Under review as a conference paper at ICLR 2026

NEUROCIRCUITRY-INSPIRED HIERARCHICAL GRAPH
CAUSAL ATTENTION NETWORKS FOR EXPLAINABLE
DEPRESSION IDENTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Major Depressive Disorder (MDD), affecting millions worldwide, exhibits com-
plex pathophysiology manifested through disrupted brain network dynamics.
Although graph neural networks that leverage neuroimaging data have shown
promise in depression diagnosis, existing approaches are predominantly data-
driven and operate largely as black-box models, lacking neurobiological inter-
pretability. Here, we present NH-GCAT (Neurocircuitry-Inspired Hierarchical
Graph Causal Attention Networks), a novel framework that bridges neuroscience
domain knowledge with deep learning by explicitly and hierarchically modeling
depression-specific mechanisms at different spatial scales. Our approach intro-
duces three key technical contributions: (1) at the local brain regional level, we
design a residual gated fusion module that integrates temporal blood oxygenation
level dependent (BOLD) dynamics with functional connectivity patterns, specif-
ically engineered to capture local depression-relevant low-frequency neural os-
cillations; (2) at the multi-regional circuit level, we propose a hierarchical cir-
cuit encoding scheme that aggregates regional node representations following es-
tablished depression neurocircuitry organization, and (3) at the multi-circuit net-
work level, we develop a variational latent causal attention mechanism that lever-
ages a continuous probabilistic latent space to infer directed information flow
among critical circuits, characterizing disease-altered whole-brain inter-circuit in-
teractions. Rigorous leave-one-site-out cross-validation on the REST-meta-MDD
dataset demonstrates NH-GCAT s state-of-the-art performance in depression clas-
sification, achieving a sample-size weighted-average accuracy of 73.3% and an
AUROC of 76.4%, while simultaneously providing neurobiologically meaningful
explanations. This work represents a significant advancement toward mechanism-
aware, explainable artificial intelligence (AI) systems for psychiatric diagnosis.

1 INTRODUCTION

Major Depressive Disorder (MDD) is a leading cause of disability worldwide, with substantial in-
dividual and societal burden (Yan et al., 2019} [Ferrari et al., 2013} Nestler et al., 2002). Early and
accurate identification is critical for improving clinical outcomes, yet the neurobiological mecha-
nisms underlying MDD remain poorly understood, posing significant challenges for objective diag-
nosis (Duman & Aghajanian, |2012; Drysdale et al.,|2017). Recent advances in functional magnetic
resonance imaging (fMRI) have enabled large-scale mapping of brain network dynamics, facilitat-
ing the identification of depression by analyzing altered functional connectivity patterns (Mulders
et al.| 2015). Since the brain network topology revealed by fMRI signals can be naturally described
by graph models, Graph neural networks (GNNs) have shown promise for neuropsychiatric disor-
der classification (Ktena et al., 2017 [Parisot et al., 2018} [Bessadok et al.l 2022; [Wu et al., [2020;
Isufi et al., 2021} |[Zheng et al. |2024c). By representing brain regions as nodes and their functional
or structural relationships (like functional connectivity (FC)) as edges, GNNs can flexibly capture
the topological and dynamic properties of brain networks. Typical GNN architectures stack multi-
ple graph convolutional layers with generic message passing and aggregation schemes, followed by
readout layers for classification, enabling the extraction of connectivity patterns relevant to MDD.
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Specifically, current neuroscience findings have indicated that depression pathophysiology man-
ifests across multiple spatial scales of brain organization, each with distinct characteristics that
present unique modeling challenges, as shown in Figure [I] At the local level, MDD patients ex-
hibit altered temporal dynamics and frequency-specific neural oscillatory patterns, particularly in
low-frequency bands associated with rumination and deficits in emotional processing (Ding} 2025
Calhoun et al.| [2014). At the circuit level, dysfunctional integration within neural networks such as
the default mode (DMN), salience (SN), frontoparietal (FPN), limbic (LN), and reward (RN) net-
works contributes to cognitive and emotional symptoms, with each circuit showing specific patterns
of dysregulation (Johnson et al.l 2024} [Menon, [2011}; [Kaiser et al., 2015} |Hamilton et al.| 2011}
Whitfield-Gabrieli & Ford, |2012; Noman et al., 2024). At the network level, aberrant causal re-
lationships among the above circuits characterize the global dysregulation observed in MDD, with
altered information flow and hierarchical control processes (Presigny & De Vico Fallani, 2022} [Fris-
tonl 2011; |Vidaurre et al., [2017} [Morishima et al.| {2025} |Yeo et al., 2011} |Csukly et al.| 2024; [Pearl,
2009). Developing computational models that incorporate structured neurobiological knowledge is
crucial for improving both predictive performance and mechanistic interpretability in MDD identi-
fication (Von Rueden et al.l 2021} Jiang et al., 2022; Munroe et al.| 2024; Ali et al., 2023)).

Here, we propose the Neurocircuitry-Inspired Hierarchical Graph Causal Attention Networks (NH-
GCAT), a novel framework that bridges the gap between neuroscience and deep learning for ex-
plainable MDD identification. NH-GCAT systematically models depression-specific mechanisms
across three spatial scales: 1) at the local brain regional level, we design a residual gated fusion
(RG-Fusion) module that integrates temporal BOLD features with functional connectivity patterns,
specifically engineered to capture depression-relevant low-frequency neural oscillations that con-
ventional static FC approaches often overlook; 2) at the multi-regional circuit level, we propose a
hierarchical circuit encoding scheme (HC-Pooling) that aggregates node representations following
the established structure of depression-related circuits (DMN, FPN, SN, LN, RN). This biologically-
informed operation enables modeling of dysregulated inter-regional communication, extraction of
circuit-specific functional alterations, and interpretation of how local abnormalities propagate to
network-level dysfunction, yielding features aligned with depression neurobiology; 3) at the multi-
circuit network level, we develop a variational latent causal attention mechanism (VLCA) that lever-
ages a continuous probabilistic latent space to infer directed information flow among critical circuits,
characterizing disease-altered whole-brain inter-circuit interactions and providing mechanistic ex-
planations for network-level dysfunctions in MDD.

Our contributions are summarized below: 1) We present a principled approach for integrating
depression-specific neurocircuitry knowledge into GNN-based models; 2) We design novel modules
(RG-Fusion, HC-Pooling and VLCA) for temporal dynamics integration, hierarchical aggregation
and variational latent causal attention that enhance both predictive accuracy and interpretability; 3)
We provide extensive empirical evidence that NH-GCAT not only achieves superior classification
results but also uncovers mechanistic insights into MDD-related brain network alterations.
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2 RELATED WORK

Brain Network Identification and Interpretability for MDD. Recent advances in graph neural
networks (GNNs) have demonstrated promising results in brain network analysis (Ktena et al., 2017}
Parisot et al., [2018; [Yu et al., [2024; |Dai et all [2024). These approaches succeed in employing
message passing mechanisms to capture region-wise interactions (Kang et al., |2024). For MDD
classification specifically, existing GNNs primarily rely on static functional connectivity matrices
as input features and treat brain regions as homogeneous nodes without considering their distinct
neurobiological roles (Liu et al., |2024bj |[Zheng et al., [2024a). While some recent works (Kong
et al., |2025; [Zhao & Zhang, 2024)) attempt to incorporate temporal information through sequence
modeling, they often fail to effectively capture the low-frequency oscillatory patterns that are crucial
for depression diagnosis.

Current interpretable approaches in neuroimaging broadly fall into two categories: post-hoc expla-
nation methods and architecture-constrained models. Post-hoc methods, including attention visu-
alization and feature attribution (Zheng et al., [2024c; Rudin, 2019} [Zhang et al., 2023 [Sundarara-
jan et al., 2017; |Velickovi€ et al., 2018), provide limited insight into neurobiological mechanisms.
Architecture-constrained approaches incorporate anatomical priors (Von Rueden et al.| 2021} Zheng
et al.} 2024bj Liu et al.l [2024a; Jiang et al.,2020), but typically treat these as static constraints rather
than modeling dynamic disease processes.

Techniques for Neural Circuit Modeling. Residual gating mechanisms have demonstrated suc-
cess in natural language processing (Tai et al.l 20155 |Greff et al., 2016; |Choi et al., 2018)) and time
series analysis (Bresson & Laurent, [2017; |Chen et al., 2019} |Afzal et al.| 2024]), allowing models to
selectively integrate information streams. When applied to neural time series data such as EEG, ap-
proaches like HybGNN (Wang et al., |2024)) effectively capture temporal dynamics. However, unlike
EEG’s high temporal resolution, fMRI analysis requires modeling specific low-frequency BOLD
oscillations for MDD, necessitating specialized fusion mechanisms beyond standard sequence mod-
eling. Dynamic functional connectivity (Damaraju et al., 2014) and frequency-specific neural oscil-
lations (Tadayonnejad et al.l [2016) have been extensively investigated in fMRI research; however,
their integration with graph neural networks remains limited.

