelman et al., 1992 ). The optimal value of J
and H is determined by BIC under a grid sear ch fr om 5 to 12.
The c omputation al time to comp le te the full pos te rior infe re nce
for BSGM, BSGM fm 

and BSGM cor is appr oxima tely 8 h, 13 h,
and 17 h, respe ctiv ely (Yale Hi gh-Pe rforma nce Computing, one
CPU core, 3GB RAM). Given none of the existing methods
can incorporate a network mediator with a survival outcome, we
firs t conside r exis ting univa riate or m ultiva ria te media tor meth-
ods for comparis on . Spec i fically, we vectorize the upper diago-
nal ele me n ts of each A i a nd include each c onne ction as a me-
di ator for univ ari ate-medi ator medi ation analys es under the R
package mediation (UMA), as well as all of them jointly for
m ultiva ria te-media tor media ting analysis imple me n ted b y the R
package mma (MMA). In addition, we consider the Bayesian
netw ork me diation model (BNMM) (Zhao et al., 2022 ), which
is to our best kno wledg e, the only method that can handle a
netw ork me diator. Giv en the BNM M i s designe d for c ontin-
uous outc omes, w e ada pt its model form ulation to ac c ommo-
d ate surviv al outcomes (de tailed in Web Appendix B.1 ). Finally,
t o evaluat e the pe rforma nce of each method, we consider the 
mean or posterior mean ( Mea n ), perc entage bias ( Bias ), and fre- 
que n tis t c ov er age r ate ( Coverage ) b y the 95% confide nce in te rval
(UM A, MM A) or the 95% credible in te rval (B SGM, B SGM fm 

, 
B SGM cor , BNMM) for e st imat ing NI E, NDE, and TE, as well as 
the Sensitivity a nd Speci ficity for selecting the active med iator s. 
To maintain consis te ncy, the ide n t ified mediat ing sub grap h s or 
ed ges a re always ma pped back to the same input connectivity 
ma trix befor e compar ed with the ground truth. The simulation 

r esults ar e s umm arize d in Table 1 . 
Based on the simulation res ults, w e o bs erv e th a t our pr o- 

posed BSGM, BSGM fm 

, and BSGM cor outperform all compet- 
ing methods in unc ov ering effe ct me ch anism s acros s all s e t-
tin gs. Our methods a chieve a small pe rce n tage bi as, clos e to 

90% ∼95% c ov erage for all the effect compone n ts (NIE, NDE 

a nd TE), a nd clos e to 100% s en sitivity and spec i fic ity for ide n ti -
fyin g the a ctiv e me diating s ub grap h s. Thes e r esults indica te the
s trong ca pacity of our methods to unc ov er each effe ct pa th way 
and its r ela te d brain netw ork sign als . For the c ompe ting me th-
od s, UMA and M MA h av e un s atisfactory pe rforma nce, prese n t- 
ing m uch la rge r es t imat ion bi as and more con s erv ative ide n ti -
fication of med iator s. Thi s i s expe cte d giv en the netw ork c on-
figurations alon g ea ch effect pa th way ar e comp le te ly e limin ate d 

in thes e me thod s. The BNM M, though con sidering a ne twork 
mediator as a whole unit before de c omposing it via s tochas tic 
block structures, fails to reflect the underlying sub grap h con- 
figurations, lea din g to c ompromise d ac curacy in estim ation and 

ide n t ificat ion under our data ge ne rating me ch anisms . As for the 
compa rison a mong B SGM, B SGM fm 

, and B SGM cor , the perfor- 
m anc e of BSGM and its v ari ation s is highly consistent r egar dless 
of the true corr ela tion structur e for the netw ork me diator. No- 
tab ly, in s e ttings with a smalle r sa mple size, BS GM e ve n sli gh tly
outpe rforms BSGM fm 

a nd BSGM cor whe n the netw ork me dia- 
tor has a non-indepe nde n t corr ela tion structur e, possibly due to 

the re duc e d n umbe r of unknown pa ra mete rs r equir ed to be es ti -
m ate d under a parsimonious spec i fication. 

