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Abstract

Accurate and robust deformable image registration is crucial for brain image analysis.
While deep learning has significantly advanced this field, existing methods often lack ro-
bustness for large deformations due to inter-subject variability, frequently requiring pre-
registration and relying heavily on data-driven approaches. To address these limitations,
we propose an end-to-end Symmetric Multis-level Gradient-Inverse Consistency
Network (SM-GICNet) for accurate and robust brain image registration. SM-GICNet
employs 1) a symmetric multi-level framework with an attention gate mechanism to cap-
ture complex deformations at multiple scales, 2) a symmetric registration strategy at each
level to mitigate directional bias, and 3) a gradient inverse consistency strategy to reduce
reliance on data-driven constraints and control deformation field complexity. Experimen-
tal results demonstrate that our method is able to eliminate the need for pre-registration
and outperforms state-of-the-art methods on large deformation registration tasks, on two
datasets achieving a Dice similarity coefficient of 0.797 and 0.794. The implementation of
our SM-GICNet is available online at https://github.com/LSYLAB/SM-GICNet.git.

Keywords: Symmetric registration, Consistency-Constrained, Inverse-Consistent, Multi-
level

1. Introduction

Deformable image registration is a fundamental task in medical image analysis, aiming to
establish a nonlinear spatial correspondence between a pair of images (source/moving and
target/fixed images)(Sotiras et al., 2013). Large deformation image registration refers to
the scenario where significant shape and positional differences exist between images, partic-
ularly in cases of high inter-subject heterogeneity or notable pathological variations(Meng
et al., 2024; Wang et al., 2024). Achieving precise registration typically requires complex
nonlinear transformations. Specifically, the registration process generally begins with an
affine transformation for coarse alignment to capture large-scale deformations, followed
by nonlinear transformations for fine alignment to optimize local details(Mok and Chung,
2022a).
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Figure 1: (a) A symmetric multi-level registration framework incorporating an attention
gate mechanism; (b) symmetric deformation field consistency strategy at each
level; (c) a deformation field constraint based on gradient inverse consistency;
and (d) a multi-level consistency strategy. DAB means the intensity difference
map between IA and IB, EA and EB mean the energy image obtained from
3D-DWT. The (b)(c)(d) component serves as a loss constraint for our primary
network (a), applied during the deformation field generation process at each layer.

Traditional registration methods typically rely on iterative optimization strategies to
maximize similarity metrics in the transformation space (Oliveira and Tavares, 2014; Shen
and Davatzikos, 2002). While these methods achieve relatively stable performance, they
suffer from low computational efficiency and limitations when handling complex deforma-
tion fields. Recently, deep learning-registration methods achieve significant performance
improvements by leveraging large datasets and the powerful modeling capabilities of neu-
ral networks (Wang et al., 2023, 2022; Shi et al., 2022). These methods directly predict
the deformation field via neural networks, demonstrating superior performance in nonlinear
registration tasks. However, they often focus solely on nonlinear registration, and their per-
formance remains unsatisfactory without rigid or affine pre-registration (Mok and Chung,
2022b; Balakrishnan et al., 2019).

For nonlinear transformations, current deep-learning-based registration methods still
face the challenges. In common multi-level image registration approaches, this is typically
addressed with a coarse-to-fine registration strategy (Hering et al., 2019; Mok and Chung,
2020; Eppenhof et al., 2019). Specifically registration proceeds from a coarse alignment that
captures large deformations to a fine alignment that incorporates local details. Unfortu-
nately, the fixed directionality in existing multi-level methods inevitably leads to asymmetric
and biased mapping, which may negatively impact subsequent image analysis tasks such
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as computational anatomy. Some symmetric single-level registration methods have been
proposed to simultaneously predict forward (IA → IB) and backward (IB → IA) transfor-
mations between images (Xu et al., 2023; Chen et al., 2023; Tian et al., 2024), enhancing the
invertibility and accuracy of the deformation field. However, these methods mainly rely on
similarity-driven optimizations, leading to slow convergence and high computational costs.

