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Abstract

Recently, the reward model has received more001
attention as it has made significant progress in002
improving the decoding quality of large lan-003
guage models and guiding reinforcement fine-004
tuning. Current research efforts have focused005
on reward models for individual models, but as006
the capability of large language models contin-007
ues to grow, they are beginning to exert their ca-008
pabilities as components of some process tasks009
or pipeline tasks, and reward models for such010
pipeline tasks remain to be explored. To bridge011
this gap, our work builds a pipeline based on012
task, code generation for optimization problem,013
and verifies the potential of reward model to014
improve the quality of pipeline output. Mean-015
while, to address the problems generated by016
the reward model in improving pipeline output017
quality, we propose a simple and efficient train-018
ing method to train the Pipeline-Adapted Re-019
ward Model (PARM) to further improve its ef-020
fectiveness. Through performance experiments021
on four benchmarks and a series of analysis022
experiments, we validate the effectiveness of023
PARM and obtain some important insights on024
this topic.025

1 Introduction026

Recently, reward models have garnered signifi-027

cant attention due to their remarkable effective-028

ness in guiding large language models (LLMs) on029

reasoning-related tasks, particularly in decoding030

and reinforcement fine-tuning to enhance reason-031

ing capabilities (Ouyang et al., 2022; Luong et al.,032

2024). Specifically, as scoring models for evalu-033

ating LLM outputs, reward models are often com-034

bined with various decoding strategies to gener-035

ate higher-quality outputs (e.g., Best-of-N (BoN),036

Beam Search, Monte Carlo Tree Search (MCTS)),037

thereby improving model performance. For ex-038

ample, Best-of-N sampling has been shown to be039

significantly effective in practice (Nakano et al.,040

2021; Stiennon et al., 2020), despite its simplicity041

and the fact that it does not require an additional 042

training phase. In the field of machine transla- 043

tion, Beam Search is widely employed, with re- 044

searchers modifying the log-probability scoring 045

function to achieve better results (Wu et al., 2016; 046

Murray and Chiang, 2018). Similarly, leveraging 047

MCTS on policy LLMs, is becomes possible for 048

generating high-quality data for large models with- 049

out requiring human-provided annotations (Zhang 050

et al., 2024). The effectiveness of these strategies 051

has been well-established in enhancing the output 052

quality of individual models. On the other hand, 053

the increasing capabilities of LLMs have greatly 054

expanded their application scenarios. In process- 055

driven tasks, LLMs are increasingly employed as 056

components within pipeline frameworks, working 057

collaboratively to generate final output. 058

While this is a promising and valuable direction, 059

current LLM-based pipelines still fail to achieve 060

the output quality required for practical usability. 061

Inspired by the success of reward models in im- 062

proving single-model output, it is natural to explore 063

whether reward models can also enhance the over- 064

all quality of pipeline framework output. However, 065

there is currently little research on using reward 066

models to improve the quality of entire pipelines, 067

indicating a significant gap in this area. 068

To address this gap, this paper focuses on the 069

code generation for mathematical optimization 070

problems (Tang et al., 2024; Jiang et al., 2024; Xiao 071

et al., 2023) as a case study to design a pipeline 072

framework guided by reward models. The pipeline 073

takes mathematical problems in natural language 074

as input, first generating their mathematical formu- 075

lation and then producing corresponding Python 076

code as a solution. To better illustrate this task and 077

the framework, Fig. 1 compares the pipeline frame- 078

works with and without the guidance of the reward 079

model. 080

Building on this reward-guided pipeline frame- 081

work, we validate the effectiveness of reward mod- 082
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Figure 1: This figure demonstrate the pipeline without reward model guidance (a) and the pipeline with reward
model guidance (b). In the latter, generator needs to generate several times and the reward model will score these
outputs. Final generation will be sampled based on the reward scores. An example of input and output of the
pipeline is shown in Fig. 2.

A certain restaurant operates 24 hours a day and requires a minimum 

number of waitstaff as shown in Table 1.1.

Table 1.1:

| Time | Minimum Number of Waitstaff |

| :---: | :---: |

| 2am-6am | 4 |

| 6am-10am | 8 |

| 10am-2pm | 10 |

| 2pm-6pm | 4 |

| 6pm-10pm | 8 |

| 10pm-2am | 4 |

Each waitstaff works continuously for 8 hours a day. The goal is to 

find the minimum number of waitstaff that satisfies the above 

conditions and represent this problem as a linear programming model.

Problem
(Ground Truth is 22)

### Sets
- **Time periods**: The day is divided into 6 time periods: 2am-6am, 6am-

10am, 10am-2pm, 2pm-6pm, 6pm-10pm, and 10pm-2am.
- **Wait staff**: Let \\( x_i \\) be the number of wait staff starting their 

shift at the beginning of the \\( i \\)-th time period.

### Parameters
- **Minimum number of wait staff required in each time period**: Given in 

Table 1.1.
- **Hours each wait staff works**: 8 hours.

