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Abstract
Previous efforts using frozen Large Language
Models (LLMs) for visual understanding, via
image captioning or image-text retrieval tasks,
face challenges when dealing with complex mul-
timodal scenarios. In order to enhance the ca-
pabilities of Multimodal Large Language Mod-
els (MLLM) in comprehending the context of
vision and language, we introduce Multimodal
Composition Learning (MCL) for the purpose
of mapping or aligning the vision and language
input. In particular, we introduce two tasks:
Multimodal-Context Captioning (MC-Cap) and
Multimodal-Context Retrieval (MC-Ret) to guide
a frozen LLM in comprehending the vision and
language context. These specialized tasks are
crafted to improve the LLM’s capacity for effi-
cient processing and utilization of multimodal
inputs, thereby enhancing its proficiency in gener-
ating more accurate text or visual representations.
Extensive experiments on both retrieval tasks
(i.e., zero-shot composed image retrieval, visual
storytelling image retrieval and visual dialog im-
age retrieval) and text generation tasks (i.e., visual
question answering) demonstrate the effectiveness
of the proposed method. The code is available at:
https://github.com/dhg-wei/MCL.

1. Introduction
Recent research (Merullo et al., 2022; Li et al., 2023; Koh
et al., 2023b;a) has shown that frozen Large Language Mod-
els (LLMs) can comprehend visual inputs and generate vi-
sual representations by learning a simple vision-language
mapping through the utilization of image-text pairs. Aided
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Figure 1. Comparison between FROMAGe (Koh et al., 2023b) and
our MCL on zero-shot composed image retrieval. MCL enables the
frozen LLM to retrieve accurate images that match the multimodal
context (image and text queries).

by the strong contextual comprehension inherent in LLMs,
Multimodal Large Language Models (MLLMs) demonstrate
remarkable zero-shot abilities in multimodal tasks. Al-
though trained on image captioning or image-text retrieval,
these models excel in activities such as visual question an-
swering, contextual image retrieval, and multimodal dia-
logue. This versatility showcases their broad applicability
beyond their initial training focus. However, these methods
that utilize image captioning and image-text retrieval tasks
for vision-language mapping, mainly serving as ‘modal-
ity translation’, exhibit a deficiency in fostering sufficient
cross-modal interaction. This limitation results in subpar
performance on complex multimodal benchmarks (shown
in Fig. 1), like zero-shot composed image retrieval, which
require a profound understanding of multimodal contexts.

In this paper, we introduce a Multimodal Composition
Learning (MCL) method to enhance the mapping between
the vision and language modalities for MLLMs. One notable
obstacle with this learning approach is the data intensiveness
problem. Existing multimodal composition datasets consist-
ing of an image query, a text query and a composed image
target, which heavily rely on human labeling (Liu et al.,
2021a; Wu et al., 2021). Relying on manual annotation
limits the scope of these datasets to particular domains and
poses challenges for scaling up, thus impeding the devel-
opment of a comprehensive vision-language mapping. To
obtain large-scale data for multimodal composition learning,
we propose to leverage LLMs to enhance the existing web-
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collected image-caption pairs, resulting in a generated Mul-
tiModal Composition (MMC) dataset. Specifically, given
a web-collected ⟨ref image, ref caption⟩ pair, we input the
ref caption to LLM and prompt it to generate a text condi-
tion and a corresponding target caption, yielding ⟨ref image,
ref caption, text condition, target caption⟩ tuples. For ex-
ample, as shown in Fig. 2, given a ref image of ‘an orange
kitten’ and the corresponding ref caption of ‘cute orange kit-
ten looking up’, we first randomly generate a text condition
of ‘with a toy mouse’, and then compose the target caption
of ‘a cute orange kitten playing with a toy mouse’. Note
that we do not pursue obtaining the corresponding image of
the target caption for training. Instead, we utilize the CLIP
feature of the target caption as the visual supervision.

With the generated MMC dataset, we employ the proposed
MCL method to bolster the bidirectional mapping between
the visual space and language space. Specifically, we in-
troduce two tasks: Multimodal-Context Captioning (MC-
Cap) and Multimodal-Context Retrieval (MC-Ret). These
tasks are designed to facilitate the learning of mappings
from visual features to language space and to improve the
extraction of visual representations from the multimodal
context of LLM’s input. Unlike traditional image caption-
ing and image-text retrieval training objectives that focus
on translating between the vision and language modalities,
our proposed MCL approach aims to augment the model’s
proficiency in understanding and leveraging multimodal
information. This is achieved by training the model to com-
prehend and utilize the image and language information,
which is then used to generate targeted textual or visual
representations. Our main contributions include:

• We propose a Multimodal Composition Learn-
ing (MCL) method for vision-language mapping. MCL
can effectively enable a frozen LLM to perform accu-
rate image retrieval and text generation within various
multimodal contexts.

• We propose a MultiModal Composition (MMC)
dataset, constructed by automatically augment-
ing existing web-collected image-text pairs.
MMC contains 2.7 million tuples of ⟨ref image,
ref caption, text condition, target caption⟩ .

• We propose a stacking retrieval mechanism to extract
diverse multimodal information from LLM’s multi-
modal context.

• Extensive experiments show the effectiveness of MCL
on four zero-shot multimodal context understanding
tasks, including composed image retrieval, visual sto-
rytelling image retrieval, visual dialog image retrieval
and visual question answering.

2. Related Work
Vision-Language Mapping. In recent work, numerous
efforts (Mokady et al., 2021; Tsimpoukelli et al., 2021;

Merullo et al., 2022; Eichenberg et al., 2021; Li et al., 2023;
Alayrac et al., 2022; Zhang et al., 2024; Yang et al., 2024)
have been made to integrate the visual modality with Large
Language Models (LLMs) by translating visual features into
the frozen LLM space through the task of image caption-
ing. Leveraging the robust textual capabilities of LLMs,
these models are capable of performing traditional vision-
language generation tasks such as image captioning and
visual question answering. Furthermore, they are also ex-
tended to handle more sophisticated applications including
visual dialogue and visual storytelling. Another research di-
rection (Koh et al., 2023a;b) investigates the reverse process:
mapping LLM representations into visual feature spaces.
This is achieved by mapping the hidden states through learn-
able retrieval tokens to the CLIP (Radford et al., 2021)
feature space, specifically for image-text retrieval tasks. In
this paper, we further refine the vision-language mapping
by introducing tasks based on multimodal composition. Un-
like previous approaches that focused on mapping from one
modality to another through tasks like image captioning and
image-text retrieval, our proposed multimodal composition
tasks require LLMs to synthesize information from various
modalities, thereby enhancing the models’ understanding
and utilization of multimodal contexts.

