

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEUROCIRCUITRY-INSPIRED HIERARCHICAL GRAPH CAUSAL ATTENTION NETWORKS FOR EXPLAINABLE DEPRESSION IDENTIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Major Depressive Disorder (MDD), affecting millions worldwide, exhibits complex pathophysiology manifested through disrupted brain network dynamics. Although graph neural networks that leverage neuroimaging data have shown promise in depression diagnosis, existing approaches are predominantly data-driven and operate largely as black-box models, lacking neurobiological interpretability. Here, we present NH-GCAT (Neurocircuitry-Inspired Hierarchical Graph Causal Attention Networks), a novel framework that bridges neuroscience domain knowledge with deep learning by explicitly and hierarchically modeling depression-specific mechanisms at different spatial scales. Our approach introduces three key technical contributions: (1) at the local brain regional level, we design a residual gated fusion module that integrates temporal blood oxygenation level dependent (BOLD) dynamics with functional connectivity patterns, specifically engineered to capture local depression-relevant low-frequency neural oscillations; (2) at the multi-regional circuit level, we propose a hierarchical circuit encoding scheme that aggregates regional node representations following established depression neurocircuitry organization, and (3) at the multi-circuit network level, we develop a variational latent causal attention mechanism that leverages a continuous probabilistic latent space to infer directed information flow among critical circuits, characterizing disease-altered whole-brain inter-circuit interactions. Rigorous leave-one-site-out cross-validation on the REST-meta-MDD dataset demonstrates NH-GCAT’s state-of-the-art performance in depression classification, achieving a sample-size weighted-average accuracy of 73.3% and an AUROC of 76.4%, while simultaneously providing neurobiologically meaningful explanations. This work represents a significant advancement toward mechanism-aware, explainable artificial intelligence (AI) systems for psychiatric diagnosis.

1 INTRODUCTION

Major Depressive Disorder (MDD) is a leading cause of disability worldwide, with substantial individual and societal burden (Yan et al., 2019; Ferrari et al., 2013; Nestler et al., 2002). Early and accurate identification is critical for improving clinical outcomes, yet the neurobiological mechanisms underlying MDD remain poorly understood, posing significant challenges for objective diagnosis (Duman & Aghajanian, 2012; Drysdale et al., 2017). Recent advances in functional magnetic resonance imaging (fMRI) have enabled large-scale mapping of brain network dynamics, facilitating the identification of depression by analyzing altered functional connectivity patterns (Mulders et al., 2015). Since the brain network topology revealed by fMRI signals can be naturally described by graph models, Graph neural networks (GNNs) have shown promise for neuropsychiatric disorder classification (Ktena et al., 2017; Parisot et al., 2018; Bessadok et al., 2022; Wu et al., 2020; Isufi et al., 2021; Zheng et al., 2024c). By representing brain regions as nodes and their functional or structural relationships (like functional connectivity (FC)) as edges, GNNs can flexibly capture the topological and dynamic properties of brain networks. Typical GNN architectures stack multiple graph convolutional layers with generic message passing and aggregation schemes, followed by readout layers for classification, enabling the extraction of connectivity patterns relevant to MDD.

054 However, existing GNN methods suffer from
 055 limited accuracy and interpretability for MDD
 056 classification (Liu et al., 2024b; Zhao & Zhang,
 057 2024). Their limited accuracy stems from
 058 treating brain regions uniformly and relying
 059 on static connectivity measures without con-
 060 sidering critical temporal dynamics and MDD-
 061 specific alterations, leading to suboptimal fea-
 062 ture extraction (Long et al., 2023; Ding, 2025;
 063 Calhoun et al., 2014). Their poor interpretabil-
 064 ity is primarily due to the lack of mechanisms
 065 for explicitly modeling the hierarchical orga-
 066 nization of brain networks or the causal rela-
 067 tionships between neural circuits that are fun-
 068 damental to understanding depression (Zhao &
 069 Zhang, 2024; Long et al., 2023). Consequently,
 070 standard interpretability tools applied to these
 071 generic GNNs produce explanations that fail to
 align with established neuroscientific knowledge (Yu et al., 2024).

072 Specifically, current neuroscience findings have indicated that depression pathophysiology
 073 manifests across multiple spatial scales of brain organization, each with distinct characteristics that
 074 present unique modeling challenges, as shown in Figure 1. At the local level, MDD patients ex-
 075 hibit altered temporal dynamics and frequency-specific neural oscillatory patterns, particularly in
 076 low-frequency bands associated with rumination and deficits in emotional processing (Ding, 2025;
 077 Calhoun et al., 2014). At the circuit level, dysfunctional integration within neural networks such as
 078 the default mode (DMN), salience (SN), frontoparietal (FPN), limbic (LN), and reward (RN) net-
 079 works contributes to cognitive and emotional symptoms, with each circuit showing specific patterns
 080 of dysregulation (Johnson et al., 2024; Menon, 2011; Kaiser et al., 2015; Hamilton et al., 2011;
 081 Whitfield-Gabrieli & Ford, 2012; Noman et al., 2024). At the network level, aberrant causal re-
 082 lationships among the above circuits characterize the global dysregulation observed in MDD, with
 083 altered information flow and hierarchical control processes (Presigny & De Vico Fallani, 2022; Fris-
 084 ton, 2011; Vidaurre et al., 2017; Morishima et al., 2025; Yeo et al., 2011; Csukly et al., 2024; Pearl,
 085 2009). Developing computational models that incorporate structured neurobiological knowledge is
 086 crucial for improving both predictive performance and mechanistic interpretability in MDD identi-
 087 fication (Von Rueden et al., 2021; Jiang et al., 2022; Munroe et al., 2024; Ali et al., 2023).

088 Here, we propose the Neurocircuitry-Inspired Hierarchical Graph Causal Attention Networks (NH-
 089 GCAT), a novel framework that bridges the gap between neuroscience and deep learning for ex-
 090 plainable MDD identification. NH-GCAT systematically models depression-specific mechanisms
 091 across three spatial scales: 1) at the local brain regional level, we design a residual gated fusion
 092 (RG-Fusion) module that integrates temporal BOLD features with functional connectivity patterns,
 093 specifically engineered to capture depression-relevant low-frequency neural oscillations that
 094 conventional static FC approaches often overlook; 2) at the multi-regional circuit level, we propose a
 095 hierarchical circuit encoding scheme (HC-Pooling) that aggregates node representations following
 096 the established structure of depression-related circuits (DMN, FPN, SN, LN, RN). This biologically-
 097 informed operation enables modeling of dysregulated inter-regional communication, extraction of
 098 circuit-specific functional alterations, and interpretation of how local abnormalities propagate to
 099 network-level dysfunction, yielding features aligned with depression neurobiology; 3) at the multi-
 100 circuit network level, we develop a variational latent causal attention mechanism (VLCA) that lever-
 101 ages a continuous probabilistic latent space to infer directed information flow among critical circuits,
 102 characterizing disease-altered whole-brain inter-circuit interactions and providing mechanistic ex-
 103 planations for network-level dysfunctions in MDD.

104 Our contributions are summarized below: 1) We present a principled approach for integrating
 105 depression-specific neurocircuitry knowledge into GNN-based models; 2) We design novel modules
 106 (RG-Fusion, HC-Pooling and VLCA) for temporal dynamics integration, hierarchical aggregation
 107 and variational latent causal attention that enhance both predictive accuracy and interpretability; 3)
 We provide extensive empirical evidence that NH-GCAT not only achieves superior classification
 results but also uncovers mechanistic insights into MDD-related brain network alterations.

Figure 1: Comparison between conventional data-driven and our proposed neurocircuitry-inspired approaches for MDD classification. AI: Artificial Intelligence; MDD: Major Depressive Disorder; HC: Healthy Control.

108
109
110
2 RELATED WORK111
112
113
114
115
116
117
118
119
120
Brain Network Identification and Interpretability for MDD. Recent advances in graph neural
networks (GNNs) have demonstrated promising results in brain network analysis (Ktena et al., 2017;
Parisot et al., 2018; Yu et al., 2024; Dai et al., 2024). These approaches succeed in employing
message passing mechanisms to capture region-wise interactions (Kang et al., 2024). For MDD
classification specifically, existing GNNs primarily rely on static functional connectivity matrices
as input features and treat brain regions as homogeneous nodes without considering their distinct
neurobiological roles (Liu et al., 2024b; Zheng et al., 2024a). While some recent works (Kong
et al., 2025; Zhao & Zhang, 2024) attempt to incorporate temporal information through sequence
modeling, they often fail to effectively capture the low-frequency oscillatory patterns that are crucial
for depression diagnosis.121
122
123
124
125
126
127
Current interpretable approaches in neuroimaging broadly fall into two categories: post-hoc expla-
nation methods and architecture-constrained models. Post-hoc methods, including attention visu-
alization and feature attribution (Zheng et al., 2024c; Rudin, 2019; Zhang et al., 2023; Sundarara-
jan et al., 2017; Veličković et al., 2018), provide limited insight into neurobiological mechanisms.
Architecture-constrained approaches incorporate anatomical priors (Von Rueden et al., 2021; Zheng
et al., 2024b; Liu et al., 2024a; Jiang et al., 2020), but typically treat these as static constraints rather
than modeling dynamic disease processes.128
129
130
131
132
133
134
135
136
Techniques for Neural Circuit Modeling. Residual gating mechanisms have demonstrated suc-
cess in natural language processing (Tai et al., 2015; Greff et al., 2016; Choi et al., 2018) and time
series analysis (Bresson & Laurent, 2017; Chen et al., 2019; Afzal et al., 2024), allowing models to
selectively integrate information streams. When applied to neural time series data such as EEG, ap-
proaches like HybGNN (Wang et al., 2024) effectively capture temporal dynamics. However, unlike
EEG’s high temporal resolution, fMRI analysis requires modeling specific low-frequency BOLD
oscillations for MDD, necessitating specialized fusion mechanisms beyond standard sequence mod-
eling. Dynamic functional connectivity (Damaraju et al., 2014) and frequency-specific neural oscil-
lations (Tadayonnejad et al., 2016) have been extensively investigated in fMRI research; however,
their integration with graph neural networks remains limited.137
138
139
140
141
142
143
144
145
146
147
148
149
150
Hierarchical representation learning in graph structures has shown significant utility across domains
including molecular property prediction and social network analysis (Ying et al., 2018). Recent
Transformer-based methods have begun to leverage community structures in brain networks. For in-
stance, Com-BrainTF (Bannadabhai et al., 2023) and BrainGT (Shehzad et al., 2024) utilize prompt
tokens or dual-attention to capture functional communities, while BioBGT (Peng et al., 2025) and
THC (Dai et al., 2023) employ spectral entropy or data-driven clustering to encode small-world
properties. Most approaches, however, employ generic clustering objectives rather than leveraging
domain-specific organizational principles. In contrast to these data-driven or soft-attention methods,
our approach explicitly enforces a bottom-up aggregation based on established depression neuro-
circuitry to ensure mechanistic interpretability. In neuroscience, hierarchical approaches have been
applied to structural brain networks and functional parcellations (Csukly et al., 2024; Liu et al.,
2024a; Jiang et al., 2020), but rarely incorporate established circuit-level knowledge. The potential
to align hierarchical graph representations with known neurocircuitry organization could signifi-
cantly improve both model performance and interpretability in MDD identification.151
152
153
154
155
156
157
158
159
160
161
Variational approaches for inferring latent graph structures (Sanchez-Martin et al., 2021; Bahuleyan
et al., 2017) and disentangled representations (Jeong & Song, 2019; Yang et al., 2021) have shown
success in uncovering hidden relationships in complex data. Causal methods such as dynamic causal
modeling (Friston, 2011; Pearl, 2009) and Granger causality (Seth et al., 2015) provide frameworks
for understanding information flow. Notably, BrainOOD (Xu et al., 2025) proposes causal subgraph
learning for out-of-distribution generalization (invariant learning). While BrainOOD aims to re-
move environmental bias, our work focuses on inferring effective connectivity (directed information
flow) to explain pathophysiological mechanisms. Existing approaches that model causality in graph-
structured data (Sanchez-Martin et al., 2021; Behnam & Wang, 2024; Wang et al., 2023; Sui et al.,
2022; Wang et al., 2022) primarily focus on region-level interactions, leaving circuit-level causal
relationships - which align better with neuroscientific theories of depression - relatively unexplored.
The integration of probabilistic causal modeling with circuit-level analysis represents a promising
avenue for advancing mechanistic understanding of MDD.

Figure 2: The overall framework of the proposed NH-GCAT. BOLD: Blood Oxygenation Level Dependent; FC: Functional Connectivity; MDD: Major Depressive Disorder; HC: Healthy Control.

3 METHODOLOGY

We present NH-GCAT (Neurocircuitry-Inspired Hierarchical Graph Causal Attention Networks), a novel framework that integrates neuroscientific domain knowledge with deep learning for explainable and accurate depression classification. As illustrated in Figure 2, NH-GCAT comprises three principal components: 1) RG-Fusion: a residual gated fusion module for integrating temporal BOLD dynamics with functional connectivity patterns, 2) RC-Pooling: a hierarchical circuit encoding scheme that aggregates node representations according to established depression neurocircuitry, and 3) VLCA: a variational latent causal attention mechanism for modeling and interpreting inter-circuit interactions. The rationale behind these key architectural design choices is further elaborated on Appendix A.3.

Problem Formulation. Given resting-state fMRI (rs-fMRI) data from N subjects, our objective is to classify each subject as either major depressive disorder (MDD) or healthy control (HC). For each subject i , we obtain a static feature matrix $\mathbf{X}_i^{(1)} \in \mathbb{R}^{n \times m}$, which includes the functional connectivity (FC) matrix computed as the pairwise Pearson correlation between BOLD signals, as well as clinical variables such as age, sex, and education. Additionally, we have a time series matrix of BOLD signals $\mathbf{X}_i^{(2)} \in \mathbb{R}^{n \times T}$, where n is the number of brain regions (ROIs) and T is the number of time points. Each subject is assigned a binary label $y^{(i)} \in \{0, 1\}$, indicating HC (0) or MDD (1). We represent each subject’s brain as a graph $\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i, \mathbf{X}_i^{(1)}, \mathbf{X}_i^{(2)})$, where \mathcal{V}_i denotes the set of ROIs and \mathcal{E}_i encodes the functional connection based edges. The goal is to learn a function $f : \mathcal{G} \rightarrow \{0, 1\}$ that achieves accurate classification and provides interpretable, neuroscientifically meaningful explanations.

Residual Gated Fusion for Temporal Dynamics Integration (RG-Fusion). The RG-Fusion module is designed to effectively integrate complementary information from both static functional connectivity patterns and temporal BOLD dynamics. This integration is crucial for capturing the full spectrum of neural activity characteristics in rs-fMRI data, particularly the low-frequency fluctuations that are clinically significant in depression neuroimaging. The RG-Fusion module processes $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ through parallel pathways as follows:

Temporal Feature Processing. The temporal BOLD signals $\mathbf{X}^{(2)}$ are processed through a transformer encoder to capture global dependencies:

$$\mathbf{H}_{\text{temp}} = \text{TransformerEncoder}(\mathbf{X}^{(2)}) \in \mathbb{R}^{n \times d} \quad (1)$$

where d is the latent dimension. The output is further concatenated with the original static features $\mathbf{X}^{(1)}$ and then refined using GraphEncoder module, which dual-path graph convolutions (SAGE-

216 Conv and GATConv), to capture both local and global topological properties:
 217

$$\mathbf{Z}_{\text{temp}} = \text{GraphEncoder}(\mathbf{H}_{\text{temp}}, \mathcal{E}) \in \mathbb{R}^{n \times d} \quad (2)$$

219 The processing of GraphEncoder can be formulated as:
 220

$$\mathbf{H}_2 = \text{Concat}(\mathbf{X}^{(1)}, \mathbf{H}_{\text{temp}}) \in \mathbb{R}^{n \times d'} \quad (3)$$

$$\mathbf{Z}_{\text{temp}} = \text{Concat}(\text{SAGEConv}(\mathbf{H}_2, \mathcal{E}), \text{GATConv}(\mathbf{H}_2, \mathcal{E})) \in \mathbb{R}^{n \times d'} \quad (4)$$

224 **Static Feature Processing.** Simultaneously, the static features $\mathbf{X}^{(1)}$ are processed through fully
 225 connected layers (MLP) followed by Gate module and graph attention convolution:
 226

$$\mathbf{Z}_{\text{static}} = \text{GATConv}(\text{Gate}(\text{MLP}(\mathbf{X}^{(1)}), \mathbf{H}_{\text{temp}}), \mathcal{E}) \in \mathbb{R}^{n \times d} \quad (5)$$

228 **Gate Module.** The Gate module leverages an adaptive gating mechanism to selectively integrate
 229 information from both pathways, ensuring that the distinctive characteristics of each are effectively
 230 retained and utilized:
 231

$$\mathbf{G} = \sigma(\mathbf{W}_g [\mathbf{Z}_1 | \mathbf{Z}_2] + \mathbf{b}_g) \in \mathbb{R}^{n \times d}, \quad \mathbf{Z}_{\text{fused}} = \mathbf{G} \odot \mathbf{Z}_1 + (1 - \mathbf{G}) \odot \mathbf{Z}_2 \in \mathbb{R}^{n \times d} \quad (6)$$