Hierarchical representation learning in graph structures has shown significant utility across domains
including molecular property prediction and social network analysis (Ying et al., 2018). Recent
Transformer-based methods have begun to leverage community structures in brain networks. For in-
stance, Com-BrainTF (Bannadabhavi et al.,|2023)) and BrainGT (Shehzad et al.,2024) utilize prompt
tokens or dual-attention to capture functional communities, while BioBGT (Peng et al., [2025) and
THC (Dat et al [2023) employ spectral entropy or data-driven clustering to encode small-world
properties. Most approaches, however, employ generic clustering objectives rather than leveraging
domain-specific organizational principles. In contrast to these data-driven or soft-attention methods,
our approach explicitly enforces a bottom-up aggregation based on established depression neuro-
circuitry to ensure mechanistic interpretability. In neuroscience, hierarchical approaches have been
applied to structural brain networks and functional parcellations (Csukly et al.| [2024; [Liu et al.
2024a; Jiang et al., |2020), but rarely incorporate established circuit-level knowledge. The potential
to align hierarchical graph representations with known neurocircuitry organization could signifi-
cantly improve both model performance and interpretability in MDD identification.

Variational approaches for inferring latent graph structures (Sanchez-Martin et al.,|202 1} Bahuleyan
et al} |2017) and disentangled representations (Jeong & Song, [2019; Yang et al., [2021) have shown
success in uncovering hidden relationships in complex data. Causal methods such as dynamic causal
modeling (Friston, 2011} Pearl, [2009) and Granger causality (Seth et al., 2015) provide frameworks
for understanding information flow. Notably, BrainOOD (Xu et al.|[2025) proposes causal subgraph
learning for out-of-distribution generalization (invariant learning). While BrainOOD aims to re-
move environmental bias, our work focuses on inferring effective connectivity (directed information
flow) to explain pathophysiological mechanisms. Existing approaches that model causality in graph-
structured data (Sanchez-Martin et al., [2021; Behnam & Wang, 2024; Wang et al.| 2023} |Sui et al.,
2022; |Wang et al., |2022) primarily focus on region-level interactions, leaving circuit-level causal
relationships - which align better with neuroscientific theories of depression - relatively unexplored.
The integration of probabilistic causal modeling with circuit-level analysis represents a promising
avenue for advancing mechanistic understanding of MDD.
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Figure 2: The overall framework of the proposed NH-GCAT. BOLD: Blood Oxygenation Level
Dependent; FC: Functional Connectivity; MDD: Major Depressive Disorder; HC: Healthy Control.

3 METHODOLOGY

We present NH-GCAT (Neurocircuitry-Inspired Hierarchical Graph Causal Attention Networks),
a novel framework that integrates neuroscientific domain knowledge with deep learning for ex-
plainable and accurate depression classification. As illustrated in Figure 2] NH-GCAT comprises
three principal components: 1) RG-Fusion: a residual gated fusion module for integrating temporal
BOLD dynamics with functional connectivity patterns, 2) RC-Pooling: a hierarchical circuit encod-
ing scheme that aggregates node representations according to established depression neurocircuitry,
and 3) VLCA: a variational latent causal attention mechanism for modeling and interpreting inter-
circuit interactions. The rationale behind these key architectural design choices is further elaborated

on Appendix [A.3]

Problem Formulation. Given resting-state fMRI (rs-fMRI) data from N subjects, our objective
is to classify each subject as either major depressive disorder (MDD) or healthy control (HC). For
each subject ¢, we obtain a static feature matrix XZ(.I) € R™ ™, which includes the functional
connectivity (FC) matrix computed as the pairwise Pearson correlation between BOLD signals, as
well as clinical variables such as age, sex, and education. Additionally, we have a time series matrix
of BOLD signals XE2) € R"*T where n is the number of brain regions (ROIs) and T is the number
of time points. Each subject is assigned a binary label 3(*) € 0,1, indicating HC (0) or MDD
(1). We represent each subject’s brain as a graph G; = (V;, &, XEI), ng)), where V; denotes the
set of ROIs and &; encodes the functional connection based edges. The goal is to learn a function
f G — 0,1 that achieves accurate classification and provides interpretable, neuroscientifically
meaningful explanations.

Residual Gated Fusion for Temporal Dynamics Integration (RG-Fusion). The RG-Fusion mod-
ule is designed to effectively integrate complementary information from both static functional con-
nectivity patterns and temporal BOLD dynamics. This integration is crucial for capturing the full
spectrum of neural activity characteristics in rs-fMRI data, particularly the low-frequency fluctua-
tions that are clinically significant in depression neuroimaging. The RG-Fusion module processes
X1 and X through parallel pathways as follows:

Temporal Feature Processing. The temporal BOLD signals X(?) are processed through a trans-
former encoder to capture global dependencies:

Hiemp = TransformerEncoder(X(z)) € R"x4 1)

where d is the latent dimension. The output is further concatenated with the original static features
X (™) and then refined using GraphEncoder module, which dual-path graph convolutions (SAGE-
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Conv and GATConv), to capture both local and global topological properties:

Ziemp = GraphEncoder(Hyemp, £) € R™*? )

The processing of GraphEncoder can be formulated as:
H, = Concat(XM, Hiepp) € Rm*d 3)
Ziemp = Concat(SAGEConv(Hy, £), GATConv(Hy, £)) € Rrxd’ @)

Static Feature Processing. Simultaneously, the static features X(!) are processed through fully
connected layers (MLP) followed by Gate module and graph attention convolution:

Zetatic = GATConv(Gate(MLP (X)), Hiemp), £) € R™* 5)

Gate Module. The Gate module leverages an adaptive gating mechanism to selectively integrate
information from both pathways, ensuring that the distinctive characteristics of each are effectively
retained and utilized:

G =0(Wy[Zi | Z]+by) €ER, Zpyea =GO Z1+(1-G)©Zy e R (6)

where ¢ is the sigmoid activation function, W, and b, are learnable parameters, | denotes concate-
nation, and  represents element-wise multiplication. Z; and Zs denote the two feature vectors that
need to be fused.

Residual Connection. We enhance feature discriminability through a hierarchical two-stage atten-
tion mechanism coupled with residual gated fusion. First, FeatureAtttention adaptively weights
temporal features for each node, followed by NodeAtttention which focuses on depression-relevant
brain regions. The attended features H,,, are then combined with Ze,;, via residual gating, and
integrated with Zgtatic to produce the final representation Zgy,,).

Hﬁnal = Gate (Ztempv Hattn) S RnXda Zﬁnal = Concat (Hﬁnal, ZStatic) c Rnxd/ (7)

Zg. is transformed through a variational encoder to obtain Z.,, yielding a continuous latent rep-
resentation that encapsulates both static network properties and dynamic temporal characteristics
of brain activity, providing a comprehensive embedding for subsequent modules in the NH-GCAT
framework.

Hierarchical Circuit Encoding (HC-Pooling). To incorporate neurobiological priors, we design
a hierarchical circuit encoding scheme that aggregates node representations according to the estab-
lished organization of depression-related neural circuits.

Circuit-specific Node Assignment. Let C = ¢y, ..., c5 be depression-related circuits (DMN, SN,
FPN, LN, RN). For each circuit c;, we define VCJ. C V as its constituent regions based on neu-
roanatomical knowledge.

Adjacency Reconstruction. For V., we derive FC matrix A (%) by fusing subject and group-level
FC priors via a learnable gating mechanism:

3

Al = " softmax(MLP(Z{#))) - Ay (8)
k=1

where A, A,, and A3 represent individual functional connectivity, MDD group-level average con-

nectivity, and HC group-level average connectivity matrices, respectively.

Top-down Hierarchical Organization. For each neural circuit c;, we employ a differentiable top-

down hierarchical organization approach using Gumbel-Softmax to assign nodes to different hierar-

chical levels. First, we compute node embeddings using a Graph Convolutional Network:

H') = GON(Z), L)) ©)
We then assign nodes to three hierarchical levels using differentiable masks:

M; = GumbelSoftmax(f(H), 7),

10
M, = GumbelSoftmax( fo(H), 7, mask = (M; <¢€)), Ms=1-M; — M, (10)

where f; and f> are linear projection, 7 is the temperature parameter for Gumbel-Softmax, and € is
a small threshold.
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Bottom-up Hierarchical Aggregation. We employ a ChildSumTreeLSTM (Tai et al., | 2015) to ag-
gregate information from lower to higher hierarchical levels. For each level [ € 3,2, 1, we compute:

h=HoM,;,, ¢g=CoM, (11D

where H and C are the hidden and cell states, ® represents element-wise multiplication.Bottom-up
aggregation proceeds as follows:

hiow, Clow = ChildSumTreeLSTM (hs, c3, M3)
hmid7 Chmid = ChildSumTreeLSTM([hlow, hg], [c10W7 CQ], Mg) (12)
hyoot, Croot = ChildSumTreeLSTM ([huia, h1], [Cmid, €1], M1)

where h and c represent the hidden and cell states from the TreeLSTM, respectively. The subscripts
’low’ and 'mid’ denote the intermediate aggregated states from the lower and middle hierarchical
levels. The final state, h,,.t, denotes the comprehensive circuit-level embedding. Accordingly, the
HC-Pooling module produces Hpyn, Hsn, Hrpn, Hin, Hry, corresponding to the aggregated
embeddings of the DMN, SN, FPN, LN, and RN circuits, respectively. The ChildSumTreeLSTM
operation is defined as:

i =0 (Wz hsum + Uz hsum) ) O0O=0 (Wo hsum + Uo hsum) 9
u = tanh (Wu hgym + Uy hsum) , fh=0 (Uf hk) , (13)
c:i®u+ka®ck, h = 0 ® tanh(c)

keN

where hgy = > k € N'hy, is the sum of child node representations, N is the set of child nodes,
and o is the sigmoid function. To guide the model toward learning clinically relevant connectivity
patterns, we constrain the learned adjacency matrix using group-level priors:

fa (14)

where A, represents the group-level connectivity prior corresponding to subject ¢’s label.

