A Quantum Annealing Instance Selection Approach for Efficient
and Effective Transformer Fine-Tuning

Anonymous Author(s)

ABSTRACT

Deep Learning approaches have become pervasive in recent years.
In fact, they allow for solving tasks that were thought to be too
complex a few decades ago, sometimes with superhuman effective-
ness. However, these models require huge datasets to be properly
trained and to provide a good generalization. This translates into
high training and fine-tuning time, even several days for the most
complex models and large datasets. In this work, we present a
novel quantum Instance Selection (IS) approach that allows to signif-
icantly reduce the size of the training datasets (by up to 28%) while
maintaining the model’s effectiveness, thus promoting (training)
speedups and scalability. Our solution is innovative in the sense
that it exploits a different computing paradigm - Quantum An-
nealing (QA) — a specific Quantum Computing paradigm that can
be used to tackle practical optimization problems. To the best of
our knowledge, there have been no prior attempts to tackle the
IS problem using QA. Furthermore, we propose a new Quadratic
Unconstrained Binary Optimization (QUBO) formulation specific
for the IS problem, which is a contribution in itself. Through an
extensive set of experiments with several Automatic Text Classi-
fication (ATC) benchmarks, we empirically demonstrate both the
feasibility of our quantum solution and its competitiveness with
the current state-of-the-art IS solutions.
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1 INTRODUCTION

Deep Neural Networks and, in particular, Transformers are cur-
rently applied in tasks such as Ad-Hoc Retrieval [28] to rank rel-
evant documents [29], Automatic Text Classification (ATC) [10] to
assign semantic labels to a piece of text, and Sentiment Analy-
sis [3] to detect whether a sentence has a positive, negative or
neutral sentiment towards some subject (e.g., a product, movie or
restaurant) [27]. Transformers such as BERT, RoBERTa, BART, and
others [12, 23, 26] are designed to capture not only the meaning
of the words but also their context in a sentence, thus capturing
relationships and dependencies between words in a piece of text.

Transformers perform exceptionally well in ATC, Sentiment
Analysis, Question Answering [31], and other text-based tasks [10,
32]. To achieve such performance, Transformers and other Large
Language Models (e.g., GPT, LLama) [41] rely on very complex pre-
trained models with several millions of parameters and, although
they can also be used in a zero-shot manner, their fine-tuning on
a given domain or task is essential to guarantee effectiveness [11].
However, even fine-tuning these models still requires a considerable
investment of time and computational resources, especially on large
datasets. Ameliorating such negative aspects may be achieved by
two (not mutually exclusive) different approaches:

e Model Compression or Pruning techniques [25] applied to reduce
the complexity of the Deep Learning (DL) models, thus reducing
the training time while trying to keep the model’s effectiveness;

e Instance Selection (IS) techniques [10], used to significantly re-
duce the training dataset size to speed up the training phase
while trying to keep the models’ effectiveness unchanged.

Note that both Model Compression and IS are computationally chal-
lenging problems, often requiring heuristics and greedy approaches
to be solved.

In this work, we focus on the second alternative by proposing
a novel IS approach called Balanced Cosine (BCos) that leverages
Quantum Annealing (QA), a specialized form of Quantum Comput-
ing (QC). An innovative aspect of our proposal is to investigate
the feasibility and performance of QA to perform IS. Indeed, QC
promises to deliver substantial performance benefits with respect
to traditional approaches [30] and, QA in particular, is especially
suitable for solving computationally intensive problems, provided
that they can be formulated as an optimization problem of the
Quadratic Unconstrained Binary Optimization (QUBO) family. We
highlight that QUBO represents a family of problems with given
characteristics and the main challenge is to understand how to
formulate a general optimization problem as a QUBO problem. To
the best of our knowledge, there has not been other previous work
aiming at solving IS by using QA technologies, and BCos represents
the first formulation of IS as a QUBO problem, suitable for QA.

In this context, we run a comprehensive series of experiments
on several ATC benchmarks with different characteristics (e.g., size,
number of classes, class balancing) to demonstrate the feasibility
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and applicability of our proposed quantum IS approach. We also
compare our solutions with the State-Of-The-Art (SOTA) approaches
in the IS field. Our experimental results reveal that BCos is very
competitive, being able to reduce the training sets by up to 28%,
achieving speedups of up to 1.35x (which can be further improved
as QC technology advances), while keeping the effectiveness of
the trained model in most cases. Note that our approach has been
designed and experimented with in the context of ATC tasks, but its
underlying principles can be useful for other Information Retrieval
(IR) or Natural Language Processing (NLP) tasks where Transformer-
based solutions are used, including modern LLMs.

In sum, the main contributions of this work are:

e A proposal of a novel IS approach that employs QA, demonstrat-
ing the feasibility of our solution in a very different and emerging
computing paradigm, thus serving as a proof-of-concept about
how complex but practical problems can be solved with such
quantum technologies;

e The first QUBO formulation of the IS problem;

e An extensive experimentation and comparative performance
study under several criteria (effectiveness, efficiency, scalability)
of our quantum approach against SOTA approaches in the field.

