
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EPNG: ADAPTIVE EXPERT PRUNE-AND-GROW FOR
PARAMETER-EFFICIENT MOE FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) architectures have emerged as a scalable backbone for
large language models (LLMs), but their adaptation to downstream tasks remains
inefficient due to redundant experts and excessive parameter counts. Parameter-
efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation (LoRA) re-
duce training costs, yet they fail to leverage the dynamic routing signals that are
intrinsic to MoE. We introduce EPnG, an adaptive expert prune-and-grow frame-
work for parameter-efficient MoE fine-tuning. EPnG computes expert importance
scores during training to identify under-utilized experts for pruning, while rein-
forcing high-importance experts by expanding their LoRA ranks with orthogonal-
ized initialization. This adaptive loop reallocates limited trainable parameters to
the most impactful experts without increasing the overall budget. On OLMoE and
Qwen1.5-MoE, EPnG surpasses LoRA under the same parameter budget (+2.1%p
and +1.4%p, respectively) on math and code benchmarks, while achieving perfor-
mance comparable to full fine-tuning with only 0.5–0.7%p of parameters (≈ 150×
fewer). These results underscore the effectiveness of coupling MoE’s conditional
computation with adaptive PEFT for scalable fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced the state of natural language processing
(NLP) (Grattafiori et al., 2024; Achiam et al., 2023; Liu et al., 2024a). A key factor behind this
progress is the Mixture-of-Experts (MoE) architecture, which employs conditional computation by
activating only a small subset of experts for each input token (Shazeer et al., 2017; Fedus et al.,
2022). This design enables scaling to hundreds of billions of parameters while keeping the per-token
computational cost (FLOPs) comparable to that of a much smaller dense model, thereby combining
scalability with efficiency. However, these benefits do not directly extend to the fine-tuning stage, as
fully fine-tuning MoE models is prohibitively expensive due to the large number of parameters and
the need to update all experts (Rajbhandari et al., 2022; Kim et al., 2021; Aminabadi et al., 2022).
Efficient fine-tuning of MoE models is particularly important because downstream applications often
require domain adaptation or personalization, which cannot be achieved by pretraining alone.

To alleviate the high cost of fine-tuning, research has focused on Parameter-Efficient Fine-Tuning
(PEFT) methods (Lester et al., 2021; Li & Liang, 2021). Among them, LoRA (Low-Rank Adap-
tation) (Hu et al., 2022) introduces a small number of trainable parameters while retaining strong
performance, and has become widely adopted. However, most existing PEFT methods were de-
veloped with dense architectures in mind and do not sufficiently account for the unique structural
characteristics of MoE. For instance, LoRA applies updates uniformly across all modules, whereas
prior studies have shown that the relative importance of modules and layers is not uniform (Zhang
et al., 2023; Merchant et al., 2020). Such uniform allocation can therefore be particularly inefficient
in MoEs, where routing dynamics and expert specialization play a central role.

These shortcomings become even more severe in MoE models. Because only a subset of experts
is activated per input, overlooking expert importance can leave critical experts under-adapted while
wasting resources on rarely used ones. Moreover, MoEs suffer from expert imbalance, with some
experts over-utilized and others rarely activated (Lepikhin et al., 2021; Fedus et al., 2022). Although
recent studies have attempted to design MoE-aware PEFT approaches (Wang et al., 2024; Liu et al.,
2024b), they either lacked effective solutions or required large numbers of trainable parameters, un-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Transformer Block ×𝐿

Attention & Normalization

Router

1 2 4 M

MoE

…
Ex

pe
rt

s

MoE + LoRA

1
r

…3

A6en7on & Normaliza7on

Router

3
r

2
r

4
r

M
r

EPnG (ours)

1 …

Attention & Normalization

Router

32
2r

4
r

M
3r

Prune

Grow

LoRA

Figure 1: Overview of EPnG compared with alternative designs: (i) a vanilla MoE layer (left), (ii)
MoE with LoRA uniformly applied to all experts (middle), and (iii) our proposed EPnG, where
the router selects experts (e.g., experts 2 and M) whose LoRA ranks are dynamically expanded
(“grow”), while low-importance experts (e.g., experts 1 and 3) are pruned to free capacity.

dermining efficiency. As a result, the fundamental challenge of efficient and stable MoE adaptation
remains unresolved, highlighting the need for a PEFT framework that explicitly accounts for MoE’s
dynamic routing while maintaining parameter efficiency.

Therefore, we propose EPnG (Expert Prune-and-Grow LoRA), a novel adaptive PEFT framework
designed for efficient MoE fine-tuning. EPnG integrates a prune-and-grow loop into training: (i)
compute expert importance scores from router statistics, (ii) prune low-importance experts to release
capacity, and (iii) reinforce high-importance experts by dynamically expanding their LoRA rank
with orthogonal initialization for stability. Figure 1 illustrates an overview of EPnG). This adaptive
mechanism reallocates limited trainable parameters to the most impactful experts, fostering expert
specialization and reducing redundancy. Unlike conventional LoRA, which distributes parameters
evenly across experts, EPnG continuously aligns resource allocation with evolving routing patterns
during fine-tuning.