232 where σ is the sigmoid activation function, \mathbf{W}_g and \mathbf{b}_g are learnable parameters, $|$ denotes concat-
 233 nation, and \odot represents element-wise multiplication. \mathbf{Z}_1 and \mathbf{Z}_2 denote the two feature vectors that
 234 need to be fused.
 235

Residual Connection. We enhance feature discriminability through a hierarchical two-stage attention
 236 mechanism coupled with residual gated fusion. First, FeatureAttention adaptively weights
 237 temporal features for each node, followed by NodeAttention which focuses on depression-relevant
 238 brain regions. The attended features \mathbf{H}_{attn} are then combined with \mathbf{Z}_{temp} via residual gating, and
 239 integrated with $\mathbf{Z}_{\text{static}}$ to produce the final representation $\mathbf{Z}_{\text{final}}$.
 240

$$\mathbf{H}_{\text{final}} = \text{Gate}(\mathbf{Z}_{\text{temp}}, \mathbf{H}_{\text{attn}}) \in \mathbb{R}^{n \times d}, \quad \mathbf{Z}_{\text{final}} = \text{Concat}(\mathbf{H}_{\text{final}}, \mathbf{Z}_{\text{static}}) \in \mathbb{R}^{n \times d'} \quad (7)$$

242 $\mathbf{Z}_{\text{final}}$ is transformed through a variational encoder to obtain \mathbf{Z}_{ve} , yielding a continuous latent rep-
 243 resentation that encapsulates both static network properties and dynamic temporal characteristics
 244 of brain activity, providing a comprehensive embedding for subsequent modules in the NH-GCAT
 245 framework.
 246

Hierarchical Circuit Encoding (HC-Pooling). To incorporate neurobiological priors, we design
 247 a hierarchical circuit encoding scheme that aggregates node representations according to the estab-
 248 lished organization of depression-related neural circuits.
 249

Circuit-specific Node Assignment. Let $\mathcal{C} = c_1, \dots, c_5$ be depression-related circuits (DMN, SN,
 250 FPN, LN, RN). For each circuit c_j , we define $\mathcal{V}_{c_j} \subset \mathcal{V}$ as its constituent regions based on neu-
 251 roanatomical knowledge.
 252

Adjacency Reconstruction. For \mathcal{V}_{c_j} , we derive FC matrix $\mathbf{A}^{(c_j)}$ by fusing subject and group-level
 253 FC priors via a learnable gating mechanism:
 254

$$\mathbf{A}^{(c_j)} = \sum_{k=1}^3 \text{softmax}(\text{MLP}(\mathbf{Z}_{\text{ve}}^{(c_j)})) \cdot \mathbf{A}_k \quad (8)$$

257 where \mathbf{A}_1 , \mathbf{A}_2 , and \mathbf{A}_3 represent individual functional connectivity, MDD group-level average con-
 258 nectivity, and HC group-level average connectivity matrices, respectively.
 259

Top-down Hierarchical Organization. For each neural circuit c_j , we employ a differentiable top-
 260 down hierarchical organization approach using Gumbel-Softmax to assign nodes to different hierar-
 261 chical levels. First, we compute node embeddings using a Graph Convolutional Network:
 262

$$\mathbf{H}^{(c_j)} = \text{GCN}(\mathbf{Z}_{\text{ve}}^{(c_j)}, \mathbf{A}^{(c_j)}) \quad (9)$$

264 We then assign nodes to three hierarchical levels using differentiable masks:
 265

$$\begin{aligned} \mathbf{M}_1 &= \text{GumbelSoftmax}(f_1(\mathbf{H}), \tau), \\ \mathbf{M}_2 &= \text{GumbelSoftmax}(f_2(\mathbf{H}), \tau, \text{mask} = (\mathbf{M}_1 < \epsilon)), \quad \mathbf{M}_3 = 1 - \mathbf{M}_1 - \mathbf{M}_2 \end{aligned} \quad (10)$$

268 where f_1 and f_2 are linear projection, τ is the temperature parameter for Gumbel-Softmax, and ϵ is
 269 a small threshold.
 270

270 **Bottom-up Hierarchical Aggregation.** We employ a ChildSumTreeLSTM (Tai et al., 2015) to aggregate information from lower to higher hierarchical levels. For each level $l \in 3, 2, 1$, we compute:
 271
 272

$$273 \quad \mathbf{h}_l = \mathbf{H} \odot \mathbf{M}_l, \quad \mathbf{c}_l = \mathbf{C} \odot \mathbf{M}_l \quad (11)$$

274 where \mathbf{H} and \mathbf{C} are the hidden and cell states, \odot represents element-wise multiplication. Bottom-up
 275 aggregation proceeds as follows:
 276

$$\begin{aligned} 277 \quad \mathbf{h}_{\text{low}}, \mathbf{c}_{\text{low}} &= \text{ChildSumTreeLSTM}(\mathbf{h}_3, \mathbf{c}_3, \mathbf{M}_3) \\ 278 \quad \mathbf{h}_{\text{mid}}, \mathbf{c}_{\text{mid}} &= \text{ChildSumTreeLSTM}([\mathbf{h}_{\text{low}}, \mathbf{h}_2], [\mathbf{c}_{\text{low}}, \mathbf{c}_2], \mathbf{M}_2) \\ 279 \quad \mathbf{h}_{\text{root}}, \mathbf{c}_{\text{root}} &= \text{ChildSumTreeLSTM}([\mathbf{h}_{\text{mid}}, \mathbf{h}_1], [\mathbf{c}_{\text{mid}}, \mathbf{c}_1], \mathbf{M}_1) \end{aligned} \quad (12)$$

280 where \mathbf{h} and \mathbf{c} represent the hidden and cell states from the TreeLSTM, respectively. The subscripts
 281 'low' and 'mid' denote the intermediate aggregated states from the lower and middle hierarchical
 282 levels. The final state, \mathbf{h}_{root} , denotes the comprehensive circuit-level embedding. Accordingly, the
 283 HC-Pooling module produces \mathbf{H}_{DMN} , \mathbf{H}_{SN} , \mathbf{H}_{FPN} , \mathbf{H}_{LN} , \mathbf{H}_{RN} , corresponding to the aggregated
 284 embeddings of the DMN, SN, FPN, LN, and RN circuits, respectively. The ChildSumTreeLSTM
 285 operation is defined as:
 286

$$\begin{aligned} 287 \quad \mathbf{i} &= \sigma(\mathbf{W}_i \mathbf{h}_{\text{sum}} + \mathbf{U}_i \mathbf{h}_{\text{sum}}), \quad \mathbf{o} = \sigma(\mathbf{W}_o \mathbf{h}_{\text{sum}} + \mathbf{U}_o \mathbf{h}_{\text{sum}}), \\ 288 \quad \mathbf{u} &= \tanh(\mathbf{W}_u \mathbf{h}_{\text{sum}} + \mathbf{U}_u \mathbf{h}_{\text{sum}}), \quad \mathbf{f}_k = \sigma(\mathbf{U}_f \mathbf{h}_k), \\ 289 \quad \mathbf{c} &= \mathbf{i} \odot \mathbf{u} + \sum_{k \in \mathcal{N}} \mathbf{f}_k \odot \mathbf{c}_k, \quad \mathbf{h} = \mathbf{o} \odot \tanh(\mathbf{c}) \end{aligned} \quad (13)$$

290 where $\mathbf{h}_{\text{sum}} = \sum_{k \in \mathcal{N}} \mathbf{h}_k$ is the sum of child node representations, \mathcal{N} is the set of child nodes,
 291 and σ is the sigmoid function. To guide the model toward learning clinically relevant connectivity
 292 patterns, we constrain the learned adjacency matrix using group-level priors:
 293

$$294 \quad \mathcal{L}_{\text{mse}} = \|\mathbf{A}^{(c_j)} - \mathbf{A}_{y_i}\|_F^2 \quad (14)$$

295 where \mathbf{A}_{y_i} represents the group-level connectivity prior corresponding to subject i 's label.
 296

297 **Variational Latent Causal Attention (VLCA).** To model causal interactions between neural
 298 circuits and provide mechanistic explanations for depression, we introduce VLCA, which en-
 299 ables counterfactual reasoning about circuit-level interactions. Given circuit-level embeddings
 300 $\mathbf{H}_{\text{DMN}}, \mathbf{H}_{\text{SN}}, \mathbf{H}_{\text{FPN}}, \mathbf{H}_{\text{LN}}, \mathbf{H}_{\text{RN}} \in \mathbb{R}^{B \times d}$, VLCA first computes attention-weighted interactions:
 301

$$302 \quad \mathbf{Q}, \mathbf{K}, \mathbf{V} = \mathbf{W}_q \mathbf{H}, \mathbf{W}_k \mathbf{H}, \mathbf{W}_v \mathbf{H}, \quad \mathbf{A}^{\text{real}} = \text{softmax}\left(\frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d}}\right), \quad \mathbf{H}^{\text{real}} = \mathbf{A}^{\text{real}} \mathbf{V} \quad (15)$$

303 where $\mathbf{H} \in \mathbb{R}^{B \times C \times d}$ represents stacked circuit embeddings, and \mathbf{A}^{real} captures circuit interactions.
 304 Then the attention-weighted representations are encoded into a continuous latent space:
 305

$$306 \quad \boldsymbol{\mu}^{\text{real}}, \log \boldsymbol{\sigma}^{\text{2real}} = f_{\text{encoder}}(\mathbf{H}^{\text{real}}), \quad \mathbf{z}^{\text{real}} = \boldsymbol{\mu}^{\text{real}} + \boldsymbol{\sigma}^{\text{real}} \odot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}) \quad (16)$$

307 where f_{encoder} is a neural network. For counterfactual reasoning, we replace learned attention with
 308 an identity matrix (self-attention only):
 309

$$310 \quad \mathbf{A}^{\text{cf}} = \mathbf{I}_C, \quad \mathbf{H}^{\text{cf}} = \mathbf{A}^{\text{cf}} \mathbf{V} \quad (17)$$

311 Using the same encoder with shared parameters:
 312

$$313 \quad \boldsymbol{\mu}^{\text{cf}}, \log \boldsymbol{\sigma}^{\text{2cf}} = f_{\text{encoder}}(\mathbf{H}^{\text{cf}}), \quad \mathbf{z}^{\text{cf}} = \boldsymbol{\mu}^{\text{cf}} + \boldsymbol{\sigma}^{\text{cf}} \odot \boldsymbol{\epsilon}' \quad (18)$$

314 The causal effect of circuit interactions is estimated as:
 315

$$316 \quad \mathbf{y}^{\text{effect}} = f_{\text{pred}}(\mathbf{z}^{\text{real}}) - f_{\text{pred}}(\mathbf{z}^{\text{cf}}) \quad (19)$$

317 Our learning objective combines classification loss on the causal effect with KL regularization:
 318

$$319 \quad \mathcal{L}_{\text{VLCA}} = \mathcal{L}_{\text{CE}}(\mathbf{y}^{\text{effect}}, \mathbf{y}) + \beta \mathcal{D}_{\text{KL}}(\mathcal{N}(\boldsymbol{\mu}^{\text{real}}, \boldsymbol{\sigma}^{\text{2real}}) \parallel \mathcal{N}(\boldsymbol{\mu}_{\text{prior}}, \mathbf{I})) \quad (20)$$

320 where \mathcal{L}_{CE} is the cross-entropy loss, \mathcal{D}_{KL} is the Kullback-Leibler divergence, and $\boldsymbol{\mu}_{\text{prior}}$ is either
 321 zero or the mean of the input features depending on the prior type. This formulation enables the
 322 model to learn interpretable circuit interaction patterns, quantify their causal effect on depression
 323

324 classification, and provide insights into how altered circuit communication contributes to MDD
 325 pathophysiology.
 326

327 **Training Objective.** Our overall training objective combines multiple loss terms to balance classi-
 328 fication performance, representation learning, and causal understanding:

$$329 \quad \mathcal{L} = \mathcal{L}_{\text{cls}} + \lambda_{\text{kl}} \mathcal{L}_{\text{kl}} + \lambda_{\text{VLCA}} \mathcal{L}_{\text{VLCA}} + \lambda_{\text{mse}} \mathcal{L}_{\text{mse}} \quad (21)$$

330 where \mathcal{L}_{cls} denotes the cross-entropy loss for MDD classification, \mathcal{L}_{kl} represents the KL divergence
 331 regularization from the backbone’s variational encoding, and hyperparameters λ_{kl} , λ_{VLCA} , and λ_{mse}
 332 balance these competing objectives.
 333

334 4 EXPERIMENTS

335 4.1 EXPERIMENTAL SETTINGS

336 **Datasets and Preprocessing.** We utilized the REST-meta-MDD dataset, comprising 1,601 par-
 337 ticipants (830 MDD, 771 HC) from 16 sites after rigorous quality control procedures (Yan et al.,
 338 2019; Chen et al., 2022). We extracted BOLD time series from 116 regions using the AAL at-
 339лас (Tzourio-Mazoyer et al., 2002), computed Fisher z-transformed functional connectivity, and
 340 constructed brain graphs using k-nearest neighbors (k=40). Population-level reference graphs were
 341 generated for MDD and HC groups to provide connectivity templates for the hierarchical circuit
 342 encoding. Details in Appendix A.1.
 343

344 **Baselines and Evaluation.** We compared NH-GCAT against general-purpose graph architec-
 345 tures (GAT (Veličković et al., 2018), GIN (Xu et al., 2018), GraphSAGE (Hamilton et al., 2017),
 346 GPS (Rampášek et al., 2022), GCN (Kipf & Welling, 2016)) and state-of-the-art MDD classifica-
 347 tion methods (BrainIB (Zheng et al., 2024c), CI-GNN (Zheng et al., 2024a), LCCAF (Kang et al., 2024),
 348 etc.). Performance was evaluated using accuracy (ACC), area under the ROC curve (AUC), F1-
 349 score, sensitivity (SEN), and specificity (SPE), with 5-fold and leave-one-site-out cross-validation
 350 protocols. Details in Appendix A.2.
 351

352 **Implementation.** Our model used 128-dimensional hidden layers with a 64-dimensional single-
 353 head causal attention mechanism. We employed Adam optimizer with gradient clipping and dy-
 354 namic weight scheduling for regularization terms. All experiments are implemented using the Py-
 355 Torch framework, and computations are performed on one NVIDIA RTX 4090 GPU. More details
 356 can be found in Appendix A.4.
 357

358 4.2 PERFORMANCE COMPARISON

359 **Overall Classification Results.** Table 1 presents a comprehensive comparison between our pro-
 360 posed NH-GCAT model and a range of state-of-the-art methods and strong baselines on the REST-
 361 meta-MDD dataset. NH-GCAT achieves the highest performance across four out of five metrics,
 362 demonstrating its effectiveness for MDD classification. Specifically, NH-GCAT attains an AUC
 363 of 78.5% (1.7), accuracy of 73.8% (1.4), specificity of 71.0% (6.6), and F1-score of 75.0% (1.8),
 364 substantially outperforming competing models in these key metrics. Notably, NH-GCAT surpasses
 365 the previous best AUC (75.6%) from LCCAF (Kang et al., 2024) by a significant margin of +2.9%,
 366 and improves upon the strongest accuracy (73.0%) of BPI-GNN (Zheng et al., 2024b) by +0.8%.
 367 The F1-score exhibits a substantial gain of +2.4% over the best competing method (LGMF-GNN).
 368 For specificity, NH-GCAT achieves 71.0%, representing a modest improvement of +0.3% over the
 369 previous best (LCCAF, 70.7%). While NH-GCAT achieves the second-best sensitivity at 76.4%, it
 370 falls short of GAT-Baseline’s 77.5% by only 1.1%, indicating competitive performance in detecting
 371 MDD cases. Furthermore, we observe that external models exhibit inconsistent performance across
 372 metrics. For instance, while LCCAF achieves competitive AUC and specificity, it shows substantial
 373 variation in accuracy (70.2% \pm 8.3%). Among our implemented baselines, GAT-Baseline achieves
 374 the highest sensitivity but suffers from poor specificity (57.2%), indicating a significant trade-off be-
 375 tween correctly identifying positive and negative cases. In contrast, NH-GCAT maintains balanced
 376 and robust performance across all metrics, with consistently low standard deviations, demonstrating
 377 its stability and reliability for clinical applications where both high sensitivity and specificity are
 crucial for accurate diagnosis.

378
 379 Table 1: Comprehensive performance comparison with state-of-the-art methods and baselines for
 380 MDD classification on REST-meta-MDD dataset. The best results are marked in bold and the
 381 second-best value is underlined. The standard deviations are in parentheses. Improvement shows
 382 the performance gain of NH-GCAT over the best competing method for each metric.