### Variables
- \\( x_i \\): Number of wait staff starting their shift at the beginning of 

the \\( i \\)-th time period, for \\( i = 1, 2, \\ldots, 6 \\).

### Objective
- **Minimize the total number of wait staff**: The total number of wait 

staff is the sum of \\( x_i \\) for all \\( i \\).

### Constraints
- ** meets the minimum number of wait staff required in each time period**:

- From 2am to 6am: \\( x_1 \\geq 4 \\)
- From 6am to 10am: \\( x_1 + x_2 \\geq 8 \\)
- From 10am to 2pm: \\( x_2 + x_3 \\geq 10 \\)
- From 2pm to 6pm: \\( x_3 + x_4 \\geq 4 \\)
- From 6pm to 10pm: \\( x_4 + x_5 \\geq 8 \\)
- From 10pm to 2am: \\( x_5 + x_6 \\geq 4 \\)

- **Each wait staff works 8 hours**: 
- This implies that the number of wait staff starting at the 

beginning of each time period must cover the required number of 
wait staff for the next 8 hours. This is already satisfied by 
the constraints above

Five-Element Formulation

Solution Code

Output
Optimal Solution Found:
Number of wait staff starting at 1-th time period: 4.0
Number of wait staff starting at 2-th time period: 6.0
Number of wait staff starting at 3-th time period: 4.0
Number of wait staff starting at 4-th time period: 0.0
Number of wait staff starting at 5-th time period: 8.0
Number of wait staff starting at 6-th time period: 0.0
Total number of wait staff: 22.0

Figure 2: An example of input and output of the pipeline.
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els using open source large models and reward083