Lonse = ‘A(CJ‘) —A,,

Variational Latent Causal Attention (VLCA). To model causal interactions between neural
circuits and provide mechanistic explanations for depression, we introduce VLCA, which en-
ables counterfactual reasoning about circuit-level interactions. Given circuit-level embeddings
Hpun, Hsn, Hepn, Hin, Hry € REXd VLCA first computes attention-weighted interactions:

QK"
Vd

where H € RE*C*4 represents stacked circuit embeddings, and A™*! captures circuit interactions.
Then the attention-weighted representations are encoded into a continuous latent space:

Q. K,V=WHW,HW,H, A" =softmax ( ) . Hedl = ATy (15)

urefd’ log O,Zreal _ fencoder(Hreal)a Zreal — Nreal + o,l'eal O, € ~ N(O,I) (16)

where fencoder 18 @ neural network. For counterfactual reasoning, we replace learned attention with
an identity matrix (self-attention only):

A =1, HY = AV (17)
Using the same encoder with shared parameters:
1 1og 02 = furcoder(H), 2 = pf 4 0T @ ¢ (18)
The causal effect of circuit interactions is estimated as:
yeffect _ fpred(zreal) — fored (2 (19)
Our learning objective combines classification loss on the causal effect with KL regularization:
Lyvrea = Lor(y™™ ", y) + BDkn N (1, o) |N (kprior, 1)) (20)

where Lcg is the cross-entropy loss, D, is the Kullback-Leibler divergence, and ftprior is either
zero or the mean of the input features depending on the prior type.This formulation enables the
model to learn interpretable circuit interaction patterns, quantify their causal effect on depression
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classification, and provide insights into how altered circuit communication contributes to MDD
pathophysiology.

Training Objective. Our overall training objective combines multiple loss terms to balance classi-
fication performance, representation learning, and causal understanding:

L= Las + Mali + AvncaLlvica + AmseLmse 21

where L5 denotes the cross-entropy loss for MDD classification, Ly represents the KL divergence
regularization from the backbone’s variational encoding, and hyperparameters Ayj, Avrca, and Apse
balance these competing objectives.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Preprocessing. We utilized the REST-meta-MDD dataset, comprising 1,601 par-
ticipants (830 MDD, 771 HC) from 16 sites after rigorous quality control procedures (Yan et al.,
2019; (Chen et al., [2022). We extracted BOLD time series from 116 regions using the AAL at-
las (Tzourio-Mazoyer et al., [2002)), computed Fisher z-transformed functional connectivity, and
constructed brain graphs using k-nearest neighbors (k=40). Population-level reference graphs were
generated for MDD and HC groups to provide connectivity templates for the hierarchical circuit
encoding. Details in Appendix [A.T]

Baselines and Evaluation. We compared NH-GCAT against general-purpose graph architec-
tures (GAT (Velickovic et al., 2018), GIN (Xu et al., 2018), GraphSAGE (Hamilton et al., [2017)),
GPS (Rampasek et al.,[2022)), GCN (Kipf & Welling}, 2016)) and state-of-the-art MDD classification
methods (BrainIB (Zheng et al.,|2024c), CI-GNN (Zheng et al., 2024a), LCCAF (Kang et al.,|2024),
etc.). Performance was evaluated using accuracy (ACC), area under the ROC curve (AUC), F1-
score, sensitivity (SEN), and specificity (SPE), with 5-fold and leave-one-site-out cross-validation
protocols. Details in Appendix [A.2]

Implementation. Our model used 128-dimensional hidden layers with a 64-dimensional single-
head causal attention mechanism. We employed Adam optimizer with gradient clipping and dy-
namic weight scheduling for regularization terms. All experiments are implemented using the Py-
Torch framework, and computations are performed on one NVIDIA RTX 4090 GPU. More details
can be found in Appendix[A.4]

4.2 PERFORMANCE COMPARISON

Overall Classification Results. Table || presents a comprehensive comparison between our pro-
posed NH-GCAT model and a range of state-of-the-art methods and strong baselines on the REST-
meta-MDD dataset. NH-GCAT achieves the highest performance across four out of five metrics,
demonstrating its effectiveness for MDD classification. Specifically, NH-GCAT attains an AUC
of 78.5% (1.7), accuracy of 73.8% (1.4), specificity of 71.0% (6.6), and F1-score of 75.0% (1.8),
substantially outperforming competing models in these key metrics. Notably, NH-GCAT surpasses
the previous best AUC (75.6%) from LCCAF (Kang et al|2024) by a significant margin of +2.9%,
and improves upon the strongest accuracy (73.0%) of BPI-GNN (Zheng et al., 2024b) by +0.8%.
The F1-score exhibits a substantial gain of +2.4% over the best competing method (LGMF-GNN).
For specificity, NH-GCAT achieves 71.0%, representing a modest improvement of +0.3% over the
previous best (LCCAF, 70.7%). While NH-GCAT achieves the second-best sensitivity at 76.4%, it
falls short of GAT-Baseline’s 77.5% by only 1.1%, indicating competitive performance in detecting
MDD cases. Furthermore, we observe that external models exhibit inconsistent performance across
metrics. For instance, while LCCAF achieves competitive AUC and specificity, it shows substantial
variation in accuracy (70.2% * 8.3%). Among our implemented baselines, GAT-Baseline achieves
the highest sensitivity but suffers from poor specificity (57.2%), indicating a significant trade-off be-
tween correctly identifying positive and negative cases. In contrast, NH-GCAT maintains balanced
and robust performance across all metrics, with consistently low standard deviations, demonstrating
its stability and reliability for clinical applications where both high sensitivity and specificity are
crucial for accurate diagnosis.
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Table 1: Comprehensive performance comparison with state-of-the-art methods and baselines for
MDD classification on REST-meta-MDD dataset. The best results are marked in bold and the
second-best value is underlined. The standard deviations are in parentheses. Improvement shows
the performance gain of NH-GCAT over the best competing method for each metric.

Model AUC ACC SEN SPE F1

External models

BrainlB (Zheng et al.|[2024c) - 70.0 (2.2) - - -
MV-GNN (Zhang et al.|[2023) 66.6 (5.2) 65.6(4.3) 63.4(11.2) - 64.6 (6.0)
GC-GAN (Oh et al.||2024) - 66.8(43) 70.2(79) 63.1(84) 68.7(4.6)
DSFGNN (Zhao & Zhang|[2024) 71.6 67.1 65.4 - 67.3
BPI-GNN (Zheng et al.|[[2024b) - 73.0 (1.0) - - 72.0 (1.0)
TEM (Dai et al.[|2024} 70.7 68.6 69.8 679 -
CI-GNN (Zheng et al.|[2024a) - 72.0 (2.0) - - 70.0 (1.0)
LGMF-GNN (Liu et al.[[2024b) ~ 73.7(2.7) 71.3(1.5) 73.5(6.3) - 72.6 (2.1)
BrainNPT (Hu et al.|[2024) 70.6 (3.5) 66.7 (3.6) - - -
MSSTAN (Kong et al.|[2025) 67.1(1.4) 687(09.00 747@3.3) 59548 71.6(12)
LCCAF (Kang et al.[|2024) 75.6(1.0) 702(8.3) 69.7(27) 70.7(2.1) -
Our implemented baselines

GCN 70.6 (2.4) 658 (1.1) 67.2(10.0) 64.2(10.1) 66.8 (4.0)
GIN 70.8(2.0) 66.3(1.9) 657(144) 67.0(12.7) 66.3(5.2)
GraphSAGE 69.8(2.6) 657(1.5) 64.1(74) 673(85) 65.8(2.8)
GPS 67.6(5.0) 643(3.9) 633(16.4) 655(10.9) 63.9(8.4)
GAT-Baseline 71.53.2) 67727 71509.1) 572094) 71.2(3.3)
NH-GCAT (Ours) 785(1.7) 73.8(1.4) 764(58) 71.0(6.6) 75.0(1.8)
Improvement +2.9 +0.8 -1.1 +0.3 +2.4

Table 2: Leave-one-site-out cross-validation accuracy (%) for MDD classification across 16 sites on
REST-meta-MDD dataset. MDD and HC indicate sample sizes per site. The final column shows the
sample-size weighted average (W. Avg.).