To address these issues, we propose a Symmetric Multis-level Gradient-Inverse
Consistency Network (SM-GICNet) capable of directly handling large deformation
registration tasks with high variability without pre-registration. Specifically, we introduce
a method that combines a symmetric multi-level registration framework with an at-
tention gate mechanism to capture deformation features at different scales and focus
attention on complex deformation regions during the high-resolution stage. At each level,
we employ a symmetric deformation field consistency strategy, where images A and
B are simultaneously registered as each other’s moving image, predicting both forward and
backward deformation fields to ensure the stability and consistency of the transformations.
Furthermore, we incorporate a gradient inverse consistency constraint to directly reg-
ularize the gradient alignment of the forward and backward deformation fields, limiting the
complexity of the deformation field and mitigating reliance on purely data-driven optimiza-
tions.

Our main contributions are as follows:

• Our SM-GICNet is a symmetric multi-level registration framework with attention-
gate mechanism for learning a progressively refined representations transformations,
which eliminates the bias of generic directional image registration.

• Our SM-GICNet embraces the gradient inverse consistency constraint to replace con-
ventional regularizers, which reduces reliance on purely data-driven optimization.

• Our SM-GICNet achieves accurate and fast registration without any pre-registration
(rigid or affine registration), which demonstrates superior performance in large defor-
mation registration tasks with high heterogeneity in brain MRI.

2. Related Work

2.1. Symmetric Diffeomorphic Registration

Symmetric registration is crucial for accurate medical image registration, particularly in es-
timating deformations between image pairs, improving geometric consistency and precision
(Greer et al., 2021). Early methods independently estimated forward and backward trans-
formations, lacking guaranteed inverse consistency (Zheng et al., 2021; Kim et al., 2021).
Most deformable methods use displacement fields (Brauwers and Frasincar, 2021; Cao et al.,
2018; Yang et al., 2017), neglecting differential properties like topology preservation and in-
vertibility (Tian et al., 2025), hindering true symmetry. Diffeomorphic registration, using
stationary velocity fields, offers a solution (Avants et al., 2008), ensuring smooth, invert-
ible mappings. The diffeomorphic deformation field, ϕt (parameterized by t ∈ [0, 1]), is
generated from the velocity field as:

dϕv

dt
= vt(ϕt) = vt ◦ ϕt (1)
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Diffeomorphic models are advantageous for constructing symmetric registration net-
works due to their inherent invertibility.

2.2. Attention Gate Mechanism

The Attention Gate Mechanism (AGM) is an attention mechanism readily integrated into
various Convolutional Neural Networks (CNNs) to enhance performance in tasks such as
image segmentation, object detection, and image classification (Azad et al., 2024; Guo et al.,
2022; Brauwers and Frasincar, 2021). By focusing on salient regions, AGMs guide networks
to prioritize significant features (Li et al., 2023; Ranjbarzadeh et al., 2021). Numerous
studies have shown that attention gate mechanisms significantly improve the accuracy of
registration models in local regions, particularly in tasks requiring attention to fine anatom-
ical structures (Chen et al., 2022; Tang et al., 2022). Attention gate networks based on
U-Net architectures are especially prevalent in image registration. For example, Attention
U-Net (Oktay et al., 2018) incorporates attention gate modules to focus on key regions
of the input image, enhancing the model’s response to specific areas while reducing inter-
ference from background noise and irrelevant features. This approach has demonstrates
performance improvements on several public medical image datasets.

3. Methods

We present a symmetric multi-level gradient inverse consistency network (SM-GICNet) for
large deformation image registration. As illustrated in Figure 1, SM-GICNet includes: (1) a
symmetric multi-level registration framework incorporating the attention gate mechanism;
(2) symmetric deformation field consistency strategy at each level; and (3) a deformation
field constraint based on gradient inverse consistency.

3.1. Symmetric Multi-level Registration Framework

A novel symmetric multi-level registration framework with attention gate mechanism is
proposed to effectively capture multi-scale deformation fields between image pairs. The
multi-level architecture comprises four consecutive levels, efficiently capturing both global
and complex local deformations within a single forward process. Symmetry is achieved by
alternately using each image as the moving image in a single registration, yielding ϕAB and
ϕBA. Simultaneously, both forward (ϕAB) and inverse (ϕ−1

BA) deformation fields are directly
obtained for each image, enabling multi-constraint network learning.