Composed Image Retrieval. Composed Image Retrieval
(CIR) aims to retrieve a target image based on multimodal
queries that include a reference image and a text condition.
Previous research (Baldrati et al., 2022a;b; Delmas et al.,
2022; Lee et al., 2021; Liu et al., 2021b) primarily utilized
human-labeled triplets for supervised training. Recent stud-
ies have explored performing the CIR task without the need
for these human-labeled triplets. Pic2Word (Saito et al.,
2023), CIRCO (Baldrati et al., 2023), and KEDs (Suo et al.,
2024) map input images to pseudo text tokens, enabling the
composition of image and text queries using the CLIP text
encoder. Another line of research (Vaze et al., 2023; Gu
et al., 2023; Liu et al., 2023b) has developed methods to au-
tomatically construct CIR triplets from image-caption pairs
for training purposes. In this work, we execute zero-shot
CIR using LLMs. We demonstrate that multimodal queries
can be effectively synthesized within the LLM space.

Multimodel Data Augmentation with LLMs. Recent
work (Liu et al., 2023a; Fan et al., 2023; Brooks et al., 2023;
Zhang et al., 2023; Liu et al., 2023b; Li et al., 2024) uses
LLMs for multimodal data refinement, enhancement, and
extension. Brooks et al. (2023); Zhang et al. (2023); Liu
et al. (2023b) aim to generate paired triplets (ref image, edit-
ing instructions, target image) for specific downstream tasks.
In this paper, we leverage LLM, i.e., Llama, to augment
image-caption pairs into (ref image, text condition, target
caption) pairs for MCL. Our work aims to introduce multi-
modal composition learning into vision-language alignment
to enhance the multimodal context understanding capability.
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Figure 2. Framework of MCL. Given ⟨image, caption⟩ pairs, we feed the caption along with a task prompt to Llama2 to generate both a
text condition and a target caption. By integrating the initial image with the generated text condition and target caption, we facilitate
multimodal composition learning, enabling a frozen language model to compose multimodal inputs and output visual representations.

3. Method
This section delineates the proposed MCL framework where
an overview is illustrated in Figure 2. Section 3.1 details the
data generation process of our MMC dataset. In Section 3.2,
we introduce how to enable a frozen LLM to process visual
input. Section 3.3 describes the process to extract visual
representation from LLM’s multimodal context.

3.1. Data Generation
Collecting paired data (i.e., a multimodal query and a com-
posed target) for multimodal composition learning poses
significant challenges. This lead to the unavailability of
large-scale training data and limits the development of mul-
timodal composition learning. To address this, we propose
to automatically generate a large-scale multimodal composi-
tion dataset from existing ⟨image, caption⟩ pairs by leverag-
ing an off-the-shelf LLM (i.e., Llama2). Given a reference
image Iref and its associated caption Trefc, we input the Trefc
into an LLM along with a task-specific prompt. The LLM
then generates a free-text condition Tcon, which could serve
as an editing order to alter attributes and objects, or describe
the differences between the reference image and the target
image. Following this, the LLM is tasked with generating a
target caption Ttgtc by composing the reference caption Trefc
and the newly generated text condition Tcon. As a result, we
derive a ⟨Iref, Trefc, Tcon, Ttgtc⟩ tuple from a ⟨Iref, Trefc⟩ pair,
which can be automatically collected from the web.

3.2. Mapping Visual Input to LLMs

Adapting Frozen LLMs to Visual Input. Following the
latest advancements in vision-Language research (Mokady
et al., 2021; Merullo et al., 2022; Koh et al., 2023b), we em-
ploy a linear mapping layer (i.e., an adaptor) that maps CLIP
visual features into the LLM’s embedding space. Given an
input image I, we first utilize a frozen CLIP visual encoder
Eimage to extract the corresponding visual feature. Subse-
quently, a linear mapping layer fmap is applied to map this
visual feature into the LLM’s embedding space, resulting
in n visual vectors V = [v0,v1, ...,vn] = fmap(Eimage(I)).
The visual vector’s dimension matches the LLM’s word
embedding dimension.

Naive Image Captioning Objective. Previous methods em-
ploy a conventional image captioning objective to train the
mapping layer fmap by predicting the next token conditioned
on both the visual tokens and the previous caption tokens.
The objective can be formulated as:

LCap(θm) = − 1

|t|

|t|∑
i=1

logP
(
ti|V, t<i

)
, (1)

where ti represents the ith caption token, θm denotes the
weight of mapping layer fmap and P denotes a frozen LLM.

Multimodal-Context Captioning (MC-Cap) Objective.
In this work, we enhance this vision-to-language mapping
by incorporating it with the generated MMC dataset de-
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scribed in Section 3.1. Given a triplet ⟨Iref, Tcon, Ttgtc⟩, the
LLM is tasked to predict the next token conditioned on the
visual vectors V, text conditions tokens and previous target
caption tokens. The objective is described as:

LMC-Cap(θm) = − 1

|t|

|t|∑
i=1

logP
(
ti|V, c1, .., c|c|, t<i

)
,

(2)
where ci denotes the ith token of text condition and ti de-
notes the ith token of target caption.

Compared to the conventional image captioning objective
(i.e., Equation 1), our proposed objective offers distinct
advantages. Enhanced Linguistic Visual Mapping: Our
training objective refines the mapping process by incorpo-
rating textual cues (i.e., the text condition Tcon), leading to a
textual-aware mapping that effectively integrates visual fea-
tures into the language model’s semantic space. Enhanced
Textual Interaction: The language model is tasked to query
the mapped visual vectors based on the text condition to
derive the target caption. This ensures the mapped visual
vectors are optimized to support textual queries.

3.3. Extracting Visual Representations from LLMs
In this section, we delineate how to extract visual represen-
tation from LLM’s representation space. Following (Koh
et al., 2023b), we leverage learnable tokens to extract visual
information from the LLM multimodal context. Specifically,
a special token [RET] is appended following the context
tokens. The [RET] token is used to prompt the LLM to
gather visual information from the multimodal context. The
last hidden state of the [RET] token is used to output the
corresponding visual representation.