On average, EPnG achieves consistent improvements over vanilla LoRA with the same number of
trainable parameters. Specifically, EPnG yields +2.1 percent point (%p) (+5.8% relative) on OL-
MoE and +1.4%p (+2.4% relative) on Qwen1.5-MoE, averaged across math and code benchmarks.
Compared to full fine-tuning (FFT), which requires updating the entire model, EPnG achieves com-
petitive performance while tuning over 140× fewer parameters, highlighting its efficiency. This
demonstrates the benefit of dynamic expert management and establishes EPnG as a scalable and
practical solution for efficient MoE-based LLM fine-tuning.

2 BACKGROUND

Mixture-of-Experts. Mixture-of-Experts (MoE) architectures have emerged as a key approach
for scaling large language models (LLMs) (Grattafiori et al., 2024; Achiam et al., 2023; Liu et al.,
2024a). Each MoE layer takes as input a token representation x ∈ Rd and routes it to the top-k
experts, selected from a set of M experts E = {E1, . . . , EM}. The router weight Wrouter produces
logits:

h(x) = Wrouter · x ∈ RM , (1)
which are normalized via a softmax distribution over the available M experts. The gate probabilities,
obtained by applying a softmax over the router outputs, represent the likelihood of assigning the
token to each expert:

pi(x) =
eh(x)i∑M
j=1 e

h(x)j
, i = 1, . . . ,M. (2)

During forward computation, the top-k experts with the largest gate probabilities are selected:

S(x) = Top -k
(
p(x)

)
, |S(x)| = k, (3)

The final output of the MoE layer is a weighted combination of the selected experts:

MoE(x) =
∑

i∈S(x)

pi(x)Ei(x). (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Finetuning

𝑥(") 𝑥($) 𝑥(%) 𝑥(&) 𝑥(')…

Router

Gate Probability 𝑝!(𝑥 ")

Aggregation

𝑝̅! = '𝑝!(𝑥 ")
#

"$%

Expert Importance Score

Expert Pool

r

Prune Grow

lowest score highest score

…
r 2r r

LoRA removal LoRA rank ↑

tokens

Figure 2: Illustration of EPnG’s end-to-end training procedure.

This sparse activation mechanism enables scaling to trillions of parameters without linearly increas-
ing inference cost. However, not all experts are equally utilized or trained in practice. Prior studies
have observed significant discrepancies in expert usage and contribution (Shazeer et al., 2017; Chi
et al., 2022), highlighting the importance of identifying and managing expert significance. This
motivates our approach of quantifying expert importance via router gate probabilities.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) (Hu et al., 2022) enables parameter-
efficient fine-tuning by injecting trainable low-rank matrices into pre-trained weight matrices. For a
given weight matrix W ∈ Rd×d, LoRA parameterizes the update as:

W ′ = W +∆W, ∆W = AB, (5)

where A ∈ Rd×r, B ∈ Rr×d, and r ≪ d is the LoRA rank. This reduces the number of additional
trainable parameters from d2 to 2dr, enabling efficient yet effective fine-tuning for large models.

Challenges in Combining MoE and LoRA. While LoRA has proven effective in dense trans-
former models, its direct application to MoE architectures introduces unique challenges. In dense
models, every parameter is consistently updated across tokens. In contrast, MoE layers only activate
a small subset of experts for each token, leading to sparse and uneven parameter utilization. This
discrepancy raises fundamental questions about how to design adaptation strategies that remain both
efficient and effective in MoE settings, which motivates our study.

3 METHODOLOGY

In this paper, we propose EPnG (Expert Prune-and-Grow), a novel adaptive PEFT framework de-
signed for efficient Mixture-of-Experts (MoE). Figure 2 shows its overall procedure. EPnG dy-
namically reallocates LoRA parameters by continuously monitoring expert utilization throughout
finetuning. The process begins by collecting router gate probabilities to estimate how frequently
each expert is selected. These are aggregated into expert importance scores, which serve as the basis
for adaptively pruning and growing experts. Low-importance experts are pruned by removing their
LoRA parameters, releasing budget that is reallocated to frequently used experts by expanding their
LoRA ranks. This prune-and-grow loop is repeated during finetuning, allowing EPnG to concentrate
capacity on task-relevant experts while eliminating redundancy, all under a fixed parameter budget.

3.1 EXPERT IMPORTANCE SCORE AGGREGATION

To enable efficient LoRA allocation in MoE models, we first collect router gate probabilities during
finetuning (Figure 2, left). These probabilities reflect how often each expert is selected by the router,
providing a direct signal of expert utilization. By aggregating them, we can identify which experts
are consistently important and which are underutilized, enabling informed decisions for pruning and
rank reallocation.

Specifically, for each token x(n), the router outputs a probability distribution over experts,
{pi(x(n))}Mi=1. We then aggregate these signals across tokens by averaging them (Figure 2, mid-
dle), yielding the average gate probability for expert Ei:

p̄i =
1

N

N∑
n=1

pi(x
(n)), (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where N is the total number of processed tokens. We refer to p̄i as the Expert Importance Score,
i.e., the average gate probability of expert Ei. This aggregation captures how frequently each expert
is activated throughout finetuning and provides a principled signal that serves as the foundation for
our adaptive prune-and-grow strategy.