Site

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 W.Avg.
MDD 73 16 35 54 48 45 20 20 61 30 41 18 250 79 18 22
HC 73 14 37 62 48 26 17 16 32 37 41 31 229 65 20 23

CI-GNN (Zheng et al.|2024a) 63.0 83.0 760 70.0 81.0 750 730 720 680 81.0 750 730 63.0 68.0 750 640 69.2
BrainIB (Zheng et al.[[2024c] 633 73.0 778 713 688 732 757 806 720 821 671 694 632 701 71.1 689 68.8
NH-GCAT 678 80.0 722 724 833 718 865 694 720 746 695 816 733 688 737 7718 73.3

Improvement +45 -30 -56 +1.1 +23 -32 +108 -I11.2 0.0 -75 -55 486 +101 -1.3 -1.3 +89 +4.1

Leave-One-Site-Out Generalization. Table [2| shows the leave-one-site-out cross-validation
(LOSO-CV) accuracy for NH-GCAT, CI-GNN, and BrainIB across 16 sites. NH-GCAT consis-
tently achieves higher or competitive accuracy on most sites, with a sample-size weighted-average
accuracy of 73.3%, outperforming both CI-GNN (69.2%) and BrainIB (68.8%). Specifically, NH-
GCAT attains the highest accuracy on 8 out of 16 sites, and achieves notable improvements (e.g.,
+10.8% and +10.1%) on sites 7 and 13, respectively. Nevertheless, it underperforms on a few sites
(e.g., sites 2, 3, 6, 8, 10, 11, 14, 15), which may be attributed to site-specific variations such as data
imbalance or heterogeneity in acquisition protocols. Despite these fluctuations, the overall improve-
ment in weighted-average accuracy (+4.1% over CI-GNN and +4.5% over BrainlB) demonstrates
the robustness and generalizability of NH-GCAT across diverse clinical sites. Site-specific perfor-
mance are provided in Appendix

4.3 ABLATION STUDY

Table [3] quantifies each component’s contribution to NH-GCAT’s performance. The RG-Fusion
module improves AUC (+3.3%) and accuracy (+2.5%) over the GAT baseline, with a notable in-
crease in specificity (+13.4%), demonstrating the value of integrating temporal BOLD dynam-
ics with static functional connectivity. Adding VLCA further enhances AUC (+1.1%), accuracy
(+1.8%), and F1 score (+3.1%), confirming the importance of modeling causal circuit interac-
tions. The complete model with HC-Pooling achieves statistically significant improvements over
the baseline in AUC (+7.0%), accuracy (+6.1%), specificity (+13.8%), and F1 score (+3.8%), while
maintaining competitive sensitivity performance. These results validate our neurocircuitry-inspired
design choices and their contributions to MDD classification. More details in Appendix
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Table 3: Ablation study showing the contribution of each component in the NH-GCAT framework.
The best results are marked in bold and the standard deviations are in parentheses. Increment rows
show the performance change after adding each component. *Statistically significant improvement
over GAT-Baseline (p < 0.05, Wilcoxon signed-rank test).

Model Variant AUC ACC SEN SPE F1
GAT-Baseline 71532 671727 7150.0) 572094 71.2(3.3)
+ RG-Fusion 74.8(23) 702(1.7) 69.9(109) 70.6(9.9) 70.5(4.3)
Increment +3.3 +2.5 -7.6 +13.4 -0.7
+VLCA 759(2.0) 72000 754(54) 682(65) 73.6(2.1)
Increment +1.1 +1. +5.5 -2.4 +3.1
+HC-Pooling (Full)  78.5(1.7)* 73.8(1.4)" 76.4(5.8) 71.0(6.6)" 75.0(1.8)"
Increment +2.6 +1.8 +1.0 +2.8 +1.4
Total Improvement +7.0 +6.1 -1.1 +13.8 +3.8

4.4 INTERPRETABILITY ANALYSIS

NH-GCAT provides neuroscientifically meaningful explanations for MDD pathophysiology through
three complementary analyses (Figure|3).

Frequency-specific Neural Dynamics. We validated our RG-Fusion module by separately feed-
ing low-frequency (0.01-0.08 Hz) and high-frequency (0.1-0.25 Hz) BOLD signals into the
trained model. Our RG-Fusion module shows significantly higher AUC with low-frequency inputs
(0.74240.019) versus high-frequency inputs (0.679+0.032) (p = 0.0037). This confirms that our
model captures depression-relevant neural oscillations predominantly manifested in low-frequency
BOLD dynamics, as shown in Figure [3[a).

Hierarchical Circuit Organization. Figure 3{b) visualizes our HC-Pooling module’s assign-
ment of brain regions to three hierarchical layers across neural circuits (Layer-1: high-level in-
tegration, Layer-2: intermediate processing, Layer-3: primary processing). Statistical analysis
revealed significant MDD-HC differences in key regions across circuits, including Angular_L,
Frontal_Sup_Medial L. (FSM_L), Frontal Inf Oper_ R (FIO_R), Amygdala_R, ParaHippocampal R
(PHC_R), and Caudate L. MDD exhibits: (1) increased high-level representation in DMN regions
(FSM_L, Angular_L), consistent with pathological rumination; (2) reduced high-level representation
in frontoparietal regions (FIO_R), suggesting impaired cognitive control; (3) increased low-level
representation in limbic regions (Amygdala_R), indicating less regulated emotional processing; and
(4) altered hierarchical organization in reward network regions (Caudate_L), potentially reflecting
compensatory mechanisms for reward deficits. More details can be found in Appendix

! sLayer-1sLayer-2 sLayer-3

::: E. o e %
" ) :'.‘
P A %

p=0.0037

Difference

4
25 O‘.} . &
- - “ 9
e (e N
@R‘ R ‘\R‘ L & | =DMN-Angular_L ~ DMN-FSM_L =FPN-FIO_R SN S
O LIN-Amygdala_R ~LIN-PHC_R *RN-Caudate_L
(a) Influence of frequency (b) Distribution differences of significant regions between MDD and HC  (c) Network connections (d) Network connections
in HC in MDD
in in

Figure 3: Multi-scale interpretability analysis of NH-GCAT for MDD classification.

Causal Inter-circuit Interactions. The VLCA mechanism reveals distinct patterns of information
flow among neural circuits in MDD versus HC groups, visualized in Figure [3(c-d). Quantitative
analysis of these network connections shows MDD exhibits: (1) DMN receives abnormally in-
creased input from reward networks, suggesting pathological integration of reward signals into self-
referential processing—potentially underlying negative reward prediction errors and rumination;
(2) SN receives reduced regulatory input from DMN, indicating impaired top-down modulation of
salience detection by self-referential processes; (3) LIN receives diminished regulatory signals from
DMN, reflecting weakened control over emotional reactivity; (4) LIN receives novel regulatory in-
put from FPN, suggesting emergence of compensatory top-down cognitive control over emotional
processing—potentially reflecting increased effort to regulate negative affect; (5) FPN receives in-
creased reward network input with concurrent reduction in limbic system input, suggesting altered
affective influence on cognitive control processes; and (6) LIN shows significant loss of input from
salience networks, potentially disrupting appropriate emotional responses to salient stimuli. These
circuit-level reception abnormalities align with core MDD symptoms including negative bias in
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self-referential processing, emotional dysregulation, compensatory cognitive control, and impaired
integration of salience and affective information. More analyses are provided in Appendix

5 CONCLUSION

We present NH-GCAT, a neurocircuitry-inspired hierarchical graph causal attention network that
integrates temporal dynamics, hierarchical circuit encoding, and causal interactions for explainable
MDD identification. NH-GCAT achieves state-of-the-art performance and provides interpretable
insights into depression-related brain network alterations. Our findings underscore the value of em-
bedding neuroscientific priors into deep learning frameworks to advance interpretable and clinically
meaningful neuropsychiatric diagnosis.

6 REPRODUCIBILITY & ETHICS STATEMENT
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 DATASET DETAILS

This section provides detailed information about the REST-meta-MDD dataset used in our experi-
ments, including data collection, preprocessing procedures, quality control, and demographic char-
acteristics.

A.1.1 REST-META-MDD DATASET

The REST-meta-MDD initiative (Yan et al.,|2019) constitutes the largest multi-center neuroimaging
repository for Major Depressive Disorder (MDD) research, accessible via the consortium’s official
platform’| This dataset aggregates resting-state fMRI (rs-fMRI) scans from 25 clinical centers across
China, employing standardized rs-fMRI acquisition protocols to ensure cross-site consistency. A
key methodological innovation lies in its federated preprocessing framework, where all participat-
ing sites implemented identical computational pipelines for spatial normalization and functional
connectivity estimation prior to centralized analysis. This design explicitly addresses heterogeneity
challenges in multi-site neuroimaging studies through protocol harmonization at both data acquisi-
tion and processing stages.