It is important to stress that a critical aspect of quantum technolo-
gies is that they are still in their early stages of development [17]
and they still suffer from several limitations when it comes to hard-
ware capabilities, e.g., limitations in the number of qubits and their
topology, sensitivity to external noise and decoherence, errors and
stochasticity of the results [1, 30]. Therefore, the challenge is not
only to find a way to formulate an algorithm such that it can be com-
puted using quantum technologies but also a way which accounts
for and works around the current limitations of the hardware which,
in turn, affects the overall performance achieved. On the other hand,
traditional hardware has been studied and improved for several
decades, leading to very robust and consistent performance. There-
fore, while computational supremacy for QA begins to be observed
and it is expected to fully happen in the next few years [19, 20], it
is still not possible to observe substantial performance gains under
all circumstances. As a consequence, improvements observed for
QC technologies should be considered just as the tip of the iceberg
rather than the maximum that can be achieved as this technology
continuously progresses and evolves. In other words, demonstrat-
ing early practical and theoretical developments and results, even
with current limitations, is key in foreseeing the potential ahead.

This work is organized as follows. Section 2 provides an overview
of Quantum and Simulated Annealing and includes IS related work.
Section 3 details our approach. Section 4 describes the experimental
setup. Section 5 presents and discusses the achieved results. Section
6 draws conclusions and discusses potential future work.

2 BACKGROUND AND RELATED WORKS

We provide a brief introduction to QA. We also explain Simulated
Annealing (SA), a traditional optimization algorithm that does not
take advantage of quantum technologies. Finally, we discuss some
related work for IS.

Anon.

2.1 Quantum Annealing

QA is a QC paradigm that is based on special-purpose devices
(quantum annealers) able to tackle optimization problems with a
certain structure, such as the famous Travelling Salesman Problem.
The basic idea of a quantum annealer is to represent a problem
as the energy of a physical system and then leverage quantum-
mechanical phenomena, e.g., superposition and entanglement, to
let the system find a state of minimal energy, which corresponds to
the solution of the original problem.

To use quantum annealers, one needs to formulate the opti-
mization problem as a minimization one using the Quadratic Un-
constrained Binary Optimization (QUBO) formulation [14], a well-
known optimization technique. QUBO is defined as:

min y= xTQx (1)

where x is a vector of binary decision variables, and Q is a matrix
of constant values representing the problem we wish to solve. We
emphasize that formulating an optimization problem (e.g., the IS
problem) as a QUBO problem is not trivial. Once the problem has
been formulated as QUBO, a further step called minor embedding
is required to map the general mathematical formulation into the
physical quantum annealer hardware, accounting for the limited
number of qubits and the physical connections between them. Each
quantum annealer has, in fact, its own architecture, which can
be seen as a graph: each vertex represents a qubit, and each edge
represents an interaction between 2 qubits. Therefore, we need to
proceed with the minor embedding phase that consists of adapting
the problem Q to the physical architecture we have at our disposal.
This involves choosing which qubits represent our variables as well
as duplicating qubits if the number of physical connections is lower
than the number of interactions between the variables in Q. Minor
embedding is a complex task in itself and a NP-hard problem, which
can be solved relying on some heuristic methods [7].

To sum up, using a quantum annealer requires several stages [44]:

Formulation: find a way to express the desired algorithm as an
optimization problem by leveraging the QUBO framework;

Computation: compute the actual QUBO matrix Q needed to
solve the optimization problem (our algorithm);

Embedding: generate the minor embedding of the QUBO for the
quantum annealer hardware;

Data Transfer: transfer the problem and the embedding on the
global network to the data center that hosts the quantum
annealer;

Annealing: run the quantum annealer itself. This is an inherently
stochastic process. Therefore, it is usually run a large number
of times (hundreds) in which several samples are returned,
each one resembling a possible solution to the considered
problem. The solutions must then be checked for their feasi-
bility, and then the best one among them (i.e., the optimal
one according to the objective function) is usually considered
as the final solution to the submitted problem.

Generally, a QUBO problem can be solved by a quantum annealer
in a few milliseconds.

Occasionally, it might be necessary to add further constraints
to the problems. This can be done by means of penalties P(x) [44],
which penalize solutions that do not meet the specified constraints.
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These penalties are then added to the original cost function y to
achieve the final formulation as follows:

min C(x) =y +P(x). (2)

Penalties can be controlled through hyperparameters to manage
their influence with respect to the given formulation. A general
rule is that they should be high enough to be effective but should
not be too high in order to avoid introducing distortions and noise.

Applications. QA has already been employed in IR, RecSys, and
NLP tasks such as Feature Selection [13, 33] and Clustering [21],
showcasing potential benefits in terms of efficiency compared to
traditional hardware alternatives. CLEF is also running a new lab
on feature selection and clustering using QA [34, 35]. To the best
of our knowledge, no previous work has investigated QA for IS yet.

2.2 Simulated Annealing

SA is a consolidated algorithm that can be run on traditional hard-
ware [6, 42]. It is a probabilistic algorithm that can be used to find
the global minimum of a given cost function, even in the presence
of many local minima. It is based on an iterative process that starts
from an initial solution and tries to improve it by randomly per-
turbing it. The cost function is represented by the QUBO problem
formulation, similar to what would be used for QA. It takes inspi-
ration from annealing in metallurgy, a technique that consists of
heating and slowly lowering the temperature of a material to alter
its physical properties. This also translates into minimizing the
system’s energy. In SA, there is no minor embedding phase since
the problem is directly solved on a traditional machine.

We underline that SA is an optimization algorithm different
from QA, it is not a simulation of QA on a traditional machine,
and, therefore these two algorithms are not equivalent. However,
SA can be used for benchmarking purposes to show how well QA
performs with respect to a traditional hardware counterpart.