3.2 PRUNING LOW-IMPORTANCE EXPERTS

Based on the computed importance scores, we identify experts with low utilization for pruning. This
process frees up parameter budget that can be reallocated to more influential experts in the growing
stage (Section 3.3).

Expert Selection for Pruning. To identify underutilized experts for pruning, we compute a thresh-
old based on the aggregated importance scores across all experts in all MoE layers. Specifically, we
define the pruning threshold τp as the value below which the lowest α fraction of expert importance
scores p̄(l)i fall, where α ∈ (0, 1) determines the pruning ratio.

We then select the set of experts to prune as:

P = {E(l)
i | p̄

(l)
i ≤ τp, l ∈ {1, . . . , L}, i ∈ {1, . . . ,M}} (7)

where E
(l)
i denotes the i-th expert in the l-th MoE layer, and p̄

(l)
i is its corresponding importance

score. L is the number of MoE layers and M is the number of experts in each layer.

Since this thresholding is applied iteratively across cycles, the cumulative fraction of pruned experts
after t cycles is given by 1−(1−α)t, ensuring gradual pruning while preserving the most influential
experts. Their parameters are then reallocated to more important experts during the growing phase.

Pruning Operation. For each selected expert E(l)
i , we remove its LoRA parameters:

∆W
(l)
i = 0, ∀E(l)

i ∈ P. (8)

This deletion eliminates the contribution of low-importance experts and removes their parameters
from the optimizer state, ensuring that pruned experts incur no additional parameter overhead.

This pruning strategy removes the corresponding parameters from the optimizer, freeing up param-
eter budget that becomes available for reallocation to high-importance experts through the growing
operation.

3.3 GROWING HIGH-IMPORTANCE EXPERTS

The parameter budget released through pruning is reallocated to the most utilized experts by expand-
ing their LoRA ranks. We adopt a budget-neutral setting, where the number of parameters added
during growth matches those removed during pruning. This allows for a controlled comparison with
static baselines without increasing the overall parameter count. Although over-budget configura-
tions (e.g., expanding beyond the pruned budget) are possible, we focus on the budget-neutral case
for clarity in analysis.

Expert Selection for Growth. To identify experts for rank expansion, we compute a global thresh-
old based on the aggregated importance scores {p̄(l)i } across all experts and layers. Specifically, we
define the growth threshold τg as the value above which the top (1−β) fraction of scores fall, where
β ∈ (0, 1) controls the growth ratio.

The selected set of experts is defined as:

G = {E(l)
i | p̄

(l)
i ≥ τg, l ∈ {1, . . . , L}, i ∈ {1, . . . ,M}} (9)

where E
(l)
i denotes the i-th expert in the l-th MoE layer, and p̄

(l)
i is its importance score.

Since this allocation is repeated iteratively, the cumulative fraction of experts receiving expanded
ranks after t cycles is given by 1 − (1 − β)t. This procedure ensures that the most frequently
utilized experts progressively gain additional capacity through rank expansion, while preserving
budget neutrality with pruning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Rank Expansion. For each expert E(l)
i ∈ G, we expand its LoRA rank from r

(l)
i to r

(l)
i +∆r by

appending new low-rank components. The original LoRA update is ∆W
(l)
i = A

(l)
i B

(l)
i , and after

expansion it becomes:

∆W
(l)′
i = [A

(l)
i A

new,(l)
i]

[
B

(l)
i

B
new,(l)
i

]
. (10)

This provides greater representational capacity for the most influential experts, ensuring that the ad-
ditional parameters capture complementary task-specific information rather than redundant updates.

Initialization and Orthogonalization. To ensure stable training and avoid redundancy, the newly
added parameters are initialized and regularized as follows:

• A
new,(l)
i is initialized using Kaiming initialization (He et al., 2015) to preserve activation

variance, while B
new,(l)
i is initialized to zero, following standard LoRA practice (Hu et al.,

2022).

• To encourage diversity in the expanded subspace, Anew,(l)
i is orthogonalized with respect to

the existing columns of A(l)
i :

A
new,(l)
i ← (I −Q

(l)
i Q

(l)
i

⊤
)A

new,(l)
i , (11)

where Q
(l)
i = orth(A(l)

i) is an orthonormal basis spanning the columns of A(l)
i .

This procedure ensures that the newly added directions capture complementary task-specific infor-
mation rather than duplicating previously learned adaptations, thereby improving the effectiveness
of rank expansion.

3.4 PRUNE-AND-GROW ADAPTATION LOOP

Warm-up for Stable Importance Estimation. Expert importance is not static during finetuning:
certain experts that appear important early on may lose relevance later, while initially underutilized
experts can become crucial later. To avoid premature pruning decisions when router statistics are
still unstable, we use a warm-up stage of Tw steps. During this phase, the model is fine-tuned with
LoRA as usual while collecting gate statistics, but no pruning or growth is applied.

Adaptive Parameter Reallocation. After the warm-up stage, the prune-and-grow procedure is
triggered every Tp steps. At each interval, router statistics {p̄(l)i } are aggregated to evaluate expert
importance. Low-importance experts are pruned (Section 3.2), and high-importance experts receive
additional rank expansion (Section 3.3). This ensures that the parameter budget is continuously re-
distributed in response to evolving utilization. Under the constraint α > β, pruning always releases
more parameters than are consumed by growth, guaranteeing that the total number of trainable pa-
rameters never exceeds the initial budget.

