
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EPNG: ADAPTIVE EXPERT PRUNE-AND-GROW FOR
PARAMETER-EFFICIENT MOE FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) architectures have emerged as a scalable backbone for
large language models (LLMs), but their adaptation to downstream tasks remains
inefficient due to redundant experts and excessive parameter counts. Parameter-
efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation (LoRA) re-
duce training costs, yet they fail to leverage the dynamic routing signals that are
intrinsic to MoE. We introduce EPnG, an adaptive expert prune-and-grow frame-
work for parameter-efficient MoE fine-tuning. EPnG computes expert importance
scores during training to identify under-utilized experts for pruning, while rein-
forcing high-importance experts by expanding their LoRA ranks with orthogonal-
ized initialization. This adaptive loop reallocates limited trainable parameters to
the most impactful experts without increasing the overall budget. On OLMoE and
Qwen1.5-MoE, EPnG surpasses LoRA under the same parameter budget (+2.1%p
and +1.4%p, respectively) on math and code benchmarks, while achieving perfor-
mance comparable to full fine-tuning with only 0.5–0.7%p of parameters (≈ 150×
fewer). These results underscore the effectiveness of coupling MoE’s conditional
computation with adaptive PEFT for scalable fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly advanced the state of natural language processing
(NLP) (Grattafiori et al., 2024; Achiam et al., 2023; Liu et al., 2024a). A key factor behind this
progress is the Mixture-of-Experts (MoE) architecture, which employs conditional computation by
activating only a small subset of experts for each input token (Shazeer et al., 2017; Fedus et al.,
2022). This design enables scaling to hundreds of billions of parameters while keeping the per-token
computational cost (FLOPs) comparable to that of a much smaller dense model, thereby combining
scalability with efficiency. However, these benefits do not directly extend to the fine-tuning stage, as
fully fine-tuning MoE models is prohibitively expensive due to the large number of parameters and
the need to update all experts (Rajbhandari et al., 2022; Kim et al., 2021; Aminabadi et al., 2022).
Efficient fine-tuning of MoE models is particularly important because downstream applications often
require domain adaptation or personalization, which cannot be achieved by pretraining alone.

To alleviate the high cost of fine-tuning, research has focused on Parameter-Efficient Fine-Tuning
(PEFT) methods (Lester et al., 2021; Li & Liang, 2021). Among them, LoRA (Low-Rank Adap-
tation) (Hu et al., 2022) introduces a small number of trainable parameters while retaining strong
performance, and has become widely adopted. However, most existing PEFT methods were de-
veloped with dense architectures in mind and do not sufficiently account for the unique structural
characteristics of MoE. For instance, LoRA applies updates uniformly across all modules, whereas
prior studies have shown that the relative importance of modules and layers is not uniform (Zhang
et al., 2023; Merchant et al., 2020). Such uniform allocation can therefore be particularly inefficient
in MoEs, where routing dynamics and expert specialization play a central role.

These shortcomings become even more severe in MoE models. Because only a subset of experts
is activated per input, overlooking expert importance can leave critical experts under-adapted while
wasting resources on rarely used ones. Moreover, MoEs suffer from expert imbalance, with some
experts over-utilized and others rarely activated (Lepikhin et al., 2021; Fedus et al., 2022). Although
recent studies have attempted to design MoE-aware PEFT approaches (Wang et al., 2024; Liu et al.,
2024b), they either lacked effective solutions or required large numbers of trainable parameters, un-
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Figure 1: Overview of EPnG compared with alternative designs: (i) a vanilla MoE layer (left), (ii)
MoE with LoRA uniformly applied to all experts (middle), and (iii) our proposed EPnG, where
the router selects experts (e.g., experts 2 and M ) whose LoRA ranks are dynamically expanded
(“grow”), while low-importance experts (e.g., experts 1 and 3) are pruned to free capacity.

dermining efficiency. As a result, the fundamental challenge of efficient and stable MoE adaptation
remains unresolved, highlighting the need for a PEFT framework that explicitly accounts for MoE’s
dynamic routing while maintaining parameter efficiency.

Therefore, we propose EPnG (Expert Prune-and-Grow LoRA), a novel adaptive PEFT framework
designed for efficient MoE fine-tuning. EPnG integrates a prune-and-grow loop into training: (i)
compute expert importance scores from router statistics, (ii) prune low-importance experts to release
capacity, and (iii) reinforce high-importance experts by dynamically expanding their LoRA rank
with orthogonal initialization for stability. Figure 1 illustrates an overview of EPnG). This adaptive
mechanism reallocates limited trainable parameters to the most impactful experts, fostering expert
specialization and reducing redundancy. Unlike conventional LoRA, which distributes parameters
evenly across experts, EPnG continuously aligns resource allocation with evolving routing patterns
during fine-tuning.