Access to quantum annealers is limited to ensure a fair distribu-
tion of resources. Therefore, SA can also be used to perform initial
experiments to assess a QUBO formulation feasibility without af-
fecting the available quota in the quantum environment.

2.3 Instance Selection

In this section, we briefly describe some IS SOTA approaches. IS
has received attention lately due to the increasing computational
(and environmental) costs of training and tuning large language
models, which are useful for many IR and NLP tasks.

In [8], the authors compared the most traditional and recent
IS approaches, applying them in the ATC context, with a special
focus on the impact of IS on transformers. The analysis focused on
the capability of those approaches to find a good balance among
three factors: effectiveness, training size reduction, and efficiency
(speed up) (the “tripod” constraints). For our work, we selected as
baselines the four best methods found in [8] based on this tradeoft:
E2SC, CNN, LSSm, and LSBo.

The Effective, Efficient, and Scalable Confidence-Based Instance
Selection Framework (E2SC) [8] relies on efficient and calibrated
weak classifiers to remove redundancy from the training set. The
authors correlate redundancy with the confidence of a weak and
calibrated classifier in determining the class of a training instance:
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the more confident, the higher the likelihood that other instances in
the training have similar information to the instance to be removed.
E2SC was the method that obtained the best results in terms of
the tripod requirements in a recent comparison[8], being currently
considered the state of the art in the field. The time complexity of
E2SC is O(log(n)), where n is the size of the original set, being one
of the most scalable solutions among our baselines.

The Condensed Nearest Neighbor (CNN) [16], a traditional IS
technique, focuses on harder instances, defined as those misclassi-
fied by an internal classification process. The intuition behind CNN
is that instances near the classification boundaries are more repre-
sentative for the sake of training a classifier. The time complexity
of CNN is O(n?). In this paper, we focus on similar ideas but avoid
the cost of internally running a classifier multiple times using a
different optimization formulation.

In [24], the authors proposed Local Set-based Smoother (LSSm),
and Local Set Border Selector (LSBo). Both methods are based on
the idea of Local Sets (LS), which consists of instances within a
sub-region of the feature space hyperplane that belong to the same
class. In LSSm, the authors derive the LS concept into the usefulness
(u) and harmfulness (h) of each instance. LSSm aims at keeping
instances with higher levels of importance and influence on others
(u > h). The time complexity of LSSm is O(n?). LSBo first performs
noise removal by applying LSSm, and then it sorts the remaining
instances according to the LS Cardinality (LSC). Consequently,
instances within the classification boundaries will be inserted in
the final solution since they have lower LSC. Similar to LSSm, LSBo’s
time complexity is O(n?). We use both methods as baselines.

3 METHODOLOGY

Our BCos approach is based on the following ideas:

e Given a training set T with size |T|, we aim at reducing its size
by a factor p €]0, 1[ such that the size of the reduced subset ¢
produced using our approach is |t| = p X |T|;

o The subset t must represent well the original full training dataset
T. Ideally, it should contain representative samples of the origi-
nal set so that the Transformer can be trained on ¢ and learn a
similar set of patterns as it would do with the full training set T
but at a reduced computational cost. There are several possible
strategies to produce such reduced set ¢, such as removing redun-
dant samples [8], a variant which we exploit here, complemented
with heuristics to find difficult instances, defined based on sets of
pairs of similar documents belonging to distinct classes. These
documents are likely outliers or lie in the classes’ boundaries.

3.1 The QUBO formulation

As pointed out in Section 2.1, to solve a problem with a quantum
annealer, we first need to transform it into an optimization prob-
lem and then to its corresponding QUBO formulation. Note that
QUBO is a general framework in optimization and formulating a
problem as QUBO is neither always possible nor immediate or done
automatically; therefore, the QUBO formulation of a problem is an
innovative contribution in itself.

Our QUBO formulation follows the general framework in Equa-
tion 1, where x € {0, 1} represents whether a document should be
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removed (0) or kept (1), and the matrix Q is defined as follows:

cos(doc;, doc;) if Ibl; = Iblj and i # j

Qi,j = {—cos(docj,docj) if Ibl; # Iblj and i # j 3)
[T[IbL]] ifi=j
IT]
where doc; is the vectorized version of the i-th document in the
training set T, Ibl; is the label (or class) associated with the i-th
document in the training set, |T[Ibl;]| is the number of documents
in the training set having the same label as the i-th document in
the training set. Furthermore, cos(doc;, doc;) represents the cosine
similarity between two vectorized documents. Each element in
Equation 3 has its own intuitive interpretation, remembering that
we are solving a minimization problem:

(1) The more similar two documents belonging to the same class
are, the more likely they will be removed from T. Therefore, we
assign them a positive value in the QUBO matrix correspond-
ing to their cosine similarity;

(2) The more similar two documents belonging to different classes
are, the more likely we need to keep them in T. Therefore, we as-
sign them a negative value in the QUBO matrix corresponding
to their cosine similarity. This is done since there is a high prob-
ability that these two documents represent difficult instances,
lying close to the classification boundaries';

(3) In the cases that T has a skewed class distribution, we want to
avoid removing documents from minority classes, which could
worsen the imbalance in T. Imbalanced distributions are known
to be a big issue in classification tasks due to the bias towards
the majority classes [15]. Therefore, in our formulation, we try
to penalize the removal of documents belonging to minority
classes with respect to others.