'Project portal: http://rfmri.org/REST-meta-MDD

14
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Sample Selection. Following the protocols established in the original REST-meta-MDD publica-
tion (Yan et al., 2019), from the initial collection of 1,300 MDD patients and 1,128 healthy controls
(HC), we selected 848 MDDs and 794 HCs from 17 sites for our analysis, yielding a preliminary
dataset of 1,642 participants. All participants provided written informed consent, and the study
protocols were approved by the local ethics committees of participating institutions.

Quality Control. Following REST-meta-MDD consortium guidelines (Chen et al., [2022), we ex-
cluded data from Site 4 due to duplication with Site 14 during quality control procedures. The
final analytical cohort comprised 1,601 participants (830 MDD, 771 HC) distributed across 16 re-
search sites after implementing standardized data cleaning protocols. This rigorous quality control
procedures ensures data reliability.

Table 4: Demographic characteristics of participants across 16 sites in the REST-meta-MDD dataset.

Sample Size Age (Mean (SD)) Education (Mean (SD)) Sex (M/F)
MDD HC MDD HC MDD HC MDD HC

Site 1 73 73 319@.1) 31.7(09.0) 13.8(3.0) 152(2.3) 30/43 32/41
Site 2 16 14 41.8(11.5) 45.6(12.1) 11.6(4.5) 10.0(4.8) 1/15 4/10
Site 7 35 37 419(11.7) 382(11.8) 11.1(4.0) 1494.1) 13/22 14/23
Site 8 54 62 3200.6) 31.1(10.6) 11.3(3.2) 13.1(2.5) 18/36 26/36
Site 9 48 48  28.6(8.7) 28.6(8.0) 13.4(29) 159(2.8) 22/26 30/18
Site 10 45 26 32.7(10.8) 327(8.1) 11.3(3.1) 12.8(2.0) 21/24 17/9
Site 11 20 17 30209.3) 3140.6) 11.23.00 15.6(2.5) 9/11 8/9
Site 13 20 16 326(8.6) 34407 13.72.2) 13.2(2.3) 8/12 5/11
Site 14 61 32 30.1(7.0) 29.6(5.0)0 13.7(3.3) 14.6(2.8) 19/42 15/17
Site 15 30 37 46.5(12.6) 39.8(14.7) 11.1(3.8) 13.1(3.8) 9/21 17/20
Site 17 41 41 21.7(3.00 20.6(1.8) 13.1(1.5) 13.8(1.6) 14727 13/28
Site 19 18 31 349(114) 352(10.2) 9.7(@3.1) 9.9 (3.9) 5/13 14/17
Site20 250 229 385(11.9) 39.6(157) 10934 13.0(3.8) 84/166  73/156
Site 21 79 65 34.1(12.1) 36.5(12.5) 11.8(27) 13.0(2.1) 34/45 28/37
Site 22 18 20 33.8(9.8) 244(7.1) 12.0@3.0) 13.3(2.1) 9/9 12/8
Site 23 22 23 262(74) 3301200 1393.2) 1434.1) 10/12 8/15

Total 830 771 34.4(11.6) 345(13.2) 119@34) 135@3.4) 306/524 316/455

Site

A.1.2 BRAIN PARCELLATION AND GRAPH CONSTRUCTION

ROI Extraction. Following preprocessing, we extracted regional BOLD time series from 116
anatomically defined regions using the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al) 2002). This atlas was selected for its established validity in neuropsychiatric re-
search and comprehensive coverage of cortical and subcortical structures implicated in depression
pathophysiology. For each subject, we derived two complementary feature sets:

* Temporal features: 116 regional BOLD time series (116 x T matrix, where T represents
the number of time points), capturing the dynamic neural activity patterns across the brain.

* Multi-dimensional static features: We implemented an overlapping sliding window ap-
proach (window length T=90, stride S=45) to extract: (1) a 116 x 116 functional connec-
tivity matrix computed as Fisher z-transformed Pearson correlations between regional time
series; (2) spectral characteristics including variance and low-frequency power (0.01-0.1
Hz) for each region, which captures neurobiologically relevant oscillations associated with
resting-state networks; and (3) demographic variables including age, sex, and education
level to account for potential confounding factors.

Brain Graph Construction. To construct brain graphs for our graph neural network approach,
we employed a k-nearest neighbors (k=40) algorithm using the functional connectivity matrix as
edge weights. This sparse graph construction approach preserves the strongest functional connec-
tions while reducing computational complexity and noise. We chose k=40 based on preliminary
experiments indicating optimal performance while maintaining physiologically plausible network
topology.
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Reference Graph Templates. We constructed group-level reference graph templates by averaging
functional connectivity matrices within diagnostic groups:

* MDD group-level template: Average connectivity pattern across all MDD subjects in the
the training set.

* HC group-level template: Average connectivity pattern across all healthy controls in the
training set.

These templates provided prior knowledge for our hierarchical circuit encoding scheme, enabling
the model to learn connectivity patterns characteristic of each diagnostic group.

A.1.3 CIRCUIT-SPECIFIC FEATURES

For neurocircuitry-informed analysis, we leveraged established neuroscientific knowledge to assign
AAL regions to five depression-relevant neural circuits: Default Mode Network (DMN), Frontopari-
etal Network (FPN), Salience Network (SN), Limbic Network (LN), and Reward Network (RN).
This assignment followed consensus mappings from multiple sources in the depression neuroimag-
ing literature (Menon, [2011}; |[Kaiser et al., 2015 [Hamilton et al.| 2011; Whitfield-Gabrieli & Ford,
2012).

A.2 BASELINE COMPARISON METHODOLOGY

In Table[T]of the main paper, we present performance comparisons between NH-GCAT and various
baseline methods. For transparency and to ensure fair comparison, we provide a detailed explanation
of our comparison methodology below.

Data Partitioning. For model evaluation, we utilized two complementary strategies:

¢ 5-fold cross-validation: Data were randomly partitioned into 5 folds with stratification to
maintain diagnostic class distribution.

» Leave-one-site-out cross-validation: Each site was sequentially held out as a test set, with
the remaining 15 sites used for developing model.

This dual evaluation approach allowed us to assess both general performance and cross-site gener-
alizability of our model.

Comparison with Published State-of-the-Art Methods. For specialized MDD classification
methods, we report performance metrics as published in their respective papers. This approach
is scientifically justified for several reasons:

1. Common Dataset: All compared methods were evaluated on the REST-meta-MDD
dataset, the same dataset used in our study. As shown in Table [5} most studies used com-
parable sample sizes (approximately 1,600 subjects), with minor variations due to different
quality control procedures.

2. Standardized Brain Atlas: The majority of compared methods (BrainIB, BPI-GNN,
TEM, CI-GNN, LGMF-GNN, BrainNPT, MSSTAN) used the AAL atlas for brain par-
cellation, matching our approach and ensuring comparable region definitions.

3. Similar Cross-validation Strategies: Most methods employed either 5-fold or 10-fold
cross-validation protocols, with LCCAF, GC-GAN, DSFGNN, and our approach specifi-
cally using 5-fold cross-validation.

Addressing Methodological Variations. While direct reimplementation of all baseline methods
would be ideal, it presents several practical challenges:

1. Implementation Complexity: Many specialized methods involve complex architectures

with numerous hyperparameters. Reimplementing these without access to original code
could introduce unintentional modifications that affect performance.
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Table 5: Detailed information about baseline methods and evaluation protocols. CV: Cross-
Validation.

Model Validation Method Atlas Sample Size Data Split
BrainlB 10-fold CV AAL 1604 (848 MDD, 794 HC)  Not specified
MV-GNN Leave-one-site-out CV AAL 1160 (597 MDD, 563 HC)  Not specified
GC-GAN 5-fold CV Harvard Oxford 477 (249 MDD, 228 HC) Not specified
DSFGNN 5-fold CV AAL 1611 (832 MDD, 779 HC)  Not specified
BPI-GNN Random split AAL 1604 (828 MDD, 776 HC) ~ 80%/10%/10%
TEM 5-fold CV AAL 1611 (832 MDD, 779 HC)  Not specified
CI-GNN Random split AAL 1604 (828 MDD, 776 HC) ~ 80%/10%/10%
LGMF-GNN 10-fold CV AAL 1570 (814 MDD, 756 HC)  Not specified
BrainNPT Random split AAL 2027 (1041 MDD, 986 HC)  80%/10%/10%
MSSTAN 10-fold CV AAL 667 (368 MDD, 299 HC)  Not specified
LCCAF 5-fold CV Craddock (CC) 1601 (830 MDD, 771 HC)  Not specified
NH-GCAT (Ours) 5-fold CV AAL 1601 (830 MDD, 771 HC)  Random stratified

2. Computational Constraints: Training multiple deep learning models on large neuroimag-
ing datasets requires substantial computational resources, particularly when hyperparame-
ter optimization is necessary for fair comparison.

3. Established Practice: In neuroimaging machine learning research, comparing with pub-
lished results on standardized datasets is an established practice, particularly when evalu-
ating on large, publicly available datasets like REST-meta-MDD.