On average, EPnG achieves consistent improvements over vanilla LoRA with the same number of
trainable parameters. Specifically, EPnG yields +2.1 percent point (%p) (+5.8% relative) on OL-
MoE and +1.4%p (+2.4% relative) on Qwen1.5-MoE, averaged across math and code benchmarks.
Compared to full fine-tuning (FFT), which requires updating the entire model, EPnG achieves com-
petitive performance while tuning over 140× fewer parameters, highlighting its efficiency. This
demonstrates the benefit of dynamic expert management and establishes EPnG as a scalable and
practical solution for efficient MoE-based LLM fine-tuning.

2 BACKGROUND

Mixture-of-Experts. Mixture-of-Experts (MoE) architectures have emerged as a key approach
for scaling large language models (LLMs) (Grattafiori et al., 2024; Achiam et al., 2023; Liu et al.,
2024a). Each MoE layer takes as input a token representation x ∈ Rd and routes it to the top-k
experts, selected from a set of M experts E = {E1, . . . , EM}. The router weight Wrouter produces
logits:

h(x) = Wrouter · x ∈ RM , (1)
which are normalized via a softmax distribution over the available M experts. The gate probabilities,
obtained by applying a softmax over the router outputs, represent the likelihood of assigning the
token to each expert:

pi(x) =
eh(x)i∑M
j=1 e

h(x)j
, i = 1, . . . ,M. (2)

During forward computation, the top-k experts with the largest gate probabilities are selected:

S(x) = Top -k
(
p(x)

)
, |S(x)| = k, (3)

The final output of the MoE layer is a weighted combination of the selected experts:

MoE(x) =
∑

i∈S(x)

pi(x)Ei(x). (4)
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Figure 2: Illustration of EPnG’s end-to-end training procedure.

This sparse activation mechanism enables scaling to trillions of parameters without linearly increas-
ing inference cost. However, not all experts are equally utilized or trained in practice. Prior studies
have observed significant discrepancies in expert usage and contribution (Shazeer et al., 2017; Chi
et al., 2022), highlighting the importance of identifying and managing expert significance. This
motivates our approach of quantifying expert importance via router gate probabilities.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) (Hu et al., 2022) enables parameter-
efficient fine-tuning by injecting trainable low-rank matrices into pre-trained weight matrices. For a
given weight matrix W ∈ Rd×d, LoRA parameterizes the update as:

W ′ = W +∆W, ∆W = AB, (5)

where A ∈ Rd×r, B ∈ Rr×d, and r ≪ d is the LoRA rank. This reduces the number of additional
trainable parameters from d2 to 2dr, enabling efficient yet effective fine-tuning for large models.

Challenges in Combining MoE and LoRA. While LoRA has proven effective in dense trans-
former models, its direct application to MoE architectures introduces unique challenges. In dense
models, every parameter is consistently updated across tokens. In contrast, MoE layers only activate
a small subset of experts for each token, leading to sparse and uneven parameter utilization. This
discrepancy raises fundamental questions about how to design adaptation strategies that remain both
efficient and effective in MoE settings, which motivates our study.

3 METHODOLOGY

In this paper, we propose EPnG (Expert Prune-and-Grow), a novel adaptive PEFT framework de-
signed for efficient Mixture-of-Experts (MoE). Figure 2 shows its overall procedure. EPnG dy-
namically reallocates LoRA parameters by continuously monitoring expert utilization throughout
finetuning. The process begins by collecting router gate probabilities to estimate how frequently
each expert is selected. These are aggregated into expert importance scores, which serve as the basis
for adaptively pruning and growing experts. Low-importance experts are pruned by removing their
LoRA parameters, releasing budget that is reallocated to frequently used experts by expanding their
LoRA ranks. This prune-and-grow loop is repeated during finetuning, allowing EPnG to concentrate
capacity on task-relevant experts while eliminating redundancy, all under a fixed parameter budget.

3.1 EXPERT IMPORTANCE SCORE AGGREGATION

To enable efficient LoRA allocation in MoE models, we first collect router gate probabilities during
finetuning (Figure 2, left). These probabilities reflect how often each expert is selected by the router,
providing a direct signal of expert utilization. By aggregating them, we can identify which experts
are consistently important and which are underutilized, enabling informed decisions for pruning and
rank reallocation.

