PARM: Pipeline-Adapted Reward Model

Anonymous ACL submission

Abstract

Recently, the reward model has received more
attention as it has made significant progress in
improving the decoding quality of large lan-
guage models and guiding reinforcement fine-
tuning. Current research efforts have focused
on reward models for individual models, but as
the capability of large language models contin-
ues to grow, they are beginning to exert their ca-
pabilities as components of some process tasks
or pipeline tasks, and reward models for such
pipeline tasks remain to be explored. To bridge
this gap, our work builds a pipeline based on
task, code generation for optimization problem,
and verifies the potential of reward model to
improve the quality of pipeline output. Mean-
while, to address the problems generated by
the reward model in improving pipeline output
quality, we propose a simple and efficient train-
ing method to train the Pipeline-Adapted Re-
ward Model (PARM) to further improve its ef-
fectiveness. Through performance experiments
on four benchmarks and a series of analysis
experiments, we validate the effectiveness of
PARM and obtain some important insights on
this topic.

1 Introduction

Recently, reward models have garnered signifi-
cant attention due to their remarkable effective-
ness in guiding large language models (LLMs) on
reasoning-related tasks, particularly in decoding
and reinforcement fine-tuning to enhance reason-
ing capabilities (Ouyang et al., 2022; Luong et al.,
2024). Specifically, as scoring models for evalu-
ating LLM outputs, reward models are often com-
bined with various decoding strategies to gener-
ate higher-quality outputs (e.g., Best-of-N (BoN),
Beam Search, Monte Carlo Tree Search (MCTYS)),
thereby improving model performance. For ex-
ample, Best-of-N sampling has been shown to be
significantly effective in practice (Nakano et al.,
2021; Stiennon et al., 2020), despite its simplicity

and the fact that it does not require an additional
training phase. In the field of machine transla-
tion, Beam Search is widely employed, with re-
searchers modifying the log-probability scoring
function to achieve better results (Wu et al., 2016;
Murray and Chiang, 2018). Similarly, leveraging
MCTS on policy LLMs, is becomes possible for
generating high-quality data for large models with-
out requiring human-provided annotations (Zhang
et al., 2024). The effectiveness of these strategies
has been well-established in enhancing the output
quality of individual models. On the other hand,
the increasing capabilities of LLMs have greatly
expanded their application scenarios. In process-
driven tasks, LLLMs are increasingly employed as
components within pipeline frameworks, working
collaboratively to generate final output.

While this is a promising and valuable direction,
current LLLM-based pipelines still fail to achieve
the output quality required for practical usability.
Inspired by the success of reward models in im-
proving single-model output, it is natural to explore
whether reward models can also enhance the over-
all quality of pipeline framework output. However,
there is currently little research on using reward
models to improve the quality of entire pipelines,
indicating a significant gap in this area.

To address this gap, this paper focuses on the
code generation for mathematical optimization
problems (Tang et al., 2024; Jiang et al., 2024; Xiao
et al., 2023) as a case study to design a pipeline
framework guided by reward models. The pipeline
takes mathematical problems in natural language
as input, first generating their mathematical formu-
lation and then producing corresponding Python
code as a solution. To better illustrate this task and
the framework, Fig. 1 compares the pipeline frame-
works with and without the guidance of the reward
model.

Building on this reward-guided pipeline frame-
work, we validate the effectiveness of reward mod-

Solution

(S)

Problem | 3] Formulation Sampling | Formulation | Solution Sampling
(P) Generator (FG)| ” (F) Generator (SG) ”

(a) Pipeline without Reward Model

Problem > Formulation |Sampling |Formulation Solution Samplilg Solution
(P) Generator (FG)] A ” (F) Generator (SG)| A (S)

a

Reward Reward
Model Model
for FG for SG

(b) Pipeline with Reward Model

Figure 1: This figure demonstrate the pipeline without reward model guidance (a) and the pipeline with reward
model guidance (b). In the latter, generator needs to generate several times and the reward model will score these

outputs. Final generation will be sampled based on the reward scores. An example of input and output of the
pipeline is shown in Fig. 2.

A certain restaurant operates 24 hours a day and requires a minimum

number of waitstaff as shown in Table 1.1. from pyomo.environ import
Table 1.1: class \ﬁ)tStafny:t)m);a(inn:
def init_ self): -

¥ creste s conerete nodel Solution Code

self.model = ConcreteModel()

Define sets

self.model.TIME_PERIODS = RangeSet(1, 6)

Define parameters

| Time | Minimum Number of Waitstaff |

2am-6am | 4

|
|
6am-10am | 8 | self.model.MIN_WAIT_STAFF = Param(self.model.TIME_PERIODS, initialize={1: 4, 2: 8, 3: 10, 4: 4, 5: 8, 6: 4})
Define variables
leam-2pm | 10 | self.model.x = Var(self.model.TIME_PERIODS, within=NonNegativeIntegers)
| # Define objective
def objective_rule(model):
|
|