Naive Image-Text Retrieval Objective. FROMAGe (Koh
et al., 2023b) leverages an image-text retrieval task to
train the [RET] embedding. Specifically, given a paired
image and caption, they append a [RET] token after
the caption tokens as input to the LLM. The last hid-
den state of [RET] token is used as the LLM’s output,
represented as h([RET]|T), where T denotes the cap-
tion tokens. h([RET]|T) is then projected to CLIP la-
tent space through a simple linear layer, represented as
pv = fproj(h([RET]|T)). An infoNCE (Oord et al., 2018)
loss is employed to align the projected embedding and the
CLIP visual feature of the target image. The objective is
formulated as:

LRet([RET], θp)

= − 1

N

N∑
i=1

(
log

exp(sim(pv, ei)/τ)∑N
j=1 exp(sim(pv, ej)/τ)

)
, (3)

where θp denotes the weight of project layer fproj, sim(·, ·)
denotes cosine similarity function, and ei = Eimage(Ii).

Multimodal-Context Retrieval (MC-Ret) Objective.
Trained with naive image-text matching objective, [RET]
bridges the LLM context with the CLIP feature space. How-
ever, in this case, the [RET] token primarily functions as a
text summarization token, condensing the text context into
CLIP feature space, lacking the ability to selectively extract
target information based on the given multimodal context.
To this end, we introduce a MC-Ret objective to enhance
the capability of extracting information from multimodal
context. Given triplet ⟨Iref, Tcon, Ttgtc⟩, we input the Iref and
Tcon to the LLM with [RET] token attached at the end. In
this scenario, [RET] learns to compose the multimodal
context to match the target caption Ttgtc. The objective can
be formulated as:

LMC-Ret([RET], θp, θm)

= − 1

N

N∑
i=1

(
log

exp(sim(pv, ei)/τ)∑N
j=1 exp(sim(pv, ej)/τ)

)
, (4)

where pv = fproj(h([RET]|V,T)), V denotes the mapped
visual features of Iref, T denotes the caption tokens of Tcon
and e denotes the CLIP text feature of Ttgtc.

The MC-Ret objective brings the following benefits: (a) The
[RET] token is trained within multimodal contexts, mak-
ing it better adapted to handle multimodal inputs. (b) The
[RET] token learns to selectively extract information based
on the multimodal context, rather than indiscriminately con-
densing all the input.

Multiple Retrieval Tokens with Sequential Order. A
straightforward and effective method to enhance the visual
information extraction is to append more [RET] tokens
after the context tokens in a sequential order. We adapt
Equation 3 to multiple [RET] tokens scenario by simply
modifying the output feature pv as follows:

pv = ffusion(h1, . . . , hr),

hi = h([RET]i | V,T,[RET]<i),
(5)

where r represents the number of [RET] token and ffusion
denotes a fusion function that integrates multiple hidden
states into a single vector. The multiple [RET] tokens are
excepted to extract diverse information from the multimodal
context. However, we find that the multiple [RET] tokens
sometimes perform worse than the single [RET] token.
This phenomenon can be attributed to the fact that the hidden
state of [RET]i is significantly influenced by the preceding
[RET]<i tokens due to the intrinsic properties of LLMs.
Consequently, the adjacent [RET] tokens tends to focus
on similar content. This tendency contradicts our goal of
extracting diverse information from the context.

Stacking Retrieval Mechanism. To mitigate this issue and
extract diverse information from the LLM context, we in-
troduce a stacking retrieval mechanism. In this approach,
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multiple [RET] tokens are appended after the context to-
kens, arranged in a stacking order instead of a traditional
sequential order. The output feature pv is represented as:

pv = ffusion(h1, ..., hr), hi = h([RET]i | V,T) (6)

In this case, the output of each [RET] token is condi-
tioned only by the multimodal context, independent of other
[RET] tokens. The stacking approach allows [RET] to-
kens to extract more diverse information from the LLM
context, rather than concentrating on similar content. We
implement the stacking mechanism by adding extra atten-
tion masks between the RET tokens.

3.4. Model Training

We combine the four aforementioned objectives for
vision-LLM mapping. LCap and LRet are based on
the ⟨ref image, ref caption⟩ pairs, while the proposed
LMC-Cap and LMC-Ret are based on the triplets ⟨ref image,
text condition, target caption⟩. The combined loss func-
tion is expressed as:

L = λCap(LCap + LMC-Cap) + λRet(LRet + LMC-Ret),

where λCap and λRet denote the weights of generation losses
and retrieval losses, respectively.

Implementation Details. We employ CLIP ViT-L/14 as
our image-text retrieval model. We utilize OPT-2.7B, OPT-
6.7B and Llama2-7B as the LLM backbone. The input
image is mapped to 4 visual vectors in LLM space. The
number of [RET] tokens is set to 5. We adopt a two-layer
transformer with a mean pooling as the fusion function
for multiple [RET] tokens. MCL is trained on MMC for
50,000 iterations with a batchsize of 64. Both the LLM
and CLIP model are frozen. The loss weights λCap and
λRet in Equation 7 is set to 0.5 and 1.0 respectively. The
temperature τ in Equation 3 and Equation 4 is set to 0.07.

4. Experiments
As shown in Figure 3, our proposed MCL effectively en-
ables the model to perform multimodal tasks within arbitrary
multimodal input. In this section, we first conduct extensive
experiments on conventional multimodal image retrieval
tasks, namely zero-shot composed image retrieval (in Sec-
tion 4.1). Furthermore, we conduct experiments on dense
multimodal context understanding tasks where the input en-
compasses multiple images and texts (in Section 4.2). Then,
to assess the multimodal understanding capability in text
generation tasks, we conduct experiments on visual question
answering (in Section 4.3). Ablation studies and analysis
are in Section 4.4.

4.1. Composed Image Retrieval

Benchmarks and Metrics. We evaluate MCL on three zero-
shot CIR benchmarks: CIRCO (Baldrati et al., 2023), CIRR
(Liu et al., 2021a) and GeneCIS (Vaze et al., 2023). CIRCO
is an open-domain zero-shot CIR benchmark with multiple
annotated ground truths. Following existing methods, we
report the fine-grained metric of mean Average Precision
(mAP@K) on CIRCO. The mAP@K metrics are computed
considering all the ground truth images for each query. For
CIRR and GeneCIS, we report the Recall@K metric.

Baselines and Competing Methods. We compare our ap-
proach with several baselines and recent zero-shot CIR meth-
ods in the zero-shot setting, including: (1) Image-only: The
CLIP visual feature of the reference image is used to retrieve
the target image. (2) Text-only: The CLIP text feature of the
text condition is used to retrieve the target image. (3) Im-
age+Text: The CLIP visual feature of the reference image
and the CLIP text feature of the text condition are summed
together to retrieve the target image. (4) CLIP-based tex-
tual inversion methods: Pic2Word (Saito et al., 2023) and
SEARLE (Baldrati et al., 2023). (5) CompoDiff (Gu et al.,
2023): Combiner (Baldrati et al., 2022a) trained on gener-
ated triplets (6) Combiner-MMC trained on our proposed
MMC. (7) LLM-based approaches: FROMAGe (Koh et al.,
2023b).