models on several datasets. Compared to pipelines084

without reward models, those guided by reward085

models exhibit a significant improvement in output086

quality. However, challenges remain. The primary087

limitation is that existing reward models are trained088

using single-model outputs and can only evaluate089

the output quality of individual components, with-090

out considering the overall output quality of the091

pipeline.092

To address this limitation, we propose a simple093

yet effective training method that uses feedback094

signals from the pipeline to enable reward models095

to learn the relationship between component out-096

puts and the overall pipeline output quality. This097

results in a pipeline-adapted reward model. We098

evaluate the effectiveness of our approach on four099

benchmarks, and experimental results demonstrate100

that our reward model significantly improves the101

pipeline’s output quality.102

In addition, we conduct an in-depth investigation103

into several aspects of reward models in pipeline104

frameworks, including their guidance mechanisms,105

limitations, and compatibility with non-training-106

based enhancement techniques. Through a series107

of qualitative and quantitative analyses, we uncover108

important insights about these aspects.109

In summary, the main contributions of this work110

are as follows:111

• To bridge the gap in using reward models112

to guide pipeline frameworks, we establish113

a reward-guided pipeline framework and vali-114

date its feasibility in the context of code gener-115

ation for mathematical optimization problems.116

• To address the limitations of existing re-117

ward models, which fail to effectively guide118

pipeline outputs, we propose a simple and ef-119

ficient training method to develop a pipeline-120

adapted reward model.121

• We validate the effectiveness of our training122

method across four benchmarks. Additionally,123

through a series of analytical experiments, we124

provide key insights into the guidance mecha-125

nisms of reward models, their limitations, and126

their compatibility with non-training-based127

enhancement techniques.128

2 Related Work 129

2.1 Improving LLM Output Quality 130

Recent advances in improving LLM outputs have 131

focused on two primary approaches: in-context 132

learning (Brown et al., 2020; Liu et al., 2023) and 133

parameter-updating methods (Luong et al., 2024; 134

Ouyang et al., 2022). In-context learning enhances 135

generation through strategic prompting, exempli- 136

fied by GPT-3 (Brown et al., 2020) and Chain- 137

of-Thought (CoT) prompting (Wei et al., 2022), 138

which enable complex reasoning through interme- 139

diate steps. Parameter-updating approaches ex- 140

plicitly train model weights, with methods like 141

RLHF (Ouyang et al., 2022) and ReFT (Luong 142

et al., 2024) leveraging reinforcement learning to 143

align outputs with human preferences. As scoring 144

models for evaluating LLM outputs, several decod- 145

ing methods are also employed to generate higher- 146

quality outputs. For example, Best-of-N sampling 147

has been shown to be significantly effective in prac- 148

tice (Nakano et al., 2021; Stiennon et al., 2020), 149

despite its simplicity and the fact that it does not 150

require an additional training phase. In the field of 151

machine translation, Beam Search is widely used, 152

with researchers modifying the log-probability scor- 153

ing function to achieve better results (Wu et al., 154

2016; Murray and Chiang, 2018). Similarly, lever- 155

aging MCTS on policy LLMs makes it possible to 156

generate high-quality data for large models with- 157

out requiring human-provided annotations (Zhang 158

et al., 2024). 159

While effective, these methods incur substan- 160

tial computational costs as models scale (Liu et al., 161

2023). Pipeline frameworks have emerged as an 162

efficient alternative, decomposing complex tasks 163

into specialized components. However, existing 164

reward models focus solely on individual compo- 165

nents, overlooking the quality of pipeline-level out- 166

puts. 167

2.2 LLMs in Mathematical Optimization 168

LLMs have shown increasing capability in mathe- 169

matical optimization (Gao et al., 2023; Zhou et al.; 170

Cobbe et al., 2021) progressing from direct compu- 171

tation attempts (Gao et al., 2023) to more sophis- 172

ticated approaches. Recently, this exploration has 173

expanded to more complex optimization tasks, ex- 174

emplified by competitions like NL4Opt (Ramamon- 175

jison et al., 2023), which encourage researchers to 176

use LLMs to extract, understand, and solve opti- 177

mization problems from natural language descrip- 178
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tions. Early methods like PAL (Gao et al., 2023)179

and CSV (Zhou et al.) translated problems into ex-180

ecutable code, incorporating self-verification mech-181

anisms to improve accuracy.182

Recent work emphasizes structured decompo-183

sition in optimization tasks. Chain-of-Expert184

(CoE) (Xiao et al., 2023) introduced special-185

ized agents for different solution stages, while186

ORLM (Tang et al., 2024) developed three-element187

problem formulations. proposed a more structured188

five-element formulation to decompose optimiza-189

tion problems before generating code. By validat-190

ing and optimizing these intermediate formulations,191

LLMOPT demonstrated that well-defined prob-192

lem representations often created through labor-193

intensive manual annotations can substantially en-194

hance solution quality.195

Despite these successes, existing approaches196

face several limitations. Many rely heavily on197

proprietary LLM interfaces and manually curated198

datasets, which are costly to construct and annotate.199

Some methods still depend on expensive manual200

data preparation and fine-tuning, as well as the com-201

putational overhead of large models such as GPT-4.202

Moreover, current multi-step cooperative systems203

often use a single large model to process each stage204

of a pipeline, rather than assigning smaller, special-205

ized models to individual sub-tasks. This raises206

scalability and efficiency concerns.207

3 Methodology208

3.1 Overview209

As shown in Fig. 3, our pipeline consists of Formu-210

lation Generator, Formulation Reward Model,Code211

Generator, Code Generation. Formulation Genera-212

tor is used to generate the math formulation of the213

optimization problem in natural language format,214

and the Solution Generator outputs a code solution215

based on the math formulation. The final formu-216

lation and solution are sampled according to the217

reward scores of the corresponding reward models.218

As mentioned above, we propose a training219

method to improve the ability of the reward model220

to guide the final output of the pipeline. We call this221

training method pipeline-adapted training (PAT).222

As demonstrated in Fig. 3, we use the execution223

results and the accuracy of the final responses cor-224

responding to the successful execution as a guide225

signal to train the reward models. More details can226

be found in the following sections.227

3.2 Workflow of Pipeline 228

Before introducing the workflow of the pipeline, 229

let’s establish the notation. We use P , F , S to rep- 230

resent the problem, formulation, solution. LLMF , 231

LLMS is used to represent the formulation gener- 232

ator and the solution generator. RMF , RMS are 233

reward models for formulation generator and so- 234

lution generator, respectively. The workflow of a 235

pipeline can be represented by the following sym- 236

bols and formulas: 237

The formulation generator takes the problem 238

prompt P as input and generates the math formula- 239

tion. Due to the usage of the reward model, the for- 240

mulation generator needs to generate NF formula- 241

tions for an input problem P , and the reward model 242

for the formulation generator will score these in- 243

puts. Then, we use the max value sampling method 244

to obtain a final formulation Ff according to the 245

reward scores. 246

Fi = LLMF (P ), i = 1, 2, ..., NF (1) 247

ri = RMF (Fi), i = 1, 2, ..., NF (2) 248

Ff = ArgmaxFi(r1, r2, ..., rNF
) (3) 249

Then, Ff will be sent to the solution generator 250

to produce NS the solutions and we still sample 251

the final solution code Sf with the reward model 252

RMS . This process is similar to the generation of 253

the final formulation. 254

Si = LLMS(Ff ), i = 1, 2, ..., NS (4) 255

ri = RMS(Si), i = 1, 2, ..., NS (5) 256

Sf = ArgmaxSi(r1, r2, ..., rNS
) (6) 257

3.3 Training for Pipeline Adapted Reward 258

Model 259

The current reward models are trained for large 260

language models, which means that the scores are 261

not for the pipeline output. So, it is not suitable 262

to use the reward model in the pipeline output. To 263

solve this problem, we propose a simple pipeline- 264

adapted training method to train the reward model 265

that could output reward scores for pipeline outputs 266

based on their correctness. 267

In detail, we adopt the DPO (Direct Prefer- 268

ence Optimization) algorithm to train our reward 269
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Figure 3: This figure shows the pipeline with reward model and the post-processing of solution code. The execution
results can provide training labels for the pipeline adapted training of the reward model.