3.2 Control the number of selected instances

To complete the QUBO formulation (Equation 1), we need to add
the constraint of selecting a subset of a predefined size as explained
in Section 3. In this case, we need to set opportune constraints that
allow us to keep only |p - |T|] documents out of |T| documents.
This can be achieved as follows:

v (Qaixi=lp-ITI)? =0, @

with y representing a penalty sufficiently high. This translates into
summing these constraints to the original QUBO formulation.

In our case, the percentage of documents that are kept is 75% of
the total collection since a reduction of 20-25% has been shown to be
a good trade-off between efficiency and effectiveness [8]. We leave
for future work to study the tradeoffs of effectiveness vs. speedup
of other more aggressive reduction rates.

3.3 Batches

As anticipated in Section 1, QC still suffers from several hardware
limitations. In our case, we employ quantum annealers provided
by D-Wave, one of the leading companies in the sector [39], whose
most performing quantum annealer is the D-Wave Advantage, with
about 5,000 qubits. On the other hand, the size of a training set is

The other possibility is that one of the documents is an outlier, a probability that we
neglect for now, leaving for future work to deal with it

Anon.

typically in the order of thousands to tens of thousands of docu-
ments, which cannot fit in the current hardware and thus requires
to figure out a way to proceed in batches.

Furthermore, as explained in Section 2.1, the QUBO matrix Q
needs to be mapped onto the physical layout of the qubits in the
quantum annealer via the minor embedding process and this sig-
nificantly lowers the number of variables which can be actually
processed in a batch. In particular, in the case of D-Wave, the 5,000
qubits allow the representation of approximately a hundred vari-
ables at a time, depending on the actual layout of Q. Therefore, we
decided to set a batch size of B = 80 document instances, in order to
use most of the capacity of the quantum annealer but, at the same
time, not risk exceeding it for some unfortunate layout of Q. We
then split the overall problem into n = [|T|/B] batches; note that
the last n-th batch might contain less than B document instances
and, in particular, equal to |T| mod B.

For each batch, we extract a subset sub; of the most relevant
documents and, since there is no intersection among the batches,
we consider their union as the final subset of documents that should
be fed to the Transformer during the training phase:

n
S= U sub; . (5)
i=1

According to the workflow explained in Section 2.1, each batch
B would need to undergo the minor embedding process, which,
as explained, is a computationally demanding task in itself. Since
we have to process in the order of hundreds of batches, repeating
the minor embedding process over and over would undermine the
overall performance of QA. However, the minor embedding process
is concerned with the topology of the graph represented by Q,
e.g., which variables are connected within Q, with respect to the
topology of the physical qubits, e.g., how they are connected at the
hardware level, rather than with the actual values contained in Q.

In our case, the Q matrix of each batch B is a fully connected
graph, whose structure is the same for all the batches. The only
exception might be the n-th batch if its size is less than B, since its Q
matrix would represent a smaller graph, but always fully connected.

Therefore, we can avoid repeating the minor embedding process
over and over and perform it at most two times: one time for any
batch of size B and once more for the last n-th batch of size less than
B, if needed. In this way, we can avoid many useless computations
and save a substantial amount of processing time for QA.

Finally, note that this batching approach is also beneficial for the
traditional computation case. Indeed, we can use the same batches
and Q matrices also for running the SA optimization algorithm,
which, in this way, will be able to benefit from the parallelism
provided by the multiple CPUs available on the traditional hardware
on which it is executed.

3.4 Visualization Example of BCos

To better understand how BCos works and to visualize which in-
stances BCos removes, we created a synthetic dataset of 2,000 two-
dimensional documents belonging to two balanced classes. Fig-
ure la shows the generated instances while Figure 1b shows how
the removed points are, in most cases, “redundant”. Indeed, we can
consider the contribution of these points to the classifier learning as
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Figure 1: The dataset composed of 2D points (a) and the visualization of the points that are kept and removed by BCos (b)
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Figure 2: A visualization of the resulting QUBO matrix ex-
tracted from a batch of 80 documents.

already provided by other points of the dataset, making them sort
of “easy” points not lying on the frontier between the two classes
but instead in the “middle” or center of the classes.

Figure 2 shows the corresponding QUBO matrix for one batch of
B = 80 instances. Each element Q; j represents the relation between
doc; and doc;j according to equation 3. We can observe that it is a
symmetric matrix, being Q fully connected. Moreover, since the
two classes are balanced, we can observe how the elements on the
diagonal have (almost) the same value.

4 EXPERIMENTAL SETUP

The experiments were executed on an AMD Ryzen 5 5600X Proces-
sor with 6-Core and 12-Threads, running at 3.70GHz, 64Gb RAM,
and a NVIDIA RTX 3090 24 GB. The quantum annealer employed
for the experiments is the D-Wave Advantage (= 5,000 qubits).

To promote reproducibility, all code, documentation, and datasets
will be available on GitHub? in case of acceptance. However, the API
key we have used to access D-Wave’s quantum annealers cannot
be disclosed. Therefore, to employ quantum annealers in our code,
an API key must be requested from D-Wave.

Zhttps://github.com/<double-blind>

Table 1: Datasets characteristics.

Considered datasets and their characteristics.
Dataset Size N° of Labels | Class Skewness

Vader NYT 4946 2 | Almost balanced
Yelp Reviews 5000 2 | Balanced
WebKB 8199 7 | Imbalanced
OHSUMED 18302 23 | Imbalanced
20 Newsgroups 18846 20 | Balanced
AG News 127600 4 | Balanced

4.1 Datasets

Our approach considers different datasets, which are reported in
detail in Table 1. As it is possible to see, each dataset has its own
characteristics, which allows us to measure the performance of
our approach in different scenarios. Therefore, we can compare it
with other approaches in a fair way, ensuring the reliability and
applicability of our results also in the case of other datasets.