Specifically, for each token x(n), the router outputs a probability distribution over experts,
{pi(x(n))}Mi=1. We then aggregate these signals across tokens by averaging them (Figure 2, mid-
dle), yielding the average gate probability for expert Ei:

p̄i =
1

N

N∑
n=1

pi(x
(n)), (6)

3
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where N is the total number of processed tokens. We refer to p̄i as the Expert Importance Score,
i.e., the average gate probability of expert Ei. This aggregation captures how frequently each expert
is activated throughout finetuning and provides a principled signal that serves as the foundation for
our adaptive prune-and-grow strategy.

3.2 PRUNING LOW-IMPORTANCE EXPERTS

Based on the computed importance scores, we identify experts with low utilization for pruning. This
process frees up parameter budget that can be reallocated to more influential experts in the growing
stage (Section 3.3).

Expert Selection for Pruning. To identify underutilized experts for pruning, we compute a thresh-
old based on the aggregated importance scores across all experts in all MoE layers. Specifically, we
define the pruning threshold τp as the value below which the lowest α fraction of expert importance
scores p̄(l)i fall, where α ∈ (0, 1) determines the pruning ratio.

We then select the set of experts to prune as:

P = {E(l)
i | p̄

(l)
i ≤ τp, l ∈ {1, . . . , L}, i ∈ {1, . . . ,M}} (7)

where E
(l)
i denotes the i-th expert in the l-th MoE layer, and p̄

(l)
i is its corresponding importance

score. L is the number of MoE layers and M is the number of experts in each layer.

Since this thresholding is applied iteratively across cycles, the cumulative fraction of pruned experts
after t cycles is given by 1−(1−α)t, ensuring gradual pruning while preserving the most influential
experts. Their parameters are then reallocated to more important experts during the growing phase.

Pruning Operation. For each selected expert E(l)
i , we remove its LoRA parameters:

∆W
(l)
i = 0, ∀E(l)

i ∈ P. (8)

This deletion eliminates the contribution of low-importance experts and removes their parameters
from the optimizer state, ensuring that pruned experts incur no additional parameter overhead.

This pruning strategy removes the corresponding parameters from the optimizer, freeing up param-
eter budget that becomes available for reallocation to high-importance experts through the growing
operation.

3.3 GROWING HIGH-IMPORTANCE EXPERTS

The parameter budget released through pruning is reallocated to the most utilized experts by expand-
ing their LoRA ranks. We adopt a budget-neutral setting, where the number of parameters added
during growth matches those removed during pruning. This allows for a controlled comparison with
static baselines without increasing the overall parameter count. Although over-budget configura-
tions (e.g., expanding beyond the pruned budget) are possible, we focus on the budget-neutral case
for clarity in analysis.

Expert Selection for Growth. To identify experts for rank expansion, we compute a global thresh-
old based on the aggregated importance scores {p̄(l)i } across all experts and layers. Specifically, we
define the growth threshold τg as the value above which the top (1−β) fraction of scores fall, where
β ∈ (0, 1) controls the growth ratio.

The selected set of experts is defined as:

G = {E(l)
i | p̄

(l)
i ≥ τg, l ∈ {1, . . . , L}, i ∈ {1, . . . ,M}} (9)

where E
(l)
i denotes the i-th expert in the l-th MoE layer, and p̄

(l)
i is its importance score.

Since this allocation is repeated iteratively, the cumulative fraction of experts receiving expanded
ranks after t cycles is given by 1 − (1 − β)t. This procedure ensures that the most frequently
utilized experts progressively gain additional capacity through rank expansion, while preserving
budget neutrality with pruning.

4
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Rank Expansion. For each expert E(l)
i ∈ G, we expand its LoRA rank from r

(l)
i to r

(l)
i +∆r by

appending new low-rank components. The original LoRA update is ∆W
(l)
i = A

(l)
i B

(l)
i , and after

expansion it becomes:

∆W
(l)′
i = [A

(l)
i A

new,(l)
i ]

[
B

(l)
i

B
new,(l)
i

]
. (10)

This provides greater representational capacity for the most influential experts, ensuring that the ad-
ditional parameters capture complementary task-specific information rather than redundant updates.

Initialization and Orthogonalization. To ensure stable training and avoid redundancy, the newly
added parameters are initialized and regularized as follows:

• A
new,(l)
i is initialized using Kaiming initialization (He et al., 2015) to preserve activation

variance, while B
new,(l)
i is initialized to zero, following standard LoRA practice (Hu et al.,

2022).

• To encourage diversity in the expanded subspace, Anew,(l)
i is orthogonalized with respect to

the existing columns of A(l)
i :

A
new,(l)
i ← (I −Q

(l)
i Q

(l)
i

⊤
)A

new,(l)
i , (11)

where Q
(l)
i = orth(A(l)

i ) is an orthonormal basis spanning the columns of A(l)
i .