Summary. The prune-and-grow loop thus turns finetuning into a dynamic, budget-aware adapta-
tion process. By reallocating LoRA parameters according to router-derived importance signals, it
promotes (i) consistent utilization of the limited parameter budget, (ii) reinforcement of task-relevant
experts, and (iii) suppression of redundant adaptations. Algorithm 1 provides the pseudocode for
the full training loop, and the overall workflow is illustrated in Figure 2.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method across three domains: mathematical reasoning, code generation, and
preference-based personalization. For mathematical reasoning, models are fine-tuned on Meta-
MathQA (Yu et al., 2024) and evaluated on two widely used benchmarks: GSM8K (Cobbe et al.,
2021), which consists of grade-school level word problems, and MATH (Hendrycks et al., 2021),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Expert Prune-and-Grow (EPnG) Training
Input: MoE-LLM with initial LoRA rank r0, dataset D, warm-up steps Tw, prune interval Tp,

pruning and growth ratios α, β, decay factor λ
Initialize gate statistics p̄(l)i ← 0 for all experts
for step = 1 to max steps do

Sample batch x ∼ D and compute loss
Update gate probabilities p̄(l)i
Optimize model parameters via backpropagation
if step ≥ Tw and step mod Tp = 0 then

Compute pruning threshold τp and growth threshold τg from {p̄(l)i }
Select experts to prune: P = {E(l)

i | p̄
(l)
i ≤ τp}

Select experts to grow: G = {E(l)
i | p̄

(l)
i ≥ τg}

foreach E
(l)
i ∈ P do

Remove LoRA parameters: ∆W
(l)
i ← 0

foreach E
(l)
i ∈ G do

Expand LoRA rank: r(l)i ← r
(l)
i +∆r

Initialize A
new,(l)
i with Kaiming init, Bnew,(l)

i ← 0

Orthogonalize: Anew,(l)
i ← (I −Q

(l)
i Q

(l)
i

⊤
)A

new,(l)
i

Decay gate statistics: p̄(l)i ← λp̄
(l)
i

a large-scale dataset covering competition-level mathematics. Performance is measured by Exact
Match (EM), i.e., the proportion of predictions that exactly match the ground-truth solution.

For code generation, we finetune on Code Alpaca (Luo et al., 2023), an instruction-tuned dataset for
programming tasks. Evaluation is performed on HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), both of which are widely adopted for benchmarking code synthesis. We report
pass@10 (Chen et al., 2021), which estimates the probability of obtaining a correct solution within
ten sampled generations.

Finally, to assess personalization and user alignment, we use PrefEval (Zhao et al., 2025), a recently
introduced benchmark designed to measure model quality under preference-based evaluation. In this
benchmark, model outputs are pairwise-compared on diverse prompts, and we follow the official
protocol by employing GPT-4o-mini (Achiam et al., 2023) as the evaluator to determine win rates
against baselines.

4.2 EXPERIMENTAL SETTING

We conduct experiments on two publicly available MoE baselines, allenai/OLMoE-1B-7B-
0125 (Muennighoff et al., 2025) and Qwen/Qwen1.5-MoE-A2.7B (Qwen, 2024). For comparison,
we include several adaptation strategies: Full finetuning (FFT) on dense models, MoE with uniform
LoRA allocation, ESFT (Wang et al., 2024), and our proposed EPnG.

LoRA adapters are applied to the up proj and gate proj matrices within transformer blocks.
We adopt a prune-and-grow policy with pruning ratio α = 0.2 and growth ratio β = 0.2. The
procedure is triggered every Tp = 50 steps after an initial warm-up period of Tw = 100 steps.
To adapt to changing routing patterns during finetuning, aggregated gate statistics are exponentially
decayed with factor λ = 0.2.

For evaluation, we follow the standard protocol of each benchmark. In GSM8K and MATH, we
compute exact match accuracy. In HumanEval and MBPP, we report pass@10 by sampling ten
candidates per problem. In PrefEval, we adopt GPT-4o-mini as the evaluator for pairwise preference
comparison. All evaluation hyperparameters, such as decoding temperature, top-p, and maximum
generation length, are fixed across methods, and details are provided in the Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on OLMoE after 500 finetuning steps. Metrics: Exact Match (%) for
GSM8K/MATH, pass@10 (%) for MBPP/HumanEval, and accuracy (%) for PrefEval. Trainable
parameters are reported as the average % of the full model.

Method Params. (%) Math (EM) Code (pass@10) Personalization Avg.
GSM8K MATH MBPP HumanEval PrefEval

FFT 100 64.97 24.68 43.60 25.00 34.44 38.54
ESFT 5.08 65.13 22.49 42.20 24.39 36.11 38.46
LoRA (static) 0.72 64.44 21.90 39.60 22.56 35.00 36.70
Ours (EPnG) 0.72 66.26 21.40 42.40 23.78 38.33 38.83

Table 2: Results on Qwen1.5-MoE after 500 finetuning steps. Metrics: Exact Match (%) for
GSM8K/MATH and pass@10 (%) for HumanEval/MBPP. Trainable parameters are reported as the
average % of the full model.