model. During this process, we utilize the differ-270

ent data sets from the test data set to construct271

training datasets: We first input the optimization272

problems into our pipeline framework without a273

reward model. For each problem, the formulator274

generates N formulations, and each formulation is275

subsequently passed to the coder, which generates276

N code samples. The dataset is then constructed277

based on whether the generated code samples can278

be successfully executed.279

For the dataset entries of the form [problem, for-280

mulation_chosen, formulation_rejected], the for-281

mulation_chosen corresponds to a formulation that282

successfully produces executable code, while the283

formulation_rejected includes formulations where284

none of the sampled code instances can execute285

successfully. Similarly, for entries of the form286

[formulation, code_chosen, code_rejected], the287

code_chosen includes code samples that execute288

successfully, while the code_rejected consists of289

those that fail to execute.290

3.4 Self-Debugging Integration291

To improve the quality of pipeline outputs, we intro-292

duce a self-debugging method. Specifically, com-293

pilation results and problems will be fed into the294

Self-debugging system again for error correction, 295

self-debugging is still carried out by the solution 296

generator model for code error correction, each cor- 297

rection still generates a number of results, and the 298

reward model selects the most accurate correction 299

as the result. If there is a problem with the code, 300

a new code will be generated and executed, and 301

the final execution result will be matched with the 302

correct answer of P to determine whether the code 303

is executed correctly or not. 304

4 Experiments 305

4.1 Overview 306

To evaluate the effectiveness of our proposed 307

framework, PARM, we conduct experiments on 308

five optimization datasets: NL4Opt (Ramamon- 309

jison et al., 2023), IndustryOR (Tang et al., 310

2024), NLP4LP (AhmadiTeshnizi et al.), Com- 311

plexOR (Xiao et al., 2023), and Mamo (EasyLP and 312

ComplexLP) (Huang et al., 2024). The first four 313

datasets are used to assess the optimization perfor- 314

mance of PARM, while we use the Mamo dataset 315

to validate the performance of our reward models. 316

These datasets span diverse scenarios and problem 317

types, ranging from high-school-level Mixed In- 318

teger Linear Programming to undergraduate-level 319
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complex Linear Programming challenges, as well320

as common optimization tasks in Operations Re-321

search.322

In our framework, the expert models (e.g.,323

Qwen2.5-Series (Yang et al., 2024; Hui et al., 2024)324

and Deepseek-Series (Shao et al., 2024; Daya Guo,325

2024)) are pre-trained and require no additional326

fine-tuning. We experiment with various com-327

binations of expert models and reward models328

(e.g., Skywork-RM (o1 Team, 2024) and Qwen-329

PRM (Zhang et al., 2025)) to identify the optimal330

configuration for PARM. The experiments aim to331

validate the framework’s effectiveness and scalabil-332

ity while demonstrating the critical role of reward333

models in enhancing pipeline performance. Ac-334

cordingly, our experiments are divided into two335

parts: Performance Evaluation on Benchmarks and336

Reward Model Evaluation.337

4.2 Experiment Setup338

To assess the performance of our framework,339

PARM, we conduct experiments on five datasets en-340

compassing approximately 20 scenarios and seven341

types of optimization problems. NL4Opt (Rama-342

monjison et al., 2023) is a widely used benchmark343

comprising annotated LPWPs across six domains.344

We randomly sample 100 instances for evaluation.345

IndustryOR (Tang et al., 2024) consists of 100 real-346

world OR problems from eight industries, cover-347

ing five optimization types, including linear pro-348

gramming, integer programming, mixed integer349

programming, and non-linear programming, across350

three difficulty levels. NLP4LP (AhmadiTeshnizi351

et al.) contains 65 optimization-related problems352

derived from optimization NLP contexts such as353

textbooks and lecture books. ComplexOR (Xiao354

et al., 2023) is a dataset of complex OR problems355

curated by three domain experts. We evaluate on 19356

instances. Mamo (Huang et al., 2024) is designed357

to evaluate the mathematical modeling capabilities358

of LLMs, consisting of 652 easy and 211 complex359

linear programming problems, paired with optimal360

solutions sourced from academic materials. We361

use Mamo to construct training data for the reward362

models, while the other datasets are used to evalu-363

ate optimization performance.364

In our experiments, we use two metrics to mea-365

sure performance: Execution Rate (ER) and Solv-366

ing Accuracy (SA). ER represents the proportion367

of solutions whose code can run without errors and368

produce valid output. SA represents the propor-369

tion of executed solutions whose optimal values370

Formulator Coder
Qwen-Series Qwen2.5-Math-7B-Instruct Qwen2.5-Coder-7B-Instruct

Deepseek-Series deepseek-math-7b-instruct deepseek-coder-7b-instruct-v1.5

Table 1: Expert models used in the pipeline framework.
The Qwen-Series and DeepSeek-Series include special-
ized models for the Formulator and Coder components,
optimized for mathematical reasoning and code genera-
tion tasks, respectively.