4.2 Data Representation and Preprocessing

We process each dataset to obtain a configuration that is suitable
for our needs. This process is described in Figure 3.

Dataset splits. To obtain scientifically sound results and allow for
their statistical analysis, we adopt a 5-fold validation experimental
setup. In this way, we obtain 5 different Training sets and 5 Test
sets. From each of the 5 training sets, we extracted a validation set
(10% of the size of the corresponding Training set) that is employed
to avoid overfitting when fine-tuning the BERT model.

Data Representation. In BCos, we convert the training datasets con-
sisting of textual documents into datasets of embeddings generated
using a pre-trained BERT model according to the Zero-shot learn-
ing paradigm. Each document/piece of text is, therefore, converted
into a numerical vector of 768 dimensions. In the other approaches,
a TF-IDF [2] representation is employed to convert documents into
numerical vectors, making use of scikit-learn [36] — we removed
stopwords and kept features appearing in at least two documents
and, then e normalized the TF-IDF product result using the L2-norm.
In fact, regarding the baselines, TF-IDF representation has been
shown to be more efficient and effective with respect to contex-
tual embeddings [10]. More specifically, the authors demonstrated
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Figure 3: The overall process, starting from the division of the dataset into 5 folds to the final BERT Fine-tuning and Testing,.

that using contextual embeddings: (a) led the baselines to become
1.3x to 3.0x more expensive than training the model with all data;
and (b) caused statistically significant losses in more than half of
the tested datasets. Nevertheless, in the case of BCos, preliminary
experiments empirically have shown that the use of embeddings
led to better effectiveness but increased overall IS time. To sum-
marize, we adopted the best representation (TFIDF or BERT-based
embeddings) as input for each in individual IS approach.

4.3 Transformer-based Text Classification

BERT [12] is a comprehensive DL classifier that follows an end-to-
end architecture. It features a bidirectional Transformer encoder
with 24 Transformer blocks, 1024 hidden layers, and a total of 340
million parameters. The model undergoes pre-training on a massive
3.3 billion-word corpus. BERT employs a multi-layer bidirectional
Transformer encoder, where the self-attention layer functions both
forward and backward. At the time of its launch, BERT redefined the
state of the art across 11 NLP tasks, and for this reason, we adopted
it as our Transformer-based text classification model. We intend
to test with other Transformers such as RoBERTa [26], BART [23],
XLNet [43] in the near future, but recent benchmarks [10, 11] have
shown that the differences among the latest version of these Trans-
formers in some the datasets we use in our experiments are very
small (between 1-2p.p.) at a higher cost to fine-tune. Indeed, some
benchmarks such as GLUE (https://gluebenchmark.com/) and other
recent studies[5] do not make clear even if recent LLMs are better
than 2nd generation Transformers such as RoBERTa in tasks such
as Sentiment Classification, which we exploit in our experiments.

Due to the considerable number of hyperparameters requiring
tuning, conducting a grid search with cross-validation becomes
impractical. Consequently, in order to identify the optimal hyperpa-
rameter, we adopted the approach outlined in [9]. The best hyper-
parameters were defined as learning rate to 5 x 10~°, the maximum
number of epochs to 20, patience to 5 epochs, max length to 256,
and batch size to 32.

4.4 Instance Selection Baselines

We consider as baselines a set of 4 SOTA IS baseline methods de-
scribed in Section 2.3, namely: Condensed Nearest Neighbor (CNN);
Local Set-based Smoother (LSSm); Local Set Border Selector (LSBo);
and the Effective, Efficient, and Scalable Confidence-Based Instance
Selection Framework (E2SC). All hyperparameters for the IS meth-
ods (when applicable) were defined with grid-search, using cross-
validation in the training set, as suggested in [8].

4.5 Measures and Experimental Protocol

Our objective is to evaluate IS methods based on their ability to
reduce both the training set and training (fine-tuning) time while
keeping the effectiveness of the Transformer model.

To evaluate classification effectiveness, we adopt Macro Aver-
aged F1 (MacroF1)[40] due to the datasets’ skewness. We employ
the paired t-test with 95% confidence level to compare average
outcomes in our cross-validation experiments. Finally, to adjust for
multiple tests, we employed the Bonferroni correction [18].

To evaluate the cost-effectiveness tradeoff, we also consider the
total time? required to build each model. The speed-up S is cal-

culated as S = TTW" , where T,, is the total time spent on model

construction using the IS approach, and T,y is the total time spent
on execution without the IS phase. It is important to notice that
the IS phase time also comprises the time for building the input
representation (TF-IDF or BERT-embeddings). Since building BERT-
based embeddings is more costly than TF-IDF, as we shall see, the
speedups attained with BCos are showcased, both with and without
considering the initial BERT embeddings extraction phase. Extract-
ing the embeddings is a complex process that impacts the overall
execution time but allows BCos to achieve improved effectiveness.

5 EXPERIMENTAL RESULTS

We discuss the results achieved by QA and SA. In particular, we
apply our BCos approach to the datasets presented in section 4.1,
and compare the results with those produced by current SOTA
approaches. We further discuss whether our quantum solution can
actually provide benefits in terms of efficiency and effectiveness.