2pn-6pn | 4

Problem
6pm-10pm | 8

(Ground Truth is 22) return sum(model.x[i] for i in model.TIME_PERIODS)
self.model.objective = Objective(rule=objective_rule, sense=ninimize)
lepm-2am | 4 # Define constraints
i ; def constraint_rule(model, t):
Each waitstaff works continuously for 8 hours a day. The goal is to

if t=
find the minimum number of waitstaff that satisfies the above return model.x[t] >= model.MIN_WAIT_STAFF(t]
else:
conditions and represent this problem as a linear programming model. return model.x[t] + model.x[t-1] >= model.MIN_WAIT_STAFF[t]
self.model.constraints = Constraint(self.model.TIME_PERIODS, rule=constraint_rule)
def solve_model(self):
Solve the model
solver = SolverFactory('glpk') # Using GLPK solver, you can change this to another solver if needed
Five-Element Formulation results = solver.solve(self.model, tee=False)

Check if the solution is optimal

if results.solver.status == SolverStatus.ok and results.solver.termination_condition == TerminationCondition.optinal:
e periods: bam, ban print("Optimal Solution Found:")
. e the nu of wait staf rting their for t in self.model.TIME_PERIODS:
! t the beginning of the \\(e period. print(f'Nurber of wait staff starting at {t}-th time period: {value(self.model.x[t])}")
print(f'Total nunber of wait staff: {value(self.model.objective)}")
s . else:
) print("No optimal solution found.")
fours each wai or hours. def main():
Create an instance of the optimization class
) optimizer = WaitStaffOptimization()

Solve the model

optimizer.solve_nodel()
if _nane

main()

the mis
- From

From 6a
ron 10,
oo
From 6pm
rom 10

2 \\) Output
Optimal Solution Found:
5 \\geq 8 Number of wait staff starting at 1-th time period: 4.0
- Number of wait staff starting at 2-th time period: 6.0
Number of wait staff starting at 3-th time period: 4.0
i Number of wait staff starting at 4-th time period: 0.0
Number of wait staff starting at 5-th time period: 8.0
Number of wait staff starting at 6-th time period: 0.0
Total number of wait staff: 22.0

Ist co the required numb
nait st or the next 8 hours. Th alrea t d

Figure 2: An example of input and output of the pipeline.

els using open source large models and reward
models on several datasets. Compared to pipelines
without reward models, those guided by reward
models exhibit a significant improvement in output
quality. However, challenges remain. The primary
limitation is that existing reward models are trained
using single-model outputs and can only evaluate
the output quality of individual components, with-
out considering the overall output quality of the
pipeline.

To address this limitation, we propose a simple
yet effective training method that uses feedback
signals from the pipeline to enable reward models
to learn the relationship between component out-
puts and the overall pipeline output quality. This
results in a pipeline-adapted reward model. We
evaluate the effectiveness of our approach on four
benchmarks, and experimental results demonstrate
that our reward model significantly improves the
pipeline’s output quality.

In addition, we conduct an in-depth investigation
into several aspects of reward models in pipeline
frameworks, including their guidance mechanisms,
limitations, and compatibility with non-training-
based enhancement techniques. Through a series
of qualitative and quantitative analyses, we uncover
important insights about these aspects.

In summary, the main contributions of this work
are as follows:

* To bridge the gap in using reward models
to guide pipeline frameworks, we establish
a reward-guided pipeline framework and vali-
date its feasibility in the context of code gener-
ation for mathematical optimization problems.

* To address the limitations of existing re-
ward models, which fail to effectively guide
pipeline outputs, we propose a simple and ef-
ficient training method to develop a pipeline-
adapted reward model.

* We validate the effectiveness of our training
method across four benchmarks. Additionally,
through a series of analytical experiments, we
provide key insights into the guidance mecha-
nisms of reward models, their limitations, and
their compatibility with non-training-based
enhancement techniques.

2 Related Work
2.1 Improving LLM Output Quality

Recent advances in improving LLM outputs have
focused on two primary approaches: in-context
learning (Brown et al., 2020; Liu et al., 2023) and
parameter-updating methods (Luong et al., 2024;
Ouyang et al., 2022). In-context learning enhances
generation through strategic prompting, exempli-
fied by GPT-3 (Brown et al., 2020) and Chain-
of-Thought (CoT) prompting (Wei et al., 2022),
which enable complex reasoning through interme-
diate steps. Parameter-updating approaches ex-
plicitly train model weights, with methods like
RLHF (Ouyang et al., 2022) and ReFT (Luong
et al., 2024) leveraging reinforcement learning to
align outputs with human preferences. As scoring
models for evaluating LLM outputs, several decod-
ing methods are also employed to generate higher-
quality outputs. For example, Best-of-N sampling
has been shown to be significantly effective in prac-
tice (Nakano et al., 2021; Stiennon et al., 2020),
despite its simplicity and the fact that it does not
require an additional training phase. In the field of
machine translation, Beam Search is widely used,
with researchers modifying the log-probability scor-
ing function to achieve better results (Wu et al.,
2016; Murray and Chiang, 2018). Similarly, lever-
aging MCTS on policy LLMs makes it possible to
generate high-quality data for large models with-
out requiring human-provided annotations (Zhang
et al., 2024).