match any provided ground truth optimal value. 371

For self-debugging, we set the correction limit to 1 372

iteration during the experiments. To compare the 373

performance of our pipeline approach with large 374

language models, we use GPT-4o and DeepSeek- 375

v3 as baselines. All baselines are implemented 376

using the same prompt for generating formulation 377

then generating solving codes. 378

4.3 Experiment Results 379

4.3.1 Comparison Experiment on 380

Benchmarks 381

In this section, we compare the performance of 382

PARM with two baselines, GPT-4o(Achiam et al., 383

2023) and DeepSeek-v3(Liu et al., 2024), while 384

also analyzing the impact of key components 385

within the pipeline, such as the necessity of prob- 386

lem decomposition (Formulator), the use of reward 387

models, and the self-debugging mechanism. In Ta- 388

ble 2, it summarizes the Solving Accuracy (SA) 389

across four datasets, comparing PARM with the 390

baselines. The results demonstrate that PARM con- 391

sistently outperforms both GPT-4o and DeepSeek- 392

v3 on all datasets. Notably, PARM achieves this 393

performance while using expert models with signif- 394

icantly fewer parameters compared to the baselines, 395

highlighting the efficiency and effectiveness of the 396

pipeline architecture. This finding validates the po- 397

tential of deploying small expert models within a 398

pipeline framework to surpass the performance of 399

large parameter models. 400

To further analyze the contributions of various 401

pipeline components, we explore their individual 402

and combined effects in Table 6. First, we com- 403

pare the Qwen-Series and DeepSeek-Series sys- 404

tems(shown in Table 1), observing that the Qwen 405

models consistently outperform their DeepSeek 406

counterparts. Additionally, we evaluate the impact 407

of different reward model combinations, demon- 408

strating that the pipeline framework exhibits high 409

robustness to reward model variations. Specifically, 410

the results show negligible performance differences 411

between general-purpose reward models and task- 412
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Datasets IndustryOR ComplexOR NL4Opt NLP4LP
GPT-4o 0.03 0.0 0.02 0.05
Deepseek-v3 0.03 0.11 0.12 0.09
PARM (ours) 0.15 0.17 0.52 0.15

Table 2: Comparison of the SA metric between PARM
and baselines (GPT-4o and DeepSeek-v3) across four
datasets. Bold results indicate the best-performing
method.

PARM w/o formulator with formulator
IndustryOR 0.09 0.15
ComplexOR 0.11 0.17

NL4Opt 0.2 0.52
NLP4LP 0.02 0.15

Table 3: Comparison of the SA metric on PARM with
and without problem decomposition (Formulator), show-
ing the necessity of formulation for solving optimization
problems.

specific reward models, further confirming the flex-413

ibility of the pipeline. Importantly, the use of re-414

ward models significantly enhances optimization415

performance across all datasets.416

In Table 7, we incorporate the self-debugging417

mechanism into the pipeline to improve optimiza-418

tion performance, limiting the correction attempts419

to one iteration. The results show that self-420

debugging provides a noticeable improvement in421

both Execution Rate (ER) and Solving Accuracy422

(SA), further substantiating its role in refining the423

pipeline’s outputs. Finally, as shown in Table 3, we424

investigate the necessity of problem decomposition425

(Formulator). The results indicate that decompos-426

ing problems into mathematical formulations sig-427

nificantly improves the pipeline’s ability to solve428

optimization tasks. This demonstrates that the For-429

mulator is a crucial component of the pipeline and430

validates its inclusion in the framework.431

4.3.2 Evaluation on Reward Model432

In this section, we evaluate the impact of the reward433

models on the performance of the pipeline frame-434

work. The training data for the reward models435

is automatically collected by running the pipeline436

without any reward models. Specifically, we use437

the Mamo dataset, which is divided into Complex438

and Easy subsets. A random sample of problems439

is selected, and for each problem, the pipeline gen-440

erates multiple formulations and codes. This auto-441

mated approach to collecting preference data elim-442

inates the need for manual annotation or labeling,443

making it highly scalable. The dataset is then used444

to construct preference pairs: [problem, formula-445

number sample (p,f+,f-) pair (f,s+,s-) pair
MamoComplex 50 752 40984
MamoEasy 50 2693 49877
MamoComplex 100 4377 59549
MamoEasy 100 2664 117183

Table 4: Number of preference data pairs constructed
from the Mamo dataset for DPO training, categorized
by problem complexity (Complex/Easy) and sampling
size. Columns represent the number of [problem, for-
mulation_chosen, formulation_rejected] pairs and [for-
mulation, code_chosen, code_rejected] pairs