Results and Analysis. Table 1 shows the results on the zero-
shot CIR tasks. Overall, MCL shows impressive results on
three benchmarks, outperforming previous CLIP-based zero-
shot composing methods and LLM-based methods. We can
draw a few conclusions from the table: (1) The proposed
multimodal composition learning method significantly
improves the MLLM’s capability in composing multi-
modal context. The FROMAGe MLLM which is trained
on the modality translation tasks (i.e., image captioning and
image-text retrieval) performs only better than the single
modality baselines (i.e., image-only and text-only). It in-
dicates that the modality translation tasks are not enough
to enable the LLM to compose multimodal contexts. Ben-
efiting from the multimodal composition training, MCL
effectively composes the multimodal context and extracts
the target representation for retrieval. (2) LLM is better
than the CLIP text encoder for multimodal composi-
tion. MCL largely outperforms previous zero-shot CIR
approaches, such as Pic2Word (Mokady et al., 2021) and
SEARLE (Baldrati et al., 2023), that compose the multi-
modal input in the text encoder of CLIP. It indicates that the
frozen LLM space can compose the image and text inputs,
even though the LLM is pre-trained on text corpus. The
CLIP text encoder, which is trained through image-text con-
trastive learning, usually faces challenges in comprehending
object relations, word order, and logical structures (Yuk-
sekgonul et al., 2022; Ma et al., 2023; Thrush et al., 2022;
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Table 1. Results on zero-shot CIR benchmarks. The best and second-best scores are highlighted in bold and underlined, respectively.
CIRCO (mAP@K) CIRR GeneCISMethod LLM K=5 K=10 K=25 K=50 R@1 R@5 R@50 Rs@1 R@1 (avg)

Image-only

Non-LLM

2.79 3.18 3.75 4.12 7.13 23.04 56.63 20.55 11.0
Text-only 2.50 2.64 3.11 3.38 20.55 44.17 78.94 60.74 9.1
Image + Text 6.37 7.04 8.11 8.72 12.27 35.81 77.04 33.33 12.6
Pic2Word 8.72 9.51 10.64 11.29 23.90 51.70 87.80 54.12 11.2
SEARLE 11.68 12.73 14.33 15.12 24.22 52.41 88.63 53.71 12.3
ComposDiff 12.55 13.36 15.83 16.43 18.24 53.14 90.25 57.42 14.9
Combiner-MMC 13.22 14.07 15.53 16.32 21.74 51.54 88.48 49.27 14.0
FROMAGe OPT-6.7B 4.00 4.44 5.26 5.73 10.96 31.40 72.97 34.07 14.3
MCL (ours) OPT-2.7B 14.55 15.79 17.38 18.27 23.28 54.17 90.05 58.24 15.8
MCL (ours) OPT-6.7B 15.14 16.13 17.88 18.82 24.15 55.98 90.92 59.52 16.1
MCL (ours) Llama2-7B 17.67 18.86 20.80 21.68 26.22 56.84 91.35 61.45 16.3

Wang et al., 2023). This limitation constrains its capabilities
in multimodal composition. LLM, in contrast, exhibits a
proficient ability to easily comprehend these complex ex-
pressions. We provide more qualitative comparisons and
analysis of the logical word understanding in Appendix B.1.
(3) MCL benefits from stronger LLM. Integrating MCL
with more advanced LLMs results in uniform enhancements
across three benchmarks. These improvements stem from
an enhanced representation space and a superior ability to
understand context. Further qualitative results and analysis
detailing the effects of various LLM backbones are available
in the Appendix B.2. (4) MMC can be used for conven-
tional CIR training. We use the MMC dataset to train a
Combiner (Baldrati et al., 2022a) model, which is a classic
CIR method that employs a simple combiner component
to integrate features from the image encoder and text en-
coder of CLIP. The Combiner model trained on the MMC
dataset achieves competitive results, approaching previous
textual inversion-based method SEARlE, demonstrating the
effectiveness of the generated MMC dataset. Despite being
trained on the same MMC dataset, a substantial performance
gap exists between the Combiner and the proposed MCL,
underscoring the efficacy of LLM in tasks involving multi-
modal composition.

4.2. Dense Multimodal Context Understanding
To investigate MCL’s multimodal understanding ability in
more complex scenarios, we consider the dense multimodal
context understanding tasks where the input encompasses
multiple images and texts. Conventional image-text match-
ing models are restricted to performing retrieval between a
single image and a single text. Similarly, composed image
retrieval models are also constrained to a single reference
image and a single text query. Thanks to the LLM, our
approach, despite not being explicitly trained on data with
multiple images and texts, showcases its adeptness in under-
standing the dense multimodal context.

Table 2. Zero-shot image retrieval results on Visual Storytelling. †

indicates input images from the current story sequence are masked
in the retrieval gallery.

Method Inputs R@1 R@5 R@10
CLIP ViT-L/14

1 caption

11.9 25.5 32.2
FROMAGe (OPT-6.7B) 11.3 24.6 32.1
MCL (OPT-2.7B) 8.6 20.9 28.5
MCL (OPT-6.7B) 9.4 22.1 29.3
MCL (Llama2-7B) 11.4 25.8 33.9
CLIP ViT-L/14

5 captions

5.9 19.5 28.0
FROMAGe (OPT-6.7B) 10.8 23.8 31.7
MCL (OPT-2.7B) 9.8 25.2 35.7
MCL (OPT-6.7B) 11.9 28.8 38.4
MCL (Llama2-7B) 13.7 32.9 42.7
CLIP ViT-L/14

5 captions, 4 images†

2.4 21.3 34.0
FROMAGe (OPT-6.7B) 18.2 42.7 51.8
GILL (OPT-6.7B) 20.3 45.0 53.7
MCL (OPT-2.7B) 21.8 44.6 53.9
MCL (OPT-6.7B) 22.5 46.5 55.8
MCL (Llama2-7B) 23.1 46.7 56.1

Following Koh et al. (2023b), we conduct zero-shot experi-
ments on Visual Storytelling (Huang et al., 2016) and Visual
Dialogue (Das et al., 2017). Unlike CIR tasks, which in-
volve only a single reference image and a single textual
condition, both Visual Dialogue and Visual Storytelling en-
tail long and intricate contexts. In these more challenging
scenarios, the model is required to not only understand the
multimodal context but also to efficiently extract crucial
information from multimodal dialogues or narratives.