Method Params. (%) Math (EM) Code (pass@10) Avg.
GSM8K MATH MBPP HumanEval

ESFT 15.91 64.14 34.54 60.40 76.83 58.98
LoRA (static) 0.55 62.93 34.96 60.40 70.12 57.60
Ours (EPnG) 0.55 64.22 37.32 60.00 74.39 58.98

Baselines. We compare our method against the following approaches: Full finetuning (FFT) up-
dates all model parameters during adaptation, serving as an upper-bound reference for performance.
LoRA (static) applies LoRA adapters with fixed rank across all experts, ignoring differences in ex-
pert utilization. ESFT (Wang et al., 2024) is a recent parameter-efficient finetuning method for MoE
models that specializes experts during adaptation. Our implementation builds on the official ESFT
codebase. EPnG (ours) is the proposed prune-and-grow strategy, which adaptively reallocates LoRA
parameters based on expert importance scores.

4.3 RESULTS ON OLMOE

Table 1 summarizes the results on OLMoE. Importantly, our method updates only 0.72% of the pa-
rameters over 140× smaller than full fine-tuning (FFT), yet still achieves comparable or even better
performance. For instance, EPnG slightly outperforms FFT on GSM8K (66.26% vs. 64.97%), while
maintaining similar averages across all benchmarks (38.83% vs. 38.54%). Relative to static LoRA
with the same parameter budget, EPnG consistently yields improvements, e.g., +1.82 percentage
points (%p) on GSM8K and +2.63%p on the overall average.

Takeaway: Even under an extremely tight parameter budget, pruning under-utilized experts and
reallocating capacity through EPnG preserves or improves performance, demonstrating that full
fine-tuning is not necessary to reach strong downstream results.

4.4 RESULTS ON QWEN1.5-MOE

Table 2 shows the results on Qwen1.5-MoE, a larger MoE model. Here, ESFT updates 15.9% of the
parameters, while EPnG operates with only 0.55%, a nearly 29× reduction. Despite this drastic gap
in parameter count, EPnG attains the same average performance as ESFT (58.98%), and consistently
surpasses static LoRA under the identical budget. Notably, EPnG improves MATH from 34.96% to
37.32% and HumanEval from 70.12% to 74.39%, confirming that dynamic allocation of capacity
scales effectively to larger MoE backbones.

Takeaway: EPnG delivers the efficiency of LoRA with the effectiveness of ESFT, showing that
pruning-and-growing can be applied to other MoE models without sacrificing accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Acc.
LoRA 65.50
Grow only 64.97
Prune only 65.81
Prune & Grow 66.41

(a) Ablation study.

2 4 8 16
Rank

64.5

65.0

65.5

66.0

66.5

Ac
cu

ra
cy

 (%
)

Rank Sensitivity

LoRA
EPnG

(b) Rank sensitivity.

0.1 0.2 0.3
PNG FRAC

0

200

400

600

800

1000

Fin
al

 E
xp

er
t C

ou
nt

Total Expert
Expert Count
Accuracy (EM, %)

63

64

65

66

67

68

Ac
cu

ra
cy

 (E
M

, %
)

Prune & Grow Fraction

(c) Effect of prune-and-grow frac-
tion.

Figure 3: Further analysis of EPnG. (a) Ablation study comparing LoRA, grow-only, prune-only,
and prune-and-grow. (b) Sensitivity to LoRA rank, where EPnG maintains stable performance while
LoRA fluctuates. (c) Effect of prune-and-grow fraction, showing that moderate pruning achieves the
best trade-off between accuracy and expert utilization.

metamathqa

codealpaca

Prune

0.73 0.77 0.80 0.75 0.75 0.69 0.70 0.67 0.62 0.38 0.31 0.41 0.52 0.48 0.52 0.34

0.73 0.91 0.84 0.78 0.78 0.58 0.77 0.67 0.59 0.48 0.38 0.27 0.52 0.50 0.44 0.20

metamathqa

codealpaca

Grow

0.45 0.39 0.32 0.36 0.28 0.27 0.19 0.34 0.50 0.72 1.08 0.77 0.97 0.94 0.94 0.94

0.42 0.22 0.33 0.37 0.23 0.28 0.22 0.42 0.45 0.67 0.95 1.09 0.77 0.84 1.05 1.12

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15
Layer Index

metamathqa

codealpaca

Prune
and

Grow

5.8 5.0 4.2 4.9 4.2 4.6 3.9 5.3 7.0 10.8 14.1 10.9 11.6 11.6 11.4 12.8

5.5 2.5 3.9 4.7 3.6 5.6 3.6 6.0 6.9 9.5 12.6 14.6 10.0 10.8 12.9 15.4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

Figure 4: Layer-wise behavior of prune-and-grow. The top heatmap shows pruning ratios, where
shallower (earlier) layers are pruned more heavily. The middle heatmap shows growing ratios,
highlighting deeper (later) layers where experts are expanded. The bottom heatmap summarizes the
resulting average rank distribution: blue indicates reduced ranks, while green indicates expanded
ranks. Together, these plots reveal that EPnG adaptively reallocates capacity across layers, focusing
resources on the most impactful regions of the model.