Model	AUC	ACC	SEN	SPE	F1
<i>External models</i>					
BrainIB (Zheng et al., 2024c)	-	70.0 (2.2)	-	-	-
MV-GNN (Zhang et al., 2023)	66.6 (5.2)	65.6 (4.3)	63.4 (11.2)	-	64.6 (6.0)
GC-GAN (Oh et al., 2024)	-	66.8 (4.3)	70.2 (7.9)	63.1 (8.4)	68.7 (4.6)
DSFGNN (Zhao & Zhang, 2024)	71.6	67.1	65.4	-	67.3
BPI-GNN (Zheng et al., 2024b)	-	<u>73.0</u> (1.0)	-	-	72.0 (1.0)
TEM (Dai et al., 2024)	70.7	<u>68.6</u>	69.8	<u>67.9</u>	-
CI-GNN (Zheng et al., 2024a)	-	72.0 (2.0)	-	-	70.0 (1.0)
LGMF-GNN (Liu et al., 2024b)	73.7 (2.7)	71.3 (1.5)	73.5 (6.3)	-	<u>72.6</u> (2.1)
BrainNPT (Hu et al., 2024)	70.6 (3.5)	66.7 (3.6)	-	-	-
MSSTAN (Kong et al., 2025)	67.1 (1.4)	68.7 (9.0)	74.7 (3.3)	59.5 (4.8)	71.6 (1.2)
LCCAF (Kang et al., 2024)	<u>75.6</u> (1.0)	70.2 (8.3)	69.7 (2.7)	<u>70.7</u> (2.1)	-
<i>Our implemented baselines</i>					
GCN	70.6 (2.4)	65.8 (1.1)	67.2 (10.0)	64.2 (10.1)	66.8 (4.0)
GIN	70.8 (2.0)	66.3 (1.9)	65.7 (14.4)	67.0 (12.7)	66.3 (5.2)
GraphSAGE	69.8 (2.6)	65.7 (1.5)	64.1 (7.4)	67.3 (8.5)	65.8 (2.8)
GPS	67.6 (5.0)	64.3 (3.9)	63.3 (16.4)	65.5 (10.9)	63.9 (8.4)
GAT-Baseline	71.5 (3.2)	67.7 (2.7)	77.5 (9.1)	57.2 (9.4)	71.2 (3.3)
NH-GCAT (Ours)	78.5 (1.7)	73.8 (1.4)	76.4 (5.8)	71.0 (6.6)	75.0 (1.8)
Improvement	+2.9	+0.8	-1.1	+0.3	+2.4

398
 399 Table 2: Leave-one-site-out cross-validation accuracy (%) for MDD classification across 16 sites on
 400 REST-meta-MDD dataset. MDD and HC indicate sample sizes per site. The final column shows the
 401 sample-size weighted average (W. Avg.).

	Site																W. Avg.
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
MDD	73	16	35	54	48	45	20	20	61	30	41	18	250	79	18	22	
HC	73	14	37	62	48	26	17	16	32	37	41	31	229	65	20	23	
CI-GNN (Zheng et al., 2024a)	63.0	83.0	76.0	70.0	81.0	75.0	73.0	72.0	68.0	81.0	75.0	73.0	63.0	68.0	75.0	64.0	69.2
BrainIB (Zheng et al., 2024c)	63.3	73.0	77.8	71.3	68.8	73.2	75.7	80.6	72.0	82.1	67.1	69.4	63.2	70.1	71.1	68.9	68.8
NH-GCAT	67.8	80.0	72.2	72.4	83.3	71.8	86.5	69.4	72.0	74.6	69.5	81.6	73.3	68.8	73.7	77.8	73.3
Improvement	+4.5	-3.0	-5.6	+1.1	+2.3	-3.2	+10.8	-11.2	0.0	-7.5	-5.5	+8.6	+10.1	-1.3	-1.3	+8.9	+4.1

410
 411 **Leave-One-Site-Out Generalization.** Table 2 shows the leave-one-site-out cross-validation
 412 (LOSO-CV) accuracy for NH-GCAT, CI-GNN, and BrainIB across 16 sites. NH-GCAT
 413 consistently achieves higher or competitive accuracy on most sites, with a sample-size weighted-average
 414 accuracy of 73.3%, outperforming both CI-GNN (69.2%) and BrainIB (68.8%). Specifically, NH-
 415 GCAT attains the highest accuracy on 8 out of 16 sites, and achieves notable improvements (e.g.,
 416 +10.8% and +10.1%) on sites 7 and 13, respectively. Nevertheless, it underperforms on a few sites
 417 (e.g., sites 2, 3, 6, 8, 10, 11, 14, 15), which may be attributed to site-specific variations such as data
 418 imbalance or heterogeneity in acquisition protocols. Despite these fluctuations, the overall improve-
 419 ment in weighted-average accuracy (+4.1% over CI-GNN and +4.5% over BrainIB) demonstrates
 420 the robustness and generalizability of NH-GCAT across diverse clinical sites. Site-specific perfor-
 421 mance are provided in Appendix A.6.

4.3 ABLATION STUDY

422
 423 Table 3 quantifies each component’s contribution to NH-GCAT’s performance. The RG-Fusion
 424 module improves AUC (+3.3%) and accuracy (+2.5%) over the GAT baseline, with a notable in-
 425 crease in specificity (+13.4%), demonstrating the value of integrating temporal BOLD dyna-
 426 mics with static functional connectivity. Adding VLCA further enhances AUC (+1.1%), accuracy
 427 (+1.8%), and F1 score (+3.1%), confirming the importance of modeling causal circuit inter-
 428 actions. The complete model with HC-Pooling achieves statistically significant improvements over
 429 the baseline in AUC (+7.0%), accuracy (+6.1%), specificity (+13.8%), and F1 score (+3.8%), while
 430 maintaining competitive sensitivity performance. These results validate our neurocircuitry-inspired
 431 design choices and their contributions to MDD classification. More details in Appendix A.7.

432 Table 3: Ablation study showing the contribution of each component in the NH-GCAT framework.
 433 The best results are marked in bold and the standard deviations are in parentheses. *Increment* rows
 434 show the performance change after adding each component. *Statistically significant improvement
 435 over GAT-Baseline ($p < 0.05$, Wilcoxon signed-rank test).

Model Variant	AUC	ACC	SEN	SPE	F1
GAT-Baseline	71.5 (3.2)	67.7 (2.7)	77.5 (9.1)	57.2 (9.4)	71.2 (3.3)
+ RG-Fusion	74.8 (2.3)	70.2 (1.7)	69.9 (10.9)	70.6 (9.9)	70.5 (4.3)
<i>Increment</i>	+3.3	+2.5	-7.6	+13.4	-0.7
+ VLCA	75.9 (2.0)	72.0 (2.0)	75.4 (5.4)	68.2 (6.5)	73.6 (2.1)
<i>Increment</i>	+1.1	+1.8	+5.5	-2.4	+3.1
+ HC-Pooling (Full)	78.5 (1.7)*	73.8 (1.4)*	76.4 (5.8)	71.0 (6.6)*	75.0 (1.8)*
<i>Increment</i>	+2.6	+1.8	+1.0	+2.8	+1.4
Total Improvement	+7.0	+6.1	-1.1	+13.8	+3.8

444 4.4 INTERPRETABILITY ANALYSIS

445 NH-GCAT provides neuroscientifically meaningful explanations for MDD pathophysiology through
 446 three complementary analyses (Figure 3).

447 **Frequency-specific Neural Dynamics.** We validated our RG-Fusion module by separately feeding
 448 low-frequency (0.01–0.08 Hz) and high-frequency (0.1–0.25 Hz) BOLD signals into the
 449 trained model. Our RG-Fusion module shows significantly higher AUC with low-frequency inputs
 450 (0.742 ± 0.019) versus high-frequency inputs (0.679 ± 0.032) ($p = 0.0037$). This confirms that our
 451 model captures depression-relevant neural oscillations predominantly manifested in low-frequency
 452 BOLD dynamics, as shown in Figure 3(a).

453 **Hierarchical Circuit Organization.** Figure 3(b) visualizes our HC-Pooling module’s assign-
 454 ment of brain regions to three hierarchical layers across neural circuits (Layer-1: high-level in-
 455 tegration, Layer-2: intermediate processing, Layer-3: primary processing). Statistical analysis
 456 revealed significant MDD-HC differences in key regions across circuits, including Angular_L,
 457 Frontal_Sup_Medial_L (FSM_L), Frontal_Inf_Oper_R (FIO_R), Amygdala_R, ParaHippocampal_R
 458 (PHC_R), and Caudate_L. MDD exhibits: (1) increased high-level representation in DMN regions
 459 (FSM_L, Angular_L), consistent with pathological rumination; (2) reduced high-level representation
 460 in frontoparietal regions (FIO_R), suggesting impaired cognitive control; (3) increased low-level
 461 representation in limbic regions (Amygdala_R), indicating less regulated emotional processing; and
 462 (4) altered hierarchical organization in reward network regions (Caudate_L), potentially reflecting
 463 compensatory mechanisms for reward deficits. More details can be found in Appendix A.8.2.

472 Figure 3: Multi-scale interpretability analysis of NH-GCAT for MDD classification.

473 **Causal Inter-circuit Interactions.** The VLCA mechanism reveals distinct patterns of information
 474 flow among neural circuits in MDD versus HC groups, visualized in Figure 3(c-d). Quantitative
 475 analysis of these network connections shows MDD exhibits: (1) DMN receives abnormally in-
 476 creased input from reward networks, suggesting pathological integration of reward signals into self-
 477 referential processing—potentially underlying negative reward prediction errors and rumination;
 478 (2) SN receives reduced regulatory input from DMN, indicating impaired top-down modulation of
 479 salience detection by self-referential processes; (3) LIN receives diminished regulatory signals from
 480 DMN, reflecting weakened control over emotional reactivity; (4) LIN receives novel regulatory
 481 input from FPN, suggesting emergence of compensatory top-down cognitive control over emotional
 482 processing—potentially reflecting increased effort to regulate negative affect; (5) FPN receives in-
 483 creased reward network input with concurrent reduction in limbic system input, suggesting altered
 484 affective influence on cognitive control processes; and (6) LIN shows significant loss of input from
 485 salience networks, potentially disrupting appropriate emotional responses to salient stimuli. These
 circuit-level reception abnormalities align with core MDD symptoms including negative bias in

486 self-referential processing, emotional dysregulation, compensatory cognitive control, and impaired
 487 integration of salience and affective information. More analyses are provided in Appendix A.8.3.
 488

489 **5 CONCLUSION**

490 We present NH-GCAT, a neurocircuitry-inspired hierarchical graph causal attention network that
 491 integrates temporal dynamics, hierarchical circuit encoding, and causal interactions for explainable
 492 MDD identification. NH-GCAT achieves state-of-the-art performance and provides interpretable
 493 insights into depression-related brain network alterations. Our findings underscore the value of em-
 494 bedding neuroscientific priors into deep learning frameworks to advance interpretable and clinically
 495 meaningful neuropsychiatric diagnosis.
 496

497 **6 REPRODUCIBILITY & ETHICS STATEMENT**

498 **Reproducibility Statement.** To ensure our work is fully reproducible, we have made ex-
 499 tensive efforts to document our methodology. We provide a detailed description of the
 500 dataset and preprocessing steps in Appendix A.1, and a comprehensive overview of our ex-
 501 perimental setup, baseline implementations, and hyper-parameter settings in Appendices A.2
 502 and A.4. Furthermore, the source code for our NH-GCAT model will be released publicly at
 503 <https://github.com/author/NH-GCAT> upon publication.
 504

505 **Ethics Statement.** All authors have read and adhered to the ICLR Code of Ethics. Our research
 506 involves the secondary analysis of the REST-meta-MDD dataset, a publicly available resource con-
 507 taining fully anonymized human neuroimaging data. The original data collection was conducted under
 508 institutional review board (IRB) approval at each respective site, with written informed consent
 509 obtained from all participants. Our use of this pre-existing, de-identified data poses no additional
 510 privacy or security risks to the participants. The objective of this work is to develop computational
 511 methods that may positively contribute to the understanding and future clinical diagnosis of Major
 512 Depressive Disorder. There are no conflicts of interest or external sponsorships that influenced this
 513 work.
 514

515 **REFERENCES**

516
 517 Arshia Afzal et al. Rest: Efficient and accelerated eeg seizure analysis through residual state updates. *arXiv preprint arXiv:2406.16906*, 2024.

518
 519 Sajid Ali et al. Explainable artificial intelligence (xai): What we know and what is left to attain
 520 trustworthy artificial intelligence. *Information Fusion*, 99:101805, 2023.

521
 522 Hareesh Bahuleyan et al. Variational attention for sequence-to-sequence models. *arXiv preprint*
 523 *arXiv:1712.08207*, 2017.

524
 525 Anushree Bannadabhai, Soojin Lee, Wenlong Deng, Rex Ying, and Xiaoxiao Li. Community-
 526 aware transformer for autism prediction in fmri connectome. In *International conference on*
 527 *medical image computing and computer-assisted intervention*, pp. 287–297. Springer, 2023.

528
 529 Arman Behnam and Binghui Wang. Graph neural network causal explanation via neural causal
 530 models. In *European Conference on Computer Vision*, pp. 410–427. Springer, 2024.

531
 532 Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neu-
 533 roscience. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5833–5848,
 534 2022.

535
 536 Xavier Bresson and Thomas Laurent. Residual gated graph convnets. *arXiv preprint*
 537 *arXiv:1711.07553*, 2017.

538
 539 Vince D Calhoun et al. The chronnectome: time-varying connectivity networks as the next frontier
 in fmri data discovery. *Neuron*, 84(2):262–74, 10 2014.

540 Cen Chen et al. Gated residual recurrent graph neural networks for traffic prediction. In *Proceedings*
 541 *of the AAAI conference on artificial intelligence*, volume 33, pp. 485–492, 2019.
 542

543 X Chen, B Lu, HX Li, XY Li, YW Wang, FX Castellanos, and CG Yan. The direct consortium
 544 and the rest-meta-mdd project: towards neuroimaging biomarkers of major depressive disorder.
 545 *Psychoradiology*, 2 (1): 32–42, 2022.

546 Jihun Choi, Kang Min Yoo, and Sang-goo Lee. Learning to compose task-specific tree structures.
 547 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.

548 Gabor Csukly et al. Low functional network integrity in cognitively unimpaired and mci subjects
 549 with depressive symptoms: results from a multi-center fmri study. *Translational psychiatry*, 14
 550 (1):179, 4 2024.

551 Peishan Dai et al. Classification of mdd using a transformer classifier with large-scale multisite
 552 resting-state fmri data. *Human brain mapping*, 45(1):e26542, 1 2024.

553 Wei Dai, Hejie Cui, Xuan Kan, Ying Guo, Sanne van Rooij, and Carl Yang. Transformer-based
 554 hierarchical clustering for brain network analysis. In *2023 IEEE 20th International Symposium*
 555 *on Biomedical Imaging (ISBI)*, pp. 1–5. IEEE, 2023.

556 Eswar Damaraju et al. Dynamic functional connectivity analysis reveals transient states of dyscon-
 557 nectivity in schizophrenia. *NeuroImage: Clinical*, 5:298–308, 2014.

558 Nai Ding. Sequence chunking through neural encoding of ordinal positions. *Trends in cognitive*
 559 *sciences*, pp. S1364–6613(25)00032–4, 2 2025.

560 Andrew T Drysdale et al. Resting-state connectivity biomarkers define neurophysiological subtypes
 561 of depression. *Nature medicine*, 23(1):28–38, 2017.

562 Ronald S Duman and George K Aghajanian. Synaptic dysfunction in depression: potential thera-
 563 peutic targets. *science*, 338(6103):68–72, 2012.

564 Boadie W Dunlop, Mary E Kelley, Vivianne Aponte-Rivera, Tanja Mletzko-Crowe, Becky Kinkead,
 565 James C Ritchie, Charles B Nemeroff, W Edward Craighead, Helen S Mayberg, and PReDICT
 566 Team. Effects of patient preferences on outcomes in the predictors of remission in depression
 567 to individual and combined treatments (predict) study. *American Journal of Psychiatry*, 174(6):
 568 546–556, 2017.

569 Alize J Ferrari et al. Burden of depressive disorders by country, sex, age, and year: findings from
 570 the global burden of disease study 2010. *PLoS medicine*, 10(11):e1001547, 2013.

571 Karl J Friston. Functional and effective connectivity: a review. *Brain connectivity*, 1(1):13–36,
 572 2011.

573 Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. Highway and residual networks learn
 574 unrolled iterative estimation. *arXiv preprint arXiv:1612.07771*, 2016.

575 J Paul Hamilton et al. Default-mode and task-positive network activity in major depressive disorder:
 576 implications for adaptive and maladaptive rumination. *Biological psychiatry*, 70(4):327–333,
 577 2011.

578 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 579 *Advances in neural information processing systems*, 30, 2017.

580 Jinlong Hu et al. Brainnpt: Pre-training transformer networks for brain network classification.
 581 *IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE*
 582 *Engineering in Medicine and Biology Society*, 32:2727–2736, 2024.

583 Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. Edgenets: Edge varying graph neural networks.
 584 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):7457–7473, 2021.

585

586 Yeonwoo Jeong and Hyun Oh Song. Learning discrete and continuous factors of data via alterna-
 587 tive disentanglement. In *International Conference on Machine Learning*, pp. 3091–3099. PMLR,
 588 2019.

594 Hao Jiang et al. Hi-gcn: A hierarchical graph convolution network for graph embedding learning of
 595 brain network and brain disorders prediction. *Computers in Biology and Medicine*, 127:104096,
 596 2020.

597 Rongtao Jiang et al. Interpreting brain biomarkers: Challenges and solutions in interpreting machine
 598 learning-based predictive neuroimaging. *IEEE signal processing magazine*, 39(4):107–118, 2022.