This procedure ensures that the newly added directions capture complementary task-specific infor-
mation rather than duplicating previously learned adaptations, thereby improving the effectiveness
of rank expansion.

3.4 PRUNE-AND-GROW ADAPTATION LOOP

Warm-up for Stable Importance Estimation. Expert importance is not static during finetuning:
certain experts that appear important early on may lose relevance later, while initially underutilized
experts can become crucial later. To avoid premature pruning decisions when router statistics are
still unstable, we use a warm-up stage of Tw steps. During this phase, the model is fine-tuned with
LoRA as usual while collecting gate statistics, but no pruning or growth is applied.

Adaptive Parameter Reallocation. After the warm-up stage, the prune-and-grow procedure is
triggered every Tp steps. At each interval, router statistics {p̄(l)i } are aggregated to evaluate expert
importance. Low-importance experts are pruned (Section 3.2), and high-importance experts receive
additional rank expansion (Section 3.3). This ensures that the parameter budget is continuously re-
distributed in response to evolving utilization. Under the constraint α > β, pruning always releases
more parameters than are consumed by growth, guaranteeing that the total number of trainable pa-
rameters never exceeds the initial budget.

Summary. The prune-and-grow loop thus turns finetuning into a dynamic, budget-aware adapta-
tion process. By reallocating LoRA parameters according to router-derived importance signals, it
promotes (i) consistent utilization of the limited parameter budget, (ii) reinforcement of task-relevant
experts, and (iii) suppression of redundant adaptations. Algorithm 1 provides the pseudocode for
the full training loop, and the overall workflow is illustrated in Figure 2.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method across three domains: mathematical reasoning, code generation, and
preference-based personalization. For mathematical reasoning, models are fine-tuned on Meta-
MathQA (Yu et al., 2024) and evaluated on two widely used benchmarks: GSM8K (Cobbe et al.,
2021), which consists of grade-school level word problems, and MATH (Hendrycks et al., 2021),

5
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Algorithm 1: Expert Prune-and-Grow (EPnG) Training
Input: MoE-LLM with initial LoRA rank r0, dataset D, warm-up steps Tw, prune interval Tp,

pruning and growth ratios α, β, decay factor λ
Initialize gate statistics p̄(l)i ← 0 for all experts
for step = 1 to max steps do

Sample batch x ∼ D and compute loss
Update gate probabilities p̄(l)i
Optimize model parameters via backpropagation
if step ≥ Tw and step mod Tp = 0 then

Compute pruning threshold τp and growth threshold τg from {p̄(l)i }
Select experts to prune: P = {E(l)

i | p̄
(l)
i ≤ τp}

Select experts to grow: G = {E(l)
i | p̄

(l)
i ≥ τg}

foreach E
(l)
i ∈ P do

Remove LoRA parameters: ∆W
(l)
i ← 0

foreach E
(l)
i ∈ G do

Expand LoRA rank: r(l)i ← r
(l)
i +∆r

Initialize A
new,(l)
i with Kaiming init, Bnew,(l)

i ← 0

Orthogonalize: Anew,(l)
i ← (I −Q

(l)
i Q

(l)
i

⊤
)A

new,(l)
i

Decay gate statistics: p̄(l)i ← λp̄
(l)
i

a large-scale dataset covering competition-level mathematics. Performance is measured by Exact
Match (EM), i.e., the proportion of predictions that exactly match the ground-truth solution.

For code generation, we finetune on Code Alpaca (Luo et al., 2023), an instruction-tuned dataset for
programming tasks. Evaluation is performed on HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), both of which are widely adopted for benchmarking code synthesis. We report
pass@10 (Chen et al., 2021), which estimates the probability of obtaining a correct solution within
ten sampled generations.

Finally, to assess personalization and user alignment, we use PrefEval (Zhao et al., 2025), a recently
introduced benchmark designed to measure model quality under preference-based evaluation. In this
benchmark, model outputs are pairwise-compared on diverse prompts, and we follow the official
protocol by employing GPT-4o-mini (Achiam et al., 2023) as the evaluator to determine win rates
against baselines.

4.2 EXPERIMENTAL SETTING

We conduct experiments on two publicly available MoE baselines, allenai/OLMoE-1B-7B-
0125 (Muennighoff et al., 2025) and Qwen/Qwen1.5-MoE-A2.7B (Qwen, 2024). For comparison,
we include several adaptation strategies: Full finetuning (FFT) on dense models, MoE with uniform
LoRA allocation, ESFT (Wang et al., 2024), and our proposed EPnG.