Accuracy Math RM Code RM
Skywork Qwen-RM Skywork

MamoEasy 50 0.5625 0.5125 0.8769
MamoComplex 50 0.6351 0.6422 0.7647

MamoEasy 100 0.6573 0.6042 0.8563
MamoComplex 100 0.6924 0.6295 0.8395

Table 5: Accuracy of Math Reward Models (Math RM)
and Code Reward Model (Code RM) on the evaluation
set after DPO training. Models are trained on preference
data sampled from the Mamo dataset under different
configurations. Bold values indicate the highest accu-
racy for each dataset.

tion_chosen, formulation_rejected] and [formula- 446

tion, code_chosen, code_rejected], which are re- 447

quired for Direct Preference Optimization (DPO) 448

training. 449

Table 4 provides an overview of the preference 450

data pairs constructed from the Mamo dataset. 451

Based on these preference pairs, we fine-tune (or 452

train) the reward models using DPO. The results 453

of training different reward models on the eval- 454

uation set are shown in Table 5, which records 455

the accuracy of each reward model under different 456

sampling configurations. After training, the reward 457

models are deployed within the pipeline framework. 458

Based on the results in Table 5, we select the best- 459

performing Math Reward Model (Math RM) and 460

Code Reward Model (Code RM) (i.e., those with 461

the highest accuracy) for integration into the PARM 462

framework. 463

5 Discussion 464

This work demonstrates the effectiveness of reward 465

models in guiding pipeline frameworks, achiev- 466

ing improvements in output quality through our 467

proposed pipeline-adapted reward model. By ad- 468

dressing the limitations of traditional reward mod- 469

els, which evaluate only individual component out- 470

puts, our approach considers overall pipeline per- 471

formance, offering a practical and scalable solution 472
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Method MATH RM Code RM
ER SA

IndustryOR ComplexOR NL4Opt NLP4LP IndustryOR ComplexOR NL4Opt NLP4LP

Qwen-Series

Sampling Decoding - - 0.48 0.32 0.79 0.37 0.08 0.11 0.45 0.12
Reward Model Skywork Skywork 0.50 0.32 0.92 0.41 0.11 0.16 0.44 0.11
Reward Model Qwen-RM Skywork 0.51 0.31 0.86 0.48 0.13 0.05 0.49 0.08
PARM (ours) Skywork(DPO) Skywork(DPO) 0.53 0.42 0.96 0.45 0.13 0.16 0.51 0.13
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.54 0.37 0.94 0.45 0.16 0.11 0.49 0.13

DeepSeek-Series

Sampling Decoding - - 0.07 0.05 0.27 0.03 0.01 0.00 0.13 0.02
Reward Model Skywork Skywork 0.17 0.11 0.58 0.08 0.13 0.05 0.28 0.05
Reward Model Qwen-RM Skywork 0.14 0.05 0.45 0.08 0.05 0.00 0.21 0.05
PARM (ours) Skywork(DPO) Skywork(DPO) 0.25 0.11 0.59 0.08 0.07 0.05 0.30 0.05
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.15 0.16 0.52 0.08 0.08 0.11 0.24 0.05

Table 6: Comparison of Execution Rate (ER) and Solving Accuracy (SR) metrics on PARM with different pipeline
components (reward models and expert models) without self-debugging. The results demonstrate that PARM
achieves higher performance compared to baseline methods when combined with trained reward models (DPO).
Bold values indicate the best-performing results for each column.

Method MATH RM Code RM
ER SA

IndustryOR ComplexOR NL4Opt NLP4LP IndustryOR ComplexOR NL4Opt NLP4LP

Qwen-Series

Sampling - - 0.56 0.32 0.93 0.4 0.09 0.11 0.53 0.12
Reward Model Skywork Skywork 0.66 0.32 0.97 0.52 0.15 0.16 0.51 0.11
Reward Model Qwen-RM Skywork 0.6 0.42 0.96 0.55 0.14 0.16 0.53 0.11
PARM (ours) Skywork(DPO) Skywork(DPO) 0.70 0.47 0.97 0.56 0.15 0.17 0.52 0.15
PARM (ours) Qwen-RM(DPO) Skywork(DPO) 0.64 0.57 0.98 0.51 0.14 0.21 0.50 0.13

Table 7: Comparison of Execution Rate (ER) and Solving Accuracy (SR) metrics on PARM with different pipeline
components, including self-debugging (limited to 1 iteration). Bold values indicate the best-performing results for
each column. The results show that PARM, particularly when using trained reward models (DPO), achieves the best
performance in most cases.