600 Kara A Johnson et al. Deep brain stimulation for refractory major depressive disorder: a compre-
 601 hensive review. *Molecular psychiatry*, 29(4):1075–1087, 4 2024.

602 Roselinde H Kaiser et al. Large-scale network dysfunction in major depressive disorder: a meta-
 603 analysis of resting-state functional connectivity. *JAMA psychiatry*, 72(6):603–611, 2015.

605 Eunsong Kang et al. A learnable counter-condition analysis framework for functional connectivity-
 606 based neurological disorder diagnosis. *IEEE transactions on medical imaging*, 43(4):1377–1387,
 607 4 2024.

608 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 609 works. *arXiv preprint arXiv:1609.02907*, 2016.

611 Youyong Kong et al. Multi-scale spatial-temporal attention networks for functional connectome
 612 classification. *IEEE transactions on medical imaging*, 44(1):475–488, 1 2025.

613 Sofia Ira Ktena et al. Distance metric learning using graph convolutional networks: Application to
 614 functional brain networks. In *MICCAI*, pp. 469–477. Springer, 2017.

616 Mianxin Liu et al. Hierarchical graph convolutional network built by multiscale atlases for brain dis-
 617 order diagnosis using functional connectivity. *IEEE transactions on neural networks and learning
 618 systems*, 35(11):15182–15194, 11 2024a.

619 Shuyu Liu et al. An objective quantitative diagnosis of depression using a local-to-global multimodal
 620 fusion graph neural network. *Patterns (New York, N.Y.)*, 5(12):101081, 11 2024b.

622 Dan Long et al. Intelligent diagnosis of major depression disease based on multi-layer brain network.
 623 *Frontiers in neuroscience*, 17:1126865, 3 2023.

624 Vinod Menon. Large-scale brain networks and psychopathology: a unifying triple network model.
 625 *Trends in cognitive sciences*, 15(10):483–506, 2011.

626 Yosuke Morishima et al. Neurobiologically informed graph theory analysis of the language system.
 627 *Network Neuroscience*, pp. 1–18, 04 2025.

629 Peter C Mulders et al. Resting-state functional connectivity in major depressive disorder: a review.
 630 *Neuroscience & Biobehavioral Reviews*, 56:330–344, 2015.

632 Lindsay Munroe et al. Applications of interpretable deep learning in neuroimaging: A comprehen-
 633 sive review. *Imaging Neuroscience*, 2:1–37, 07 2024.

634 Eric J Nestler et al. Neurobiology of depression. *Neuron*, 34(1):13–25, 2002.

636 Fuad Noman et al. Graph autoencoders for embedding learning in brain networks and major depres-
 637 sive disorder identification. *IEEE Journal of Biomedical and Health Informatics*, 28(3):1644–
 638 1655, 2024.

639 Ji-Hye Oh et al. Graph-based conditional generative adversarial networks for major depressive dis-
 640 order diagnosis with synthetic functional brain network generation. *IEEE journal of biomedical
 641 and health informatics*, 28(3):1504–1515, 3 2024.

642 Sarah Parisot et al. Disease prediction using graph convolutional networks: application to autism
 643 spectrum disorder and alzheimer’s disease. *Medical image analysis*, 48:117–130, 2018.

645 Judea Pearl. *Causality*. Cambridge university press, 2009.

647 Ciyan Peng, Yuelong Huang, Qichao Dong, Shuo Yu, Feng Xia, Chengqi Zhang, and Yaochu Jin.
 Biologically plausible brain graph transformer. *arXiv preprint arXiv:2502.08958*, 2025.

648 Charley Presigny and Fabrizio De Vico Fallani. Colloquium: Multiscale modeling of brain network
 649 organization. *Rev. Mod. Phys.*, 94:031002, Aug 2022.
 650

651 Ladislav Rampášek et al. Recipe for a general, powerful, scalable graph transformer. *Advances in*
 652 *Neural Information Processing Systems*, 35:14501–14515, 2022.

653 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 654 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.
 655

656 Pablo Sanchez-Martin, Miriam Rateike, and Isabel Valera. Vaca: Design of variational graph au-
 657 toencoders for interventional and counterfactual queries. *arXiv preprint arXiv:2110.14690*, 2021.

658 Anil K Seth, Adam B Barrett, and Lionel Barnett. Granger causality analysis in neuroscience and
 659 neuroimaging. *Journal of Neuroscience*, 35(8):3293–3297, 2015.
 660

661 Ahsan Shehzad, Shuo Yu, Dongyu Zhang, Shagufta Abid, Xinrui Cheng, Jingjing Zhou, and Feng
 662 Xia. Braingt: Multifunctional brain graph transformer for brain disorder diagnosis. *medRxiv*, pp.
 663 2024–08, 2024.

664 Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal at-
 665 tention for interpretable and generalizable graph classification. In *Proceedings of the 28th ACM*
 666 *SIGKDD conference on knowledge discovery and data mining*, pp. 1696–1705, 2022.
 667

668 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 669 *Proceedings of the 34th International Conference on Machine Learning*, volume 70, pp. 3319–
 670 3328. PMLR, 06–11 Aug 2017.

671 Reza Tadayonnejad, Olusola Ajilore, Brian J Mickey, Natania A Crane, David T Hsu, Anand Kumar,
 672 Jon-Kar Zubiena, and Scott A Langenecker. Pharmacological modulation of pulvinar resting-state
 673 regional oscillations and network dynamics in major depression. *Psychiatry Research: Neu-
 674 roimaging*, 252:10–18, 2016.

675 Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
 676 from tree-structured long short-term memory networks. *arXiv preprint arXiv:1503.00075*, 2015.
 677

678 N Tzourio-Mazoyer et al. Automated anatomical labeling of activations in spm using a macroscopic
 679 anatomical parcellation of the mni mri single-subject brain. *NeuroImage*, 15(1):273–89, 1 2002.

680 Petar Veličković et al. Graph attention networks. In *International Conference on Learning Repre-
 681 sentations (ICLR)*, 2018.
 682

683 Diego Vidaurre, Stephen M Smith, and Mark W Woolrich. Brain network dynamics are hierarchi-
 684 cally organized in time. *Proceedings of the National Academy of Sciences*, 114(48):12827–12832,
 685 2017.

686 Laura Von Rueden, , et al. Informed machine learning—a taxonomy and survey of integrating prior
 687 knowledge into learning systems. *IEEE Transactions on Knowledge and Data Engineering*, 35
 688 (1):614–633, 2021.
 689

690 Hongjun Wang et al. Causal-based supervision of attention in graph neural network: A better and
 691 simpler choice towards powerful attention. *arXiv preprint arXiv:2305.13115*, 2023.
 692

693 Lijing Wang et al. Causalgnn: Causal-based graph neural networks for spatio-temporal epidemic
 694 forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp.
 695 12191–12199, 2022.

696 Yiye Wang, Wenming Zheng, Yang Li, and Hao Yang. A hybrid graph neural network for enhanced
 697 eeg-based depression detection. *arXiv preprint arXiv:2410.18103*, 2024.
 698

699 Susan Whitfield-Gabrieli and Judith M Ford. Default mode network activity and connectivity in
 700 psychopathology. *Annual review of clinical psychology*, 8(1):49–76, 2012.
 701

Zonghan Wu et al. A comprehensive survey on graph neural networks. *IEEE transactions on neural
 networks and learning systems*, 32(1):4–24, 2020.

702 Jiaxing Xu, Yongqiang Chen, Xia Dong, Mengcheng Lan, Tiancheng Huang, Qingtian Bian, James
 703 Cheng, and Yiping Ke. Brainood: Out-of-distribution generalizable brain network analysis. *arXiv*
 704 *preprint arXiv:2502.01688*, 2025.

705 Keyulu Xu et al. How powerful are graph neural networks? *arXiv preprint arXiv:1810.00826*, 2018.

707 Chao-Gan Yan et al. Reduced default mode network functional connectivity in patients with recur-
 708 rent major depressive disorder. *Proceedings of the National Academy of Sciences of the United*
 709 *States of America*, 116(18):9078–9083, 4 2019. ISSN 0027-8424.

710 Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae:
 711 Disentangled representation learning via neural structural causal models. In *Proceedings of the*
 712 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 9593–9602, 2021.

713 B T Thomas Yeo et al. The organization of the human cerebral cortex estimated by intrinsic func-
 714 tional connectivity. *Journal of neurophysiology*, 106(3):1125–65, 9 2011.

715 Zhitao Ying et al. Hierarchical graph representation learning with differentiable pooling. In *Ad-
 716 vances in Neural Information Processing Systems (NeurIPS)*, pp. 4800–4810, 2018.

717 Shuo Yu, Shan Jin, Ming Li, Tabinda Sarwar, and Feng Xia. Long-range brain graph transformer.
 718 *Advances in Neural Information Processing Systems*, 37:24472–24495, 2024.

719 Mengda Zhang et al. Multi-view graph network learning framework for identification of major
 720 depressive disorder. *Computers in biology and medicine*, 166:107478, 11 2023.

721 Tianyi Zhao and Gaoyan Zhang. Enhancing major depressive disorder diagnosis with dynamic-
 722 static fusion graph neural networks. *IEEE journal of biomedical and health informatics*, 28(8):
 723 4701–4710, 8 2024.

724 Kaizhong Zheng, Shujian Yu, and Badong Chen. Ci-gnn: A granger causality-inspired graph neural
 725 network for interpretable brain network-based psychiatric diagnosis. *Neural networks : the official*
 726 *journal of the International Neural Network Society*, 172:106147, 4 2024a.

727 Kaizhong Zheng et al. Bpi-gnn: Interpretable brain network-based psychiatric diagnosis and sub-
 728 typing. *NeuroImage*, 292:120594, 4 2024b.

729 Kaizhong Zheng et al. Brainib: Interpretable brain network-based psychiatric diagnosis with
 730 graph information bottleneck. *IEEE transactions on neural networks and learning systems*, PP:
 731 10.1109/TNNLS.2024.3449419, 9 2024c.

737 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

739 A.1 DATASET DETAILS

741 This section provides detailed information about the REST-meta-MDD dataset used in our experi-
 742 ments, including data collection, preprocessing procedures, quality control, and demographic char-
 743 acteristics.

745 A.1.1 REST-META-MDD DATASET

747 The REST-meta-MDD initiative (Yan et al., 2019) constitutes the largest multi-center neuroimaging
 748 repository for Major Depressive Disorder (MDD) research, accessible via the consortium’s official
 749 platform¹. This dataset aggregates resting-state fMRI (rs-fMRI) scans from 25 clinical centers across
 750 China, employing standardized rs-fMRI acquisition protocols to ensure cross-site consistency. A
 751 key methodological innovation lies in its federated preprocessing framework, where all participat-
 752 ing sites implemented identical computational pipelines for spatial normalization and functional
 753 connectivity estimation prior to centralized analysis. This design explicitly addresses heterogeneity
 754 challenges in multi-site neuroimaging studies through protocol harmonization at both data acqui-
 755 sition and processing stages.

756 ¹Project portal: <http://rfmri.org/REST-meta-MDD>

756 **Sample Selection.** Following the protocols established in the original REST-meta-MDD publication
 757 (Yan et al., 2019), from the initial collection of 1,300 MDD patients and 1,128 healthy controls
 758 (HC), we selected 848 MDDs and 794 HCs from 17 sites for our analysis, yielding a preliminary
 759 dataset of 1,642 participants. All participants provided written informed consent, and the study
 760 protocols were approved by the local ethics committees of participating institutions.
 761

762 **Quality Control.** Following REST-meta-MDD consortium guidelines (Chen et al., 2022), we ex-
 763 cluded data from Site 4 due to duplication with Site 14 during quality control procedures. The
 764 final analytical cohort comprised 1,601 participants (830 MDD, 771 HC) distributed across 16 re-
 765 search sites after implementing standardized data cleaning protocols. This rigorous quality control
 766 procedures ensures data reliability.
 767

768 Table 4: Demographic characteristics of participants across 16 sites in the REST-meta-MDD dataset.
 769

Site	Sample Size		Age (Mean (SD))		Education (Mean (SD))		Sex (M/F)	
	MDD	HC	MDD	HC	MDD	HC	MDD	HC
Site 1	73	73	31.9 (8.1)	31.7 (9.0)	13.8 (3.0)	15.2 (2.3)	30/43	32/41
Site 2	16	14	41.8 (11.5)	45.6 (12.1)	11.6 (4.5)	10.0 (4.8)	1/15	4/10
Site 7	35	37	41.9 (11.7)	38.2 (11.8)	11.1 (4.0)	14.9 (4.1)	13/22	14/23
Site 8	54	62	32.0 (9.6)	31.1 (10.6)	11.3 (3.2)	13.1 (2.5)	18/36	26/36
Site 9	48	48	28.6 (8.7)	28.6 (8.0)	13.4 (2.9)	15.9 (2.8)	22/26	30/18
Site 10	45	26	32.7 (10.8)	32.7 (8.1)	11.3 (3.1)	12.8 (2.0)	21/24	17/9
Site 11	20	17	30.2 (9.3)	31.4 (9.6)	11.2 (3.0)	15.6 (2.5)	9/11	8/9
Site 13	20	16	32.6 (8.6)	34.4 (10.7)	13.7 (2.2)	13.2 (2.3)	8/12	5/11
Site 14	61	32	30.1 (7.0)	29.6 (5.0)	13.7 (3.3)	14.6 (2.8)	19/42	15/17
Site 15	30	37	46.5 (12.6)	39.8 (14.7)	11.1 (3.8)	13.1 (3.8)	9/21	17/20
Site 17	41	41	21.7 (3.0)	20.6 (1.8)	13.1 (1.5)	13.8 (1.6)	14/27	13/28
Site 19	18	31	34.9 (11.4)	35.2 (10.2)	9.7 (3.1)	9.9 (3.9)	5/13	14/17
Site 20	250	229	38.5 (11.9)	39.6 (15.7)	10.9 (3.4)	13.0 (3.8)	84/166	73/156
Site 21	79	65	34.1 (12.1)	36.5 (12.5)	11.8 (2.7)	13.0 (2.1)	34/45	28/37
Site 22	18	20	33.8 (9.8)	24.4 (7.1)	12.0 (3.0)	13.3 (2.1)	9/9	12/8
Site 23	22	23	26.2 (7.4)	33.0 (12.0)	13.9 (3.2)	14.3 (4.1)	10/12	8/15
Total	830	771	34.4 (11.6)	34.5 (13.2)	11.9 (3.4)	13.5 (3.4)	306/524	316/455

788 A.1.2 BRAIN PARCELLATION AND GRAPH CONSTRUCTION

789 **ROI Extraction.** Following preprocessing, we extracted regional BOLD time series from 116
 790 anatomically defined regions using the Automated Anatomical Labeling (AAL) atlas (Tzourio-
 791 Mazoyer et al., 2002). This atlas was selected for its established validity in neuropsychiatric
 792 research and comprehensive coverage of cortical and subcortical structures implicated in depression
 793 pathophysiology. For each subject, we derived two complementary feature sets:
 794

- 795 • **Temporal features:** 116 regional BOLD time series ($116 \times T$ matrix, where T represents
 796 the number of time points), capturing the dynamic neural activity patterns across the brain.
 797
- 798 • **Multi-dimensional static features:** We implemented an overlapping sliding window ap-
 799 proach (window length $T=90$, stride $S=45$) to extract: (1) a 116×116 functional connec-
 800 tivity matrix computed as Fisher z-transformed Pearson correlations between regional time
 801 series; (2) spectral characteristics including variance and low-frequency power (0.01-0.1
 802 Hz) for each region, which captures neurobiologically relevant oscillations associated with
 803 resting-state networks; and (3) demographic variables including age, sex, and education
 804 level to account for potential confounding factors.

805 **Brain Graph Construction.** To construct brain graphs for our graph neural network approach,
 806 we employed a k-nearest neighbors ($k=40$) algorithm using the functional connectivity matrix as
 807 edge weights. This sparse graph construction approach preserves the strongest functional connec-
 808 tions while reducing computational complexity and noise. We chose $k=40$ based on preliminary
 809 experiments indicating optimal performance while maintaining physiologically plausible network
 topology.

810
811 **Reference Graph Templates.** We constructed group-level reference graph templates by averaging
812 functional connectivity matrices within diagnostic groups:

813 • MDD group-level template: Average connectivity pattern across all MDD subjects in the
814 the training set.

815 • HC group-level template: Average connectivity pattern across all healthy controls in the
816 the training set.

817 These templates provided prior knowledge for our hierarchical circuit encoding scheme, enabling
818 the model to learn connectivity patterns characteristic of each diagnostic group.

820 A.1.3 CIRCUIT-SPECIFIC FEATURES

822 For neurocircuitry-informed analysis, we leveraged established neuroscientific knowledge to assign
823 AAL regions to five depression-relevant neural circuits: Default Mode Network (DMN), Frontopari-
824 etal Network (FPN), Salience Network (SN), Limbic Network (LN), and Reward Network (RN).
825 This assignment followed consensus mappings from multiple sources in the depression neuroimaging
826 literature (Menon, 2011; Kaiser et al., 2015; Hamilton et al., 2011; Whitfield-Gabrieli & Ford,
827 2012).