5.1 Reduction Rate

Table 2 reports the reduction rates for different methods;

Table 2: Percentage of reduction of the training set size.

Percentages of reduction of the IS approaches.

Dataset E2SC | LSBo | LSSm | CNN | BCos (SA) | BCos (QA)
Vader NYT || 25.0% | 48.2% 6.3% | 32.7% 25.3% 27.7%
Yelp Revi. 25.0% | 69.3% | 19.7% | 45.3% 25.0% 27.8%
WebKB 25.0% | 70.9% | 24.0% | 42.9% 25.1% 28.1%
20 NewsG. 25.0% | 23.4% 0.5% | 27.9% 25.1% 27.8%
OHSUMED || 25.0% | 69.4% | 22.3% | 44.9% 25.0% 28.3%
AG News 25.0% - - - 25.0% 28.1%

3We define total time as the time of IS (when applied) + Transformer fine-tuning.
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Table 3: Macro-F1 scores achieved by BERT on different datasets processed according to SOTA IS approaches. Elements marked with e indicate
the considered model is statistically equivalent to the model trained on the original dataset.

BERT f1-macro scores on different datasets processed with different IS approaches.

Dataset Original Dataset E2SC LSBo LSSm CNN BCos (SA) | BCos (QA)
Vader NYT 80.9(1.1) | 81.0(2.0) s | 79.9(24)« | 80.5(33)e | 79.4(3.1) e | 80.9(0.8) e | 81.7(1.9) e
Yelp Reviews 95.8(0.3) | 96.0(0.7) o | 94.5(0.6) e | 94.7(0.9) o | 94.2(1.4) e | 95.7(0.7) e | 95.5(0.6) e
WebKB 83.3(2.8) | 82.5(2.5) | 77.1(1.4) v | 80.1(3.8) s | 80.2(1.8)e | 82.6(1.8) e | 82.5(3.0)e
20 Newsgroups 82.3(1.1) | 80.4(0.7) e | 80.9(0.5) e | 82.2(0.7)e | 77.4(1.6) ¥ | 80.6(0.5) e | 80.6(0.6) ¢
OHSUMED 75.5(0.9) | 74.4(0.7) o | 67.3(2.2) v | 72.2(1.5) v | 69.8(2.1) ¥ | 74.2(0.6) o | 73.5(1.6) e
AG News 91.7(0.2) | 91.5(0.2) o - - - | 91.4(03) e | 91.4(0.2) ¢

As stated, for those methods with pre-fixed reduction rates (E2SC
and BCos), we decided to apply a fixed reduction rate of 25% in
order to not impact the effectiveness of the Transformer while try-
ing to provide a consistent speed-up, as suggested in [8]. However,
it is important to stress that quantum annealers do not ensure to
perfectly meet the reduction rate specified. This is due to noise,
randomness, and other external factors that impact quantum com-
putation. Indeed, in most cases, we obtained a bit higher reduction
rate than the one specified at the beginning, around 28%; as a con-
sequence, the effectiveness of the QA might be slightly lower than
what it would have been with an exact 25%.

Each one of the remaining baselines (CNN, LSSm, LSBo) has
its own automatic reduction criteria. In this sense, LSBo is the
method that provides the higher average reduction rate (56.4% -
varying between 23.4% and 70.9%). However, as we shall see, this
over-reduction leads to effectiveness losses (Table 3). On the other
hand, LSSm provides the smaller average reduction (14.6% - varying
between 0.05% and 24.0%). However, the time spent to produce these
small reductions is considerable, leading this method to have one
of the worst overall speedups (Table 7).

5.2 Effectiveness of BCos

Here, we report the effectiveness results achieved by our BCos
approach, comparing it with the other SOTA approaches. We em-
phasize that all our competitors do not make use of Quantum Com-
puting technologies. We also consider the T-test with 95% con-
fidence level with Bonferroni correction to understand whether
there are statistically significant differences between BERT trained
on the original dataset and BERT trained on the retrieved subsets
according to the considered IS approaches.

As we can see in Table 3, E2SC is the only IS baseline capable of
maintaining the effectiveness of the trained BERT model after the IS
process in all datasets. LSBo, LSSm, and CNN have produced losses
in at least one of the datasets. In particular, no results regarding
LSBo, LSSm, and CNN could be reported in the case of the AG News
dataset, our largest benchmark, as these methods have scalability
problems for large datasets, as described in Section 2.3. This is
consistent with the results reported in [8].

We remind that due to noise, randomness, embedding qual-
ity, and/or other external factors, the QA approach could produce
higher reduction rates of the original datasets than the baselines,
thus causing a slight decrease in terms of overall effectiveness with
respect to the SA approach, which does not suffer from these issues
since the algorithm is not performed on a quantum computer. In
any case, despite such a possibility, both of our annealing solutions,

the traditional BCos(SA) and the quantum BCos(QA), are very com-
petitive with the baselines, keeping effectiveness statistically tied
in all tested datasets, being as good as the state-of-the-art method
E2SC in this goal of the tripod constraints.

Finally, it is very interesting to notice that both BCos(QA) and
BCos(SA) are statistically tied in terms of effectiveness showing that
QA not only can help in providing a greater speedup as datasets
grow in size but also in achieving comparable effectiveness.