LoRA adapters are applied to the up proj and gate proj matrices within transformer blocks.
We adopt a prune-and-grow policy with pruning ratio α = 0.2 and growth ratio β = 0.2. The
procedure is triggered every Tp = 50 steps after an initial warm-up period of Tw = 100 steps.
To adapt to changing routing patterns during finetuning, aggregated gate statistics are exponentially
decayed with factor λ = 0.2.

For evaluation, we follow the standard protocol of each benchmark. In GSM8K and MATH, we
compute exact match accuracy. In HumanEval and MBPP, we report pass@10 by sampling ten
candidates per problem. In PrefEval, we adopt GPT-4o-mini as the evaluator for pairwise preference
comparison. All evaluation hyperparameters, such as decoding temperature, top-p, and maximum
generation length, are fixed across methods, and details are provided in the Appendix A.
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Table 1: Results on OLMoE after 500 finetuning steps. Metrics: Exact Match (%) for
GSM8K/MATH, pass@10 (%) for MBPP/HumanEval, and accuracy (%) for PrefEval. Trainable
parameters are reported as the average % of the full model.

Method Params. (%) Math (EM) Code (pass@10) Personalization Avg.
GSM8K MATH MBPP HumanEval PrefEval

FFT 100 64.97 24.68 43.60 25.00 34.44 38.54
ESFT 5.08 65.13 22.49 42.20 24.39 36.11 38.46
LoRA (static) 0.72 64.44 21.90 39.60 22.56 35.00 36.70
Ours (EPnG) 0.72 66.26 21.40 42.40 23.78 38.33 38.83

Table 2: Results on Qwen1.5-MoE after 500 finetuning steps. Metrics: Exact Match (%) for
GSM8K/MATH and pass@10 (%) for HumanEval/MBPP. Trainable parameters are reported as the
average % of the full model.

Method Params. (%) Math (EM) Code (pass@10) Avg.
GSM8K MATH MBPP HumanEval

ESFT 15.91 64.14 34.54 60.40 76.83 58.98
LoRA (static) 0.55 62.93 34.96 60.40 70.12 57.60
Ours (EPnG) 0.55 64.22 37.32 60.00 74.39 58.98

Baselines. We compare our method against the following approaches: Full finetuning (FFT) up-
dates all model parameters during adaptation, serving as an upper-bound reference for performance.
LoRA (static) applies LoRA adapters with fixed rank across all experts, ignoring differences in ex-
pert utilization. ESFT (Wang et al., 2024) is a recent parameter-efficient finetuning method for MoE
models that specializes experts during adaptation. Our implementation builds on the official ESFT
codebase. EPnG (ours) is the proposed prune-and-grow strategy, which adaptively reallocates LoRA
parameters based on expert importance scores.

4.3 RESULTS ON OLMOE

Table 1 summarizes the results on OLMoE. Importantly, our method updates only 0.72% of the pa-
rameters over 140× smaller than full fine-tuning (FFT), yet still achieves comparable or even better
performance. For instance, EPnG slightly outperforms FFT on GSM8K (66.26% vs. 64.97%), while
maintaining similar averages across all benchmarks (38.83% vs. 38.54%). Relative to static LoRA
with the same parameter budget, EPnG consistently yields improvements, e.g., +1.82 percentage
points (%p) on GSM8K and +2.63%p on the overall average.

Takeaway: Even under an extremely tight parameter budget, pruning under-utilized experts and
reallocating capacity through EPnG preserves or improves performance, demonstrating that full
fine-tuning is not necessary to reach strong downstream results.

4.4 RESULTS ON QWEN1.5-MOE

Table 2 shows the results on Qwen1.5-MoE, a larger MoE model. Here, ESFT updates 15.9% of the
parameters, while EPnG operates with only 0.55%, a nearly 29× reduction. Despite this drastic gap
in parameter count, EPnG attains the same average performance as ESFT (58.98%), and consistently
surpasses static LoRA under the identical budget. Notably, EPnG improves MATH from 34.96% to
37.32% and HumanEval from 70.12% to 74.39%, confirming that dynamic allocation of capacity
scales effectively to larger MoE backbones.

Takeaway: EPnG delivers the efficiency of LoRA with the effectiveness of ESFT, showing that
pruning-and-growing can be applied to other MoE models without sacrificing accuracy.