To mitigate potential concerns about comparison fairness, we took several additional steps:

1. Our Implemented Baselines: We implemented five general-purpose graph neural net-
works (GCN, GIN, GraphSAGE, GPS, GAT) ourselves using identical preprocessing, fea-
ture extraction, and evaluation protocols as our NH-GCAT model. This provides a con-
trolled comparison with widely-used graph learning architectures.

2. Consistent Evaluation Metrics: We report the same set of evaluation metrics (AUC, ac-
curacy, sensitivity, specificity, F1 score) as used in the original papers, enabling direct
comparison.

3. Multiple Evaluation Protocols: We evaluated NH-GCAT using both 5-fold cross-
validation (for comparison with most methods) and leave-one-site-out cross-validation (for
comparison with recent state-of-the-art methods like BrainIB (Zheng et al.,2024c))), ensur-
ing comprehensive benchmarking.

4. Statistical Significance Testing: We conducted rigorous statistical tests to verify that per-
formance improvements are significant and not due to random variation.

This comprehensive approach to baseline comparison—combining published results from special-
ized methods with our own implementations of general architectures—provides a thorough and fair
evaluation of NH-GCAT’s performance within the current landscape of MDD classification meth-
ods.

A.3 ARCHITECTURAL DESIGN RATIONALE AND COMPARISON WITH ALTERNATIVES

In this section, we elaborate on the rationale behind our key architectural design choices in NH-
GCAT. Our overarching philosophy is to infuse neuroscientific domain knowledge as an architectural
inductive bias, moving beyond purely data-driven approaches to create a model that is not only
accurate but also mechanistically interpretable. We detail the specific motivations for our three core
components: Residual Gated Fusion (RG-Fusion), Hierarchical Circuit Encoding (HC-Pooling) with
ChildSumTreeLSTM, and the Variational Latent Causal Attention (VLCA) mechanism.

A.3.1 RATIONALE FOR RESIDUAL GATED FUSION (RG-FUSION)

Problem Formulation. The pathophysiology of Major Depressive Disorder (MDD) manifests in
both static and dynamic properties of brain networks. Static functional connectivity (FC) provides a

17



Under review as a conference paper at ICLR 2026

time-averaged summary of network topology, while temporal Blood Oxygenation Level Dependent
(BOLD) signals capture dynamic, moment-to-moment neural fluctuations. Critically, depression is
linked to altered low-frequency oscillations (<0.1 Hz), which are lost when relying solely on static
FC matrices. Conventional Graph Neural Network (GNN) models for MDD classification often
ignore this temporal dimension, leading to suboptimal feature extraction.

Intuition and Design. The RG-Fusion module is explicitly designed to synergistically integrate
these two complementary data modalities. It employs a dual-stream architecture:

1. A temporal pathway uses a Transformer Encoder to process the raw BOLD time series.
The self-attention mechanism is particularly adept at capturing long-range temporal depen-
dencies within the signal, which is crucial for modeling low-frequency oscillations.

2. A static pathway processes the FC matrix using standard graph convolutional layers to
learn topological patterns.

The core innovation is the adaptive gating mechanism. Instead of simple concatenation, which
would treat both feature streams equally, our gate learns to dynamically weight the importance
of temporal versus static information for each brain region. This allows the model to selectively
emphasize features most relevant to depression classification on a node-by-node basis. The residual
connection ensures stable training and prevents the loss of critical information from the primary
temporal pathway during fusion.

Comparison to Alternatives.

* Static FC-based GNNs: This is the most common approach but is fundamentally lim-
ited as it discards rich dynamic information contained in BOLD signals, particularly the
depression-relevant oscillatory patterns.

» Simple Feature Concatenation: A naive concatenation of temporal and static features
lacks the flexibility to adaptively prioritize information. Our learned gating mechanism
provides a more principled fusion, allowing the model to determine the optimal balance
between modalities, which can vary across brain regions and subjects.

A.3.2 RATIONALE FOR HIERARCHICAL CIRCUIT ENCODING (HC-POOLING) AND
CHILDSUMTREELSTM

Problem Formulation. The human brain is not a flat, homogeneous graph; it possesses a well-
established hierarchical organization. At a macroscopic level, brain regions form functional circuits
(e.g., Default Mode Network (DMN), Salience Network (SN)), which collaboratively govern com-
plex cognitive and emotional processes. Dysfunctions in MDD are often best understood at this
circuit level. Standard GNN pooling mechanisms (e.g., global mean/max/sum pooling) are agnos-
tic to this neurobiological reality, collapsing node features into a single vector and losing crucial
circuit-specific information.

Intuition and Design. The HC-Pooling module is designed to explicitly model the brain’s multi-
scale organization by aggregating regional node representations according to a predefined, neuro-
scientifically validated circuit hierarchy. This transforms node-level embeddings into circuit-level
embeddings, aligning the model’s representations with the language of cognitive neuroscience.

Justification for ChildSumTreeLSTM. To perform this hierarchical aggregation, we required an
operator capable of processing information on a tree-structured hierarchy. The choice of Child-
SumTreeLSTM over other alternatives was deliberate and principled:

1. Alignment with Hierarchical Structure: Unlike standard LSTMs or GRUs that operate
on linear sequences, TreeLSTMs are specifically designed for tree-structured data. Our
defined hierarchy, where brain regions (leaf nodes) are grouped into circuits (parent nodes),
naturally forms a tree.

2. Handling of Variable Branching Factors: The “Child-Sum” variant is particularly suit-
able for our task. Neural circuits are not uniform in size; some contain many brain regions
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(children), while others contain few. ChildSumTreeLSTM elegantly handles this variability
by summing the hidden states of all child nodes before feeding them into the LSTM cell.
This makes it a flexible and robust aggregator for real-world neuroanatomical structures.

Comparison to Alternatives.

A.3.3

» Standard LSTMs/Sequence Models: These are fundamentally incompatible as they can-
not process the non-sequential, hierarchical relationships between brain regions within a
circuit.

Generic GNN Layers for Pooling: One could stack more GNN layers to achieve a global
representation, but this does not explicitly create distinct, interpretable embeddings for
each predefined circuit. Our approach guarantees that the resulting vectors correspond to
the DMN, FPN, etc.

¢ Other Hierarchical Pooling Methods (e.g., DiffPool): Methods like DiffPool learn a
hierarchical structure in a purely data-driven manner. While powerful, our objective was
to leverage established neuroscientific knowledge as a strong prior. By using a predefined
hierarchy and a structure-aware aggregator like ChildSumTreeLSTM, we ensure that the
model’s internal organization is neurobiologically meaningful and its subsequent analyses
are directly interpretable in the context of existing depression literature.

RATIONALE FOR VARIATIONAL LATENT CAUSAL ATTENTION (VLCA)

Problem Formulation. For a model to be truly explainable, it must move beyond identifying
correlations to inferring directed influence. We need to understand how dysfunction in one neural
circuit might causally impact others. Standard attention mechanisms in GNNs identify which nodes
or features are important for a prediction but do not typically model directionality or provide a
framework for causal reasoning.

Intuition and Design. The VLCA mechanism is designed to model the directed information flow
between the high-level neural circuits derived from HC-Pooling. It achieves this through two key
innovations:

1. Variational Framework: By encoding the learned circuit interactions into a continuous

probabilistic latent space, the model learns a robust and smooth representation of inter-
circuit dynamics, capturing uncertainty in these complex biological systems.

2. Counterfactual Reasoning: The core of the causal inference lies in comparing the model’s

output under two conditions: (a) using the learned, attention-weighted interactions (real),
and (b) using a counterfactual scenario where these interactions are removed (i.e., attention
is replaced with self-attention only via an identity matrix). The difference in outcomes
allows us to estimate the causal effect of inter-circuit communication on the classification
of depression. This is integrated directly into the training objective.

Comparison to Alternatives.

* Standard Graph Attention (GAT): GAT computes scalar attention weights that indicate
feature importance. It does not inherently model the directional flow of information be-
tween high-level conceptual units (our circuits) or provide a mechanism to quantify the
causal impact of these interactions.

* Post-hoc Explainability Methods (e.g., GNNExplainer, Integrated Gradients): These
methods analyze a trained model to find important features or subgraphs. While useful, they
are separate from the learning process. VLCA integrates causal reasoning directly into the
model’s architecture and objective function. This encourages the model to learn represen-
tations that are inherently causal and interpretable from the outset, rather than attempting
to explain a black box after the fact. This architecture-constrained approach generally leads
to more robust and faithful explanations.
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A.4 IMPLEMENTATION DETAILS

This section provides comprehensive details about the architecture specifications, hyperparameter
settings, and training procedures of NH-GCAT to facilitate reproducibility.

A.4.1 ARCHITECTURE SPECIFICATIONS

Feature and Node Attention. Two-stage attention with feature-wise attention (single-head, tem-
perature=0.1) followed by node-wise attention (single-head, temperature=0.1).

Variational Encoder. 2-layer MLP (hidden dims= 32, 16) for mean and log-variance estimation.