829 A.2 BASELINE COMPARISON METHODOLOGY

831 In Table 1 of the main paper, we present performance comparisons between NH-GCAT and various
832 baseline methods. For transparency and to ensure fair comparison, we provide a detailed explanation
833 of our comparison methodology below.

834 **Data Partitioning.** For model evaluation, we utilized two complementary strategies:

836 • 5-fold cross-validation: Data were randomly partitioned into 5 folds with stratification to
837 maintain diagnostic class distribution.

838 • Leave-one-site-out cross-validation: Each site was sequentially held out as a test set, with
839 the remaining 15 sites used for developing model.

841 This dual evaluation approach allowed us to assess both general performance and cross-site gener-
842 alizability of our model.

844 **Comparison with Published State-of-the-Art Methods.** For specialized MDD classification
845 methods, we report performance metrics as published in their respective papers. This approach
846 is scientifically justified for several reasons:

848 1. **Common Dataset:** All compared methods were evaluated on the REST-meta-MDD
849 dataset, the same dataset used in our study. As shown in Table 5, most studies used com-
850 parable sample sizes (approximately 1,600 subjects), with minor variations due to different
851 quality control procedures.

852 2. **Standardized Brain Atlas:** The majority of compared methods (BrainIB, BPI-GNN,
853 TEM, CI-GNN, LGMF-GNN, BrainNPT, MSSTAN) used the AAL atlas for brain par-
854 cellation, matching our approach and ensuring comparable region definitions.

855 3. **Similar Cross-validation Strategies:** Most methods employed either 5-fold or 10-fold
856 cross-validation protocols, with LCCAF, GC-GAN, DSFGNN, and our approach specifi-
857 cally using 5-fold cross-validation.

859 **Addressing Methodological Variations.** While direct reimplementations of all baseline methods
860 would be ideal, it presents several practical challenges:

862 1. **Implementation Complexity:** Many specialized methods involve complex architectures
863 with numerous hyperparameters. Reimplementing these without access to original code
864 could introduce unintentional modifications that affect performance.

864
865
866
Table 5: Detailed information about baseline methods and evaluation protocols. CV: Cross-
Validation.

867 Model	Validation Method	Atlas	Sample Size	Data Split
868 BrainIB	10-fold CV	AAL	1604 (848 MDD, 794 HC)	Not specified
869 MV-GNN	Leave-one-site-out CV	AAL	1160 (597 MDD, 563 HC)	Not specified
870 GC-GAN	5-fold CV	Harvard Oxford	477 (249 MDD, 228 HC)	Not specified
871 DSFGNN	5-fold CV	AAL	1611 (832 MDD, 779 HC)	Not specified
872 BPI-GNN	Random split	AAL	1604 (828 MDD, 776 HC)	80%/10%/10%
873 TEM	5-fold CV	AAL	1611 (832 MDD, 779 HC)	Not specified
874 CI-GNN	Random split	AAL	1604 (828 MDD, 776 HC)	80%/10%/10%
875 LGMF-GNN	10-fold CV	AAL	1570 (814 MDD, 756 HC)	Not specified
876 BrainNPT	Random split	AAL	2027 (1041 MDD, 986 HC)	80%/10%/10%
877 MSSTAN	10-fold CV	AAL	667 (368 MDD, 299 HC)	Not specified
878 LCCAF	5-fold CV	Craddock (CC)	1601 (830 MDD, 771 HC)	Not specified
879 NH-GCAT (Ours)	5-fold CV	AAL	1601 (830 MDD, 771 HC)	Random stratified

880
881
882
2. **Computational Constraints:** Training multiple deep learning models on large neuroimaging
883 datasets requires substantial computational resources, particularly when hyperparameter
884 optimization is necessary for fair comparison.

885
886 3. **Established Practice:** In neuroimaging machine learning research, comparing with published
887 results on standardized datasets is an established practice, particularly when evaluating on large, publicly available datasets like REST-meta-MDD.

888 To mitigate potential concerns about comparison fairness, we took several additional steps:
889

890
891 1. **Our Implemented Baselines:** We implemented five general-purpose graph neural networks (GCN, GIN, GraphSAGE, GPS, GAT) ourselves using identical preprocessing, feature extraction, and evaluation protocols as our NH-GCAT model. This provides a controlled comparison with widely-used graph learning architectures.

892
893 2. **Consistent Evaluation Metrics:** We report the same set of evaluation metrics (AUC, accuracy, sensitivity, specificity, F1 score) as used in the original papers, enabling direct comparison.

894
895 3. **Multiple Evaluation Protocols:** We evaluated NH-GCAT using both 5-fold cross-validation (for comparison with most methods) and leave-one-site-out cross-validation (for comparison with recent state-of-the-art methods like BrainIB (Zheng et al., 2024c)), ensuring comprehensive benchmarking.

896
897 4. **Statistical Significance Testing:** We conducted rigorous statistical tests to verify that performance improvements are significant and not due to random variation.

902 This comprehensive approach to baseline comparison—combining published results from specialized
903 methods with our own implementations of general architectures—provides a thorough and fair
904 evaluation of NH-GCAT’s performance within the current landscape of MDD classification methods.
905

906 A.3 ARCHITECTURAL DESIGN RATIONALE AND COMPARISON WITH ALTERNATIVES

909 In this section, we elaborate on the rationale behind our key architectural design choices in NH-
910 GCAT. Our overarching philosophy is to infuse neuroscientific domain knowledge as an architectural
911 inductive bias, moving beyond purely data-driven approaches to create a model that is not only
912 accurate but also mechanistically interpretable. We detail the specific motivations for our three core
913 components: Residual Gated Fusion (RG-Fusion), Hierarchical Circuit Encoding (HC-Pooling) with
914 ChildSumTreeLSTM, and the Variational Latent Causal Attention (VLCA) mechanism.

915 A.3.1 RATIONALE FOR RESIDUAL GATED FUSION (RG-FUSION)

916
917 **Problem Formulation.** The pathophysiology of Major Depressive Disorder (MDD) manifests in
both static and dynamic properties of brain networks. Static functional connectivity (FC) provides a

time-averaged summary of network topology, while temporal Blood Oxygenation Level Dependent (BOLD) signals capture dynamic, moment-to-moment neural fluctuations. Critically, depression is linked to altered low-frequency oscillations (<0.1 Hz), which are lost when relying solely on static FC matrices. Conventional Graph Neural Network (GNN) models for MDD classification often ignore this temporal dimension, leading to suboptimal feature extraction.

Intuition and Design. The RG-Fusion module is explicitly designed to synergistically integrate these two complementary data modalities. It employs a dual-stream architecture:

1. A **temporal pathway** uses a Transformer Encoder to process the raw BOLD time series. The self-attention mechanism is particularly adept at capturing long-range temporal dependencies within the signal, which is crucial for modeling low-frequency oscillations.
2. A **static pathway** processes the FC matrix using standard graph convolutional layers to learn topological patterns.

The core innovation is the **adaptive gating mechanism**. Instead of simple concatenation, which would treat both feature streams equally, our gate learns to dynamically weight the importance of temporal versus static information for each brain region. This allows the model to selectively emphasize features most relevant to depression classification on a node-by-node basis. The residual connection ensures stable training and prevents the loss of critical information from the primary temporal pathway during fusion.

Comparison to Alternatives.

- **Static FC-based GNNs:** This is the most common approach but is fundamentally limited as it discards rich dynamic information contained in BOLD signals, particularly the depression-relevant oscillatory patterns.
- **Simple Feature Concatenation:** A naive concatenation of temporal and static features lacks the flexibility to adaptively prioritize information. Our learned gating mechanism provides a more principled fusion, allowing the model to determine the optimal balance between modalities, which can vary across brain regions and subjects.

A.3.2 RATIONALE FOR HIERARCHICAL CIRCUIT ENCODING (HC-POOLING) AND CHILDSUMTREELSTM

Problem Formulation. The human brain is not a flat, homogeneous graph; it possesses a well-established hierarchical organization. At a macroscopic level, brain regions form functional circuits (e.g., Default Mode Network (DMN), Salience Network (SN)), which collaboratively govern complex cognitive and emotional processes. Dysfunctions in MDD are often best understood at this circuit level. Standard GNN pooling mechanisms (e.g., global mean/max/sum pooling) are agnostic to this neurobiological reality, collapsing node features into a single vector and losing crucial circuit-specific information.

Intuition and Design. The HC-Pooling module is designed to explicitly model the brain’s multi-scale organization by aggregating regional node representations according to a predefined, neuroscientifically validated circuit hierarchy. This transforms node-level embeddings into circuit-level embeddings, aligning the model’s representations with the language of cognitive neuroscience.

Justification for ChildSumTreeLSTM. To perform this hierarchical aggregation, we required an operator capable of processing information on a tree-structured hierarchy. The choice of ChildSumTreeLSTM over other alternatives was deliberate and principled:

1. **Alignment with Hierarchical Structure:** Unlike standard LSTMs or GRUs that operate on linear sequences, TreeLSTMs are specifically designed for tree-structured data. Our defined hierarchy, where brain regions (leaf nodes) are grouped into circuits (parent nodes), naturally forms a tree.
2. **Handling of Variable Branching Factors:** The “Child-Sum” variant is particularly suitable for our task. Neural circuits are not uniform in size; some contain many brain regions

972 (children), while others contain few. ChildSumTreeLSTM elegantly handles this variability
 973 by summing the hidden states of all child nodes before feeding them into the LSTM cell.
 974 This makes it a flexible and robust aggregator for real-world neuroanatomical structures.
 975

976 **Comparison to Alternatives.**
 977

978 • **Standard LSTMs/Sequence Models:** These are fundamentally incompatible as they can-
 979 not process the non-sequential, hierarchical relationships between brain regions within a
 980 circuit.
 981

982 • **Generic GNN Layers for Pooling:** One could stack more GNN layers to achieve a global
 983 representation, but this does not explicitly create distinct, interpretable embeddings for
 984 each predefined circuit. Our approach guarantees that the resulting vectors correspond to
 985 the DMN, FPN, etc.
 986

987 • **Other Hierarchical Pooling Methods (e.g., DiffPool):** Methods like DiffPool learn a
 988 hierarchical structure in a purely data-driven manner. While powerful, our objective was
 989 to *leverage* established neuroscientific knowledge as a strong prior. By using a predefined
 990 hierarchy and a structure-aware aggregator like ChildSumTreeLSTM, we ensure that the
 991 model’s internal organization is neurobiologically meaningful and its subsequent analyses
 992 are directly interpretable in the context of existing depression literature.
 993

994 A.3.3 RATIONALE FOR VARIATIONAL LATENT CAUSAL ATTENTION (VLCA)
 995

996 **Problem Formulation.** For a model to be truly explainable, it must move beyond identifying
 997 *correlations* to inferring *directed influence*. We need to understand how dysfunction in one neural
 998 circuit might causally impact others. Standard attention mechanisms in GNNs identify which nodes
 999 or features are important for a prediction but do not typically model directionality or provide a
 1000 framework for causal reasoning.
 1001

1002 **Intuition and Design.** The VLCA mechanism is designed to model the directed information flow
 1003 between the high-level neural circuits derived from HC-Pooling. It achieves this through two key
 1004 innovations:
 1005

1006 1. **Variational Framework:** By encoding the learned circuit interactions into a continuous
 1007 probabilistic latent space, the model learns a robust and smooth representation of inter-
 1008 circuit dynamics, capturing uncertainty in these complex biological systems.
 1009

1010 2. **Counterfactual Reasoning:** The core of the causal inference lies in comparing the model’s
 1011 output under two conditions: (a) using the learned, attention-weighted interactions (*real*),
 1012 and (b) using a counterfactual scenario where these interactions are removed (i.e., attention
 1013 is replaced with self-attention only via an identity matrix). The difference in outcomes
 1014 allows us to estimate the *causal effect* of inter-circuit communication on the classification
 1015 of depression. This is integrated directly into the training objective.
 1016

1017 **Comparison to Alternatives.**
 1018

1019 • **Standard Graph Attention (GAT):** GAT computes scalar attention weights that indicate
 1020 feature importance. It does not inherently model the directional flow of information be-
 1021 tween high-level conceptual units (our circuits) or provide a mechanism to quantify the
 1022 causal impact of these interactions.
 1023

1024 • **Post-hoc Explainability Methods (e.g., GNNExplainer, Integrated Gradients):** These
 1025 methods analyze a trained model to find important features or subgraphs. While useful, they
 1026 are separate from the learning process. VLCA integrates causal reasoning directly into the
 1027 model’s architecture and objective function. This encourages the model to learn repres-
 1028 entations that are inherently causal and interpretable from the outset, rather than attempting
 1029 to explain a black box after the fact. This architecture-constrained approach generally leads
 1030 to more robust and faithful explanations.
 1031

1026 A.4 IMPLEMENTATION DETAILS
10271028 This section provides comprehensive details about the architecture specifications, hyperparameter
1029 settings, and training procedures of NH-GCAT to facilitate reproducibility.
10301031 A.4.1 ARCHITECTURE SPECIFICATIONS
10321033 **Feature and Node Attention.** Two-stage attention with feature-wise attention (single-head, tem-
1034 perature=0.1) followed by node-wise attention (single-head, temperature=0.1).
10351036 **Variational Encoder.** 2-layer MLP (hidden dims= 32, 16) for mean and log-variance estimation.
10371038 **Classifier.** The final classification is performed by:
10391040 • **Circuit Integration:** Concatenation of circuit-level embeddings followed by a 2-layer
1041 MLP (hidden dims=128, 64) with dropout=0.5.
1042 • **Output Layer:** Linear layer with 2-dimensional output and softmax activation.
10431044 **Network Dimensions.** The NH-GCAT model maintains consistent hidden dimensions across its
1045 components, with the primary embedding dimension set to 128. Specific dimensional configurations
1046 for each module are:
10471048 • **RG-Fusion:** The transformer encoder for BOLD signal processing uses 4 attention heads
1049 with a hidden dimension of 128. The subsequent graph encoding layers (SAGEConv
1050 and GATConv) both produce 64-dimensional outputs that are concatenated to form 128-
1051 dimensional node representations.
1052 • **HC-Pooling:** Each circuit-specific hierarchical encoding maintains 128-dimensional rep-
1053 resentations across all three hierarchical levels. The ChildSumTreeLSTM uses 128-
1054 dimensional hidden and cell states.
1055 • **VLCA:** The causal attention mechanism employs single-head attention with a 64-
1056 dimensional output. The variational encoder projects these into a latent space with di-
1057 mension 32.
10581059 **Activation Functions.** We employ Leaky ReLU (negative slope = 0.2) for all graph convolutional
1060 operations and MLPs within the RG-Fusion module. The gating mechanisms use sigmoid activa-
1061 tions, while the ChildSumTreeLSTM follows the standard LSTM activation pattern with tanh and
1062 sigmoid functions.
10631064 **Normalization and Regularization.** Layer normalization is applied after each transformer en-
1065 coder block. We employ dropout (rate = 0.2) after each convolutional operation and within the
1066 attention mechanisms. For the probabilistic components, we use a KL divergence regularization
1067 term with dynamic weighting.
10681069 **Parameters and Network Size.** Our final NH-GCAT model has approximately 2.1 million train-
1070 able parameters.
1071

A.4.2 HYPERPARAMETER SETTINGS

1073 Table 6 summarizes the key hyperparameters used in our experiments.
10741075 A.4.3 TRAINING PROCEDURE
10761077 We employed the Adam optimizer with an initial learning rate of 1e-3 and weight decay of 0.1. To
1078 stabilize training, we implemented gradient clipping with a maximum norm of 1.0. For regulariza-
1079 tion terms, we used dynamic weight scheduling where λ_{kl} increases linearly from 0 to 0.1 during the
first 20 epochs, and λ_{mse} follows a cosine schedule between 0.2 and 1.0 over the course of training.
1080

1080
1081
1082 Table 6: Hyperparameter settings for NH-GCAT.
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

Hyperparameter	Value
Learning rate	1e-3
Weight decay	0.1
Batch size	32
Training epochs	300
Early stopping patience	20
Dropout rate	0.5
Gradient clipping norm	1.0
λ_{kl} (KL divergence weight)	0.0 → 0.1 (linear schedule)
λ_{VLCA} (VLCA loss weight)	1.0
λ_{mse} (MSE loss weight)	0.2 → 1.0 (cosine schedule)
Temperature for Gumbel-Softmax	1.0 → 0.5 (exponential decay)
Graph construction k (KNN)	40

1095
1096 Training proceeded for a maximum of 300 epochs with early stopping (patience = 20) based on
1097 validation performance. The best-performing checkpoint was selected for final evaluation. During
1098 training, we dynamically balanced loss terms by applying adaptive weight reduction when specific
1099 loss components exceeded predefined thresholds.
1100

1101 For data augmentation, we employed random edge dropout (10%) during training to enhance robust-
1102 ness. The model was trained using a 5-fold stratified cross-validation procedure, ensuring consistent
1103 class distribution across folds. For leave-one-site-out validation, we trained on data from 15 sites
1104 and tested on the held-out site, repeating this procedure for all 16 sites.
1105

1106 A.4.4 IMPLEMENTATION ENVIRONMENT

1107 All experiments were implemented using PyTorch 2.5.1 and PyTorch-Geometric 2.6.1. For circuit-
1108 specific operations, we developed custom extensions to PyTorch-Geometric to support hierarchical
1109 graph operations. Our custom implementation of the ChildSumTreeLSTM was based on the DGL
1110 (Deep Graph Library) framework but optimized for our specific hierarchical circuit structure.
1111

1112 A.4.5 CODE AVAILABILITY

1113 The implementation code for NH-GCAT will be made publicly available at <https://github.com/author/NH-GCAT> upon publication.
1114

1115 A.5 EXTENDED PERFORMANCE AND CLINICAL UTILITY ANALYSIS

1116 To provide a more comprehensive and nuanced evaluation of the proposed NH-GCAT framework,
1117 this section extends the performance analysis presented in the main paper. We supplement the
1118 primary classification metrics with detailed visualizations of the Receiver Operating Characteristic
1119 (ROC) curve, the Precision-Recall (PR) curve, and a Decision Curve Analysis (DCA). These analy-
1120 ses, based on the 5-fold cross-validation results, offer deeper insights into the model’s discriminative
1121 ability, its performance on the positive class (MDD), and its potential clinical utility.
1122

1123 A.5.1 RECEIVER OPERATING CHARACTERISTIC (ROC) ANALYSIS

1124 The ROC curve, shown in Figure 4a, illustrates the trade-off between the true positive rate (Sensi-
1125 tivity) and the false positive rate (1 - Specificity) at various classification thresholds. A model with
1126 strong discriminative capability will have a curve that bows towards the top-left corner.
1127

1128 Our NH-GCAT model achieves a mean Area Under the Curve (AUC) of 0.786 ± 0.017 across the five
1129 folds. The consistency across folds, indicated by the narrow shaded region representing the standard
1130 deviation, highlights the model’s stability. This result reinforces the findings from Table 1 in the
1131 main paper, confirming that NH-GCAT is highly effective at distinguishing between individuals
1132 with MDD and healthy controls.
1133

Figure 4: Comprehensive performance evaluation of NH-GCAT across 5 cross-validation folds.