7
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Method Acc.
LoRA 65.50
Grow only 64.97
Prune only 65.81
Prune & Grow 66.41

(a) Ablation study.
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Figure 3: Further analysis of EPnG. (a) Ablation study comparing LoRA, grow-only, prune-only,
and prune-and-grow. (b) Sensitivity to LoRA rank, where EPnG maintains stable performance while
LoRA fluctuates. (c) Effect of prune-and-grow fraction, showing that moderate pruning achieves the
best trade-off between accuracy and expert utilization.
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Figure 4: Layer-wise behavior of prune-and-grow. The top heatmap shows pruning ratios, where
shallower (earlier) layers are pruned more heavily. The middle heatmap shows growing ratios,
highlighting deeper (later) layers where experts are expanded. The bottom heatmap summarizes the
resulting average rank distribution: blue indicates reduced ranks, while green indicates expanded
ranks. Together, these plots reveal that EPnG adaptively reallocates capacity across layers, focusing
resources on the most impactful regions of the model.

4.5 OVERALL COMPARISON.

Across both OLMoE and Qwen1.5-MoE, a consistent pattern emerges: EPnG maintains or improves
task performance while requiring less than 1% of the trainable parameters. On OLMoE, EPnG
matches the accuracy of full fine-tuning with 140× fewer parameters, while on Qwen1.5-MoE,
it achieves the same average as ESFT with 29× fewer parameters. These results highlight that
pruning-and-growing offers a scalable and parameter-efficient alternative to conventional fine-tuning
methods, combining the efficiency of LoRA-style updates with the robustness of more expensive
approaches.

These results confirm that EPnG achieves consistent performance gains over static LoRA and MoE-
specific ESFT, without exceeding the same parameter budget. By dynamically reallocating capacity
toward high-importance experts, EPnG improves both reasoning and generation performance, mak-
ing it a practical alternative to expensive full finetuning.

5 FURTHER ANALYSIS

We conduct additional analyses on gsm8k dataset to better understand why prune-and-grow im-
proves performance under tight parameter budgets. Figures 3 and 4 provide detailed insights.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ablation Study. We conduct an ablation study to examine the contributions of pruning and grow-
ing (Figure 3a). Compared to the static LoRA baseline (65.50%), applying either growing (64.97%)
or pruning (65.81%) in isolation yields comparable or slightly improved performance. Notably,
pruning proves more effective than growing, as it achieves better accuracy with fewer parameters
than the baseline. In contrast, combining both operations leads to the best result (66.41%), indicat-
ing that pruning and growing complement each other: pruning eliminates redundant components,
while growing reinforces useful ones.

We speculate on why “Prune only” outperforms “Grow only.” Pruning likely provides an implicit
regularization effect, removing redundancy and forcing the model to concentrate on essential rep-
resentations, which can improve generalization despite reduced capacity. By contrast, growing in-
creases capacity without addressing redundancy and may introduce additional noise, making train-
ing less stable. The newly added parameters might also be under-utilized in early training, limiting
their contribution. While this interpretation remains tentative, the results suggest that pruning is a
particularly effective strategy, achieving better performance than the baseline with fewer parameters.

Rank Sensitivity. Figure 3b examines sensitivity to the LoRA rank. LoRA exhibits large fluctu-
ations in accuracy across different ranks, underscoring the difficulty of selecting the right hyperpa-
rameter. In contrast, EPnG maintains stable performance, indicating that dynamically reallocating
capacity mitigates this sensitivity.

Prune-and-Grow Fraction. Figure 3c explores the effect of varying the prune-and-grow fraction.
Higher fractions prune a larger set of experts and concentrate capacity on fewer ones. Performance
improves until about 0.2, beyond which the benefit plateaus. This suggests that moderate pruning is
necessary for the best balance between removing redundancy and preserving expert diversity.

Layer-Wise Behavior. Figure 4 visualizes how pruning and growing are distributed across lay-
ers. The “Prune” heatmap shows that shallower layers are pruned more heavily, while the “Grow”
heatmap highlights deeper layers where experts are expanded. The combined map summarizes
the resulting average rank distribution, with blue indicating reduced ranks and green indicating ex-
panded ranks. This demonstrates that EPnG adaptively reallocates capacity toward the most im-
pactful layers, yielding a balanced and efficient expert configuration. For a detailed analysis of how
these dynamics evolve across training steps, please refer to Appendix D.

Summary. Overall, these analyses show that prune-and-grow not only achieves higher accuracy
than its individual components but also stabilizes rank sensitivity, manages pruning trade-offs, and
adaptively redistributes capacity across layers. This explains why EPnG consistently surpasses static
LoRA under the same parameter budget.

6 CONCLUSION

In this work, we introduced Expert Prune-and-Grow (EPnG), a parameter-efficient fine-tuning
method for Mixture-of-Experts (MoE) models. EPnG identifies under-utilized experts via gate prob-
abilities and prunes them, while reallocating the released parameter budget to expand the ranks of
high-importance experts. This dynamic reallocation enables the model to adaptively shift capacity
toward the most impactful components without increasing the overall parameter count.