The multi-level network is constructed using a 3D discrete wavelet transform (3D-DWT)
(Ghasemzadeh and Demirel, 2018) to leverage both low-frequency global and high-frequency
local information, following the input method of AMNet (Che et al., 2023). An AGM is
introduced at level 4 to automatically enhance deformation field learning in crucial regions
while suppressing background influence, improving the model’s ability to deal with large
deformations and get finer structural details. Further details regarding the attention gate
network architecture are provided in Appendix A.
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Figure 2: Qualitative registration results by three different methods and SM-GICNet on
two datasets. The second and forth rows show the absolute intensity difference
between the registered images and the fixed image, highlighting the residual mis-
alignment after registration. The values down of warped images are the Dice
score (DSC) between the warped image and the fixed image.

3.2. Symmetric Deformation Field Consistency Strategy

Our network employs a symmetric deformation field consistency strategy at each level,
promoting bidirectional symmetry during unidirectional registration to enhance deformation
field stability and consistency. Following diffeomorphic principles, a stationary velocity field
is used instead of a displacement field for parameterization. The deformation field is defined
as in the equation1. The velocity field v is integrated over a unit time using a scaling and
squaring operation with a time step T = 7 to obtain the final deformation field ϕ(1). The
diffeomorphic model adapts to large or complex deformations, and since the output is a
velocity field, the inverse velocity field, and subsequently the inverse deformation field, can
be obtained by negating the velocity field. This forms the basis of the symmetric registration
network.

Specifically, assuming the network learns the deformation field ϕA→B from moving image
A to fixed image B, the inverse deformation field ϕA→B is derived using diffeomorphic
properties. The network then learns ϕB→A from B to A, ensuring consistency between
these two deformation fields. This improves the inverse representation capabilities during
forward registration.
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3.3. Gradient Inverse Consistency Constraint

In a single registration, images IA and IB are registered reciprocally, alternately serving as
the moving image. This yields both forward (ϕAB) and backward (ϕBA) deformation fields.
To reduce data-driven dependence, the gradient inverse consistency constraint(Tian et al.,
2023) is applied directly to the deformation fields. Unlike traditional registration methods
that are heavily dependent on image similarity, this approach directly enforces constraints
on the deformation fields based on their mathematical properties. This ensures that the
matrix resulting from the forward deformation field and its inverse is consistent with the
identity grid I, suppressing unreasonable complexities in the deformation field, which not
only improves robustness to image noise, contrast variations, and modality differences, but
also accelerates convergence by reducing computational overhead during optimization.

3.4. Losses and Objectives

Our method employs a multi-component loss function to optimize image registration. The
total loss is a weighted sum of the following terms.

Consistency Loss: This term enforces consistency between forward and inverse trans-
formations. It comprises three sub-components:
Symmetric Consistency:

LSy = LMSE(IA ◦ ϕAB, IB ◦ ϕBA) (2)

Inverse Consistency:
LIn = LMSE(ϕAB ◦ ϕ−1

AB), I) (3)

Multi-level Consistency:

LMu = LMSE(wi, (wi +wi−1)/2) (4)

And the Consistency Loss is the sum of them: Lconsistency = λsLSy+λiLIn+λmLMu, where
λs = 0.001, λi = 0.01 and λm = 0.0005.

Multi-level NCC Similarity Loss: This term maximizes the Normalized Cross-
Correlation (NCC) similarity between warped and fixed images across multiple resolution
levels. Let Li

NCC denote the NCC loss at level i. Then: LNCC =
∑

i αiL
i
NCC , where αi are

weights assigned to each level.
Smoothness Regularization Loss: This term penalizes overly complex deformations

by minimizing the L2 norm of the deformation field gradients: Lsmooth =
∑

i βiL
i
2, where

Li
2 is the loss at level i and βi are weights.
The total loss function is given by: Ltotal = Lconsistency + LNCC + Lsmooth.

4. Experiment

4.1. Data

We evaluate our method using the IXI1 and OASIS2 brain MRI datasets, which comprise
3D MRI scans weighted T1. From the IXI dataset, a subset of 314 subjects is divided into

1. https://brain-development.org/ixi-dataset/
2. https://sites.wustl.edu/oasisbrains/
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training (n = 269), validation (n = 15) and testing (n = 30) sets. For the OASIS dataset,
360 subjects are divided into training (n=280), validation (n=20), and testing (n=60) sets.
Our experiments focus on inter-subject registration, where moving and fixed image pairs
are derived from both datasets. For the IXI test set (30 images), 435 registration pairs are
generated by pairing each image with every other image. Similarly, the OASIS test set (60
images) yields 1,775 registration pairs.