5.3 Efficiency of BCos

Table 4 shows the time required to perform IS by each approach.
We can see that BCos(QA) becomes more efficient as the dataset
increases. In fact, as shown in Section 2.1, QA requires to perform
additional steps with respect to SA such as computing the minor
embedding and transferring data over the network, introducing la-
tencies, since quantum annealers operate in the cloud. However, the
effects of these parts can be mitigated in the case of large datasets,
and since the actual Annealing process is much faster on quantum
annealers, we can see that QA becomes more efficient than SA.

Table 4: Time required in seconds to perform the considered
SOTA IS baselines and our BCos approach, considering both
SA and QA, on different datasets.

End-to-end time (s) required to perform the IS algorithms.

Dataset E2SC | LSBo | LSSm | CNN | BCos (SA) | BCos (QA)
Vader NYT 0.20 18.67 9.89 5.94 13.29 65.78
Yelp Revi. 0.61 16.98 10.36 10.40 13.68 39.38
WebKB 1.07 46.53 29.81 35.75 21.96 94.31
20 NewsG. 3.71 | 337.07 | 192.19 | 159.76 51.40 86.25
OHSUMED 3.50 | 256.09 | 161.59 | 146.27 43.58 92.91
AG News 12.11 - - - 295.88 287.33

Table 5 shows the breakdown of the times required by BCos
using both SA and QA. In particular, in that table, we consider as
Annealing time the contributions of the Annealing time per core in
the case of SA. It is clearly visible how the Annealing time of QA is
far lower with respect to the Annealing time of its SA counterpart.
We can also notice that much of the time required in the case of QA
is due to latencies and minor embedding. However, the embedding
time is independent of the dataset size, so it plays a minor role in
the case of bigger datasets.
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Table 5: The breakdown of the time in seconds required to perform BCos on different datasets using SA and QA. QUBO Problems Formulation
refers to the total time required to formulate the QUBO problem for all the batches, Embedding time is the time to calculate the minor
embedding, Annealing time is the total amount of time required by the Annealing process (for Simulated Annealing, it is the contribution of
the Annealing time due to the Annealing process performed using each core), Latency represents the enqueueing time and network latencies,
and End-to-end time is the total time to run the considered approach.

Breakdown of BCos execution time measured in seconds using SA and QA.
Approach Dataset QUBO Problems Formulation | Embedding time | Annealing time | Latency | End-to-end time
Vader NYT 2L 1.38 53.62 3.53 7.24 65.78
Yelp Reviews 2L 1.42 28.43 3.54 5.98 39.38
WebKB 3.23 73.63 5.58 11.86 94.31
BCos QM) 11 orsumeD 473 56.80 1302 | 1833 92.91
20 Newsgroups 6.01 54.76 13.50 11.96 86.25
AG News 31.56 73.17 87.84 94.60 287.33
Vader NYT 2L 1.47 - 42.79 - 13.29
Yelp Reviews 2L 1.51 - 44.04 - 13.68
WebKB 3.21 - 66.09 - 21.96
BCos SA) || oHsuMED 4.26 - 149.84 - 43.58
20 Newsgroups 6.30 - 165.68 - 51.40
AG News 31.56 - 1019.16 - 295.88

Table 6: Time required in seconds to train BERT on the different datasets and extracted subsets according to the considered SOTA IS baselines
and Bcos using both SA and QA.

BERT Training time measured in seconds on the different datasets.

Dataset Original Dataset E2SC LSBo LSSm CNN | BCos (SA) | BCos (QA)
Vader NYT 2L 204.69 156.56 | 119.69 202.22 | 136.14 152.18 143.34
Yelp Reviews 2L 234.11 161.88 76.93 173.07 | 123.16 166.18 165.96
WebKB 391.20 309.34 | 138.04 307.58 | 239.04 306.17 295.97
20 Newsgroups 986.52 745.92 | 753.28 | 1002.16 | 711.30 750.51 723.94
OHSUMED 942.66 774.13 | 328.42 723.13 | 517.67 674.02 692.60
AG News 4675.70 | 3801.80 - - - 3773.78 3800.97
Average Speedup H - 1.31x [ 2.35x [ 1.18x [ 1.65x [ 1.33x 1.35x ]

Table 7: Overall time in seconds calculated as the total time required by the IS and BERT training with corresponding speedups. It is reported
the speedup considering the text representation time and without it for completeness.

Total time in seconds considering training BERT and applying the IS approaches.

Dataset Original Dataset | E2SC LSBo LSSm CNN | BCos (SA) | BCos (QA)
Vader NYT 2L 204.69 156.76 138.36 212.12 | 142.08 179.41 223.07
Yelp Reviews 2L 234.11 162.48 93.90 183.42 | 133.56 193.91 219.39
WebKB 391.20 310.41 184.57 307.58 | 274.79 347.81 409.96
20 Newsgroups 986.52 749.63 | 1090.35 | 1194.35 | 871.06 840.45 848.73
OHSUMED 942.66 730.92 584.51 884.72 | 663.94 755.03 822.95
AG News 4675.70 | 3813.91 - - - 4298.72 4317.36
Average overall Speedup - 1.31x 1.72x 1.06x 1.43x 1.16x 1.06x
Average Speedup (wo Rep. Time) - 1.31x 1.72x 1.06x 1.43x 1.24x 1.11x

Table 6 shows the BERT training time according to the con-
sidered datasets and methods. We can see from that table that
all the approaches allow to reduce the BERT training time with
speedups between 1.18x-2.35x. The LSBo’s good speedup is due
to its very large reduction rate (56.4% on average), which brings,
as a consequence, several effectiveness losses. Indeed, in terms of
effectiveness, LSBo is one of the worst methods, producing losses
in half of the cases (counting AG News, where it cannot be run). In
this scenario, BCos(QA) achieves the 3rd best speedup among all
alternatives, being able to run in all datasets, differently from LSBo

or CNN (the runner-up in terms of speedup), which also could not
be run in AG News. Considering all the tradeoffs, BCos(QA) stands
out as one of the best methods among all analyzed.