Classifier. The final classification is performed by:

* Circuit Integration: Concatenation of circuit-level embeddings followed by a 2-layer
MLP (hidden dims=128, 64) with dropout=0.5.

* Output Layer: Linear layer with 2-dimensional output and softmax activation.

Network Dimensions. The NH-GCAT model maintains consistent hidden dimensions across its
components, with the primary embedding dimension set to 128. Specific dimensional configurations
for each module are:

* RG-Fusion: The transformer encoder for BOLD signal processing uses 4 attention heads
with a hidden dimension of 128. The subsequent graph encoding layers (SAGEConv
and GATConv) both produce 64-dimensional outputs that are concatenated to form 128-
dimensional node representations.

* HC-Pooling: Each circuit-specific hierarchical encoding maintains 128-dimensional rep-
resentations across all three hierarchical levels. The ChildSumTreeLSTM uses 128-
dimensional hidden and cell states.

* VLCA: The causal attention mechanism employs single-head attention with a 64-
dimensional output. The variational encoder projects these into a latent space with di-
mension 32.

Activation Functions. We employ Leaky ReL.U (negative slope = 0.2) for all graph convolutional
operations and MLPs within the RG-Fusion module. The gating mechanisms use sigmoid activa-
tions, while the ChildSumTreeLSTM follows the standard LSTM activation pattern with tanh and
sigmoid functions.

Normalization and Regularization. Layer normalization is applied after each transformer en-
coder block. We employ dropout (rate = 0.2) after each convolutional operation and within the
attention mechanisms. For the probabilistic components, we use a KL divergence regularization
term with dynamic weighting.

Parameters and Network Size. Our final NH-GCAT model has approximately 2.1 million train-
able parameters.

A.4.2 HYPERPARAMETER SETTINGS

Table [6] summarizes the key hyperparameters used in our experiments.

A.4.3 TRAINING PROCEDURE

We employed the Adam optimizer with an initial learning rate of le-3 and weight decay of 0.1. To
stabilize training, we implemented gradient clipping with a maximum norm of 1.0. For regulariza-
tion terms, we used dynamic weight scheduling where )y increases linearly from 0 to 0.1 during the
first 20 epochs, and A\ follows a cosine schedule between 0.2 and 1.0 over the course of training.
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Table 6: Hyperparameter settings for NH-GCAT.

Hyperparameter Value

Learning rate le-3

Weight decay 0.1

Batch size 32

Training epochs 300

Early stopping patience 20

Dropout rate 0.5

Gradient clipping norm 1.0

Ak (KL divergence weight) 0.0 — 0.1 (linear schedule)
Avica (VLCA loss weight) 1.0

Amse (MSE loss weight) 0.2 — 1.0 (cosine schedule)
Temperature for Gumbel-Softmax 1.0 — 0.5 (exponential decay)
Graph construction k£ (KNN) 40

Training proceeded for a maximum of 300 epochs with early stopping (patience = 20) based on
validation performance. The best-performing checkpoint was selected for final evaluation. During
training, we dynamically balanced loss terms by applying adaptive weight reduction when specific
loss components exceeded predefined thresholds.

For data augmentation, we employed random edge dropout (10%) during training to enhance robust-
ness. The model was trained using a 5-fold stratified cross-validation procedure, ensuring consistent
class distribution across folds. For leave-one-site-out validation, we trained on data from 15 sites
and tested on the held-out site, repeating this procedure for all 16 sites.

A.4.4 IMPLEMENTATION ENVIRONMENT

All experiments were implemented using PyTorch 2.5.1 and PyTorch-Geometric 2.6.1. For circuit-
specific operations, we developed custom extensions to PyTorch-Geometric to support hierarchical
graph operations. Our custom implementation of the ChildSumTreeLSTM was based on the DGL
(Deep Graph Library) framework but optimized for our specific hierarchical circuit structure.

A.4.5 CODE AVAILABILITY

The implementation code for NH-GCAT will be made publicly available at https://github.
com/author/NH-GCAT upon publication.

A.5 EXTENDED PERFORMANCE AND CLINICAL UTILITY ANALYSIS

To provide a more comprehensive and nuanced evaluation of the proposed NH-GCAT framework,
this section extends the performance analysis presented in the main paper. We supplement the
primary classification metrics with detailed visualizations of the Receiver Operating Characteristic
(ROC) curve, the Precision-Recall (PR) curve, and a Decision Curve Analysis (DCA). These analy-
ses, based on the 5-fold cross-validation results, offer deeper insights into the model’s discriminative
ability, its performance on the positive class (MDD), and its potential clinical utility.

A.5.1 RECEIVER OPERATING CHARACTERISTIC (ROC) ANALYSIS

The ROC curve, shown in Figure [da] illustrates the trade-off between the true positive rate (Sensi-
tivity) and the false positive rate (1 - Specificity) at various classification thresholds. A model with
strong discriminative capability will have a curve that bows towards the top-left corner.

Our NH-GCAT model achieves a mean Area Under the Curve (AUC) of 0.78640.017 across the five
folds. The consistency across folds, indicated by the narrow shaded region representing the standard
deviation, highlights the model’s stability. This result reinforces the findings from Table 1 in the
main paper, confirming that NH-GCAT is highly effective at distinguishing between individuals
with MDD and healthy controls.
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Figure 4: Comprehensive performance evaluation of NH-GCAT across 5 cross-validation folds.

A.5.2 PRECISION-RECALL (PR) ANALYSIS

While the ROC curve provides a general view of discriminative performance, the Precision-Recall
(PR) curve (Figure {ib) is particularly informative for evaluating a model’s ability to correctly iden-
tify the positive class, which in our case are the MDD subjects. This is clinically crucial, as failing
to identify a patient (a false negative) can have significant consequences.

NH-GCAT achieves a mean Average Precision (AP) of 0.777 £ 0.024. This is substantially higher
than the baseline AP of 0.518, which corresponds to the proportion of positive samples in the dataset.
The consistently high precision across a wide range of recall values indicates that when the model
identifies a subject as having MDD, it is likely to be correct, and it can do so without missing a large
number of actual MDD cases. This demonstrates the model’s reliability for screening or diagnostic
support applications.

A.5.3 DECISION CURVE ANALYSIS (DCA) FOR CLINICAL UTILITY

Beyond standard statistical metrics, it is vital to assess whether a predictive model offers tangible
benefits in a clinical setting. Decision Curve Analysis (DCA) is a method for evaluating the clinical
utility of a model by quantifying its net benefit across a range of risk thresholds for intervention.
The net benefit is calculated by balancing the benefits of true positives against the harms of false
positives.

Figure [4c| presents the DCA for our NH-GCAT model. The x-axis represents the threshold proba-
bility, which is the risk threshold at which a clinician (or a policy) would decide to intervene (e.g.,
recommend further testing or treatment). The y-axis shows the net benefit. A model is considered
clinically useful if its net benefit is higher than the two default strategies: “Treat None” (net benefit
is always zero) and “Treat All”.

The curve for NH-GCAT (Mean Model) demonstrates a positive net benefit across a wide and clin-
ically relevant range of threshold probabilities, approximately from 0.10 to 0.75. This means that
using the NH-GCAT model to guide clinical decisions would lead to better outcomes than either
treating all patients or treating none of them within this wide decision-making range. This analysis
provides strong evidence that our model’s predictions are not just statistically significant but also
translate into practical clinical value, justifying the use of a sophisticated, interpretable model for
this high-stakes task.

A.6 LEAVE-ONE-SITE-OUT CROSS-VALIDATION RESULTS

This section provides a detailed analysis of our leave-one-site-out cross-validation results, comple-
menting the summary presented in Section 4.2 (Performance Comparison). As noted in the main
paper, NH-GCAT achieves the highest accuracy on 8 out of 16 sites (50%) with an weighted-average
accuracy of 73.3% across all sites, demonstrating a +4.1% improvement over the best competing
methods.
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Table /] presents the comprehensive performance metrics for our NH-GCAT model across all eval-
uation sites in the REST-meta-MDD dataset. The results highlight our model’s ability to generalize
across heterogeneous data collection sites with varying sample sizes and demographic characteris-
tics.

Table 7: Detailed leave-one-site-out cross-validation performance metrics of NH-GCAT across 16
sites from the REST-meta-MDD dataset. For each metric, the best value is shown in bold and the
second-best value is underlined. The final row shows the sample-size weighted average.