All images are subjected to standard skull stripping and contrast correction prepro-
cessing, with no prior registration (e.g., affine or rigid transformations) applied. Image
segmentation is performed using FreeSurfer software (Fischl, 2012), resulting in 36 regions
of interest (ROIs). Performance evaluations are based on ROI overlap in test images. For
comparison, a separate training and testing dataset is created using affine registration with
FSL’s flirt command.

4.2. Training Details

Our models are trained using the Adam optimizer on a single NVIDIA A100 GPU. To
determine the optimal hyperparameters, we employ a grid search strategy with a step size
of 10, exploring various combinations of coefficients and learning rates. Based on this search,
we set the initial learning rate to 1e-4 and reduced it by a factor of 0.5 every 50k iterations
after the first 60k iterations for each level. The network is trained for 4, 4, 6, and 6 epochs
in levels 1, 2, 3, and 4, respectively, ensuring robust convergence across all levels.

4.3. Evaluation metrics

To evaluate registration accuracy, we employ the Dice Similarity Coefficient (DSC) and
Jacobian Determinant(JD). For the Dice computation, we calculate label-dependent Dice
scores at the brain region level. The final Dice score is obtained by averaging the Dice scores
across all labels. The Jacobian determinant of the deformation field is used to evaluate the
local properties of the deformation. For a deformation field ϕ, the Jacobian determinant Jϕ
at each spatial location measures the local volume change induced by the transformation.
We also evaluate the computational efficiency of the registration method by measuring the
processing time required for a single pair of images.

5. Results

5.1. Comparisons with the state-of-the-art methods

We compare our method with three widely-used registration approaches:

SyN (Avants et al., 2009) – A widely used registration method from ANTs, using
cross-correlation and a multi-resolution optimization strategy with an initial affine trans-
formation.

ICNet (Zhang, 2018) – An inverse-consistent deep network for unsupervised deformable
registration, trained using the authors’ optimal hyperparameters.

LapIRN (Mok and Chung, 2020) – A multi-level diffeomorphic registration algorithm
using a Laplacian pyramid architecture and three CNNs, trained using the authors’ optimal
hyperparameters.
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Table 1: Quantitative evaluation of different registration methods on IXI and OASIS
datasets. Higher DSC values indicate better performance, while lower propor-
tions of |JD| ≤ 0 and registration times are preferred.

IXI SyN ICNet ICNet
w.affine

LapIRN LapIRN
w.affine

Ours

DSC 0.753
(±0.103)

0.289
(±0.211)

0.714
(±0.081)

0.478
(±0.272)

0.803
(±0.069)

0.797
(±0.137)

|JD| ≤ 0 0.000
(±0.000)

0.499
(±0.002)

0.489
(±0.014)

0.503
(±0.041)

0.488
(±0.028)

0.483
(±0.027)

Time 1 h 0.252s
(±0.021)

7.893 s
(±0.021 )

1.100 s
(±0.006 )

8.743 s
(±0.006 )

0.272 s
(±0.042 )

OASIS SyN ICNet ICNet
w.affine

LapIRN LapIRN
w.affine

Ours

DSC 0.753
(±0.103)

0.276
(±0.184)

0.708
(±0.096)

0.476
(±0.182)

0.767
(±0.138)

0.794
(±0.069)

|JD| ≤ 0 0.000
(±0.000)

0.498
(±0.002)

0.487
(±0.017)

0.493
(±0.042)

0.481
(±0.038)

0.488
(±0.042)

Time 1 h 0.232s
(±0.012)

7.432 s
(±0.012 )

1.670 s
(±0.051 )

8.873 s
(±0.051 )

0.266 s
(±0.054 )

Table 1 summarizes the quantitative results of our method and three comparison meth-
ods across all ROIs on two datasets. For a fair comparison, LapIRN and ICNet are trained
and tested on both unregistered and pre-registered datasets. Our method achieves the
highest Dice score on the unregistered dataset. While LapIRN achieved slightly better per-
formance on the pre-registered IXI dataset, it incurs a significantly higher computational
cost with only marginal improvement in accuracy. We conducted a statistical significance
test and the relevant results are in Appendix B. We also test the dataset on two other base-
line methods, Synthmorph(Hoffmann et al., 2021) and Gradicon(Tian et al., 2023), which
can be found in Appendix C.