A.5.2 PRECISION-RECALL (PR) ANALYSIS

While the ROC curve provides a general view of discriminative performance, the Precision-Recall (PR) curve (Figure 4b) is particularly informative for evaluating a model’s ability to correctly identify the positive class, which in our case are the MDD subjects. This is clinically crucial, as failing to identify a patient (a false negative) can have significant consequences.

NH-GCAT achieves a mean Average Precision (AP) of 0.777 ± 0.024 . This is substantially higher than the baseline AP of 0.518, which corresponds to the proportion of positive samples in the dataset. The consistently high precision across a wide range of recall values indicates that when the model identifies a subject as having MDD, it is likely to be correct, and it can do so without missing a large number of actual MDD cases. This demonstrates the model’s reliability for screening or diagnostic support applications.

A.5.3 DECISION CURVE ANALYSIS (DCA) FOR CLINICAL UTILITY

Beyond standard statistical metrics, it is vital to assess whether a predictive model offers tangible benefits in a clinical setting. Decision Curve Analysis (DCA) is a method for evaluating the clinical utility of a model by quantifying its net benefit across a range of risk thresholds for intervention. The net benefit is calculated by balancing the benefits of true positives against the harms of false positives.

Figure 4c presents the DCA for our NH-GCAT model. The x-axis represents the threshold probability, which is the risk threshold at which a clinician (or a policy) would decide to intervene (e.g., recommend further testing or treatment). The y-axis shows the net benefit. A model is considered clinically useful if its net benefit is higher than the two default strategies: "Treat None" (net benefit is always zero) and "Treat All".

The curve for NH-GCAT (Mean Model) demonstrates a positive net benefit across a wide and clinically relevant range of threshold probabilities, approximately from **0.10 to 0.75**. This means that using the NH-GCAT model to guide clinical decisions would lead to better outcomes than either treating all patients or treating none of them within this wide decision-making range. This analysis provides strong evidence that our model’s predictions are not just statistically significant but also translate into practical clinical value, justifying the use of a sophisticated, interpretable model for this high-stakes task.

A.6 LEAVE-ONE-SITE-OUT CROSS-VALIDATION RESULTS

This section provides a detailed analysis of our leave-one-site-out cross-validation results, complementing the summary presented in Section 4.2 (Performance Comparison). As noted in the main paper, NH-GCAT achieves the highest accuracy on 8 out of 16 sites (50%) with an weighted-average accuracy of 73.3% across all sites, demonstrating a +4.1% improvement over the best competing methods.

1188
 1189 Table 7 presents the comprehensive performance metrics for our NH-GCAT model across all eval-
 1190 uation sites in the REST-meta-MDD dataset. The results highlight our model’s ability to generalize
 1191 across heterogeneous data collection sites with varying sample sizes and demographic characteris-
 1192 tics.
 1193

1193 Table 7: Detailed leave-one-site-out cross-validation performance metrics of NH-GCAT across 16
 1194 sites from the REST-meta-MDD dataset. For each metric, the best value is shown in bold and the
 1195 second-best value is underlined. The final row shows the sample-size weighted average.
 1196

Site (MDD/HC)	Sensitivity	Specificity	Accuracy	F1 Score	AUC
Site 1 (73/73)	61.6	74.0	67.8	65.7	70.2
Site 2 (16/14)	100.0	57.1	80.0	<u>84.2</u>	85.3
Site 3 (35/37)	71.4	73.0	72.2	71.4	77.5
Site 4 (54/62)	72.2	72.6	72.4	70.9	76.3
Site 5 (48/48)	81.2	85.4	<u>83.3</u>	83.0	<u>88.5</u>
Site 6 (45/26)	68.9	76.9	71.8	75.6	69.4
Site 7 (20/17)	90.0	82.4	86.5	87.8	93.5
Site 8 (20/16)	55.0	<u>87.5</u>	69.4	66.7	63.4
Site 9 (61/32)	77.0	62.5	72.0	78.3	67.4
Site 10 (30/37)	76.7	73.0	74.6	73.0	78.1
Site 11 (41/41)	75.6	63.4	69.5	71.3	73.4
Site 12 (18/31)	50.0	100.0	81.6	66.7	79.4
Site 13 (250/229)	72.0	74.7	73.3	73.8	78.7
Site 14 (79/65)	60.8	78.5	68.8	68.1	71.0
Site 15 (18/20)	88.9	60.0	73.7	76.2	76.7
Site 16 (22/23)	<u>90.9</u>	65.2	77.8	80.0	82.4
Unweighted Average	74.5 (13.7)	74.1 (11.2)	74.7 (5.6)	74.5 (6.7)	77.0 (7.9)
Weighted Average	71.9 (9.5)	74.4 (7.9)	73.3 (4.4)	73.3 (5.2)	76.4 (6.1)

1217 Several key observations can be drawn from these results:
 1218

1. **Robustness across sample sizes:** NH-GCAT performs well on both large sites (e.g., Site 13 with 250 MDD/229 HC) and small sites (e.g., Site 7 with 20 MDD/17 HC), demonstrating its ability to learn meaningful representations regardless of sample size. This is particularly evident in Site 7, where our model achieves the highest accuracy (86.5%) and AUC (93.5%) despite the limited sample.
2. **Performance on balanced vs. imbalanced sites:** The model maintains strong performance on both balanced sites (e.g., Site 5 with 48 MDD/48 HC) and imbalanced sites (e.g., Site 12 with 18 MDD/31 HC), indicating robustness to class distribution variations.
3. **Consistent sensitivity:** In alignment with our findings in the main paper, NH-GCAT demonstrates high sensitivity (74.5% average) across sites, which is clinically valuable for depression screening applications where identifying potential MDD cases is prioritized.
4. **Significant improvements on challenging sites:** As noted in Section 4.2, our model shows substantial improvements on sites where previous methods struggled, particularly on larger sites like Site 13 (+10.1% improvement) and Site 7 (+10.8% improvement).

1237 These detailed results further validate the effectiveness of our neurocircuitry-informed approach. By
 1238 incorporating domain knowledge about depression-related neural circuits through our hierarchical
 1239 circuit encoding scheme, NH-GCAT can better capture the complex patterns of functional dysregu-
 1240 lation characteristic of MDD across diverse clinical populations. The model’s strong performance in
 1241 this rigorous cross-validation setting demonstrates its potential for real-world clinical applications
 where generalization across heterogeneous data sources is essential.

1242 A.7 EXTENDED ABLATION STUDIES
12431244 To thoroughly evaluate the contribution of each component in NH-GCAT, we conducted extensive
1245 ablation studies beyond those presented in the main paper. Table 8 provides a comprehensive com-
1246 parison of different architectural variants across all evaluation metrics.
12471248 Table 8: Extended ablation study showing the contribution of each component and design choice
1249 in the NH-GCAT framework. The best results are marked in bold and the standard deviations are
1250 in parentheses. *Statistically significant improvement over GAT-Baseline ($p < 0.05$, Wilcoxon
1251 signed-rank test).
1252

Model Variant	AUC (%)	ACC (%)	SEN (%)	SPE (%)	F1 (%)
GAT-Baseline	71.5 (3.2)	67.7 (2.7)	77.5 (9.1)	57.2 (9.4)	71.2 (3.3)
+ MLP-Fusion	72.8 (3.2)	68.4 (3.2)	72.7 (9.9)	63.8 (10.2)	70.2 (4.3)
+ Transformer-Fusion	73.6 (1.5)	69.7 (2.0)	71.7 (6.8)	67.6 (4.4)	70.9 (3.2)
+ RG-Fusion	74.8 (2.3)	70.2 (1.7)	69.9 (10.9)	70.6 (9.9)	70.5 (4.3)
<i>VLCA variants (with RG-Fusion)</i>					
+ Standard attention	72.4 (3.4)	68.3 (2.5)	71.7 (7.2)	64.7 (6.3)	70.0 (3.4)
+ Deterministic causal	74.0 (3.3)	70.1 (3.1)	70.1 (11.9)	70.2 (8.9)	70.5 (5.1)
+ Variational (no causal)	71.9 (3.1)	67.4 (1.9)	65.4 (10.0)	69.5 (9.8)	67.2 (3.8)
+ VLCA (full)	75.9 (2.0)	72.0 (2.0)	75.4 (5.4)	68.2 (6.5)	73.6 (2.1)
<i>HC-Pooling variants (with RG-Fusion + VLCA)</i>					
+ 1-layer hierarchy	74.9 (2.2)	69.6 (1.5)	72.4 (2.7)	66.5 (4.5)	71.2 (1.2)
+ 2-layer hierarchy	75.4 (1.8)	70.8 (1.1)	74.8 (4.3)	66.5 (4.9)	72.6 (1.5)
+ 3-layer hierarchy	78.5 (1.7)*	73.8 (1.4)*	76.4 (5.8)	71.0 (6.6)*	75.0 (1.8)*
+ 4-layer hierarchy	76.1 (1.8)	72.5 (1.5)	74.1 (6.4)	70.7 (4.7)	73.5 (2.6)

1263 A.7.1 ANALYSIS OF VLCA VARIANTS
12641265 Building upon the RG-Fusion module, we evaluated four variants of the causal attention mechanism
1266 to assess the contribution of both variational encoding and causal modeling:
12671268

- **Standard attention:** Multi-head attention without variational encoding or causal model-
1269 ing.
- **Deterministic causal:** Causal attention without variational encoding.
- **Variational (no causal):** Variational encoding without causal modeling.
- **VLCA (full):** Our complete variational latent causal attention mechanism.

1270 The full VLCA model consistently outperforms simpler attention mechanisms, with notable im-
1271 provements in AUC (+3.5% over standard attention) and accuracy (+3.7% over standard attention).
1272 Interestingly, the deterministic causal variant achieves the highest specificity (70.2%), while the full
1273 VLCA model provides the best balance across all metrics. This confirms the importance of modeling
1274 both uncertainty and directionality in relationships between neural circuits for accurate depression
1275 classification.
12761277 A.7.2 ANALYSIS OF HC-POOLING VARIANTS
12781279 With the RG-Fusion and VLCA components in place, we compared four different depths of hier-
1280 archical circuit encoding to evaluate the optimal architecture for capturing depression-related neuro-
1281 circuitry:
12821283

- **1-layer hierarchy:** A shallow hierarchical structure with limited capacity to model com-
1284 plex circuit interactions.
- **2-layer hierarchy:** A two-level hierarchical organization that captures basic circuit-level
1285 relationships.

- 1296 • **3-layer hierarchy:** Our complete three-level differentiable hierarchical pooling that aligns
1297 with established neurocircuitry principles.
- 1298
- 1299 • **4-layer hierarchy:** A deeper hierarchical structure that may introduce unnecessary com-
1300 plexity.
- 1301

1302 Results demonstrate that the 3-layer HC-Pooling architecture achieves the best overall performance,
1303 with AUC (78.5%), accuracy (73.8%), and F1-score (75.0%) all reaching peak values. This confirms
1304 our hypothesis that a three-level hierarchy best captures the organizational principles of depression-
1305 related neural circuits. While the 4-layer variant achieves comparable specificity (70.7%) to the 3-
1306 layer model (71.0%), it shows reduced performance in other critical metrics including AUC (-2.4%),
1307 accuracy (-1.3%), and F1-score (-1.5%), suggesting potential overfitting with excessive hierarchical
1308 complexity. The progressive improvement from 1-layer to 3-layer hierarchy demonstrates clear
1309 benefits of increased hierarchical depth, with AUC improving from 74.9% to 78.5%, while the
1310 performance degradation at 4 layers indicates an optimal complexity threshold.

1311 The ablation studies collectively demonstrate that each component of NH-GCAT contributes sig-
1312 nificantly to its overall performance. The progressive improvements from the baseline GAT model
1313 to the full NH-GCAT architecture highlight the value of our neuroscience-inspired approach. The
1314 RG-Fusion module substantially enhances specificity (+13.4%), addressing the baseline's primary
1315 weakness, while the VLCA mechanism with full variational causal modeling outperforms simpler
1316 attention variants, improving AUC by +1.1% and F1-score by +3.1% over RG-Fusion alone. The
1317 3-layer HC-Pooling architecture provides the optimal hierarchical structure for modeling depression
1318 neurocircuitry, contributing final improvements of +2.6% in AUC and +1.4% in F1-score. These
1319 findings support our approach to integrating neuroscience domain knowledge with deep learning for
1320 MDD classification, with each design choice validated through systematic ablation analysis.

1321 A.7.3 ANALYSIS OF RG-FUSION VARIANTS

1323 To investigate whether the performance gain of RG-Fusion stems merely from the inclusion of tem-
1324 poral data or specifically from our architectural design, we implemented two intermediate fusion
1325 variants for comparison (Table 8):

- 1327 • **MLP-Fusion:** A baseline approach where temporal features (processed by a MLP) and
1328 static FC features are naively concatenated and fused via a Multilayer Perceptron.
- 1329
- 1330 • **Transformer-Fusion:** A stronger baseline using our Transformer Encoder to extract tem-
1331 poral dynamics, but fusing them with static features via simple summation/concatenation
1332 without the adaptive gating mechanism.
- 1333

1334 **Analysis of Results:** As shown in Table 8, while incorporating temporal information generally
1335 improves AUC compared to the static GAT-Baseline, the *method* of fusion is critical:

1336 **Limitations of Naive Fusion:** MLP-Fusion offers only marginal improvements in AUC (+1.3%)
1337 and Accuracy (+0.7%). It fails to fully correct the model's bias, as evidenced by the relatively low
1338 Specificity (63.8%).

1339 **Impact of Advanced Feature Extraction:** Transformer-Fusion outperforms MLP-Fusion
1340 (AUC 73.6% vs. 72.8%), confirming that the self-attention mechanism captures superior temporal
1341 representations of BOLD signals compared to simpler methods.

1343 **Necessity of Adaptive Gating:** Our proposed **RG-Fusion** achieves the best overall performance
1344 (AUC 74.8%, ACC 70.2%). Most notably, it dramatically improves **Specificity** to 70.6% (a +13.4%
1345 gain over GAT-Baseline and +3.0% over Transformer-Fusion).

1346 **Conclusion:** The results suggest that depression-related patterns are not uniformly distributed across
1347 static and dynamic modalities. The static GAT-Baseline tends to over-diagnose (High Sensitivity,
1348 Low Specificity). By employing the residual gating mechanism, RG-Fusion dynamically weighs the
1349 contribution of temporal vs. static features for each brain region. This effectively filters out false
positives, leading to a much more balanced and clinically reliable diagnostic model.