Finally, we can see in Table 7 the total cost, expressed as the sum
of BERT training time and IS execution time, taking into account
also the initial conversion of the text dataset into contextual em-
beddings for BCos. In almost all cases the time to train BERT after
the IS selection is lower than the amount of time spent on training
BERT on the original datasets. In any case, even when counting the
time spent for generating the contextual embeddings, BCos(QA)
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has a speedup as good as LSSm being more effective. BCos(SA) is
also very competitive in this scenario.

Since creating the document representation (in any of the IS
approaches) is not intrinsic to the IS task but a necessary step for
any learning task in which the reduced training dataset will be used,
we also consider the speed-up without taking into the time spent
for building the text representations (last row of Table 7). In this
scenario, the results are even better, with BCos (SA) and BCos (QA)
being able to achieve speed-ups of 1.24x and 1.11x, respectively.

Overall, when combining effectiveness, training set reduction,
and speedup results, we can see that BCos(SA) and BCos(QA)
demonstrated a lot of potential for the IS task, especially BCos(QA),
whose additional latency and embeddings costs can be reduced in
the future and whose speedup can be improved due to its inherent
parallelism. Moreover, our annealing formulation is simplistic and
there is room for improvement to boost the effectiveness results.

5.4 Further Considerations

54.1 Hardware Considerations. The D-Wave Advantage quantum
annealer used is a very powerful machine even though it has its
own limitations due to the fact that we are still in the early stages of
development of QC machines. A new quantum annealer called D-
Wave Advantage 2 is expected to be released and be available soon.
It will have ~ 7000 qubits and a more complex topology, which
allows for more connections between the qubits, thus making it
possible to increase the size of the problems that can be solved. In
our case, this could be useful to increase the batch size in order to
boost the efficiency and effectiveness of BCos by submitting fewer
batches and also considering more documents within each batch.

Indeed, preliminary studies on D-Wave Advantage 2 have shown
that it could approximately halve the annealing time, leading to
faster computations. In addition, error mitigation has been fur-
ther improved, allowing for better solutions to the submitted prob-
lems [4] and improving effectiveness.

5.4.2 Language Model Considerations. Our current work is focused
on the application of instance selection methods as a pre-processing
step for methods based on 1st and 2nd generation Transformers.
It should be noted that conducting the experiments presented in
this paper requires a significant amount of time and resources.
Given the recent rise of state-of-the-art Large Language Models
(LLMs) methods, especially open ones such as LLama 3 [41] and
Bloom [22], it is quite natural to wonder if and how the proposed
instance selection methods would/could be applied to fine-tune
these state-of-the-art LLMs for classification and other NLP tasks.

Indeed, we believe that the exorbitant cost of fine-tuning these
LLM models — between 25-30 times more expensive than fine-tuning
1st and 2nd generation Transformers [37] — makes the application
of IS methods even more appealing in these scenarios. However,
these enormous costs imply that experiments with such huge mod-
els need to be more carefully planned to avoid wasting resources.
Moreover it is not clear that these very complex LLMs will always
be better than the best Transformer in all scenarios. For instance,
RoBERTa is a remarkable sentiment classifier [5] — in some of the
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datasets of the GLUE benchmark? RobERTa is not statistically sur-
passed by modern LLMs. Thus, further studies are necessary to
more clearly indicate in which situations there is higher chance of
obtaining (effectiveness) benefits given the huge costs of running
such experiments. In other words, a deeper cost-benefit analysis
is essential before we delve into this costly endeavor. This is the
current focus of our research.

That said, we believe that the work presented in this paper brings
enough contributions to be discussed with the scientific community.
But we will, for sure, run new experiments with our Quantum IS
proposals and LLMs in the foreseeable future as soon as some of
the issues discussed above have clearer answers.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a novel approach to perform IS using QA. We
have shown that our approach allows to reduce the training dataset
in a meaningful way, keeping the transformer’s effectiveness while
speeding up the model training (fine-tuning). Our approach man-
ages to perform in line with SOTA IS approaches, but using a com-
pletely different formulation and computing paradigm, showing
the potential of QC for solving real practical problems. We have
also analyzed the current limitations of quantum annealers which
are still to overcome. These limitations impact our practical results,
but as the technology advances, we expect improved hardware
capabilities and, thus, better results, both in terms of effectiveness
and efficiency, allowing also to consider larger problems, datasets
and language models.

In future work, we intend to experiment with new QUBO formu-
lations, new transformers and LLMs, new datasets, new reduction
rates, and new tasks besides ATC in which IS is potentially useful.
Another idea is to evaluate the impact of IS solutions in bigger tasks
such as the training (not the pre-training) of Large Language Models.
Finally, it would be very interesting to understand the actual en-
vironmental impact of quantum annealers. In fact, reducing power
and emissions is crucial and there have been attempts to analyze
the emissions of several approaches in the IR field [38]. This type of
analysis should also be carried out for quantum annealers to under-
stand how much they can impact in providing greener computation.
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