While effective, these methods incur substan-
tial computational costs as models scale (Liu et al.,
2023). Pipeline frameworks have emerged as an
efficient alternative, decomposing complex tasks
into specialized components. However, existing
reward models focus solely on individual compo-
nents, overlooking the quality of pipeline-level out-
puts.

2.2 LLMs in Mathematical Optimization

LLMs have shown increasing capability in mathe-
matical optimization (Gao et al., 2023; Zhou et al.;
Cobbe et al., 2021) progressing from direct compu-
tation attempts (Gao et al., 2023) to more sophis-
ticated approaches. Recently, this exploration has
expanded to more complex optimization tasks, ex-
emplified by competitions like NL4Opt (Ramamon-
jison et al., 2023), which encourage researchers to
use LL.Ms to extract, understand, and solve opti-
mization problems from natural language descrip-

tions. Early methods like PAL (Gao et al., 2023)
and CSV (Zhou et al.) translated problems into ex-
ecutable code, incorporating self-verification mech-
anisms to improve accuracy.

Recent work emphasizes structured decompo-
sition in optimization tasks. Chain-of-Expert
(CoE) (Xiao et al., 2023) introduced special-
ized agents for different solution stages, while
ORLM (Tang et al., 2024) developed three-element
problem formulations. proposed a more structured
five-element formulation to decompose optimiza-
tion problems before generating code. By validat-
ing and optimizing these intermediate formulations,
LLMOPT demonstrated that well-defined prob-
lem representations often created through labor-
intensive manual annotations can substantially en-
hance solution quality.

Despite these successes, existing approaches
face several limitations. Many rely heavily on
proprietary LLM interfaces and manually curated
datasets, which are costly to construct and annotate.
Some methods still depend on expensive manual
data preparation and fine-tuning, as well as the com-
putational overhead of large models such as GPT-4.
Moreover, current multi-step cooperative systems
often use a single large model to process each stage
of a pipeline, rather than assigning smaller, special-
ized models to individual sub-tasks. This raises
scalability and efficiency concerns.

3 Methodology

3.1 Overview

As shown in Fig. 3, our pipeline consists of Formu-
lation Generator, Formulation Reward Model,Code
Generator, Code Generation. Formulation Genera-
tor is used to generate the math formulation of the
optimization problem in natural language format,
and the Solution Generator outputs a code solution
based on the math formulation. The final formu-
lation and solution are sampled according to the
reward scores of the corresponding reward models.

As mentioned above, we propose a training
method to improve the ability of the reward model
to guide the final output of the pipeline. We call this
training method pipeline-adapted training (PAT).
As demonstrated in Fig. 3, we use the execution
results and the accuracy of the final responses cor-
responding to the successful execution as a guide
signal to train the reward models. More details can
be found in the following sections.

3.2 Workflow of Pipeline

Before introducing the workflow of the pipeline,
let’s establish the notation. We use P, F', S to rep-
resent the problem, formulation, solution. LLMp,
L L Mg is used to represent the formulation gener-
ator and the solution generator. RMp, RMg are
reward models for formulation generator and so-
lution generator, respectively. The workflow of a
pipeline can be represented by the following sym-
bols and formulas:

The formulation generator takes the problem
prompt P as input and generates the math formula-
tion. Due to the usage of the reward model, the for-
mulation generator needs to generate N formula-
tions for an input problem P, and the reward model
for the formulation generator will score these in-
puts. Then, we use the max value sampling method
to obtain a final formulation F'y according to the
reward scores.

Fy = LLMp(P),i=1,2,...,Np (1)
Ti:RMF(Fi>,i: 1,2,...,NF (2)

Fy = Argmaz g, (r1,72, ..., Ny) €)

Then, Fy will be sent to the solution generator
to produce Ng the solutions and we still sample
the final solution code Sy with the reward model
RMg. This process is similar to the generation of
the final formulation.

Si = LLMg(Fy),i=1,2,..,Ns (4)

Ti:RMs(Si),izl,Q,...,NS (5)

S = Argmaxg, (11,72, ..., TNg) (6)

3.3 Training for Pipeline Adapted Reward
Model

The current reward models are trained for large
language models, which means that the scores are
not for the pipeline output. So, it is not suitable
to use the reward model in the pipeline output. To
solve this problem, we propose a simple pipeline-
adapted training method to train the reward model
that could output reward scores for pipeline outputs
based on their correctness.

In detail, we adopt the DPO (Direct Prefer-
ence Optimization) algorithm to train our reward

Problem > Formulation | Sample Formulation_) Solution Sample Solution
(P) Generator (FG) (F) Generator (SG) (S)
Reward Pipeline Adapted Training Reward
Model Model Executor
for FG for SG
(7 Q)
Error
Log < Fail
Execute
Results €
Answer
Correct Check Success
or Not €=————Answer
& -/

Figure 3: This figure shows the pipeline with reward model and the post-processing of solution code. The execution
results can provide training labels for the pipeline adapted training of the reward model.

model. During this process, we utilize the differ-
ent data sets from the test data set to construct
training datasets: We first input the optimization
problems into our pipeline framework without a
reward model. For each problem, the formulator
generates N formulations, and each formulation is
subsequently passed to the coder, which generates
N code samples. The dataset is then constructed
based on whether the generated code samples can
be successfully executed.