4.5 OVERALL COMPARISON.

Across both OLMoE and Qwen1.5-MoE, a consistent pattern emerges: EPnG maintains or improves
task performance while requiring less than 1% of the trainable parameters. On OLMoE, EPnG
matches the accuracy of full fine-tuning with 140× fewer parameters, while on Qwen1.5-MoE,
it achieves the same average as ESFT with 29× fewer parameters. These results highlight that
pruning-and-growing offers a scalable and parameter-efficient alternative to conventional fine-tuning
methods, combining the efficiency of LoRA-style updates with the robustness of more expensive
approaches.

These results confirm that EPnG achieves consistent performance gains over static LoRA and MoE-
specific ESFT, without exceeding the same parameter budget. By dynamically reallocating capacity
toward high-importance experts, EPnG improves both reasoning and generation performance, mak-
ing it a practical alternative to expensive full finetuning.

5 FURTHER ANALYSIS

We conduct additional analyses on gsm8k dataset to better understand why prune-and-grow im-
proves performance under tight parameter budgets. Figures 3 and 4 provide detailed insights.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ablation Study. We conduct an ablation study to examine the contributions of pruning and grow-
ing (Figure 3a). Compared to the static LoRA baseline (65.50%), applying either growing (64.97%)
or pruning (65.81%) in isolation yields comparable or slightly improved performance. Notably,
pruning proves more effective than growing, as it achieves better accuracy with fewer parameters
than the baseline. In contrast, combining both operations leads to the best result (66.41%), indicat-
ing that pruning and growing complement each other: pruning eliminates redundant components,
while growing reinforces useful ones.

We speculate on why “Prune only” outperforms “Grow only.” Pruning likely provides an implicit
regularization effect, removing redundancy and forcing the model to concentrate on essential rep-
resentations, which can improve generalization despite reduced capacity. By contrast, growing in-
creases capacity without addressing redundancy and may introduce additional noise, making train-
ing less stable. The newly added parameters might also be under-utilized in early training, limiting
their contribution. While this interpretation remains tentative, the results suggest that pruning is a
particularly effective strategy, achieving better performance than the baseline with fewer parameters.

Rank Sensitivity. Figure 3b examines sensitivity to the LoRA rank. LoRA exhibits large fluctu-
ations in accuracy across different ranks, underscoring the difficulty of selecting the right hyperpa-
rameter. In contrast, EPnG maintains stable performance, indicating that dynamically reallocating
capacity mitigates this sensitivity.

Prune-and-Grow Fraction. Figure 3c explores the effect of varying the prune-and-grow fraction.
Higher fractions prune a larger set of experts and concentrate capacity on fewer ones. Performance
improves until about 0.2, beyond which the benefit plateaus. This suggests that moderate pruning is
necessary for the best balance between removing redundancy and preserving expert diversity.

Layer-Wise Behavior. Figure 4 visualizes how pruning and growing are distributed across lay-
ers. The “Prune” heatmap shows that shallower layers are pruned more heavily, while the “Grow”
heatmap highlights deeper layers where experts are expanded. The combined map summarizes
the resulting average rank distribution, with blue indicating reduced ranks and green indicating ex-
panded ranks. This demonstrates that EPnG adaptively reallocates capacity toward the most im-
pactful layers, yielding a balanced and efficient expert configuration. For a detailed analysis of how
these dynamics evolve across training steps, please refer to Appendix D.

Summary. Overall, these analyses show that prune-and-grow not only achieves higher accuracy
than its individual components but also stabilizes rank sensitivity, manages pruning trade-offs, and
adaptively redistributes capacity across layers. This explains why EPnG consistently surpasses static
LoRA under the same parameter budget.

6 CONCLUSION

In this work, we introduced Expert Prune-and-Grow (EPnG), a parameter-efficient fine-tuning
method for Mixture-of-Experts (MoE) models. EPnG identifies under-utilized experts via gate prob-
abilities and prunes them, while reallocating the released parameter budget to expand the ranks of
high-importance experts. This dynamic reallocation enables the model to adaptively shift capacity
toward the most impactful components without increasing the overall parameter count.

Extensive experiments on OLMoE and Qwen1.5-MoE demonstrate that EPnG achieves accuracy
comparable to or better than full finetuning and ESFT, while updating only about 1% of parameters.
Relative to static LoRA, EPnG provides consistent gains across most math, code, and personalization
benchmarks, with notable improvements on GSM8K and HumanEval. These results confirm the
benefit of combining pruning and growing under a budget-neutral constraint. Our analyses further
show that EPnG stabilizes rank sensitivity, balances pruning trade-offs, and adaptively redistributes
capacity across layers.

In summary, EPnG provides a simple yet effective framework that combines the efficiency of LoRA
with the adaptability of dynamic expert reallocation. We believe this approach opens a promising
direction for scaling parameter-efficient fine-tuning to even larger MoE backbones and resource-
constrained deployment scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented scale. In SC22: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2022.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. In Proceedings of the International Conference on
Machine Learning (ICML), 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and et al. Yang. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and effi-
cient moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Represen-
tations, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yilun Liu, Yunpu Ma, Shuo Chen, Zifeng Ding, Bailan He, Zhen Han, and Volker Tresp.
Perft: Parameter-efficient routed fine-tuning for mixture-of-expert model. arXiv preprint
arXiv:2411.08212, 2024b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. What happens to bert embed-
dings during fine-tuning? arXiv preprint arXiv:2004.14448, 2020.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, and et al. Olmoe: Open mixture-of-experts language models. In International
Conference on Learning Representations (ICLR), 2025.