Las tly, we also pe rform additional sim ul ation s in the presence 
of noise s ubgraphs include d in the data ge ne ration a nd conside r 
diffe re n t sa mple sizes a nd ce n s oring s chemes. The de tailed re-
sults of this s e t of simul ation s are prese n ted in Web Appendix C .
The findings there are in line with the conclusions from our pri- 
ma ry sim ul ation s. 

5 A P P L I C AT I O N TO  T H E  A D N I  ST U DY  

We apply our method to the data extracted from the ADNI 
d atabas e ( adni.loni.usc.edu ). The ADNI including ADNI1, 
A DNI G O/2, and A DNI3 was launched in 2003 by the NIA, 
NI BI B, FD A, privat e ph arm ac eutical c ompanies, and nonprofit 
organization s, as a pub lic–priv ate pa rtne rship. The goal of the 
study was to test whe ther s eri al magne tic res onance imaging 
(MRI), positron emission tomogra phy, othe r biological ma rk- 
e rs, a nd clinical a nd neuropsycho lo gical as s es sme n t ca n be com- 
bine d to meas ur e the pr ogr ession of mild c ognitiv e impairme n t 
a nd ea rly A D. In our cur re n t a pplication, we a re in te res ted in
exploring the effect pa th ways among APOE + , brain structural 
c onne ct ivity and t ime to AD on s e t ri gh t-ce n s or ed by dea th or
los s to fo llo w -u p. We foc us on the 119 ADNI2 p articip a n ts who

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
file:adni.loni.usc.edu
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TABLE 2 Ide n tifie d s ub-netw orks from the me diation an alyses and their ov e rla ps with the functional sys te m. 

Exposure O utcom e Active 

Functional system Subgraph 1 Subgraph 2 Subgraph Subgraph 1 Subgraph 2 

Default mode 10 14 7 5 4 
Dorsal a t te n tion 2 2 0 0 0 
Fron topa rietal 3 5 0 0 0 
L imbic s 12 10 3 3 3 
Somat omot or 10 11 4 4 4 
Subcortical 12 12 2 1 2 
Ve n tral a t te n tion 3 6 1 0 1 
Visual 8 8 1 0 1 

# of nodes 60 68 18 13 15 
Wei gh t mea n 0.57 0.73 0.21 0.11 0.14 
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 av e both baseline MRI and diffusion ten s or imagin g (DTI )
 ata co llected in order to extract white ma t te r fibe r tracts to cre-
te structural c onne ct ivity. Among these part icipa n ts, 26 expe ri -
nc e d AD on s e t with the res t ce n s ored by death or loss of follo w -
p. In our an alyses, w e include ge nde r, age at the screening visit,
 nd yea rs of e ducation as c ov ari ates. 
To cons truct s tructural c onne ctivity for each s ubje ct, w e first

e rform a natomical pa r cella tion on the high-r es o lution T1-
ei gh ted a natomical MRI sca n to obtain 68 gyral -based ROIs

hr ough the Fr eeSurfe r. We e mplo y the Lausa nne pa r cella tion
cheme to subdivide these ROIs into 83 small ROIs. After pre-
os s es sin g, includin g c orre ct ion for mot ion a nd eddy curre n t ef-

ects in DTI images, the DTI data are output to Diffusion Toolkit
or fiber tra ckin g. The FACT (fibe r assi gnme n t b y con tin uous
ra ckin g) algorithm is performed to initialize tracks from many
e e d points . It pr opaga te s the se tra cks alon g the mos t si gnifi-
a n t principal axis v e ctor within each voxel until spec i fic ter mi-
ation cr iter i a are me t. In this app lication, fo llow ing prev ious
tructural c onne ctivity studies (Zh ao et al., 2023 ), w e ch arac-
erize each c onne ction b y the n umbe r of fibe r tracks c onne ct-
ng the 2 ROIs divided by the mean volume of the correspond-
ng ROI pairs. This induces a con tin uous measure for structural
 onne ction with each s ubje ct’s structural c onne ctivity s umm a-
ized by an 83 × 83 c onne ctivity m atrix. As a de mons tration,
 e randomly sele ct a s ubje ct a nd show the fibe r traits a nd the
 umm arize d c onne ctivity m atrix in Web Figure S3 . For our ge-
etic exposure APOE4 + , we directly use the APOE genotyping
a ta pr ovided by the ADNI da ta base. T he data was ge ne rated for
ach p articip ant at the time of e nrollme n t usin g DNA extra cted
 y Coge nics from a 3 mL aliquot of EDTA blood, a nd diffe re n t
POE alle le s w ere define d by S NPs r s429358 and r s7412. After
 umm ari zing the b inary indicator for the presence of APOE ε4
llele, the prevalence of APOE4 + is 0.48 across the cohort. 
We perform mediation analysis using our proposed BSGM,
hich may be pr eferr ed over BSGM cor given the s amp le size. The