For the dataset entries of the form [problem, for-
mulation_chosen, formulation_rejected], the for-
mulation_chosen corresponds to a formulation that
successfully produces executable code, while the
formulation_rejected includes formulations where
none of the sampled code instances can execute
successfully. Similarly, for entries of the form
[formulation, code_chosen, code_rejected], the
code_chosen includes code samples that execute
successfully, while the code_rejected consists of
those that fail to execute.

3.4 Self-Debugging Integration

To improve the quality of pipeline outputs, we intro-
duce a self-debugging method. Specifically, com-
pilation results and problems will be fed into the

Self-debugging system again for error correction,
self-debugging is still carried out by the solution
generator model for code error correction, each cor-
rection still generates a number of results, and the
reward model selects the most accurate correction
as the result. If there is a problem with the code,
a new code will be generated and executed, and
the final execution result will be matched with the
correct answer of P to determine whether the code
is executed correctly or not.

4 Experiments

4.1 Overview

To evaluate the effectiveness of our proposed
framework, PARM, we conduct experiments on
five optimization datasets: NL4Opt (Ramamon-
jison et al., 2023), IndustryOR (Tang et al.,
2024), NLP4LP (AhmadiTeshnizi et al.), Com-
plexOR (Xiao et al., 2023), and Mamo (EasyLP and
ComplexLLP) (Huang et al., 2024). The first four
datasets are used to assess the optimization perfor-
mance of PARM, while we use the Mamo dataset
to validate the performance of our reward models.
These datasets span diverse scenarios and problem
types, ranging from high-school-level Mixed In-
teger Linear Programming to undergraduate-level

complex Linear Programming challenges, as well
as common optimization tasks in Operations Re-
search.

In our framework, the expert models (e.g.,
Qwen2.5-Series (Yang et al., 2024; Hui et al., 2024)
and Deepseek-Series (Shao et al., 2024; Daya Guo,
2024)) are pre-trained and require no additional
fine-tuning. We experiment with various com-
binations of expert models and reward models
(e.g., Skywork-RM (o1 Team, 2024) and Qwen-
PRM (Zhang et al., 2025)) to identify the optimal
configuration for PARM. The experiments aim to
validate the framework’s effectiveness and scalabil-
ity while demonstrating the critical role of reward
models in enhancing pipeline performance. Ac-
cordingly, our experiments are divided into two
parts: Performance Evaluation on Benchmarks and
Reward Model Evaluation.

4.2 Experiment Setup

To assess the performance of our framework,
PARM, we conduct experiments on five datasets en-
compassing approximately 20 scenarios and seven
types of optimization problems. NL4Opt (Rama-
monjison et al., 2023) is a widely used benchmark
comprising annotated LPWPs across six domains.
We randomly sample 100 instances for evaluation.
IndustryOR (Tang et al., 2024) consists of 100 real-
world OR problems from eight industries, cover-
ing five optimization types, including linear pro-
gramming, integer programming, mixed integer
programming, and non-linear programming, across
three difficulty levels. NLP4LP (AhmadiTeshnizi
et al.) contains 65 optimization-related problems
derived from optimization NLP contexts such as
textbooks and lecture books. ComplexOR (Xiao
et al., 2023) is a dataset of complex OR problems
curated by three domain experts. We evaluate on 19
instances. Mamo (Huang et al., 2024) is designed
to evaluate the mathematical modeling capabilities
of LLMs, consisting of 652 easy and 211 complex
linear programming problems, paired with optimal
solutions sourced from academic materials. We
use Mamo to construct training data for the reward
models, while the other datasets are used to evalu-
ate optimization performance.

In our experiments, we use two metrics to mea-
sure performance: Execution Rate (ER) and Solv-
ing Accuracy (SA). ER represents the proportion
of solutions whose code can run without errors and
produce valid output. SA represents the propor-
tion of executed solutions whose optimal values

Formul Coder
Qwen-Series Qwen2.5-Math-7B-Instruct Qwen2.5-Coder-7B-Instruct
Deepseek-Series ~ deepseek-math-7b-instruct ~ deepseek-coder-7b-instruct-v1.5

Table 1: Expert models used in the pipeline framework.
The Qwen-Series and DeepSeek-Series include special-
ized models for the Formulator and Coder components,
optimized for mathematical reasoning and code genera-
tion tasks, respectively.

match any provided ground truth optimal value.
For self-debugging, we set the correction limit to 1
iteration during the experiments. To compare the
performance of our pipeline approach with large
language models, we use GPT-40 and DeepSeek-
v3 as baselines. All baselines are implemented
using the same prompt for generating formulation
then generating solving codes.