Qwen. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters. https:
//qwenlm.github.io/blog/qwen-moe/, March 2024. Accessed: 2025-09-23.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations (ICLR), 2017.

Zihan Wang, Deli Chen, Damai Dai, Runxin Xu, Zhuoshu Li, and Yu Wu. Let the expert stick to his
last: Expert-specialized fine-tuning for sparse architectural large language models. Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In ICLR, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do llms recognize
your preferences? evaluating personalized preference following in llms. International Conference
on Learning Representations (ICLR), 2025.

11

https://qwenlm.github.io/blog/qwen-moe/
https://qwenlm.github.io/blog/qwen-moe/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

A.1 BASE MODELS AND BASELINES

We conduct experiments on two publicly available Mixture-of-Experts (MoE) models:

• OLMoE: allenai/OLMoE-1B-7B-0125

• Qwen-MoE: Qwen/Qwen1.5-MoE-A2.7B

The following adaptation baselines are included for comparison:

• Full Finetuning (FFT) on dense models

• MoE with uniform LoRA allocation

• ESFT (Wang et al., 2024)

• EPnG (ours)

A.2 PRUNE-AND-GROW POLICY

• Pruning ratio: α = 0.2

• Growth ratio: β = 0.2

• Trigger interval: Tp = 50 steps

• Warm-up period: Tw = 100 steps

• Exponential decay factor: λ = 0.2 (for updating aggregated gate statistics)

• Hard pruning: implemented by zeroing LoRA B matrices during training

A.3 TRAINING SETUP

• Optimizer: adamw torch fused

• Learning rate: 1× 10−4

• Batch size: 32

• Training steps: 500

• Precision: mixed precision (bfloat16)

• Hardware: NVIDIA A100 80GB GPU

• rank: 8

• seed: 0

Remark. All experiments are conducted under a single NVIDIA A100 (80GB) GPU setup. Due
to memory constraints, full finetuning (FFT) on the Qwen1.5-MoE model could not be performed,
and thus we only report FFT results on OLMoE. Other baselines (LoRA, ESFT, and EPnG) are
consistently compared across both backbones under the same hardware setting.

A.4 DATASETS AND EVALUATION PROTOCOL

Math reasoning. Trained on MetaMathQA, evaluated on GSM8K and MATH (restricted to alge-
bra subset). Metric: Exact Match (EM).

Code generation. Trained on CodeAlpaca, evaluated on HumanEval and MBPP.
Metric: pass@10, using 10 sampled candidates per problem (temperature=0.7,
num return sequences=10).

Personalization. Evaluated on PrefEval. Metric: pairwise preference accuracy, judged by GPT-
4o-mini.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.5 PERSONALIZATION EVALUATION PROTOCOL

For personalization evaluation, we adopt the PrefEval benchmark (Zhao et al., 2025), which is de-
signed to test LLMs’ ability to infer, memorize, and follow user preferences in conversation. Our
implementation closely follows the official protocol: model generations are paired with explicit user
preferences, and GPT-4o-mini is employed as an automatic evaluator.

The evaluation covers four dimensions:

• Acknowledge: whether the model correctly recognizes the user preference.

• Violate: whether the model’s response contradicts the preference.

• Hallucinate: whether unsupported or fabricated content is introduced.

• Helpful: whether the output aligns with the user’s preference and provides useful content.

We parse model responses into <preference> and <answer> tags, construct evaluation
prompts with preference, query, and generated response, and obtain judgments via GPT-4o-mini.
The resulting structured annotations provide fine-grained error analysis consistent with PrefEval.

All decoding hyperparameters (temperature, top-p, maximum generation length) are fixed across
models for fairness.

B MODEL CONFIGURATIONS

We summarize the key hyperparameters of the MoE models used in our experiments, OLMoE-1B-
7B (Muennighoff et al., 2025) and Qwen1.5-MoE-A2.7B (Qwen, 2024), in Table 3. This provides
a clear overview of the architectural differences between the models.

Table 3: A summary of the MoE model configurations used in our experiments.

Hyperparameter OLMoE-1B-7B Qwen1.5-MoE-A2.7B
Total Parameters 6.9B 14.3B
Active Parameters 1.3B 2.7B

Layers (L) 16 24
Hidden Dimension (dmodel) 2048 2048
Number of Experts (N) 64 60 + 1 (shared)
Top-K Routing (k) 8 4
Expert FFN Intermediate Size 1024 1408

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 GENERABILITY OF FINE-TUNED MODELS

To verify that our method does not compromise the general capability of the backbone, we evaluate
on standard reasoning benchmarks without domain-specific finetuning. Table 4 shows that EPnG
preserves baseline performance, while full finetuning (FFT) leads to degradation.