Visual Storytelling Results. Each example in the visual sto-
rytelling dataset comprises five temporally ordered image-
text pairs, we report Recall@K of the last image as the
metric. Following (Koh et al., 2023b), we explore several
experimental settings featuring different input configura-
tions: (1) single last caption as input; (2) input consisting of
all five captions; (3) input incorporating five captions along
with four associated images. Table 2 shows the results. We
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(a) Composed Image Retrieval

(d) Visual Storytelling Image Retrieval

Q: how old does the woman look? 
          A: maybe late 20's to early 30’s.
Q: are there any animals? 
          A: just the bird.
Q: is she wearing a hat? 
          A: yes. 
Q: what color is her shirt? 
          A: mauve.

Based on the dialog, 
I guess you are talking about 

this picture:

Input Dialog

(c) Visual Dialog Image Retrieval

this is grandma 's cafe from 
outside . it 's beautifully 
decorated by grandma 's 

plants and wooden entrance 
grandpa made

grandma is pouring a cup of 
coffee to a neighborhood 

friend who stopped by to get 
delicious cup of our family 

traditional coffee.

this is the cafe 
gramda owns. no one 

is here because the 
cafe isn't open yet but 
usually it 's packed!

grandma 's delicious 
baked goods that she 

offers at her cafe . they 
are baked fresh daily.

grandma was teaching 
mommy how to make 
proper coffee using 

traditional family recipe
Retrieval

(b) Visual Question Answering

is more colorful 
and is placed 
next to a door

+ Retrieval

has the same 
shape and shows 

flowers in the 
foreground

+ Retrieval

Question: What type of vehicles are these?
Answer: These are bicycles.

Question: Why are the bicycles chained?
Answer: Bicycles are chained to prevent theft.

Question: Is this an outdoor court?
Answer: Yes, it is.

Question: Why is there a net over the court?
Answer: To prevent the balls from flying out.

Figure 3. Examples of multimodal understanding tasks with different types of multimodal context inputs. MCL is capable of processing
situations where there is a single image and a single text condition input (e.g., composed image retrieval and visual question answering).
Furthermore, it can also adjust to image retrieval tasks that require multiple continuous inputs (e.g., visual dialogue image retrieval and
visual storytelling image retrieval).

can draw the following main conclusions: (a) MCL benefits
from dense contexts. When the input context is increased
from ‘1 caption’ to ‘5 captions’, MCL shows significant
improvements. For instance, the R@1 score of the Llama2
model increased from 11.4% to 13.7%. In contrast, the
performance of the CLIP model decreases from 11.9% to
5.9%. Similarly, the LLM-based method FROMAGe shows
a slight decrease with a richer context. These results sug-
gest that our proposed multimodal composition learning
effectively enhances the capability to extract information
from dense contexts. (b) MCL benefits from multimodal
context. As the input incorporates five captions along with
four associated images, the performance of MCL further
improves, outperforming previous LLM-based approaches

FROMAGe (Koh et al., 2023b) and GILL (Koh et al., 2023a).
This indicates that MCL is effective in extracting informa-
tion from a multimodal context. We provide more qualita-
tive results on Visual Storytelling in Appendix B.3.

Visual Dialog Results. Each sample in Visual Dialog con-
tains one image and a conversation about this image. We
take the conversation as the input to retrieve the correspond-
ing image. The results are shown in Table 3. The proposed
MCL outperforms CLIP baseline and prior LLM-based re-
trieval methods by a large margin. This demonstrates MCL’s
capability to extract visual representations not only from
simple caption-style context but also from intricate dialog-
style context.
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Table 3. Zero-shot image retrieval results on Visual Dialog.
Method R@1 R@5 R@10

CLIP ViT-L/14 17.7 38.9 50.2
FROMAGe (OPT-6.7B) 20.8 44.9 56.0
MCL (OPT-2.7B) 25.6 51.9 65.2
MCL (OPT-6.7B) 27.2 51.0 64.0
MCL (Llama2-7B) 29.8 57.1 69.4

4.3. Visual Question Answering

To further explore MCL’s multimodal capability, we con-
duct experiment on VQAv2 (Goyal et al., 2017), which
requires the model to generate the answer based on the
⟨image, question⟩ pair. The results are shown in Table 4.
We use the prompt “Question:{Question} Answer:for this
image, the answer is {Answer}” for evaluation. We find
that such a prompt effectively prevents the LLM from
generating unrelated content. MCL outperforms similar
parameter-efficient methods which are trained with naive
image captioning objectives and image-text retrieval objec-
tives. This result demonstrates that our proposed compo-
sition learning effectively integrates the visual feature into
the LLM space thereby providing advantages for a range
of multimodal tasks. We note that these zero-shot results
are lower than recent SOTA MLLMs (Li et al., 2023; Zhu
et al., 2023; Alayrac et al., 2022; Ye et al., 2023), as they
are trained with significantly more computing and data,
especially some of them employ in-domain data for train-
ing (i.e., the MSCOCO (Lin et al., 2014) dataset, has the
same data source with VQAv2).

Table 4. Zero-shot results on VQAv2 val set. † denotes reproduced
results with our prompts.

Model LLM Acc@zero-shot
Frozen (Tsimpoukelli et al., 2021) GPT-2 29.5
MAGMA (Eichenberg et al., 2021) GPT-J-6B 32.7
LinearMapping (Merullo et al., 2022) GPT-J-6B 33.3
Fromage (Koh et al., 2023b)† OPT-6.7B 36.8
GILL (Koh et al., 2023a)† OPT-6.7B 38.8
MCL (Ours) OPT-2.7B 38.4
MCL (Ours) OPT-6.7B 40.2
MCL (Ours) Llama2-7B 42.6

4.4. Analysis and Ablations

Understand MCL by Visualizing the Relevance between
Context Tokens and Retrieval Tokens. In Figure 4, we vi-
sualize the relevance between the context tokens and [RET]
tokens. The relevance score is calculated by aggregating the
token relevance across the attention layers as described in
(Chefer et al., 2021). From the figure we can find that: (a)
Our composition learning enables the model to effectively
compose the visual and textual input to accurately retrieve
the target image. For instance, in the first example, the
model retrieves the target by identifying cues like ‘same
color’, ‘congested street’, and ‘stopped’. Conversely, the
model without composition learning tends to concentrate

Table 5. Results for the ablation study on the proposed Stacking
Retrieval (S.R.) mechanism and MCL objectives, respecrtively.
The CIRCO test set is used for evaluation.