4.3 Experiment Results

4.3.1 Comparison Experiment on
Benchmarks

In this section, we compare the performance of
PARM with two baselines, GPT-40(Achiam et al.,
2023) and DeepSeek-v3(Liu et al., 2024), while
also analyzing the impact of key components
within the pipeline, such as the necessity of prob-
lem decomposition (Formulator), the use of reward
models, and the self-debugging mechanism. In Ta-
ble 2, it summarizes the Solving Accuracy (SA)
across four datasets, comparing PARM with the
baselines. The results demonstrate that PARM con-
sistently outperforms both GPT-40 and DeepSeek-
v3 on all datasets. Notably, PARM achieves this
performance while using expert models with signif-
icantly fewer parameters compared to the baselines,
highlighting the efficiency and effectiveness of the
pipeline architecture. This finding validates the po-
tential of deploying small expert models within a
pipeline framework to surpass the performance of
large parameter models.

To further analyze the contributions of various
pipeline components, we explore their individual
and combined effects in Table 6. First, we com-
pare the Qwen-Series and DeepSeek-Series sys-
tems(shown in Table 1), observing that the Qwen
models consistently outperform their DeepSeek
counterparts. Additionally, we evaluate the impact
of different reward model combinations, demon-
strating that the pipeline framework exhibits high
robustness to reward model variations. Specifically,
the results show negligible performance differences
between general-purpose reward models and task-

Datasets IndustryOR ComplexOR NL4Opt NLP4LP

GPT-4o 0.03 0.0 0.02 0.05
Deepseek-v3 0.03 0.11 0.12 0.09
PARM (ours) 0.15 0.17 0.52 0.15

Table 2: Comparison of the SA metric between PARM
and baselines (GPT-40 and DeepSeek-v3) across four

datasets. Bold results indicate the best-performing
method.

PARM w/o formulator with formulator
IndustryOR 0.09 0.15
ComplexOR 0.11 0.17

NLA4Opt 0.2 0.52
NLP4LP 0.02 0.15

Table 3: Comparison of the SA metric on PARM with
and without problem decomposition (Formulator), show-
ing the necessity of formulation for solving optimization
problems.

specific reward models, further confirming the flex-
ibility of the pipeline. Importantly, the use of re-
ward models significantly enhances optimization
performance across all datasets.

In Table 7, we incorporate the self-debugging
mechanism into the pipeline to improve optimiza-
tion performance, limiting the correction attempts
to one iteration. The results show that self-
debugging provides a noticeable improvement in
both Execution Rate (ER) and Solving Accuracy
(SA), further substantiating its role in refining the
pipeline’s outputs. Finally, as shown in Table 3, we
investigate the necessity of problem decomposition
(Formulator). The results indicate that decompos-
ing problems into mathematical formulations sig-
nificantly improves the pipeline’s ability to solve
optimization tasks. This demonstrates that the For-
mulator is a crucial component of the pipeline and
validates its inclusion in the framework.

4.3.2 Evaluation on Reward Model

In this section, we evaluate the impact of the reward
models on the performance of the pipeline frame-
work. The training data for the reward models
is automatically collected by running the pipeline
without any reward models. Specifically, we use
the Mamo dataset, which is divided into Complex
and Easy subsets. A random sample of problems
is selected, and for each problem, the pipeline gen-
erates multiple formulations and codes. This auto-
mated approach to collecting preference data elim-
inates the need for manual annotation or labeling,
making it highly scalable. The dataset is then used
to construct preference pairs: [problem, formula-

number sample (p,f+.f-) pair (f;s+,5-) pair
MamoComplex 50 752 40984
MamoEasy 50 2693 49877
MamoComplex 100 4377 59549
MamoEasy 100 2664 117183

Table 4: Number of preference data pairs constructed
from the Mamo dataset for DPO training, categorized
by problem complexity (Complex/Easy) and sampling
size. Columns represent the number of [problem, for-
mulation_chosen, formulation_rejected] pairs and [for-
mulation, code_chosen, code_rejected] pairs

Accuracy Math RM Code RM
Skywork Qwen-RM Skywork
MamoEasy 50 0.5625 0.5125 0.8769
MamoComplex 50 0.6351 0.6422 0.7647
MamoEasy 100 0.6573 0.6042 0.8563
MamoComplex 100 0.6924 0.6295 0.8395

Table 5: Accuracy of Math Reward Models (Math RM)
and Code Reward Model (Code RM) on the evaluation
set after DPO training. Models are trained on preference
data sampled from the Mamo dataset under different
configurations. Bold values indicate the highest accu-
racy for each dataset.

tion_chosen, formulation_rejected] and [formula-
tion, code_chosen, code_rejected], which are re-
quired for Direct Preference Optimization (DPO)
training.

Table 4 provides an overview of the preference
data pairs constructed from the Mamo dataset.
Based on these preference pairs, we fine-tune (or
train) the reward models using DPO. The results
of training different reward models on the eval-
uation set are shown in Table 5, which records
the accuracy of each reward model under different
sampling configurations. After training, the reward
models are deployed within the pipeline framework.
Based on the results in Table 5, we select the best-
performing Math Reward Model (Math RM) and
Code Reward Model (Code RM) (i.e., those with
the highest accuracy) for integration into the PARM
framework.