1350 A.8 DETAILED INTERPRETABILITY ANALYSIS
13511352 This section provides an in-depth analysis of the interpretable components of NH-GCAT, examining
1353 how each module contributes to model explainability and offers neurobiologically meaningful
1354 insights into MDD pathophysiology.1355 A.8.1 FREQUENCY-SPECIFIC NEURAL DYNAMICS ANALYSIS
13561357 To validate our RG-Fusion module’s ability to capture depression-relevant neural oscillations, we
1358 conducted a frequency-specific analysis by separately feeding low-frequency (0.01-0.08 Hz) and
1359 high-frequency (0.1-0.25 Hz) BOLD signals into the trained model.
13601361 **Experimental Setup.** We filtered the original BOLD signals into two frequency bands using a
1362 bandpass filter implemented in the preprocessing pipeline:
13631364

- 1365 • Low-frequency band (0.01-0.08 Hz): Known to contain depression-relevant neural oscillations
(Calhoun et al., 2014)
- 1366 • High-frequency band (0.1-0.25 Hz): Typically considered to contain physiological noise
1367 and artifacts

1368 For each frequency band, we performed 5-fold cross-validation using identical train/test splits and
1369 model parameters as in our main experiments. We then compared the classification performance
1370 (AUC) between the two frequency bands.
13711372 **Results.** Figure 3(a) illustrates the performance comparison between low-frequency and high-
1373 frequency inputs. The model achieved significantly higher AUC with low-frequency inputs
1374 (mean=0.742, SD=0.019) compared to high-frequency inputs (mean=0.679, SD=0.032). A paired
1375 t-test confirmed the statistical significance of this difference ($p = 0.0037$).1376 Table 9: AUC values for low-frequency and high-frequency BOLD inputs across 5-fold cross-
1377 validation.
1378

Fold	Low-frequency AUC	High-frequency AUC
Fold 1	0.7549	0.7262
Fold 2	0.7694	0.6894
Fold 3	0.7187	0.6447
Fold 4	0.7243	0.6425
Fold 5	0.7409	0.6917
Mean (SD)	0.742 (0.019)	0.679 (0.032)

1388 **Neurobiological Interpretation.** These findings confirm that our RG-Fusion module effectively
1389 captures depression-relevant neural oscillations predominantly manifested in low-frequency BOLD
1390 dynamics. This aligns with previous research indicating that depression-related functional connec-
1391 tivity alterations are most pronounced in the low-frequency band (Calhoun et al., 2014; Ding, 2025).
1392 The model’s ability to leverage these frequency-specific patterns contributes to its superior classifi-
1393 cation performance compared to models that rely solely on static functional connectivity.
13941395 A.8.2 HIERARCHICAL CIRCUIT ORGANIZATION ANALYSIS
13961397 We analyzed directional differences in hierarchical layer distributions between MDD and HC
1398 groups across depression-related neural circuits, as shown in Figure 5. The mapping be-
1399 tween neural circuits and AAL regions is as follows: 1) DMN: Angular_L, Angular_R, Cingu-
1400 lum_Post_L, Cingulum_Post_R, Frontal_Sup_Medical_L, Frontal_Sup_Medical_R, Precuneus_L, Pre-
1401 cuneus_R; 2) FPN: Frontal_Inf_Oper_L, Frontal_Inf_Oper_R, Frontal_Mid_L, Frontal_Mid_R, Pari-
1402 etal_Inf_L, Parietal_Inf_R; 3) LIN: Amygdala_L, Amygdala_R, Hippocampus_L, Hippocampus_R,
1403 ParaHippocampal_L, ParaHippocampal_R; 4) RN: Caudate_L, Caudate_R, Frontal_Mid_Orb_L,
Frontal_Mid_Orb_R, Pallidum_L, Pallidum_R, Putamen_L, Putamen_R; 5) SN: Cingulum_Ant_L,
Cingulum_Ant_R, Insula_L, Insula_R.

Figure 5: Directional differences in hierarchical layer distributions between MDD and HC groups. Positive values (red) indicate higher proportions in MDD, negative values (blue) indicate higher proportions in HC. $*p < 0.05$, $**p < 0.01$.

Figure 6: Spatial locations of the significant brain regions in the AAL atlas.

1458 **Analysis Method.** For each subject, our HC-Pooling module assigned brain regions to three hier-
 1459 archical levels (Layer-1: high-level integration, Layer-2: intermediate processing, Layer-3: primary
 1460 processing). For each brain region, we calculated the proportion of subjects in each diagnostic group
 1461 (MDD and HC) that assigned the region to each layer. We then computed the directional difference
 1462 between these proportions (MDD - HC) and normalized these differences to the range [-1, 1] by
 1463 dividing by the maximum absolute difference across all regions and layers. This normalization
 1464 preserves the directionality of effects while enabling direct comparison across regions. Positive val-
 1465 ues indicate higher proportions in MDD, while negative values indicate higher proportions in HC.
 1466 Statistical significance was assessed using Chi-square tests of independence.

1467 **Results.** Our analysis revealed significant between-group differences in hierarchical organization
 1468 across multiple circuits, with six regions showing statistically significant alterations (Figure 5), and
 1469 their spatial locations in AAL atlas are shown in Figure 6.

1471 **Circuit-specific Interpretations.** The directional differences reveal distinct patterns of hierarchi-
 1472 cal reorganization in MDD:

- 1474 **1. Default Mode Network (DMN):** MDD exhibits a bidirectional reorganization with in-
 1475 creased Layer-1 representation in Frontal_Sup_Medial_L (0.39, $p < 0.05$) but decreased
 1476 Layer-1 in Angular_L (-0.14, $p < 0.05$). This suggests a functional imbalance within the
 1477 DMN, with hyperactivity in medial prefrontal regions (associated with self-referential pro-
 1478 cessing) and altered integration in parietal nodes. This pattern aligns with the pathological
 1479 rumination and altered self-focus characteristic of depression.
- 1480 **2. Frontoparietal Network (FPN):** Frontal_Inf_Oper_R shows substantially decreased
 1481 Layer-1 representation (-0.88, $p < 0.05$) and increased Layer-3 representation (0.74) in
 1482 MDD, indicating a significant reduction in high-level integration of this key cognitive con-
 1483 trol region. This supports the executive dysfunction hypothesis of depression, where im-
 1484 paired top-down control contributes to negative cognitive biases and difficulty disengaging
 1485 from negative stimuli.
- 1486 **3. Limbic Network (LIN):** We observed opposing patterns in limbic regions: ParaHip-
 1487 pocampal_R showed increased Layer-1 representation (0.81, $p < 0.05$) while Amygdala_R
 1488 showed decreased Layer-1 (-0.74, $p < 0.05$) and increased Layer-2 (0.72) representation
 1489 in MDD. This suggests a reorganization of emotional processing circuits, with altered in-
 1490 tegration between memory-related (parahippocampal) and emotion-generating (amygdala)
 1491 regions, consistent with emotional dysregulation in depression.
- 1492 **4. Reward Network (RN):** Caudate_L showed the strongest effect, with significantly higher
 1493 Layer-1 representation in MDD (0.85, $p < 0.01$) and lower Layer-2 (-0.68). This sub-
 1494 stantial reorganization of a key reward processing region may reflect compensatory mech-
 1495 anisms for anhedonia, with increased high-level integration potentially serving to counteract
 1496 reward deficits.

1497 These findings demonstrate how our HC-Pooling module captures clinically meaningful alterations
 1498 in circuit hierarchy that align with established neurobiological models of depression. The directional
 1499 nature of these differences provides novel insights into the specific reorganization patterns across
 1500 hierarchical layers that may contribute to depression pathophysiology.

1501 A.8.3 CAUSAL INTER-CIRCUIT INTERACTION ANALYSIS

1503 We leveraged our VLCA mechanism to examine directed information flow among neural circuits,
 1504 revealing distinct patterns of information reception in MDD versus HC groups.

1506 **Analysis Method.** For each subject, we extracted the attention weights from the VLCA module,
 1507 representing the strength of directed connections between circuits. To focus on the most significant
 1508 connections while reducing noise, we first computed group averages for MDD and HC subjects,
 1509 then applied a graph pruning technique that retained only the top-2 strongest outgoing connections
 1510 (excluding self-connections) for each circuit. Finally, we normalized the weights across both groups
 1511 to facilitate between-group comparison. The normalized weights were visualized as chord diagrams
 (Figure 3(c-d)).

1512 **Results.** Quantitative analysis of the attention weights revealed several key differences in circuit-
 1513 level information reception between MDD and HC groups, as detailed in Table 10.
 1514

1515 Table 10: Circuit-level attention weights for MDD and HC groups after top-2 connection pruning.
 1516

Source Circuit	Target Circuit	HC Weight	MDD Weight
DMN	SN	0.846	0.652
DMN	LIN	0.685	0.614
FPN	DMN	0.361	0.006
FPN	LIN	0.000	0.502
FPN	RN	0.000	0.082
SN	DMN	0.000	0.000
SN	FPN	0.000	0.000
LIN	DMN	0.113	0.000
LIN	FPN	0.586	0.174
LIN	SN	0.479	0.000
LIN	RN	0.301	0.150
RN	DMN	0.000	0.476
RN	FPN	0.330	0.475
RN	SN	0.000	1.000
RN	LIN	0.398	0.000

1533
 1534 **Neurobiological Interpretation.** Our analysis revealed six key alterations in circuit-level infor-
 1535 mation reception in MDD:
 1536

1. **Altered DMN Information Reception:** In MDD, DMN receives significantly reduced input from frontoparietal networks (FPN→DMN: 0.361 in HC vs. 0.006 in MDD) and limbic networks (LIN→DMN: 0.113 in HC vs. 0.000 in MDD), while receiving novel input from reward networks (RN→DMN: 0.000 in HC vs. 0.476 in MDD). This reconfiguration suggests impaired cognitive and emotional regulation of self-referential processing, with abnormal integration of reward signals—potentially underlying negative self-focused rumination characteristic of depression.
2. **Reduced Salience Network Modulation:** SN receives diminished regulatory input from DMN (DMN→SN: 0.846 in HC vs. 0.652 in MDD) and complete loss of emotional input from limbic networks (LIN→SN: 0.479 in HC vs. 0.000 in MDD), while receiving novel and maximal input from reward networks (RN→SN: 0.000 in HC vs. 1.000 in MDD). This suggests dysregulated salience attribution with abnormal prioritization of reward-related information—consistent with altered incentive processing in depression.
3. **Reconfigured Limbic Network Inputs:** LIN receives novel regulatory input from frontoparietal networks (FPN→LIN: 0.000 in HC vs. 0.502 in MDD), slightly reduced input from DMN (DMN→LIN: 0.685 in HC vs. 0.614 in MDD), and complete loss of reward-related input (RN→LIN: 0.398 in HC vs. 0.000 in MDD). This pattern suggests compensatory cognitive control over emotional processing with concurrent disconnection from reward systems—potentially reflecting increased regulatory effort and emotional-reward decoupling in depression.
4. **Altered Frontoparietal Control Network Inputs:** FPN receives increased reward network input (RN→FPN: 0.330 in HC vs. 0.475 in MDD) with concurrent reduction in limbic system input (LIN→FPN: 0.586 in HC vs. 0.174 in MDD). This suggests a shift from emotional to reward-related influences on cognitive control processes—potentially reflecting altered motivational influence on executive function in depression.
5. **Reward Network Input Reconfiguration:** RN receives reduced emotional input from limbic networks (LIN→RN: 0.301 in HC vs. 0.150 in MDD) and slightly increased input from frontoparietal networks (FPN→RN: 0.000 in HC vs. 0.082 in MDD). This suggests diminished emotional influence on reward processing with increased cognitive modulation—potentially underlying the cognitive override of natural reward responses in depression.

1566 **6. Global Network Reorganization:** Overall, MDD exhibits a systematic shift in information
 1567 flow, with increased reward network output to other circuits, emergence of frontoparietal-
 1568 to-limbic connectivity, reduced limbic network output, and diminished frontoparietal in-
 1569 fluence on default mode processing. This global reorganization reflects fundamental alter-
 1570 ations in the hierarchical processing of self-referential, cognitive, emotional, and reward
 1571 information.

1572
 1573 These patterns reveal a comprehensive reorganization of inter-circuit information reception in MDD,
 1574 characterized by altered regulatory inputs to self-referential processing, compensatory cognitive
 1575 control over emotional processing, abnormal reward signal integration, and fundamental discon-
 1576 nection between reward and emotional systems. This circuit-level reconfiguration aligns with core
 1577 MDD symptoms including negative self-focus, emotional dysregulation, anhedonia, and cognitive
 1578 control deficits, while providing a neurobiologically grounded framework for understanding depres-
 1579 sion pathophysiology.

1580 A.8.4 INTEGRATION OF MULTI-LEVEL INTERPRETABILITY

1582 The three complementary analyses above provide a comprehensive, multi-level interpretation of
 1583 depression neurobiology through the lens of our NH-GCAT model:

- 1585 • **Local Level (RG-Fusion):** Frequency-specific analyses demonstrate the model’s height-
 1586 ened sensitivity to low-frequency neural oscillations associated with depression, thereby
 1587 facilitating effective pattern recognition and enhancing classification accuracy.
- 1588 • **Circuit Level (HC-Pooling):** Hierarchical organization analysis reveals circuit-specific
 1589 alterations in information processing hierarchy, aligning with clinical manifestations of
 1590 depression.
- 1591 • **Network Level (VLCA):** Causal interaction analysis uncovers altered patterns of directed
 1592 information flow among neural circuits, characterizing the global dysregulation observed
 1593 in MDD.

1595 This multi-level interpretability not only enhances the model’s transparency but also provides mech-
 1596 anistic insights into how local neural abnormalities propagate to circuit-level dysfunction and ulti-
 1597 mately manifest as network-level dysregulation in depression.

1599 **Clinical Implications.** The interpretability features of NH-GCAT offer several potential clinical
 1600 applications:

- 1602 1. **Biomarker Identification:** The frequency-specific neural patterns identified by RG-Fusion
 1603 could serve as potential biomarkers for depression diagnosis.
- 1604 2. **Treatment Targeting:** The circuit-specific hierarchical abnormalities revealed by HC-
 1605 Pooling could guide targeted interventions such as transcranial magnetic stimulation (TMS)
 1606 or deep brain stimulation (DBS).
- 1607 3. **Monitoring Disease Progression:** The causal circuit interactions quantified by VLCA
 1608 could be used to monitor disease progression and treatment response.

1610 These interpretability analyses demonstrate how NH-GCAT bridges the gap between data-driven
 1611 machine learning and neuroscientific understanding, offering both predictive power and mechanistic
 1612 insights into depression pathophysiology.

1614 A.9 DISCUSSION ON CLINICAL RELEVANCE AND FUTURE DIRECTIONS

1616 Beyond classification accuracy, a primary goal of developing mechanism-aware models like NH-
 1617 GCAT is to bridge the gap between computational findings and clinical practice. This section dis-
 1618 cusses the clinical relevance of our model’s neurobiological findings, particularly those from the
 1619 Variational Latent Causal Attention (VLCA) module, and outlines a key future direction in person-
 alized psychiatry.

1620 **Alignment with Known Pathophysiology.** Our VLCA module identified abnormally increased
 1621 directed information flow from the Reward Network (RN) to the Default Mode Network (DMN)
 1622 as a significant feature distinguishing individuals with MDD from healthy controls. This finding
 1623 is highly congruent with established neurobiological theories of depression. It provides a plausible
 1624 mechanistic link between two core symptom domains: anhedonia (a blunted response to reward,
 1625 associated with RN dysfunction) and pathological rumination (maladaptive, self-referential thought,
 1626 associated with DMN hyperactivity). The model’s discovery suggests a pathway through which
 1627 dysfunctional reward signals are pathologically integrated into the brain’s self-referential processing
 1628 stream, perpetuating a cycle of negative self-focus and diminished pleasure.

1629 **Alignment with Treatment Mechanisms.** Crucially, the inter-circuit connections highlighted by
 1630 our model are not merely statistical artifacts; they represent known targets for antidepressant in-
 1631 terventions. The DMN, and its connectivity with other large-scale networks, is a well-established
 1632 locus of modulation for various treatments, including Selective Serotonin Reuptake Inhibitors (SS-
 1633 RIs). For instance, multiple studies have demonstrated that successful antidepressant treatment
 1634 is associated with the normalization of DMN connectivity patterns (Dunlop et al., 2017). There-
 1635 fore, the RN→DMN hyperconnectivity identified by NH-GCAT represents a clinically relevant and
 1636 treatment-sensitive neurobiological signature, validating that our model is learning features with
 1637 genuine clinical significance.

1638 **Potential for Predicting Therapeutic Response and Personalized Medicine.** The strong align-
 1639 ment between our model’s findings and known treatment mechanisms points directly to a critical
 1640 future application: predicting individual therapeutic response. While traditional group-level analy-
 1641 ses can identify general biomarkers, NH-GCAT can quantify the strength of these directed circuit
 1642 interactions (e.g., the RN→DMN connection) on a subject-specific basis. This capability allows for
 1643 the formulation of a precise, testable clinical hypothesis: The baseline magnitude of RN→DMN in-
 1644 formation flow in a patient, as quantified by our VLCA module, may serve as a predictive biomarker
 1645 for their response to therapies known to target reward and rumination circuits.

1646 For example, patients exhibiting extreme hyperconnectivity might be predicted to respond more fa-
 1647 vorably to treatments designed to decouple these systems, such as specific classes of antidepressants,
 1648 ketamine, or targeted psychotherapies like cognitive behavioral therapy.

1649 Validating this hypothesis requires longitudinal datasets containing pre- and post-treatment neu-
 1650 roimaging data, which was beyond the scope of the current study. Nevertheless, the ability of NH-
 1651 GCAT to generate such specific, interpretable, and individual-level neurocomputational markers
 1652 underscores its potential as a tool for advancing personalized psychiatry, moving beyond one-size-
 1653 fits-all diagnostic labels toward biologically informed, individualized treatment strategies.