Method LCap LRet LMC-Cap LMC-Ret mAP@5 mAP@10 mAP@25 mAP@50
Single [RET] token ✓ ✓ ✓ ✓ 17.07 17.87 19.65 20.62
5 [RET] tokens w/o S.R. ✓ ✓ ✓ ✓ 16.48 17.67 19.48 20.35
5 [RET] tokens w/ S.R. ✓ ✓ ✓ ✓ 17.67 18.86 20.80 21.68
Naive Mapping ✓ ✓ 4.38 4.70 5.44 5.85
Naive + MC-Cap ✓ ✓ ✓ 6.58 6.97 7.82 8.36
Naive + MC-Ret ✓ ✓ ✓ 16.73 17.80 19.58 20.51
MC-Cap + MC-Ret ✓ ✓ 17.55 18.67 20.63 21.62
MCL ✓ ✓ ✓ ✓ 17.67 18.86 20.80 21.68

on visual tokens or with only partial textual cues, leading
to incorrect retrieval results. (b) The proposed stacking re-
trieval mechanism makes the learned retrieval tokens focus
on different contexts. For instance, in the third example, the
retrieval tokens tend to focus on ‘different color’, ‘seen in
the side’ and ‘sky in background’. Conversely, the naive
sequential retrieval tokens mostly focus on the ‘different
color’, ‘seen in the side’ and overlook the ‘sky in the back-
ground’, leading to incorrect results.

Ablations on Stacking Retrieval Mechanism. Table 5
shows the results of the ablation study on Stacking Retrieval
Mechanism. When the number of the [RET] token in-
crease to five, the performance decreases. This decline is
attributable to the inherent characteristics of LLMs, where
adjacent tokens heavily influence one another, leading to
focusing on similar contexts as shown in Figure 4. The stack-
ing retrieval mechanism allows the multiple [RET] tokens
to extract diverse information from multimodal contexts.

Multimodal Composition Learning Loss. Table 5 shows
the results of ablation study on the proposed objectives.
It shows that our MCL objectives (i.e., MC-Cap and MC-
Ret) significantly improve the performance on composed
image retrieval tasks. MC-Ret objective is most effective
because it jointly optimizes both the visual input and visual
output mappings. The model works well only with the
proposed MC-Cap and MC-Ret objectives. Adding naive
image captioning and image-text retrieval objectives results
in a slight improvement.

5. Conclusion
In this paper, we propose multimodal composition learn-
ing for vision-language mapping. Compared to previous
MLLMs trained with image captioning and image-text re-
trieval tasks, our MCL shows superior performance in var-
ious multimodal scenarios. We hope MCL could inspire
future exploration of aligning LLMs with other modalities.

Impact Statement
This work primarily focuses on improving the functional-
ity and efficiency of multimodal composition tasks. Our
advancements in this field aim to enrich the interaction
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without Compose Learning (first row) VS. with Compose Learning (second row) 

Sequential Retrieval Tokens (first row) VS. Stacking Retrieval Tokens (second row) 

has the same color, 
is in a 

congested street 
and is stopped

Image Query:

Text Query:
has two of them and 

there is a fridge 
instead of an oven

Image Query:

Text Query:

Multimodal Context Token relevance Retrieved image Multimodal Context Token relevance Retrieved image

is of a different color, 
is seen from the side 

and the photo shows the 
sky in the background

Image Query:

Text Query:
has the same color 

and there is a plastic 
bottle instead of 

a frisbee

Image Query:

Text Query:

P1 P2 P3 P4  has the same color, is in a congested    ….    [RET0] [RET1] [RET2] [RET3] [RET4]

Mapped Visual Tokens Text Tokens Retrieval Tokens

Token relevance

Visualization 
Illustration

Figure 4. Visualization of the relevance between the input multimodal context tokens and learned retrieval tokens. The deeper the green
color, the higher the relevance. P1, P2, P3 and P4 denote the mapped visual tokens. (a) Our composition learning enables the model to
effectively compose the visual and textual input to accurately retrieve the target image. (b) The proposed stacking retrieval mechanism
makes the learned retrieval tokens focus on different contexts.

between humans and technology, enhancing access to mut-
limodal information. These improvements can lead to more
effective and user-friendly search engines, which are in-
tegral to various aspects of modern life. Furthermore, by
addressing the limitations of existing systems, we contribute
to a more accurate and efficient processing of multimodal
data, avoiding potential misinformation or misinterpretation
that can arise from less sophisticated models.
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A. Detailed Composed Image Retrieval Results and Analysis
Analysis on CIRR. Table 6 shows the detailed results on CIRR test set. MCL achieves SOTA on most metrics. Notably, the
CIRR benchmark has a strong bias towards the text modality input (Saito et al., 2023; Baldrati et al., 2023). The Text-only
baseline surpasses the Image+Text baseline a lot and even outperforms most zero-shot CIR methods on the Recallsubset@K
metrics. Despite this modality bias, MCL still achieves superior performance.

Table 6. Quantitative results on CIRR test set. Below the dashed line are LLM-based methods.

Recall@K RecallSubset@KMethod
K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

Image-only 7.13 23.04 32.99 56.63 20.55 40.96 61.04
Text-only 20.55 44.17 55.95 78.94 60.74 80.38 90.72
Image+Text 12.27 35.81 48.48 77.04 33.33 57.78 75.95
TransAgg 25.04 53.98 67.59 88.94 55.33 76.82 88.94
CompoDiff 18.24 53.14 70.82 90.35 57.42 77.10 87.90
Pic2Word 23.90 51.70 65.30 87.80 54.12 74.63 87.61
SEARLE 24.22 52.41 66.29 88.63 53.71 74.63 87.61
Combiner-MMC 21.74 51.54 65.33 88.48 49.28 72.88 87.01

FROMAGe-(OPT-6.7B) 10.96 31.40 44.33 72.97 34.07 58.84 76.80
MCL-(OPT-2.7B) 23.28 54.17 67.16 90.05 58.24 79.37 90.51
MCL-(OPT-6.7B) 24.15 55.98 69.21 90.82 59.52 80.34 91.13
MCL-(LLama2-7B) 26.22 56.84 70.00 91.35 61.45 81.61 91.93

Analysis on GeneCIS. Table 7 shows the detailed results on GeneCIS. GeneCIS introduces four unique tasks: Focus
Attribute, Change Attribute, Focus Object, and Change Object. For each task, only a single object name or attribute
name is provided. This setup differs significantly from prior benchmarks such as CIRR and CIRCO, which often provide
caption-style text conditions. Overall, MCL achieves superior performance on the Avg R@1 metric. In Focus Attribute task,
FROMAGe achieves the best performance. This is because the image modality contains major information in the focus
attribute task, where the Image-only baseline achieves 18.2% at R@1, outperforming the Image+Text baseline. For the
other three balance tasks, MCL consistently achieves better performance, demonstrating its effectiveness in multimodal
composition.