5 Discussion

This work demonstrates the effectiveness of reward
models in guiding pipeline frameworks, achiev-
ing improvements in output quality through our
proposed pipeline-adapted reward model. By ad-
dressing the limitations of traditional reward mod-
els, which evaluate only individual component out-
puts, our approach considers overall pipeline per-
formance, offering a practical and scalable solution

ER SA

Method MATH RM CodeRM 4 WOR ComplexOR NLAOpr NLPALP [TndustyOR ComplexOR NLA4Opt NLPALP
Sampling Decoding - - 0.48 0.32 0.79 0.37 0.08 0.11 045 0.12
Reward Model Skywork Skywork 0.50 0.32 0.92 0.41 0.11 0.16 0.44 0.11
Qwen-Series Reward Model Qwen-RM Skywork 0.51 0.31 0.86 0.48 0.13 0.05 0.49 0.08
PARM (ours) Skywork(DPO) Skywork(DPO) 0.53 0.42 0.96 0.45 0.13 0.16 0.51 0.13
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.54 0.37 0.94 0.45 0.16 0.11 0.49 0.13
Sampling Decoding - - 0.07 0.05 0.27 0.03 0.01 0.00 0.13 0.02
Reward Model Skywork Skywork 0.17 0.11 0.58 0.08 0.13 0.05 0.28 0.05
DeepSeek-Series Reward Model Qwen-RM Skywork 0.14 0.05 0.45 0.08 0.05 0.00 0.21 0.05
PARM (ours) Skywork(DPO) Skywork(DPO) 0.25 0.11 0.59 0.08 0.07 0.05 0.30 0.05
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.15 0.16 0.52 0.08 0.08 0.11 0.24 0.05

Table 6: Comparison of Execution Rate (ER) and Solving Accuracy (SR) metrics on PARM with different pipeline
components (reward models and expert models) without self-debugging. The results demonstrate that PARM
achieves higher performance compared to baseline methods when combined with trained reward models (DPO).
Bold values indicate the best-performing results for each column.

ER SA
Method MATH RM CodeRM 5 GyOR ComplexOR NL4Opt NLPALP [TndustryOR _ComplexOR NL4Opt NLPALP
Sampling - - 056 032 0.93 04 0.09 0.11 0.53 0.12
Quen-Serigs Reward Model Skywork Skywork 0.66 032 0.97 052 0.15 0.16 051 0.1
Reward Model Qwen-RM Skywork 0.6 0.42 0.96 0.55 0.14 0.16 0.53 0.11
PARM (ours) Skywork(DPO) Skywork(DPO) 0.70 0.47 0.97 0.56 0.15 0.17 0.52 0.15
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.64 0.57 0.98 0.51 0.14 0.21 0.50 0.13

Table 7: Comparison of Execution Rate (ER) and Solving Accuracy (SR) metrics on PARM with different pipeline
components, including self-debugging (limited to 1 iteration). Bold values indicate the best-performing results for
each column. The results show that PARM, particularly when using trained reward models (DPO), achieves the best

performance in most cases.

for multi-stage workflows.

Looking ahead, our future work will focus on
several key directions to further advance the frame-
work. First, we aim to generalize the framework
to diverse task domains by adapting it to handle
domain-specific challenges and ensuring it per-
forms robustly across a wide variety of use cases.
Enhancing the interpretability of reward signals
is another priority, as clearer insights into how
these signals influence decisions will enable bet-
ter debugging, auditing, and trustworthiness of the
pipelines. Incorporating multi-objective optimiza-
tion into the framework could further enhance its
performance and usability by balancing competing
objectives, such as accuracy, efficiency, and fair-
ness. Moreover, exploring reinforcement learning
as a potential alternative to reward models within
pipelines may offer a complementary solution. By
addressing these challenges, pipelines can unlock
greater potential for real-world problem-solving.
Finally, we intend to investigate more advanced de-
coding strategies, such as Monte Carlo Tree Search
(MCTS), to further optimize the pipeline’s output
quality.

6 Conclusion

In this paper, we proposed PARM, a pipeline-based
framework designed to tackle optimization tasks

by leveraging expert models and reward model.
PARM effectively decomposes complex problems
into manageable sub-tasks, integrating specialized
components (Formulator and Coder) to generate
and evaluate solutions. Through the use of reward
models trained with automatically collected pref-
erence data, PARM refines its outputs to achieve
superior performance. Experimental results demon-
strate that PARM consistently outperforms baseline
methods across a variety of datasets, highlighting
the effectiveness of its modular architecture and the
scalability of its reward-based optimization strat-
egy. Notably, the inclusion of reward models and
the self-debugging mechanism improves solving
accuracy and execution rate, confirming the impor-
tance of iterative refinement in the optimization pro-
cess. Additionally, the automated data collection
process for reward model training eliminates the
need for manual annotation, making the framework
practical and efficient for large-scale deployment.

Our work showcases the potential of combining
expert models and reward-based learning in opti-
mization tasks and provides a foundation for future
research into scalable and interpretable problem-
solving frameworks. Future directions include ex-
tending PARM to broader task domains, conduct-
ing fine-grained ablation studies, and exploring
more sophisticated reward modeling techniques to
further enhance performance.