Extensive experiments on OLMoE and Qwen1.5-MoE demonstrate that EPnG achieves accuracy
comparable to or better than full finetuning and ESFT, while updating only about 1% of parameters.
Relative to static LoRA, EPnG provides consistent gains across most math, code, and personalization
benchmarks, with notable improvements on GSM8K and HumanEval. These results confirm the
benefit of combining pruning and growing under a budget-neutral constraint. Our analyses further
show that EPnG stabilizes rank sensitivity, balances pruning trade-offs, and adaptively redistributes
capacity across layers.

In summary, EPnG provides a simple yet effective framework that combines the efficiency of LoRA
with the adaptability of dynamic expert reallocation. We believe this approach opens a promising
direction for scaling parameter-efficient fine-tuning to even larger MoE backbones and resource-
constrained deployment scenarios.
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A IMPLEMENTATION DETAILS

A.1 BASE MODELS AND BASELINES

We conduct experiments on two publicly available Mixture-of-Experts (MoE) models:

• OLMoE: allenai/OLMoE-1B-7B-0125

• Qwen-MoE: Qwen/Qwen1.5-MoE-A2.7B

The following adaptation baselines are included for comparison:

• Full Finetuning (FFT) on dense models

• MoE with uniform LoRA allocation

• ESFT (Wang et al., 2024)

• EPnG (ours)

A.2 PRUNE-AND-GROW POLICY

• Pruning ratio: α = 0.2

• Growth ratio: β = 0.2

• Trigger interval: Tp = 50 steps

• Warm-up period: Tw = 100 steps

• Exponential decay factor: λ = 0.2 (for updating aggregated gate statistics)

• Hard pruning: implemented by zeroing LoRA B matrices during training

A.3 TRAINING SETUP

• Optimizer: adamw torch fused

• Learning rate: 1× 10−4

• Batch size: 32

• Training steps: 500

• Precision: mixed precision (bfloat16)

• Hardware: NVIDIA A100 80GB GPU

• rank: 8

• seed: 0

Remark. All experiments are conducted under a single NVIDIA A100 (80GB) GPU setup. Due
to memory constraints, full finetuning (FFT) on the Qwen1.5-MoE model could not be performed,
and thus we only report FFT results on OLMoE. Other baselines (LoRA, ESFT, and EPnG) are
consistently compared across both backbones under the same hardware setting.

A.4 DATASETS AND EVALUATION PROTOCOL

Math reasoning. Trained on MetaMathQA, evaluated on GSM8K and MATH (restricted to alge-
bra subset). Metric: Exact Match (EM).

Code generation. Trained on CodeAlpaca, evaluated on HumanEval and MBPP.
Metric: pass@10, using 10 sampled candidates per problem (temperature=0.7,
num return sequences=10).

Personalization. Evaluated on PrefEval. Metric: pairwise preference accuracy, judged by GPT-
4o-mini.

12
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A.5 PERSONALIZATION EVALUATION PROTOCOL

For personalization evaluation, we adopt the PrefEval benchmark (Zhao et al., 2025), which is de-
signed to test LLMs’ ability to infer, memorize, and follow user preferences in conversation. Our
implementation closely follows the official protocol: model generations are paired with explicit user
preferences, and GPT-4o-mini is employed as an automatic evaluator.

The evaluation covers four dimensions:

• Acknowledge: whether the model correctly recognizes the user preference.

• Violate: whether the model’s response contradicts the preference.

• Hallucinate: whether unsupported or fabricated content is introduced.

• Helpful: whether the output aligns with the user’s preference and provides useful content.

We parse model responses into <preference> and <answer> tags, construct evaluation
prompts with preference, query, and generated response, and obtain judgments via GPT-4o-mini.
The resulting structured annotations provide fine-grained error analysis consistent with PrefEval.

All decoding hyperparameters (temperature, top-p, maximum generation length) are fixed across
models for fairness.

B MODEL CONFIGURATIONS

We summarize the key hyperparameters of the MoE models used in our experiments, OLMoE-1B-
7B (Muennighoff et al., 2025) and Qwen1.5-MoE-A2.7B (Qwen, 2024), in Table 3. This provides
a clear overview of the architectural differences between the models.

Table 3: A summary of the MoE model configurations used in our experiments.