for multi-stage workflows.473

Looking ahead, our future work will focus on474

several key directions to further advance the frame-475

work. First, we aim to generalize the framework476

to diverse task domains by adapting it to handle477

domain-specific challenges and ensuring it per-478

forms robustly across a wide variety of use cases.479

Enhancing the interpretability of reward signals480

is another priority, as clearer insights into how481

these signals influence decisions will enable bet-482

ter debugging, auditing, and trustworthiness of the483

pipelines. Incorporating multi-objective optimiza-484

tion into the framework could further enhance its485

performance and usability by balancing competing486

objectives, such as accuracy, efficiency, and fair-487

ness. Moreover, exploring reinforcement learning488

as a potential alternative to reward models within489

pipelines may offer a complementary solution. By490

addressing these challenges, pipelines can unlock491

greater potential for real-world problem-solving.492

Finally, we intend to investigate more advanced de-493

coding strategies, such as Monte Carlo Tree Search494

(MCTS), to further optimize the pipeline’s output495

quality.496

6 Conclusion497

In this paper, we proposed PARM, a pipeline-based498

framework designed to tackle optimization tasks499

by leveraging expert models and reward model. 500

PARM effectively decomposes complex problems 501

into manageable sub-tasks, integrating specialized 502

components (Formulator and Coder) to generate 503

and evaluate solutions. Through the use of reward 504

models trained with automatically collected pref- 505

erence data, PARM refines its outputs to achieve 506

superior performance. Experimental results demon- 507

strate that PARM consistently outperforms baseline 508

methods across a variety of datasets, highlighting 509

the effectiveness of its modular architecture and the 510

scalability of its reward-based optimization strat- 511

egy. Notably, the inclusion of reward models and 512

the self-debugging mechanism improves solving 513

accuracy and execution rate, confirming the impor- 514

tance of iterative refinement in the optimization pro- 515

cess. Additionally, the automated data collection 516

process for reward model training eliminates the 517

need for manual annotation, making the framework 518

practical and efficient for large-scale deployment. 519

Our work showcases the potential of combining 520

expert models and reward-based learning in opti- 521

mization tasks and provides a foundation for future 522

research into scalable and interpretable problem- 523

solving frameworks. Future directions include ex- 524

tending PARM to broader task domains, conduct- 525

ing fine-grained ablation studies, and exploring 526

more sophisticated reward modeling techniques to 527

further enhance performance. 528
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Limitation529

Our study has several limitations. First, the gen-530

eralizability of our framework to broader domains531

beyond code generation has not yet been validated.532

Second, as pipelines grow in complexity, the com-533

putational cost of training and deploying pipeline-534

adapted reward models may become a bottleneck,535

posing challenges for large-scale or high-stakes ap-536

plications. Additionally, while our reward model537

does not rely on manually annotated data, incor-538

porating a small amount of such data particularly539

for formulation-related tasks could further improve540

performance. Due to resource constraints, we did541

not collect these datasets in this study.542
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A Example Appendix682

A.1 Datasets683

A.1.1 Introduction of Datasets684

All of our experiments are conducted on the fol-685

lowing optimization datasets. Table 8 describes the686

statistic and description of each dataset.687

Datasets Size Description

IndustryOR 100
The first industrial dataset for optimization modeling,
covering 13 industries and 5 problem types, including LP,
MILP, and nonlinear programming.

ComplexOR 19
A collection of 19 samples sourced from academic papers,
textbooks, and industrial scenarios, covering topics like
supply chain, scheduling, and logistics.

NL4Opt 100
Curated from the NL4Opt Competition, includes LPWPs
from sales, advertising, and investment, with exclusive
target domains for testing.

NLP4LP 65
Derived from textbooks and lecture notes, covering
facility location, network flow, scheduling, and portfolio
management, with optimal solution annotations.

Mamo Easy 100
Part of the Mamo benchmark, containing high school-level
MILP problems for basic optimization skills development.

Mamo Complex 100
Another Mamo benchmark dataset, featuring undergraduate-
level LP and MILP problems for advanced learning and research.

Table 8: Statistics of our datasets.

A.1.2 Training Datasets for Reward Model 688

To streamline this process, we designed an auto- 689

mated method for collecting these preference-based 690

datasets, eliminating the need for manual label- 691

ing or annotation. This approach allows us to ef- 692

ficiently generate large-scale training datasets, en- 693

suring the reward model is trained on diverse and 694

meaningful examples without additional human in- 695

tervention. Table 9 shows the evaluation results of 696

different reward models (RMs) trained using Direct 697

Preference Optimization (DPO) on the Skywork- 698

RM and Qwen-RM frameworks. The table pro- 699

vides Execution Rates (ER) across four datasets 700

(IndustryOR, ComplexOR, NL4Opt, and NLP4LP) 701

in the absence of the self-debugging mechanism. 702

Our results indicate that datasets with higher com- 703

plexity have a positive influence on the training of 704

reward models, leading to improved performance. 705

Furthermore, we observe that increasing the dataset 706

size also enhances the effectiveness of the reward 707

models, particularly when trained on more chal- 708

lenging datasets. 709

In summary, this automated data collection ap- 710

proach ensures that the reward model is trained on 711

real execution feedback, aligning its preferences 712

with the ultimate goal of generating formulations 713

and code that work correctly. By incorporating 714

datasets of varying complexity, such as the Easy 715

and Complex subsets from Mamo, we can system- 716

atically evaluate the model’s adaptability and per- 717

formance across different difficulty levels. 718

A.2 Detail on Experiments 719

All of our experiments were implemented using 720

the PyTorch framework, with vLLM employed to 721

accelerate large language model (LLM) generation. 722

The experiments were conducted using 4 NVIDIA 723

A40 Tensor Core GPUs (48 GB each) for pipeline 724
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Math RM Code RM ER (w/o self-debugging)
DPO on Skywork-RM IndustryOR ComplexOR NL4Opt NLP4LP