Model ARC-C ARC-E BoolQ

Base 50.17 69.30 66.54
FFT 48.16 63.51 65.75
LoRA 50.17 68.42 65.23
EPnG 50.17 69.12 65.75

Table 4: General evaluation after finetuning. EPnG maintains generability.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.2 TRAINING LOSS COMPARISON

Figure 5 compares training loss curves of EPnG against static LoRA across both backbones. On both
Qwen-MoE and OLMoE, EPnG achieves convergence behavior that closely tracks the stability of
LoRA. This confirms that dynamic prune-and-grow operations do not introduce training instability,
while still enabling expert adaptation during fine-tuning.

train/loss
[Qwen] LoRA (static) [Qwen] EPnG (ours)

100 200 300 400 500

train/global_step1.4

1.6

1.8

2

2.2

2.4

 

(a) Qwen-MoE

train/loss
[OLMoE] LoRA (static) [OLMoE] EPnG (ours)

100 200 300 400 500

train/global_step
0.55

0.6

0.65

0.7

0.75

 

(b) OLMoE

Figure 5: Training loss comparison between static LoRA and EPnG. EPnG preserves stable conver-
gence while dynamically adapting experts.

C.3 EFFECT OF LORA PLACEMENT

We further investigate the effect of attaching LoRA adapters to the down proj matrix in addition
to the default up proj and gate proj.

Table 5 shows results on OLMoE with and without the down proj option.

Method Params. (%) GSM8K MATH Avg.

LoRA (up+gate) 0.72 64.44 21.90 43.17
LoRA (+down) 1.09 65.35 22.33 43.84

EPnG (up+gate) 0.72 66.26 21.82 44.04
EPnG (+down) 1.09 66.19 23.50 44.85

Table 5: Effect of adding down proj to LoRA placement in OLMoE. Adding down proj in-
creases parameters but does not consistently improve accuracy.

D ANALYSIS OF EXPERT IMPORTANCE DYNAMICS

D.1 MOTIVATION AND EXPERIMENTAL SETUP

Our training pipeline employs a dynamic prune-and-grow strategy to adjust expert ranks during
training. To justify this design choice, we first investigate how the distribution of expert importance
scores evolves before and after fine-tuning. Rather than fixing the set of active experts statically, we
aim to show that adapting the structure based on importance scores is necessary and beneficial. We
conducted this experiment by applying a vanilla LoRA adaptation to the mixture-of-experts (MoE)
architecture. Specifically, we compared the model at two stages: the base stage before attaching
LoRA, and the fine-tuned stage after training with LoRA for 500 steps. The backbone model was
OLMoE-1B-7B-0125(Muennighoff et al., 2025), and we used the MetaMathQA(Yu et al., 2024)
dataset from HuggingFace. From this dataset, we sampled 1,000 examples for routing analysis and
statistical evaluation of importance scores.

D.2 RESULTS

Figure 6 presents the comparison of expert utilization patterns for the base model (top) and the fine-
tuned model (bottom). The coloring scheme highlights the top and bottom 20% of experts. Experts

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B
as

e
E

0

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

E
11

E
12

E
13

E
14

E
15

E
16

E
17

E
18

E
19

E
20

E
21

E
22

E
23

E
24

E
25

E
26

E
27

E
28

E
29

E
30

E
31

E
32

E
33

E
34

E
35

E
36

E
37

E
38

E
39

E
40

E
41

E
42

E
43

E
44

E
45

E
46

E
47

E
48

E
49

E
50

E
51

E
52

E
53

E
54

E
55

E
56

E
57

E
58

E
59

E
60

E
61

E
62

E
63

Expert ID

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

st
ep

-5
00

Shared Top 20% Unique Top 20% Shared Bottom 20% Unique Bottom 20%

Figure 6: A comparative visualization of expert importance scores. The tables show the expert
utilization patterns for the base model (top) and the fine-tuned model (bottom). The coloring scheme
identifies the top and bottom 20% of experts, distinguishing between those that are consistently
important (Shared) and those whose importance changes after fine-tuning (Unique).

that remain consistently important across both stages are labeled as Shared, while those whose
importance changes after fine-tuning are labeled as Unique. The analysis reveals that after fine-
tuning, the distribution of expert importance shifts significantly, with several experts increasing or
decreasing in relevance. This observation provides empirical evidence for the need to adjust expert
selection dynamically.

D.3 DISCUSSION

These findings suggest that LoRA-based fine-tuning not only enables parameter-efficient adaptation,
but also induces a meaningful reorganization of expert utilization in MoE models. Consequently,
monitoring expert importance and dynamically adjusting ranks through prune-and-grow strategies
can lead to more effective parameter allocation and improved model performance.

E LLM USAGE

We used an LLM to refine the sentences and ensure grammatical accuracy.

15

	Introduction
	Background
	 Methodology
	Expert Importance Score Aggregation
	Pruning Low-Importance Experts
	Growing High-Importance Experts
	Prune-and-Grow Adaptation Loop

	Experiments
	Datasets
	Experimental Setting
	Results on OLMoE
	Results on Qwen1.5-MoE
	Overall Comparison.

	Further Analysis
	Conclusion
	Implementation Details
	Base Models and Baselines
	Prune-and-Grow Policy
	Training Setup
	Datasets and Evaluation Protocol
	Personalization Evaluation Protocol

	Model Configurations
	Additional Experimental Results
	Generability of Fine-Tuned Models
	Training Loss Comparison
	Effect of LoRA Placement

	Analysis of Expert Importance Dynamics
	Motivation and Experimental Setup
	Results
	Discussion

	LLM Usage