mple me n t ation det ai ls fol low those in the simul ation s, and we
isualize the normality of errors by residual Q–Q plots in We
 Appendix D.2 . Notably, a proportion of structural c onne ctions
r e 0 acr os s all s amp les . To av oid model misspe c i fication, we ex-
lude these e n tries, along with the diagonal ones, following the
roc e dure in model ( 1 ) for the c onne ctivity m atrix A i as well as
a ndom e rror v e ctor e i . Ev e n tually, we ide n tify 2 subgra phs influ-
nc e d by the genotype and one impa ctin g the outcome. The me-
i ating sub grap h s that bridg e the g ene tic exposure to AD on s e t
 re obtained b y ove rla pping thes e ne tw ork c ompone n ts . Base d
n the pos te rior sa mple s, we also e stimate the NDE, NIE and TE
ith 95% credible in te rvals as −1 . 36(−2 . 14 , −0 . 68) , −0.04 (
0 . 55 , 0 . 43) and −1 . 41(−2 . 44 , −0 . 60) , respe ctiv ely. These

esults qua n tify the expe cte d ch ange on the log -s urvival time
he n alte ring ge netic expos ure, brain c onne ctivity, and both. All
 e stimate s ar e nega tive, indica ting tha t APOE4 + wi l l induce

as te r AD on s e t through both its dire ct effe ct and indire ct ef-
e ct me diate d by brain structural c onne ctivity. The 95% cre di-
le in te rvals for both the NDE and TE exclude 0. To further in-
es ti g ate ho w this effe ct me ch a nism functions along the ide n ti -
e d brain s ub grap h s, w e m ap the nodes in each sub grap h to the
anonical brain functional systems s umm arize d in Table 2 . As
an be seen, the m a jority of the identified sub grap h s invo lve the
efault Mode, Limbic and Somat omot or syst em s. Rel atedly, the

xis ting lite ra tur e r ev eals th at D efault Mode is one of the most
e ll-known ne uro imaging b ioma rke rs for AD (Lee et al., 2016 ),

nd the Limbic sys te m i s al s o s eve rely a nd routine ly a ffe cte d
uring neurodege ne ration (Hoppe r a nd Vo gel, 1976 ). We als o
rov ide v isualizations for the ide n tifie d s ub grap h s and the effect
a th ways they belong to in Figure 2 , and i l lustrate the identified
ub grap h s are fil led with cross - sys te m c onne ctions . For the ac-
iv e me diating s ub grap h s, most of the cross - system c onne ctions
re also among the Default Mode, Limbic, and Somat omot or
ys te ms . In c on tras t to the cross - sys te m c onne ctions, the re a re
nly a small proportion of within-sys te m connections as shown

n Figure 2 . This phenomenon is in ac c ordanc e with the AD lit-
ra tur e (Weiler et al., 2014 ), which su gge s ts only spa rse con-
ections within functional sys te ms in causing clinical symptoms
nd c ognitiv e deficits . Fin ally, Figure 3 shows the components
ithin the active mediating sub grap h s tha t ar e nega tively and
ositiv ely linke d with the dis eas e on s e t outcome. While thos e
 ub-netw orks within individual sub grap h s are not o verlappin g,
he re a re c ommon c onne ction s within and be tw e en canonical
unctional sys te ms in both positive a nd ne gativ e s ub-netw orks .