MamoEasy(50) MamoEasy(50) 0.49 0.29 0.83 0.38
MamoEasy(100) MamoEasy(50) 0.53 0.32 0.89 0.4
MamoComplex(50) MamoComplex(50) 0.53 0.30 0.9 0.45
MamoComplex(100) MamoComplex(50) 0.53 0.32 0.9 0.46
MamoComplex(100) MamoEasy(50) 0.54 0.42 0.92 0.46
DPO on Qwen-RM DPO on Skywork-RM IndustryOR ComplexOR NL4Opt NLP4LP
MamoEasy(50) MamoEasy(50) 0.49 0.26 0.79 0.42
MamoEasy(100) MamoEasy(50) 0.52 0.32 0.9 0.45
MamoComplex(50) MamoComplex(50) 0.53 0.29 0.86 0.45
MamoComplex(100) MamoComplex(50) 0.54 0.32 0.86 0.45
MamoComplex(100) MamoEasy(50) 0.53 0.32 0.9 0.45

Table 9: Evaluation results of different reward mod-
els (RMs) trained using Direct Preference Optimization
(DPO). Both reward models are trained on subsets of
the Mamo dataset, divided into Easy and Complex cate-
gories, with varying numbers of training samples (50 or
100)

evaluation and 1 NVIDIA A40 GPU for reward725

model training.726

In Pipeline Configuration, we used the following727

settings, Temperature: 0.3, Maximum generation728

length: 1280 tokens, Number of samples: 32, Self-729

debugging iterations: 1, Self-debugging sample730

size: 16. To train the reward model with Direct731

Preference Optimization (DPO), we utilized the732

code from the Hugging Face TRL GitHub reposi-733

tory. The training process leveraged LoRA (Low-734

Rank Adaptation) fine-tuning for efficient optimiza-735

tion of large-scale models. The specific hyperpa-736

rameters for LoRA fine-tuning were set as follows,737

LoRA rank (lora_r): 128, LoRA alpha: 64, Learn-738

ing rate: 5.0e-7, Number of epochs: 5, Number of739

epochs: 5, Beta: 0.1, Evaluation split ratio: 0.1.740

A.3 Prompt templates for pipeline and741

self-debugging742

To develop a structured approach for solving opti-743

mization problems, we have designed a series of744

templates for different stages of the pipeline. These745

templates not only guide the process of formulating746

and solving optimization problems but also enable747

self-debugging to ensure correctness and reliabil-748

ity. Below, we provide detailed descriptions and749

examples of each template.750

Problem Template

{Five-Element Formulation Example}.
You need to write the corresponding
five-element model based on the prob-
lem description and information provided.
The problem description is as follows:
{Question}.

751

Problem to Formulation Template

Please write the corresponding five-element
model. Please use LaTeX and plain text
environment to complete the following
template to model the above optimization
problem into five elements:
## Sets:
[You need to fill in]
## Parameters:
[You need to fill in]
## Variables:
[You need to fill in]
## Objective:
[You need to fill in]
## Constraints:
[You need to fill in]

752

Formulation to Solution Code Template

Please write the corresponding Pyomo code.
Please add ‘from pyomo.environ import
*‘ at the beginning of your code (You can
add other ‘import‘ as well). Please print
the optimal solution and the value of the
objective function. Please do not output
the running log. You need to write it in the
form of a class and add a main function:

“‘python
[write your code here]
“‘

753
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Self-debugging Template

### Optimization Problem Debugging:
You are tasked with analyzing the correct-
ness of the modeling and the generated
code for the following optimization prob-
lem. Please evaluate the provided informa-
tion and give your judgment based on the
detailed analysis template below.
—
#### Problem Description:
{question}
#### Provided Information:
1. Five-Element Formulation:
{five-element formulation}
2. Generated Code:
python:
{code}
3. Execution Output:
{execution output}
4. Execution Errors:
{execution error}
### Analysis Template:
Five-Element Formulation: [Fill in True/-
False here]
Generated code: [Fill in True/False here]
- Judging criteria: Check if the code cor-
rectly implements the mathematical model
and runs without errors If the generated
code is False, write the corrected Pyomo
code:
- Please add ‘from pyomo.environ import *‘
at the beginning of your code (You can add
other ‘import‘ as well).
- Please print the optimal solution and the
value of the objective function.
- Please do not output the running log. You
need to write it in the form of a class and
add a main function:
“‘python
[write your code here]
“‘
—
Please provide your evaluation and reason-
ing in the template format above.

754
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