Limitation

Our study has several limitations. First, the gen-
eralizability of our framework to broader domains
beyond code generation has not yet been validated.
Second, as pipelines grow in complexity, the com-
putational cost of training and deploying pipeline-
adapted reward models may become a bottleneck,
posing challenges for large-scale or high-stakes ap-
plications. Additionally, while our reward model
does not rely on manually annotated data, incor-
porating a small amount of such data particularly
for formulation-related tasks could further improve
performance. Due to resource constraints, we did
not collect these datasets in this study.

Acknowledgments

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell.
Optimus: Scalable optimization modeling with (mi)
Ip solvers and large language models. In Forty-first
International Conference on Machine Learning.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang
Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu.
2024. Deepseek-coder: When the large language
model meets programming — the rise of code intelli-
gence.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764—10799. PMLR.

Xuhan Huang, Qingning Shen, Yan Hu, Anningzhe Gao,
and Benyou Wang. 2024. Mamo: a mathematical
modeling benchmark with solvers. arXiv preprint
arXiv:2405.13144.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu,
Jun Zhou, Aimin Zhou, and Yang Yu. 2024. LI-
mopt: Learning to define and solve general opti-
mization problems from scratch. arXiv preprint
arXiv:2410.13213.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint
arXiv:2401.08967.

Kenton Murray and David Chiang. 2018. Correcting
length bias in neural machine translation. arXiv
preprint arXiv:1808.10006.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

Skywork ol Team. 2024. Skywork-ol open series.
https://huggingface.co/Skywork.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Rindranirina Ramamonjison, Timothy Yu, Raymond
Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar,
Shigi He, Mahdi Mostajabdaveh, Amin Banitalebi-
Dehkordi, Zirui Zhou, et al. 2023. Nl4opt competi-
tion: Formulating optimization problems based on
their natural language descriptions. In NeurIPS 2022
Competition Track, pages 189-203. PMLR.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wa, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://huggingface.co/Skywork
https://huggingface.co/Skywork

Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi
Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. 2024. Orlm: Training large language mod-
els for optimization modeling. arXiv preprint
arXiv:2405.17743.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu,
Yuan Jessica Wang, Xiongwei Han, Xiaojin Fu, Tao
Zhong, Jia Zeng, Mingli Song, et al. 2023. Chain-
of-experts: When llms meet complex operations re-
search problems. In The Tivelfth International Con-
ference on Learning Representations.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao
Dong, and Jie Tang. 2024. Rest-mcts*: Llm self-
training via process reward guided tree search. arXiv
preprint arXiv:2406.03816.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Lingi Song,
Mingjie Zhan, et al. Solving challenging math word
problems using gpt-4 code interpreter with code-
based self-verification. In The Twelfth International
Conference on Learning Representations.

A Example Appendix

A.1 Datasets

A.1.1 Introduction of Datasets

All of our experiments are conducted on the fol-
lowing optimization datasets. Table 8 describes the
statistic and description of each dataset.

10

Datasets Description

The first industrial dataset for optimization modeling,
covering 13 industries and 5 problem types, including LP,
MILP, and nonlinear programming.

A collection of 19 samples sourced from academic papers,
textbooks, and industrial scenarios, covering topics like
supply chain, scheduling, and logistics.

Curated from the NL4Opt Competition, includes LPWPs
from sales, advertising, and investment, with exclusive
target domains for testing.

Derived from textbooks and lecture notes, covering
facility location, network flow, scheduling, and portfolio
management, with optimal solution annotations.

IndustryOR

ComplexOR

NL4Opt

NLP4LP

Part of the Mamo benchmark, containing high school-level

Mamo Easy MILP problems for basic optimization skills development.

Another Mamo benchmark dataset, featuring undergraduate-

Mamo Complex | 100 level LP and MILP problems for advanced learning and research.

Table 8: Statistics of our datasets.

A.1.2 Training Datasets for Reward Model

To streamline this process, we designed an auto-
mated method for collecting these preference-based
datasets, eliminating the need for manual label-
ing or annotation. This approach allows us to ef-
ficiently generate large-scale training datasets, en-
suring the reward model is trained on diverse and
meaningful examples without additional human in-
tervention. Table 9 shows the evaluation results of
different reward models (RMs) trained using Direct
Preference Optimization (DPO) on the Skywork-
RM and Qwen-RM frameworks. The table pro-
vides Execution Rates (ER) across four datasets
(IndustryOR, ComplexOR, NL4Opt, and NLPALP)
in the absence of the self-debugging mechanism.
Our results indicate that datasets with higher com-
plexity have a positive influence on the training of
reward models, leading to improved performance.
Furthermore, we observe that increasing the dataset
size also enhances the effectiveness of the reward
models, particularly when trained on more chal-
lenging datasets.

In summary, this automated data collection ap-
proach ensures that the reward model is trained on
real execution feedback, aligning its preferences
with the ultimate goal of generating formulations
and code that work correctly. By incorporating
datasets of varying complexity, such as the Easy
and Complex subsets from Mamo, we can system-
atically evaluate the model’s adaptability and per-
formance across different difficulty levels.