Table 7. Quantitative results on GeneCIS.

Focus Attribute Change Attribute Focus Object Change ObjectMethod R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 R@1 R@ 2 R@3 Avg R@1
Image Only 18.2 29.6 40.0 9.2 20.2 29.1 9.6 16.2 25.5 6.8 16.0 24.7 11.0
Text Only 12.3 20.2 31.3 8.1 17.7 24.6 8.2 15.3 24.1 7.6 15.4 25.1 9.1
Image+Text 17.6 29.5 40.0 10.6 22.1 31.9 11.8 21.4 29.0 10.3 21.0 31.1 12.6
Combiner-MMC 17.4 29.1 40.5 12.9 22.9 32.4 13.5 23.0 33.3 12.3 22.4 32.1 14.0
FROMAGe-(OPT-6.7B) 19.2 31.1 40.5 12.2 21.7 30.5 13.0 24.5 33.2 12.9 24.7 32.9 14.3
MCL-(OPT-2.7B) 18.2 28.8 38.9 13.9 24.6 34.0 14.6 24.7 34.7 16.8 26.9 36.4 15.8
MCL-(OPT-6.7B) 18.2 29.6 39.1 14.5 24.1 34.0 14.7 27.1 36.5 16.9 28.5 39.3 16.1
MCL-(LLama2-6.7B) 18.5 29.5 38.8 14.7 25.0 33.7 14.7 24.9 35.7 17.2 29.8 39.9 16.3

Qualitative Results on CIRCO. Figure 5 shows more qualitative results from the CIRCO validation set. The samples from
CIRCO are diverse and of high quality. Importantly, it provides multiple ground truth labels for each input, which helps in
a more comprehensive analysis. From the figure, we observe that: (1) MCL can effectively handle the multimodal input
and retrieve the target image. (2) Some false negative samples are highlighted in blue. This is primarily due to during the
label annotation, the authors leverage their proposed SEARLE method to coarsely filter out images from a large gallery,
leading to missing some true positives, which can be well retrieved by MCL. These false negatives indicate that MCL
has different preferences compared to conventional CLIP inversion-based methods, suggesting MCL’s potential to refine
existing benchmarks.
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Multimodal Query 

is shot from the same 
angle and is set inside a 

shopping cart

is set outdoors and has 
grass in the 
background.

has both the cat and 
the umbrella in black 

color.

is more colorful and is 
placed next to a door.

is shot from a different 
angle and has one dog.

Retrieval Results (first row) and Ground Truth (second row) 

Figure 5. Qualitative results on CIRCO validation set. The first row is the ranked images retrieved by MCL, and the second row is the
ground truth images. True positives are marked in red and false negatives are marked in blue.
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B. More Qualitative Results and Analysis
B.1. LLM VS. CLIP text encoder

Different from conventional image-text retrieval, logical words like ‘no’ and ‘instead of’ occur more frequently in the
multimodal contextual image retrieval scenarios. These logical words pose a challenge to CIR models that rely on a CLIP
text encoder to process textual queries. It is because the CLIP text encoder struggles in handling words like ‘no’ (Wang
et al., 2023), which are critical to retrieve the correct target images. As shown in Figure 6, the CLIP-based model Combiner
struggles to comprehend text inputs containing logical words, leading to incorrect retrieval results. In MCL, we leverage
the aligned CLIP image-text space as the retrieval space. The CLIP text encoder is utilized to process the target caption in
MMC. In this scenario, the text inputs of CLIP text encoder are more likely in a caption style. The text conditions, which
are more likely to contain logical words, are processed in the language model space, where the logical words like ‘not’ and
‘instead of’ can be easily understood.

has chopped carrots instead of an 
omelet

is taken from a lower perspective and 
shows a sandwich instead of vegetables

shows gym equipment and no Christmas 
decorations

is next to fruits instead of flowers

are black instead of blue and the 
walls are not white

has two of them and there is a fridge 
instead of an oven

Combiner MCL-Llama2-7B
Retrieved imageText ConditionReference Image

Figure 6. Examples from CIRCO validation set containing logical words. Both Combiner and MCL are trained on proposed MMC dataset.
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B.2. Qualitative Results of MCL with Various LMM Backbones

In this section, we provide additional qualitative results to analyze the impact of a stronger language model on MCL. We
select some hard samples from CIRCO test set and list the results of MCL with OPT-2.3B, OPT-6.7B and Llama2-7B. As
shown in Figure 7, every test sample has a complex text condition, requiring comprehensive multimodal abilities to retrieve
the correct image. Overall, benefiting from a more powerful language model, MCL with Llama2-7B shows improved
performance in understanding these complex multimodal inputs. For instance, in the first example, Llama2 based model
and OPT-6.7B based model identify critical textual cues such as ‘is empty’ and ‘bottles of alcohol next to it’ effectively
retrieving the correct image, while the OPT-2.7B based models only catch the ‘bottles of alcohol’ cues.

is empty and there are 
several bottles of alcohol 

next to it

is wearing the same color 
and is not facing the 

camera.

is wearing a helmet and the 
photo does not show the 
sky in the background

have a different colors and 
they are in a bathtub.

are more colorful and there 
is a grey brick wall in the 

background

has more colorful apron 
and he is looking at the 

camera

Multimodal Query Retrieval  Results 
OPT-2.7B OPT-6.7B Llama2-7B

Figure 7. Qualitative comparison of MCL with various LLM backbones on hard samples selected from CIRCO test set. Critical textual
cues in each sample are highlighted.
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B.3. Qualitative Results on Visual Storytelling

Figure 8 shows the qualitative results of MCL (LLama2) on Visual Storytelling, clearly illustrating the benefits of incorpo-
rating more context. For instance, in the final examples, when the input is limited to one caption, the model retrieves a photo
that aligns with the caption “cute footprints”. However, this photo does not fit the beach theme of the overall visual story.
With five captions as input, the model recognizes the beach scenario but displays adult feet, which are inconsistent with
the visual context. When the input includes both images and captions, the model accurately retrieves the target image that
matches the multimodal context. These findings indicate that MCL can effectively utilize continuous multimodal context,
showing great potential for wide-ranging applications in real-world multimodal scenarios.

my vacation was so much 
fun . we went to a local park

we even road a roller 
coaster .

later we visited the red 
light district .

we also went to a local `` 
coffeeshop '' .

last caption

5 captions

5 captions, 
4images

everyone entered the 
room , ready for the 

presentation .

there were great speakers , 
who provided good 

education .