verall, both the cha racte rization of the AD on s e t- re late d im ag -
ng genetics effect mechanism and the carto grap hy of mediating
rain network configurations provide importa n t information to
nde rs ta nd the e tio lo gy of the dis eas e and direct future neuronal

argets for genetic interv entions . 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data
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FIGURE 2 The brain network view for the ide n tified subgra phs along each effect pa th way as well as the pote n ti al medi ating sub grap h s. 
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6 D I S  C U S S  I O N 

In this pa pe r, we propose a Bayesian mediation framework with
a ri gh t-ce n s ored time-to-eve n t outcome and a ne twork-v ari ate
mediat or t o dis s ect the effect pa th ways among brain structural
c onne ctivit y, genot ype of interest, and time to dis eas e on s e t.
We develop a symmetric matr ix-var iate AFT model to charac-
terize the effect pa th way fr om brain c onne ctivity to the out-
come, and a symmetric matrix respon s e regres sion to capture
the impact from the genetic exposure to brain c onne ctivity.
By assuming structural connectivity operates along different ef-
fect pa ths thr ou gh se parate s e ts of clique sub grap h s, we im-
pos e both within-grap h spa rsity a nd betw e e n-gra ph shrinkage
to ide n ti fy infor m ativ e s ub grap h configuration s and the active
medi ating ne twork ele me n ts. We de mons trate the adva n t age s of
our method through exte nsive sim ulations a nd a pplication to the
la ndma rk ADNI study. 

In our modeling framew ork, w e adopt the symmetric Tucker
de c omposition and ass ume th at structural c onne ctivity me di-
ates the TE through distinct signaling sub grap h s. An importa n t
direction for future work is to explore more robust nonpara-
me tric option s t o charact erize the t opo lo gical structure for con-
nect ivity. Addit ionally, because the connect ivity matrix A i in-
clude d nonne gativ e e n tries, a useful exte nsion of our methodol-
ogy is to allow for a link function in the mediator model. This
w ould re quire a reformulation of the pathway effect measures
in Proposition 1 and may increase the c omputation al in te nsity
of our Bayesian algorithm. In our c urrent appl ication, we assign 

the same 0.5 prior probability for each node to be included in 

the sign aling s ub grap h s (char acteriz ed by the selection indica- 
tors ηhr and γ jr ). Such a prior spec i fication is noninformative 
and does not int egrat e pot enti al s c ienti fic kno wledg e. A lter na-
tively, should there be robust evidence from prior studies s ug - 
gesting that certain brain regions are crit ical , one could assign 

a hi ghe r prior inclusion pr obability r ela t ed t o those brain re- 
gions to e nha nce the est imat ion efficie ncy a nd facilitate the in- 
terpr eta tion of res ults . In Web Appendix D.1 , we provide com- 
paris on s with different inform ativ e priors base d on a pre deter- 
mined s e t of nodes under our ADNI app lication . Our findings 
confirm the ro bustnes s of the noninform ativ e prior spe c i fica- 
t ion in est imat ing the d irect and ind ire ct effe ct, but de mons trate
the s en sitivity of the ide n tifie d s ub grap h s to the choice of priors
th at lev e rage scie n tific knowled ge. Finally, although our method 

curre n tly focuses on a bin ary expos ure, which is the most com- 
mon s e tting in medi ation a nalysis, it ca n be readily exte nded 

to ac c ommodate a m ulti -cate gory expos ure. With a m ulti - 
cate gory expos ure, one can proc e e d by introducing dummy vari- 
ables within the structural modeling framework (Hayes and 

Preacher, 2014 ), and update the ident ificat ion expres sion s in 

Proposition 1. The propos ed Bayesi a n infe re n tial proc e dure 
should be s trai gh tforwa rdly ada pted for pa th way analysis with 

a m ulti -cate gory expos ure ac c ording to the updated mediation 

formulas. 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae132#supplementary-data


Biometrics , 2024, Vol. 80, No. 4 � 11 

FIGURE 3 The ide n tifie d s ub-netw orks within the active mediating sub grap h s that are ne gativ ely and positively linked with time to AD. 
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