Figure 2 visually validates our method’s registration precision, showing remarkable align-
ment with the fixed image without pre-registration. The intensity difference maps further
substantiate the minimal residual misalignment.

Figure 3(a) showcases our network’s robust reciprocal registration capabilities, particu-
larly in handling subjects with substantial anatomical variations. The resulting deformation
fields notably exhibit symmetric characteristics.

5.2. Ablation Study:

Figure 3(b) conducted ablation experiments by progressively removing key components of
the model (gradient inverse consistency constraints, multilevel structure, symmetric struc-
ture, and attention-gate mechanism), which demonstrated the critical significance of each
component in model performance: Employing gradient or symmetric consistency constraints
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Figure 3: (a) The deformed images resulting from reciprocal registration of the image pair,
and the resulting symmetric deformation fields. (b) Ablation study results show
DSC and JD values obtained after removing each component of the network
individually.

in isolation led to diminished registration accuracy; the absence of a multi-level network
architecture substantially compromised the model’s capacity to capture complex deforma-
tions; and integrating attention mechanisms at the highest resolution level enabled more
discriminative feature representation across varying deformation scales, thereby preserving
intricate feature information and ultimately enhancing registration precision.

6. Conclusion

We introduce a novel Symmetric Multi-level Gradient-Inverse Consistency Network (SM-
GICNet) for robust large deformation image registration, specifically addressing the chal-
lenges posed by high inter-subject variability in medical images. Unlike many existing deep
learning-based methods, SM-GIC Net directly handles large deformations without requiring
pre-registration steps. This is achieved through a synergistic combination of three key inno-
vations: 1) a symmetric multi-level architecture incorporating an attention gate mechanism
for efficient multi-scale deformation capture; 2) a symmetric deformation field consistency
strategy to ensure bidirectional symmetry and stability; and 3) a gradient inverse consis-
tency constraint to reduce reliance on purely data- driven optimization and complexity.

9



Bai Che Zhang Li

Acknowledgments

This work is supported by the National Natural Science Foundation of China [No. 32271146],
the Startup Funds for Top-notch Talents at Beijing Normal University, China, and the fel-
lowship of China National Postdoctoral Program for Innovative Talents. [No. BX20240039].

References

Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmetric
diffeomorphic image registration with cross-correlation: evaluating automated labeling of
elderly and neurodegenerative brain. Medical image analysis, 12(1):26–41, 2008.

Brian B Avants, Nick Tustison, Gang Song, et al. Advanced normalization tools (ants).
Insight j, 2(365):1–35, 2009.

Reza Azad, Ehsan Khodapanah Aghdam, Amelie Rauland, Yiwei Jia, Atlas Haddadi Avval,
Afshin Bozorgpour, Sanaz Karimijafarbigloo, Joseph Paul Cohen, Ehsan Adeli, and Dorit
Merhof. Medical image segmentation review: The success of u-net. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Guttag, and Adrian V Dalca.
Voxelmorph: a learning framework for deformable medical image registration. IEEE
transactions on medical imaging, 38(8):1788–1800, 2019.

Gianni Brauwers and Flavius Frasincar. A general survey on attention mechanisms in deep
learning. IEEE Transactions on Knowledge and Data Engineering, 35(4):3279–3298, 2021.

Xiaohuan Cao, Jianhua Yang, Jun Zhang, Qian Wang, Pew-Thian Yap, and Dinggang
Shen. Deformable image registration using a cue-aware deep regression network. IEEE
Transactions on Biomedical Engineering, 65(9):1900–1911, 2018.

Tongtong Che, Xiuying Wang, Kun Zhao, Yan Zhao, Debin Zeng, Qiongling Li, Yuanjie
Zheng, Ning Yang, Jian Wang, and Shuyu Li. Amnet: Adaptive multi-level network for
deformable registration of 3d brain mr images. Medical Image Analysis, 85:102740, 2023.