Hyperparameter OLMoE-1B-7B Qwen1.5-MoE-A2.7B
Total Parameters 6.9B 14.3B
Active Parameters 1.3B 2.7B

Layers (L) 16 24
Hidden Dimension (dmodel) 2048 2048
Number of Experts (N ) 64 60 + 1 (shared)
Top-K Routing (k) 8 4
Expert FFN Intermediate Size 1024 1408

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 GENERABILITY OF FINE-TUNED MODELS

To verify that our method does not compromise the general capability of the backbone, we evaluate
on standard reasoning benchmarks without domain-specific finetuning. Table 4 shows that EPnG
preserves baseline performance, while full finetuning (FFT) leads to degradation.

Model ARC-C ARC-E BoolQ

Base 50.17 69.30 66.54
FFT 48.16 63.51 65.75
LoRA 50.17 68.42 65.23
EPnG 50.17 69.12 65.75

Table 4: General evaluation after finetuning. EPnG maintains generability.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.2 TRAINING LOSS COMPARISON

Figure 5 compares training loss curves of EPnG against static LoRA across both backbones. On both
Qwen-MoE and OLMoE, EPnG achieves convergence behavior that closely tracks the stability of
LoRA. This confirms that dynamic prune-and-grow operations do not introduce training instability,
while still enabling expert adaptation during fine-tuning.

train/loss
[Qwen] LoRA (static) [Qwen] EPnG (ours)

100 200 300 400 500

train/global_step1.4

1.6

1.8

2

2.2

2.4

 

(a) Qwen-MoE

train/loss
[OLMoE] LoRA (static) [OLMoE] EPnG (ours)

100 200 300 400 500

train/global_step
0.55

0.6

0.65

0.7

0.75

 

(b) OLMoE

Figure 5: Training loss comparison between static LoRA and EPnG. EPnG preserves stable conver-
gence while dynamically adapting experts.

C.3 EFFECT OF LORA PLACEMENT

We further investigate the effect of attaching LoRA adapters to the down proj matrix in addition
to the default up proj and gate proj.

Table 5 shows results on OLMoE with and without the down proj option.

Method Params. (%) GSM8K MATH Avg.

LoRA (up+gate) 0.72 64.44 21.90 43.17
LoRA (+down) 1.09 65.35 22.33 43.84

EPnG (up+gate) 0.72 66.26 21.82 44.04
EPnG (+down) 1.09 66.19 23.50 44.85

Table 5: Effect of adding down proj to LoRA placement in OLMoE. Adding down proj in-
creases parameters but does not consistently improve accuracy.

D ANALYSIS OF EXPERT IMPORTANCE DYNAMICS

D.1 MOTIVATION AND EXPERIMENTAL SETUP

Our training pipeline employs a dynamic prune-and-grow strategy to adjust expert ranks during
training. To justify this design choice, we first investigate how the distribution of expert importance
scores evolves before and after fine-tuning. Rather than fixing the set of active experts statically, we
aim to show that adapting the structure based on importance scores is necessary and beneficial. We
conducted this experiment by applying a vanilla LoRA adaptation to the mixture-of-experts (MoE)
architecture. Specifically, we compared the model at two stages: the base stage before attaching
LoRA, and the fine-tuned stage after training with LoRA for 500 steps. The backbone model was
OLMoE-1B-7B-0125(Muennighoff et al., 2025), and we used the MetaMathQA(Yu et al., 2024)
dataset from HuggingFace. From this dataset, we sampled 1,000 examples for routing analysis and
statistical evaluation of importance scores.

D.2 RESULTS

Figure 6 presents the comparison of expert utilization patterns for the base model (top) and the fine-
tuned model (bottom). The coloring scheme highlights the top and bottom 20% of experts. Experts

14
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Figure 6: A comparative visualization of expert importance scores. The tables show the expert
utilization patterns for the base model (top) and the fine-tuned model (bottom). The coloring scheme
identifies the top and bottom 20% of experts, distinguishing between those that are consistently
important (Shared) and those whose importance changes after fine-tuning (Unique).

that remain consistently important across both stages are labeled as Shared, while those whose
importance changes after fine-tuning are labeled as Unique. The analysis reveals that after fine-
tuning, the distribution of expert importance shifts significantly, with several experts increasing or
decreasing in relevance. This observation provides empirical evidence for the need to adjust expert
selection dynamically.

D.3 DISCUSSION

These findings suggest that LoRA-based fine-tuning not only enables parameter-efficient adaptation,
but also induces a meaningful reorganization of expert utilization in MoE models. Consequently,
monitoring expert importance and dynamically adjusting ranks through prune-and-grow strategies
can lead to more effective parameter allocation and improved model performance.

E LLM USAGE

We used an LLM to refine the sentences and ensure grammatical accuracy.
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