1654 A.10 FURTHER DISCUSSION

1655 **Limitations.** While NH-GCAT demonstrates strong performance and interpretability, several lim-
 1656 itations remain. First, the model is trained and evaluated solely on the REST-meta-MDD dataset,
 1657 which predominantly comprises Chinese participants. This may limit its generalizability to pop-
 1658 ulations with different genetic backgrounds or cultural contexts. Second, depression is inherently
 1659 heterogeneous, yet our current framework does not distinguish between clinical subtypes due to lim-
 1660 ited phenotypic information. Third, our neurocircuitry-inspired design relies on predefined circuit
 1661 definitions from the literature, potentially overlooking individual variability in circuit organization.

1662 **Potential Societal Impacts.** Given that our research involves psychiatric disorder diagnosis, it is
 1663 important to consider its broader societal implications. NH-GCAT has the potential to enhance our
 1664 understanding of depression neurobiology and improve diagnostic accuracy, particularly in cases
 1665 where traditional clinical assessment is challenging. By providing objective, brain-based markers of
 1666 depression, our approach could help reduce stigma associated with psychiatric disorders and vali-
 1667 date patients’ experiences. However, as with any AI-assisted diagnostic system, NH-GCAT should
 1668 be viewed as a complementary tool to support clinical decision-making rather than replace compre-
 1669 hensive psychiatric evaluation. The final diagnostic decisions should always integrate neuroimaging
 1670 findings with clinical expertise and patient-reported symptoms. As we move toward clinical transla-
 1671 tion, developing appropriate guidelines for responsible implementation will be essential.

1674 B LLM USAGE STATEMENT 1675

1676 During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
1677 assistance tool. The primary role of the LLM was to aid in polishing the text by improving grammar,
1678 clarity, style, and conciseness. The LLM was not used for generating core research ideas, proposing
1679 methodologies, conducting experiments, analyzing results, or drawing scientific conclusions. All
1680 claims, results, and the scientific narrative remain the original work of the authors, who take full
1681 responsibility for all content presented in this paper.

1682 1683 C EXTENDED COMPARATIVE ANALYSIS AND EXTERNAL GENERALIZATION 1684

1685 To ensure the robustness of our findings and address potential variations in experimental setups
1686 across published works, we conducted two additional rigorous evaluations: (1) a controlled re-
1687 production of baseline methods under identical experimental conditions on the REST-meta-MDD
1688 dataset, and (2) an external zero-shot generalization test on an independent dataset (the Japanese
1689 Strategic Research Program for the Promotion of Brain Science (SRPBS)) to evaluate cross-dataset
1690 transferability.

1691 C.1 SRPBS DATASET AND PREPROCESSING 1692

1693 To evaluate the generalization capability of NH-GCAT, we utilized the Japanese Strategic Research
1694 Program for the Promotion of Brain Science (SRPBS) multi-site dataset. The SRPBS-MDD rs-
1695 fMRI dataset comprises $N = 336$ subjects (171 MDD, 165 HC) collected from 5 distinct clinical
1696 centers in Japan. This dataset introduces significant domain shifts regarding scanner protocols and
1697 population demographics compared to the REST-meta-MDD dataset.

1698 The participant demographics are as follows: The mean age was 42.3 ± 13.1 years (range 18–80),
1699 with the MDD group averaging 40.8 ± 10.3 years and the HC group 43.9 ± 15.3 years. The sex
1700 distribution was balanced, with 167 males (49.7%) and 169 females (50.3%). For the MDD group,
1701 the mean Beck Depression Inventory-II (BDI-II) score was 26.8 ± 10.7 , indicating moderate to
1702 severe depressive symptoms. We applied the same preprocessing pipeline and feature extraction as
1703 described in Appendix A.1 to ensure feature alignment.

1704 C.2 CONTROLLED BASELINE REPRODUCTION ON REST-META-MDD 1705

1706 While Table 1 in the main text reports metrics directly from original publications to provide a broad
1707 context, Table 11 presents a strictly controlled comparison. Here, we re-evaluated all general graph
1708 baselines and a subset of state-of-the-art methods (BPI-GNN, BrainIB, CI-GNN, LCCAF) for which
1709 official code was open-source and reproducible in our environment. All models in this comparison
1710 were trained using the exact same 5-fold cross-validation splits and hardware setup as NH-GCAT to
1711 eliminate variations arising from data partitioning or computational resources.

- 1712 1. **General Graph Baselines:** GCN, GIN, GraphSAGE, GPS, and GAT, which were imple-
1713 mented within our framework.
- 1714 2. **Reproducible SOTA Methods:** A subset of specialized MDD classification models (BPI-
1715 GNN, BrainIB, CI-GNN, and LCCAF) selected based on the availability and reproducibil-
1716 ity of their open-source code.

1717 **Results Analysis.** As shown in Table 11, under these strictly controlled conditions, NH-GCAT con-
1718 tinues to demonstrate state-of-the-art performance, achieving the highest AUC (78.5%), Accuracy
1719 (73.8%), and F1-score (75.0%). Notably, while simple architectures like GAT achieve high
1720 sensitivity (77.5%), they suffer from significant drops in specificity (57.2%), indicating a bias toward
1721 positive class prediction. In contrast, NH-GCAT maintains a balanced profile (Sensitivity: 76.4%,
1722 Specificity: 71.0%), confirming that our hierarchical causal modeling effectively distinguishes true
1723 depressive patterns from healthy controls without overfitting to the majority class or noise. Among
1724 the specialized SOTA methods, BrainIB remains the strongest competitor but still lags behind NH-
1725 GCAT by 5.9% in AUC and 3.5% in F1-score.

To further visualize the stability of NH-GCAT, Figure 7 displays the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves across the 5-fold cross-validation on REST-meta-MDD. The shaded regions represent the standard deviation across folds. The ROC curves (Figure 7a) demonstrate a consistent convex shape with minimal variance, confirming that the model’s discriminative power is robust to data partitioning. Similarly, the PR curves (Figure 7b) maintain high precision even at higher recall levels, indicating that the model effectively minimizes false positives—a crucial capability often compromised in imbalanced psychiatric datasets.

Table 11: Performance comparison on the **REST-meta-MDD** dataset comparing NH-GCAT against general graph baselines and **selected reproducible SOTA methods** (5-fold cross-validation). All models were trained and tested on identical data splits. Best results are bolded; second best are underlined.

Model	AUC	ACC	SEN	SPE	F1
<i>External SOTA models (Re-implemented)</i>					
BPI-GNN	70.1 (4.8)	67.2 (2.9)	73.4 (8.1)	60.6 (6.5)	69.7 (3.7)
BrainIB	72.6 (4.0)	70.4 (3.4)	72.0 (6.0)	68.6 (4.7)	71.5 (3.8)
CI-GNN	69.5 (4.3)	66.5 (3.4)	64.5 (9.6)	68.6 (11.6)	66.3 (4.6)
LCCAF	61.8 (3.1)	62.3 (2.0)	61.3 (8.2)	63.3 (9.2)	62.6 (3.6)
<i>General Graph Baselines</i>					
GCN	70.6 (2.4)	65.8 (1.1)	67.2 (10.0)	64.2 (10.1)	66.8 (4.0)
GIN	70.8 (2.0)	66.3 (1.9)	65.7 (14.4)	67.0 (12.7)	66.3 (5.2)
GraphSAGE	69.8 (2.6)	65.6 (1.5)	64.1 (7.4)	67.3 (8.5)	65.8 (2.8)
GPS	67.6 (5.0)	64.3 (3.9)	63.3 (16.4)	65.5 (10.9)	63.9 (8.4)
GAT	71.5 (3.2)	67.7 (2.7)	77.5 (9.1)	57.2 (9.4)	71.2 (3.3)
NH-GCAT (Ours)	78.5 (1.7)	73.8 (1.4)	<u>76.4 (5.8)</u>	71.0 (6.6)	75.0 (1.8)
Improvement	+5.9	+3.4	-1.1	+2.4	+3.5

C.3 EXTERNAL GENERALIZATION TO SRPBS

To assess clinical utility, we performed a zero-shot evaluation where models trained on REST-meta-MDD were directly tested on the SRPBS dataset without any fine-tuning. This represents a challenging scenario due to significant differences in scanner manufacturers and acquisition protocols between the two datasets.

Results Analysis. Table 12 summarizes the external validation performance. As expected, all models experienced a performance drop compared to internal cross-validation, reflecting the domain shift. However, NH-GCAT demonstrated superior generalization capabilities:

- **Overall Discriminability:** NH-GCAT achieved the highest AUC (69.8%) and Accuracy (65.7%), significantly outperforming the next best method (GPS) by +4.2% in AUC and +2.5% in Accuracy. This indicates that the latent representations learned by NH-GCAT are more robust to site-specific noise.
- **Balanced Predictions:** While models like GCN achieved high sensitivity (81.4%), their specificity collapsed to 38.4%, suggesting the model generalized poorly by over-predicting the pathological class. Similarly, BrainIB skewed towards specificity (60.7%) at the cost of sensitivity. NH-GCAT provided the most stable trade-off (Sensitivity: 71.5%, Specificity: 59.8%).
- **Impact of Neurocircuitry Priors:** The superior generalization of NH-GCAT supports our hypothesis that incorporating neurobiological priors (via HC-Pooling) acts as an effective regularizer. By forcing the model to learn interactions between established neural circuits rather than arbitrary node connections, the model focuses on biological signal that is conserved across populations, rather than dataset-specific artifacts.

We provide a visual comparison of the generalization performance in Figure 8, plotting the ROC and PR curves for NH-GCAT against key baselines on the external SRPBS dataset. Despite the significant domain shift, NH-GCAT (red line) maintains a superior envelope over competing methods. In

Figure 7: **Internal Validation Performance Curves.** Detailed comparison of (a) ROC and (b) Precision-Recall curves for NH-GCAT against baseline models on the REST-meta-MDD dataset (5-fold cross-validation). NH-GCAT demonstrates a dominant area under the curve compared to competing methods, maintaining high precision even at higher recall rates.

the ROC space (Figure 8a), NH-GCAT demonstrates a steeper initial ascent, implying better identification of true positives at low false-positive rates. The PR comparison (Figure 8b) is particularly revealing: while baselines like GCN exhibit a sharp drop in precision as recall increases (indicative of numerous false positives), NH-GCAT sustains a more balanced profile. This visual evidence reinforces that the neurocircuitry-inspired priors help the model learn transferable biological features rather than site-specific noise.

C.4 DETAILED PERFORMANCE VISUALIZATION AND COMPARISON

To address the need for a direct and intuitive comparison of discriminative power, we visualized the overlaid Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves of NH-GCAT against key baselines (including general GNNs like GAT, GCN, GPS, GraphSAGE, GIN, and specialized models like CI-GNN, BrainIB, BPI-GNN, LCCAF).

C.4.1 INTERNAL VALIDATION ON REST-META-MDD

Figure 9 presents the performance curves under the strictly controlled 5-fold cross-validation setting on the REST-meta-MDD dataset.

ROC Analysis (Figure 9a): NH-GCAT (solid blue line) demonstrates a dominant performance envelope, achieving the highest Area Under the Curve (AUC = 0.785).

1836
1837
1838Table 12: External validation on the **SRPBS** dataset. Models were trained on REST-meta-MDD and tested on SRPBS (Zero-Shot). Best results are bolded; second best are underlined.

1839

Model	AUC	ACC	SEN	SPE	F1
<i>External SOTA models</i>					
BPI-GNN	61.2 (1.5)	61.3 (1.5)	74.9 (8.9)	47.3 (9.5)	66.2 (2.9)
BrainIB	64.4 (1.9)	62.8 (2.4)	64.8 (7.0)	60.7 (3.2)	63.8 (3.9)
CI-GNN	59.7 (3.8)	59.6 (1.7)	64.6 (9.2)	54.5 (12.5)	61.8 (2.6)
LCCAF	53.7 (3.7)	55.7 (1.9)	58.2 (22.5)	53.0 (22.8)	55.3 (11.8)
<i>General Graph Baselines</i>					
GCN	61.0 (3.9)	60.3 (2.2)	81.4 (9.8)	38.4 (7.3)	67.4 (3.7)
GIN	62.2 (4.1)	60.8 (2.2)	76.1 (7.7)	44.8 (9.1)	66.3 (2.5)
GraphSAGE	63.7 (2.8)	61.4 (1.5)	74.4 (15.8)	47.9 (14.8)	65.6 (5.6)
GPS	65.6 (1.2)	<u>63.2 (0.9)</u>	78.2 (9.2)	47.6 (11.1)	68.2 (2.3)
GAT	<u>62.0 (8.0)</u>	60.6 (5.4)	64.4 (26.5)	56.6 (19.0)	60.3 (13.7)
NH-GCAT (Ours)	69.8 (2.2)	65.7 (1.9)	71.5 (12.7)	59.8 (13.1)	67.6 (4.2)
Improvement	+4.2	+2.5	-9.9	-0.9	-0.6

1853

1854

1855

(a) Zero-Shot ROC Generalization (SRPBS)

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

(b) Zero-Shot PR Generalization (SRPBS)

1885

1886

1887

1888

1889

Figure 8: **External Generalization Performance.** Evaluation of zero-shot transferability on the independent SRPBS dataset. Models trained on REST-meta-MDD were tested directly on SRPBS. (a) ROC curves and (b) Precision-Recall curves show that NH-GCAT maintains a superior performance envelope compared to baseline methods, indicating stronger robustness to site-specific variations and scanner effects.

- **Early Detection Capability:** Crucially, NH-GCAT exhibits a significantly steeper ascent in the high-specificity region (x-axis: 0.0 – 0.2). At a strict False Positive Rate (FPR) of 0.2, NH-GCAT achieves a sensitivity of approximately 0.65, whereas the strongest baselines (e.g., BrainIB, pink line; BPI-GNN, brown line) struggle to surpass 0.55. This indicates that NH-GCAT is far more effective at identifying positive cases while minimizing misdiagnoses.
- **Baseline Comparison:** While methods like BrainIB (AUC = 0.726) and GAT (AUC = 0.715) show competitive performance, they are consistently enclosed by the NH-GCAT curve. Notably, methods like LCCAF (yellow line) and GPS (light blue line) show limited discriminative power with substantially lower AUCs (0.618 and 0.676, respectively).

Precision-Recall Analysis (Figure 9b): The Precision-Recall curves further corroborate the robustness of our model, with NH-GCAT achieving the highest Average Precision (AP = 0.777).

- **Stability of Precision:** As Recall increases, NH-GCAT maintains a superior Precision level compared to all baselines. For instance, at a Recall of 0.8, NH-GCAT sustains a Precision above 0.7, whereas most baselines drop below 0.65.
- **Robustness to False Positives:** The gap between NH-GCAT and the cluster of baselines (e.g., GIN, CI-GNN) highlights that our neurocircuitry-inspired architecture effectively reduces false positive predictions even when the decision threshold is relaxed.

Figure 9: **Overlaid Performance Curves on REST-meta-MDD (Internal 5-fold CV).** (a) NH-GCAT achieves the highest AUC (0.785), showing superior sensitivity at low false positive rates. (b) The model maintains the highest Average Precision (AP = 0.777), indicating stable performance across decision thresholds.

C.4.2 EXTERNAL GENERALIZATION ON SRPBS

To rigorously evaluate clinical transferability, Figure 10 presents the overlaid curves on the independent **SRPBS** dataset. These results represent a **zero-shot** setting, where models trained on REST-meta-MDD were applied directly to SRPBS without any fine-tuning.

ROC Analysis (Figure 10a): Despite significant domain shifts caused by different scanner protocols, NH-GCAT (solid blue line) maintains a distinct performance advantage.

- **Robustness to Domain Shift:** While most baseline methods (e.g., LCCAF, CI-GNN) suffer from severe performance degradation—with curves flattening towards the diagonal chance line, NH-GCAT preserves a convex shape, achieving the highest AUC of 0.698. This indicates that the neurocircuitry-inspired features are biologically invariant rather than site-specific artifacts.

1944
 1945
 1946
 1947
 1948
 1949
 1950 • **Comparison with Strong Baselines:** Even compared to the best-performing baseline (GPS, light blue line, AUC = 0.656), NH-GCAT shows a consistent margin of improvement. Notably, in the critical low-FPR region ($x < 0.2$), NH-GCAT **demonstrates a significantly steeper ascent compared to the cluster of baseline methods, establishing a clear performance margin even against the strongest competitors.**

1951 **Precision-Recall Analysis (Figure 10b):** The PR curves highlight the challenge of the zero-shot task yet confirm NH-GCAT’s stability.

1952
 1953 • **Superior Precision Envelope:** NH-GCAT achieves the highest Average Precision (AP = 0.689), significantly outperforming the next best method (BrainIB, AP = 0.629). As shown in the plot, the NH-GCAT curve consistently stays above all others.

1954
 1955 • **Reliability at High Sensitivity:** A key observation is the “tail” of the PR curve. At high recall levels (> 0.8), where most models converge to the baseline prevalence (grey dashed line), NH-GCAT maintains higher precision. This suggests that even when pushed to identify the majority of patients in a new dataset, our model introduces fewer false positives than competing methods.

1979 **Figure 10: Overlaid Generalization Curves on SRPBS (Zero-Shot Transfer).** Models trained on
 1980 REST-meta-MDD were tested directly on SRPBS without fine-tuning. (a) NH-GCAT (Red) signif-
 1981 icantly outperforms baselines, demonstrating superior robustness to domain shifts. (b) Precision-
 1982 Recall curves confirm that NH-GCAT offers the most reliable clinical utility in unseen domains.