Junyu Chen, Eric C Frey, Yufan He, William P Segars, Ye Li, and Yong Du. Transmorph:
Transformer for unsupervised medical image registration. Medical image analysis, 82:
102615, 2022.

Zeyuan Chen, Yuanjie Zheng, and James C Gee. Transmatch: A transformer-based multi-
level dual-stream feature matching network for unsupervised deformable image registra-
tion. IEEE transactions on medical imaging, 43(1):15–27, 2023.

Koen AJ Eppenhof, Maxime W Lafarge, Mitko Veta, and Josien PW Pluim. Progressively
trained convolutional neural networks for deformable image registration. IEEE transac-
tions on medical imaging, 39(5):1594–1604, 2019.

Bruce Fischl. Freesurfer. Neuroimage, 62(2):774–781, 2012.

10



SM-GICNET

Aman Ghasemzadeh and Hasan Demirel. 3d discrete wavelet transform-based feature ex-
traction for hyperspectral face recognition. Iet Biometrics, 7(1):49–55, 2018.

Hastings Greer, Roland Kwitt, François-Xavier Vialard, and Marc Niethammer. Icon:
Learning regular maps through inverse consistency. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3396–3405, 2021.

Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang
Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. Attention
mechanisms in computer vision: A survey. Computational visual media, 8(3):331–368,
2022.

Alessa Hering, Bram Van Ginneken, and Stefan Heldmann. mlvirnet: Multilevel varia-
tional image registration network. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October
13–17, 2019, Proceedings, Part VI 22, pages 257–265. Springer, 2019.

Malte Hoffmann, Benjamin Billot, Douglas N Greve, Juan Eugenio Iglesias, Bruce Fis-
chl, and Adrian V Dalca. Synthmorph: learning contrast-invariant registration without
acquired images. IEEE transactions on medical imaging, 41(3):543–558, 2021.

Boah Kim, Dong Hwan Kim, Seong Ho Park, Jieun Kim, June-Goo Lee, and Jong Chul
Ye. Cyclemorph: cycle consistent unsupervised deformable image registration. Medical
image analysis, 71:102036, 2021.

Xiang Li, Minglei Li, Pengfei Yan, Guanyi Li, Yuchen Jiang, Hao Luo, and Shen Yin. Deep
learning attention mechanism in medical image analysis: Basics and beyonds. Interna-
tional Journal of Network Dynamics and Intelligence, pages 93–116, 2023.

Mingyuan Meng, Dagan Feng, Lei Bi, and Jinman Kim. Correlation-aware coarse-to-fine
mlps for deformable medical image registration. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 9645–9654, 2024.

Tony CW Mok and Albert Chung. Affine medical image registration with coarse-to-fine
vision transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 20835–20844, 2022a.

Tony CW Mok and Albert CS Chung. Large deformation diffeomorphic image registration
with laplacian pyramid networks. In Medical Image Computing and Computer Assisted
Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8,
2020, Proceedings, Part III 23, pages 211–221. Springer, 2020.

Tony CW Mok and Albert CS Chung. Unsupervised deformable image registration with
absent correspondences in pre-operative and post-recurrence brain tumor mri scans. In
International Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 25–35. Springer, 2022b.

11



Bai Che Zhang Li

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari
Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. At-
tention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999,
2018.

Francisco PM Oliveira and Joao Manuel RS Tavares. Medical image registration: a review.
Computer methods in biomechanics and biomedical engineering, 17(2):73–93, 2014.

Ramin Ranjbarzadeh, Abbas Bagherian Kasgari, Saeid Jafarzadeh Ghoushchi, Shokofeh
Anari, Maryam Naseri, and Malika Bendechache. Brain tumor segmentation based on
deep learning and an attention mechanism using mri multi-modalities brain images. Sci-
entific Reports, 11(1):1–17, 2021.

Dinggang Shen and Christos Davatzikos. Hammer: hierarchical attribute matching mech-
anism for elastic registration. IEEE transactions on medical imaging, 21(11):1421–1439,
2002.

Jiacheng Shi, Yuting He, Youyong Kong, Jean-Louis Coatrieux, Huazhong Shu, Guanyu
Yang, and Shuo Li. Xmorpher: Full transformer for deformable medical image registra-
tion via cross attention. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 217–226. Springer, 2022.

Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. Deformable medical image
registration: A survey. IEEE transactions on medical imaging, 32(7):1153–1190, 2013.