the camera man 
made sure to 
document the 

important event .

the audience enjoyed 
the presentation and 
company of others .

they were satisfied with 
the material presented .

last caption

5 captions

5 captions, 
4images

the boy loves the beach . the brother and sister like to 
play .

the boy is making a 
sand castle . the girl is going to help . the foot prints are cute .

last caption

5 captions

5 captions, 
4images

Figure 8. Qualitative Results on Visual StoryTelling.
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C. Failure Cases and Limitations
Failure Cases. In Figure 9, we list several primary scenarios where MCL fails. The most significant is the quantities-related
scenarios. When the text condition includes specific numerical requirements, such as ‘two cats’, MCL often struggles to
retrieve target images with the correct number. Similarly, when the text condition contains words related to quantity, like
‘fewer’ or ‘more’, MCL also fails to accurately identify target images that correctly represent these quantitative relationships.
Additionally, MCL struggles with the text condition such as ‘greyscale’ and ‘shot angle’. These text conditions, instead of
relating to the image content, are associated with the image’s state or attributes.

Limitations inherited from CLIP model. MCL leverages frozen CLIP model as the base image-text retrieval model.
While it benefits from the strong aligned image-text space provided by CLIP, it also inherits CLIP’s inherent limitations.
For example, as shown in Figure 9, MCL struggles to retrieve the correct images in scenarios involving queries related to
quantities, greyscale and angles. This issue stems from CLIP’s intrinsic weaknesses, such as object counting, as detailed in
(Radford et al., 2021). It should be noted that another significant limitation of CLIP is the weak logical understanding ability
of CLIP text encoder (Wang et al., 2023). Fortunately, as shown in Figure 6 MCL process the logical relationship in LLM
space, thereby mitigating this issue.

has a different color 
and has fewer people 
in it

shows only one on a 
parquet floor, it is 
seen from the top and 
is open

has two horses 
instead of a 
motorbike and is shot 
in a similar setting

has more than one

has a bench 
instead of a 
chair and there 
are two cats

has more 
people on it

is not on a bench 
and the photo is 
taken in greyscale

is sitting on a 
bench and the 
image is in 
greyscale

is shot from the 
front

are crossing on a 
crosswalk and the 
photo is shot 
from the top

Reference Image Text Condition Retrieved Image Reference Image Text Condition Retrieved Image

Quantities
Related

greyscale
Related

Angles
Related

Figure 9. Failure cases of MCL.
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D. Data Generation
We employ the Llama2/7B-Chat model for our data generation. To enhance the performance of the open-sourced LLM
(i.e., Llama2 (Touvron et al., 2023)) in data generation, we utilize the in-context learning techniques. Specifically, we
employ a state-of-the-art LLM, GPT-4 , to generate 20 in-context examples. In practice, we find that GPT-4 can effectively
perform the data generation task and generate diverse samples. During each sample generation process, we provide Llama2
with a task description and randomly select one in-context example as the task-specific prompt, as shown in Figure 10. This
approach ensures diverse and high-quality generated samples. It costs approximately 60 A100 GPU days to generate 2.7
million tuples, using image-caption pairs from CC3M (Sharma et al., 2018) as source pairs. We visualize some samples
from MMC as shown in Figure 11. As we can see, Llama2 can generate diverse text conditions based on the source caption.
The target caption effectively combines the source caption and the generated text condition.

I need to construct a multi-modal retrieval dataset. While this is a challenging 
endeavor, one effective method involves generating text-only triplets: source 
captions, text conditions, and target captions. I'd appreciate your assistance in 
creating these triplets based on provided source captions. Here’s how it works:
Source Caption: This is an image’s description that I will provide for you.
Text Condition: Generated based on the source caption, the text condition 
outlines a specific modification or requirement that the target caption (and 
correspondingly, the target image) must adhere to..
Target Caption: This should be crafted using both the source caption and the text 
condition. It will represent a new image that meets the requirements set by the text 
condition, using the original source image as a foundation.
Please ensure that all Source Captions, Text Conditions and Target Captions are 
visually relevant.

User:

Asst.: Understand! Please provide the source captions. I will generate visually relavant 
text conditions and target captions.

User: Source Caption: A group of children flying kites on a windy beach.

Asst.: Great! Here’s the text condition and target caption:
Text Condition: Balloons and make it a mountain setting.
Target Caption: A group of children releasing balloons on a windy 
mountain top

Task Prompt for LLama2/7B-Chat model

User: Source Caption: …….

Asst.: Great! Here’s the text condition and target caption:
Text Condition: …….
Target Caption: .……

Figure 10. Our specialized task prompt for Llama2/7B-Chat model.
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it 's about a mile 
walk around the lake .

a player works 
around the cage .

fine line style 
butterfly tattoo on 
the right forearm .

traffic makes its way 
along road .

a park bench under 
the autumn leaves

view of the ocean 
from the kitchen .

cats on the kitchen 
window

cartoon smiling 
moon by the night

amidst the beautiful 
tea plantations

Add a bridge 
crossing the lake.

The player should be 
wearing a different 

color jersey.

remove the butterfly 
tattoo.

Add a traffic cone in 
the middle of the 

road.

Change the season 
to winter.

a stormy weather.

Add a bird in the 
background.

showing a sad face

Add a group of 
workers picking tea 

leaves.

A mile walk around the 
lake with a bridge 
crossing the lake.

A player works around 
the cage in green jersey.

a blank patch of skin on 
the right forearm.

Traffic makes its way 
along a road with a 

traffic cone in the middle.

a park bench under the 
winter snow.

View of the ocean from 
the kitchen during a 

stormy weather.

Cats on the kitchen 
window with a bird in 

the background.

cartoon frowning moon 
by the night

Amidst the beautiful tea 
plantations, a group of 
workers diligently pick 

tea leaves.

Source image Source caption Text Condition Target Caption

Figure 11. Data samples selected from MMC. Note that the source image is not visible to the language model during the text condition
and target caption generation.
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E. Training details of Combiner baseline
In this paper, we train the Combiner (Baldrati et al., 2022a) using proposed MMC dataset. Given the training data (ref image,
text condition, target caption), the Combiner takes reference image and text condition as input. The ref image and text
condition are first encoded by CLIP image encoder and CLIP text encoder, respectively. These two clip features are then
composed into a single vector through a combiner component (MLPs). A contrastive loss is then used to align the output
single vector and the target feature, i.e., the CLIP text feature of the target caption. The Combiner is trained on MMC for 6
epochs with a batchsize 1024. The temperature in contrastive loss is set to 15. The CLIP model is frozen during training.
Other training parameters are the same as (Vaze et al., 2023).
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