A.2 Detail on Experiments

All of our experiments were implemented using
the PyTorch framework, with vLLM employed to
accelerate large language model (LLM) generation.
The experiments were conducted using 4 NVIDIA
A40 Tensor Core GPUs (48 GB each) for pipeline

Math RM [Code RM

DPO on Skywork-RM
MamoEasy(50) MamoEasy(50)
MamoEasy(100) MamoEasy(50)
MamoComplex(50) | MamoComplex(50)
MamoComplex(100) | MamoComplex(50)
MamoComplex(100) | MamoEasy(50)
DPO on Qwen-RM DPO on Skywork-RM
MamoEasy(50) MamoEasy(50)
MamoEasy(100) MamoEasy(50)
MamoComplex(50) | MamoComplex(50)
MamoComplex(100) | MamoComplex(50)
MamoComplex(100) | MamoEasy(50)

ER (w/o self-debugging)

IndustryOR ComplexOR NL4Opt NLP4LP
0.49 0.29 0.83 0.38
0.53 0.4

0.53 0.45
0.53 0.46
0.54 0.46
IndustryOR NLP4LP
0.49 0.42
0.52 0.45
0.53 0.45
0.54 0.45
0.53 0.45

0.32
0.30
0.32
0.42
ComplexOR
0.26
0.32
0.29
0.32
0.32

0.89
0.9

0.9

0.92
NL40pt
0.79

0.9

0.86
0.86

0.9

Table 9: Evaluation results of different reward mod-
els (RMs) trained using Direct Preference Optimization
(DPO). Both reward models are trained on subsets of
the Mamo dataset, divided into Easy and Complex cate-
gories, with varying numbers of training samples (50 or
100)

evaluation and 1 NVIDIA A40 GPU for reward
model training.

In Pipeline Configuration, we used the following
settings, Temperature: 0.3, Maximum generation
length: 1280 tokens, Number of samples: 32, Self-
debugging iterations: 1, Self-debugging sample
size: 16. To train the reward model with Direct
Preference Optimization (DPO), we utilized the
code from the Hugging Face TRL GitHub reposi-
tory. The training process leveraged LoRA (Low-
Rank Adaptation) fine-tuning for efficient optimiza-
tion of large-scale models. The specific hyperpa-
rameters for LoRA fine-tuning were set as follows,
LoRA rank (lora_r): 128, LoRA alpha: 64, Learn-
ing rate: 5.0e-7, Number of epochs: 5, Number of
epochs: 5, Beta: 0.1, Evaluation split ratio: 0.1.

A.3 Prompt templates for pipeline and
self-debugging

To develop a structured approach for solving opti-
mization problems, we have designed a series of
templates for different stages of the pipeline. These
templates not only guide the process of formulating
and solving optimization problems but also enable
self-debugging to ensure correctness and reliabil-
ity. Below, we provide detailed descriptions and
examples of each template.

Problem Template

{Five-Element Formulation Example}.
You need to write the corresponding
five-element model based on the prob-
lem description and information provided.
The problem description is as follows:
{Question}.

Problem to Formulation Template

Please write the corresponding five-element
model. Please use LaTeX and plain text
environment to complete the following
template to model the above optimization
problem into five elements:

Sets:

[You need to fill in]

Parameters:

[You need to fill in]

Variables:

[You need to fill in]

Objective:

[You need to fill in]

Constraints:

[You need to fill in]

Formulation to Solution Code Template

Please write the corresponding Pyomo code.
Please add ‘from pyomo.environ import
*¢ at the beginning of your code (You can
add other ‘import‘ as well). Please print
the optimal solution and the value of the
objective function. Please do not output
the running log. You need to write it in the
form of a class and add a main function:

“‘python
[write your code here]

313

11

Self-debugging Template

Optimization Problem Debugging:
You are tasked with analyzing the correct-
ness of the modeling and the generated
code for the following optimization prob-
lem. Please evaluate the provided informa-
tion and give your judgment based on the
detailed analysis template below.

Problem Description:
{question}

Provided Information:

1. Five-Element Formulation:
{five-element formulation }

2. Generated Code:

python:
{code}

3. Execution Output:
{execution output}

4. Execution Errors:

{execution error}

Analysis Template:

Five-Element Formulation: [Fill in True/-
False here]

Generated code: [Fill in True/False here]
- Judging criteria: Check if the code cor-
rectly implements the mathematical model
and runs without errors If the generated
code is False, write the corrected Pyomo
code:

- Please add ‘from pyomo.environ import **
at the beginning of your code (You can add
other ‘import* as well).

- Please print the optimal solution and the
value of the objective function.

- Please do not output the running log. You
need to write it in the form of a class and
add a main function:

“‘python

[write your code here]

1313

Please provide your evaluation and reason-
ing in the template format above.

12

	Introduction
	Related Work
	Improving LLM Output Quality
	LLMs in Mathematical Optimization

	Methodology
	Overview
	Workflow of Pipeline
	Training for Pipeline Adapted Reward Model
	Self-Debugging Integration

	Experiments
	Overview
	Experiment Setup
	Experiment Results
	Comparison Experiment on Benchmarks
	Evaluation on Reward Model

	Discussion
	Conclusion
	Example Appendix
	Datasets
	Introduction of Datasets
	Training Datasets for Reward Model

	Detail on Experiments
	Prompt templates for pipeline and self-debugging