Linfeng Tang, Yuxin Deng, Yong Ma, Jun Huang, and Jiayi Ma. Superfusion: A versatile
image registration and fusion network with semantic awareness. IEEE/CAA Journal of
Automatica Sinica, 9(12):2121–2137, 2022.

Lin Tian, Hastings Greer, François-Xavier Vialard, Roland Kwitt, Raúl San José Estépar,
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Sylvain Bouix, Richard Rushmore, and Marc Niethammer. unigradicon: A foundation
model for medical image registration. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 749–760. Springer, 2024.
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Appendix A. Attention gate network architecture

Figure 4: Attention gate network architecture.

The level 4 architecture retains an input layer, three residual blocks, and three convolu-
tional layers with stride 2 in the encoder, along with three residual blocks, three upsampling
layers, and an output layer in the decoder. Each residual block contains two consecutive
convolutional layers. Three skip connections between the encoder and decoder incorporate
attention gates. The attention gate first applies a 1x1x1 convolution to the input feature
Fg from the encoder and, similarly, to the downsampled feature from the corresponding
encoder branch. These two outputs are then summed, followed by ReLU activation and
another 1x1x1 convolution to reduce the channel dimension to 1. A sigmoid activation is
applied to the result, resampled to match the original feature size, creating a 1D weight
matrix. Finally, this weight matrix is multiplied with the input feature, producing a new
feature map. This process enhances focus on registration-relevant local features, resulting
in more accurate deformation fields and improved network convergence speed.

To validate its effectiveness, we experimented with networks of different channel sizes
(e.g., 24, 32, 64) and found that 32 channels strike a balance between computational effi-
ciency and registration accuracy. We also tested networks with varying depths and observed
that simply increasing the number of layers does not improve accuracy.
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Appendix B. Statistical significance test

Table 2: Statistical significance test on IXI and OASIS

Methods IXI–Cohen’s d OASIS–Cohen’s d

ICNet w.affine 0.613 0.581
LapIRN w.affine 0.278 0.247
ICNet 3.113 2.691
LapIRN 1.578 1.387
Ants 0.253 0.227

We conducted a statistical significance test to evaluate the performance of our method
compared to existing approaches, using the Dice coefficient as the primary metric. The
results demonstrated that our method achieved a significant improvement over the compar-
ison methods, as evidenced by Cohen’s d (a parametric measure of effect size). Specifically,
our method outperformed the baseline approaches without pre-registration, showing a sub-
stantial effect size that underscores its superior performance.

When compared to the LapIRN with pre-registration and SyN methods, our method
achieved slightly higher significance in terms of Dice coefficient, while requiring significantly
less computational time. This indicates that our approach not only delivers competitive
accuracy but also offers a more efficient solution, making it highly suitable for practical
applications where time constraints are critical.

In summary, the significance test highlights the effectiveness of our method in improving
registration accuracy and its advantage in computational efficiency, positioning it as a robust
alternative to existing state-of-the-art techniques.
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Appendix C. The other two baseline methods result

We have added two baseline tests, which are more recent. However, we can not train
perfect models in a brief rebuttal, so we directly test using publicly available weights, with
unsatisfactory results and numerous failure cases. It must be noted that these are excellent
registration methods, but their research goals differ from ours, thus performing poorly in
large deformation scenarios (especially without linear pre-registration).
SynthMorph(Hoffmann et al., 2021): Focuses on zero-shot learning, not specifically
designed for large deformation registration.
GradICON(Tian et al., 2023): Emphasizes deformation field smoothness but has slow
convergence in large deformation scenarios.

Figure 5: Qualitative registration results by two different methods and SM-GICNet on two
datasets.

Table 3: Quantitative evaluation on IXI and OASIS datasets.

IXI ICON ICON
w.affine

SynthMorph SynthMorph
w.affine

Ours

DSC 0.370
(±0.296)

0.588
(±0.129)

0.478
(±0.272)

0.614
(±0.169)

0.797
(±0.137)

OASIS ICON ICON
w.affine

SynthMorph SynthMorph
w.affine

Ours

DSC 0.356
(±0.286)

0.579
(±0.116)

0.503
(±0.167)

0.603
(±0.132)

0.794
(±0.069)
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