Site (MDD/HC) Sensitivity Specificity Accuracy F1 Score AUC
Site 1 (73/73) 61.6 74.0 67.8 65.7 70.2
Site 2 (16/14) 100.0 57.1 80.0 84.2 85.3
Site 3 (35/37) 71.4 73.0 72.2 71.4 77.5
Site 4 (54/62) 72.2 72.6 72.4 70.9 76.3
Site 5 (48/48) 81.2 854 83.3 83.0 88.5
Site 6 (45/26) 68.9 76.9 71.8 75.6 69.4
Site 7 (20/17) 90.0 82.4 86.5 87.8 93.5
Site 8 (20/16) 55.0 87.5 69.4 66.7 63.4
Site 9 (61/32) 77.0 62.5 72.0 78.3 67.4
Site 10 (30/37) 76.7 73.0 74.6 73.0 78.1
Site 11 (41/41) 75.6 63.4 69.5 71.3 73.4
Site 12 (18/31) 50.0 100.0 81.6 66.7 79.4
Site 13 (250/229) 72.0 74.7 73.3 73.8 78.7
Site 14 (79/65) 60.8 78.5 68.8 68.1 71.0
Site 15 (18/20) 88.9 60.0 73.7 76.2 76.7
Site 16 (22/23) 90.9 65.2 77.8 80.0 82.4

Unweighted Average 74.5(13.7) 74.1(11.2) 74.7(5.6) 74.5(6.7) 77.0(7.9)
Weighted Average 71.9 (9.5) 74.4(79) 73344 733(5.2) 76.4(6.1)

Several key observations can be drawn from these results:

1. Robustness across sample sizes: NH-GCAT performs well on both large sites (e.g., Site
13 with 250 MDD/229 HC) and small sites (e.g., Site 7 with 20 MDD/17 HC), demon-
strating its ability to learn meaningful representations regardless of sample size. This is
particularly evident in Site 7, where our model achieves the highest accuracy (86.5%) and
AUC (93.5%) despite the limited sample.

2. Performance on balanced vs. imbalanced sites: The model maintains strong perfor-
mance on both balanced sites (e.g., Site 5 with 48 MDD/48 HC) and imbalanced sites (e.g.,
Site 12 with 18 MDD/31 HC), indicating robustness to class distribution variations.

3. Consistent sensitivity: In alignment with our findings in the main paper, NH-GCAT
demonstrates high sensitivity (74.5% average) across sites, which is clinically valuable for
depression screening applications where identifying potential MDD cases is prioritized.

4. Significant improvements on challenging sites: As noted in Section 4.2, our model shows
substantial improvements on sites where previous methods struggled, particularly on larger
sites like Site 13 (+10.1% improvement) and Site 7 (+10.8% improvement).

These detailed results further validate the effectiveness of our neurocircuitry-informed approach. By
incorporating domain knowledge about depression-related neural circuits through our hierarchical
circuit encoding scheme, NH-GCAT can better capture the complex patterns of functional dysregu-
lation characteristic of MDD across diverse clinical populations. The model’s strong performance in
this rigorous cross-validation setting demonstrates its potential for real-world clinical applications
where generalization across heterogeneous data sources is essential.
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A.7 EXTENDED ABLATION STUDIES

To thoroughly evaluate the contribution of each component in NH-GCAT, we conducted extensive
ablation studies beyond those presented in the main paper. Table [§| provides a comprehensive com-
parison of different architectural variants across all evaluation metrics.

Table 8: Extended ablation study showing the contribution of each component and design choice
in the NH-GCAT framework. The best results are marked in bold and the standard deviations are
in parentheses. *Statistically significant improvement over GAT-Baseline (p < 0.05, Wilcoxon
signed-rank test).

Model Variant AUC (%) ACC (%) SEN (%) SPE (%) F1 (%)
GAT-Baseline 71532) 67727 77.50.1) 572094 71.23.3)
+ MLP-Fusion 72.8(3.2) 6843.2) 727(099) 63.8(0.2) 70.24.3)
+ Transformer-Fusion 73.6(1.5) 69.7(2.0) 71.7(6.8) 67.6(4.4) 709 3.2)
+ RG-Fusion 748 (2.3) 70.2(1.7) 699(109) 70.6(9.9) 70.54.3)
VLCA variants (with RG-Fusion)

+ Standard attention 72.4(3.4) 683125 71.7(72) 647(6.3) 70.034)

+ Deterministic causal 74.0@3.3) 70.13.1) 70.1(11.9) 70.2(8.9) 70.5(5.1)
+ Variational (no causal) 71.9 (3.1) 67.4(19) 654(10.0) 69.5(9.8) 67.2 (3.8)

+ VLCA (full) 759 2.0) 7202.0) 754(5.4) 68.2(6.5) 73.6(22.1)
HC-Pooling variants (with RG-Fusion + VLCA)

+ I-layer hierarchy 749 (2.2) 69.6(1.5) 72427 66545 71.2(1.2)
+ 2-layer hierarchy 754 (1.8) 708 (1.1) 748143) 665(4.9) 72.6(1.5)
+ 3-layer hierarchy 785 (1.7)* 73.8(1.4)* 764(58) 71.0(6.6)* 75.0(1.8)*
+ 4-layer hierarchy 76.1 (1.8)  725(1.5) 74.1(64) 70747 73.5(2.6)

A.7.1 ANALYSIS OF VLCA VARIANTS

Building upon the RG-Fusion module, we evaluated four variants of the causal attention mechanism
to assess the contribution of both variational encoding and causal modeling:

» Standard attention: Multi-head attention without variational encoding or causal model-
ing.

* Deterministic causal: Causal attention without variational encoding.

* Variational (no causal): Variational encoding without causal modeling.

* VLCA (full): Our complete variational latent causal attention mechanism.
The full VLCA model consistently outperforms simpler attention mechanisms, with notable im-
provements in AUC (+3.5% over standard attention) and accuracy (+3.7% over standard attention).
Interestingly, the deterministic causal variant achieves the highest specificity (70.2%), while the full
VLCA model provides the best balance across all metrics. This confirms the importance of modeling

both uncertainty and directionality in relationships between neural circuits for accurate depression
classification.

A.7.2 ANALYSIS OF HC-POOLING VARIANTS

With the RG-Fusion and VLCA components in place, we compared four different depths of hierar-
chical circuit encoding to evaluate the optimal architecture for capturing depression-related neuro-
circuitry:

* 1-layer hierarchy: A shallow hierarchical structure with limited capacity to model com-
plex circuit interactions.

 2-layer hierarchy: A two-level hierarchical organization that captures basic circuit-level
relationships.
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* 3-layer hierarchy: Our complete three-level differentiable hierarchical pooling that aligns
with established neurocircuitry principles.

* 4-layer hierarchy: A deeper hierarchical structure that may introduce unnecessary com-
plexity.

Results demonstrate that the 3-layer HC-Pooling architecture achieves the best overall performance,
with AUC (78.5%), accuracy (73.8%), and F1-score (75.0%) all reaching peak values. This confirms
our hypothesis that a three-level hierarchy best captures the organizational principles of depression-
related neural circuits. While the 4-layer variant achieves comparable specificity (70.7%) to the 3-
layer model (71.0%), it shows reduced performance in other critical metrics including AUC (-2.4%),
accuracy (-1.3%), and F1-score (-1.5%), suggesting potential overfitting with excessive hierarchical
complexity. The progressive improvement from 1-layer to 3-layer hierarchy demonstrates clear
benefits of increased hierarchical depth, with AUC improving from 74.9% to 78.5%, while the
performance degradation at 4 layers indicates an optimal complexity threshold.

The ablation studies collectively demonstrate that each component of NH-GCAT contributes sig-
nificantly to its overall performance. The progressive improvements from the baseline GAT model
to the full NH-GCAT architecture highlight the value of our neuroscience-inspired approach. The
RG-Fusion module substantially enhances specificity (+13.4%), addressing the baseline’s primary
weakness, while the VLCA mechanism with full variational causal modeling outperforms simpler
attention variants, improving AUC by +1.1% and F1-score by +3.1% over RG-Fusion alone. The
3-layer HC-Pooling architecture provides the optimal hierarchical structure for modeling depression
neurocircuitry, contributing final improvements of +2.6% in AUC and +1.4% in Fl-score. These
findings support our approach to integrating neuroscience domain knowledge with deep learning for
MDD classification, with each design choice validated through systematic ablation analysis.

A.7.3 ANALYSIS OF RG-FUSION VARIANTS

To investigate whether the performance gain of RG-Fusion stems merely from the inclusion of tem-
poral data or specifically from our architectural design, we implemented two intermediate fusion
variants for comparison (Table[g)):

e MLP-Fusion: A baseline approach where temporal features (processed by a MLP) and
static FC features are naively concatenated and fused via a Multilayer Perceptron.

* Transformer-Fusion: A stronger baseline using our Transformer Encoder to extract tem-
poral dynamics, but fusing them with static features via simple summation/concatenation
without the adaptive gating mechanism.

Analysis of Results: As shown in Table |8} while incorporating temporal information generally
improves AUC compared to the static GAT-Baseline, the method of fusion is critical:

Limitations of Naive Fusion: MLP-Fusion offers only marginal improvements in AUC (+1.3%)
and Accuracy (+0.7%). It fails to fully correct the model’s bias, as evidenced by the relatively low
Specificity (63.8%).

Impact of Advanced Feature Extraction: Transformer-Fusion outperforms MLP-Fusion
(AUC 73.6% vs. 72.8%), confirming that the self-attention mechanism captures superior temporal
representations of BOLD signals compared to simpler methods.

Necessity of Adaptive Gating: Our proposed RG-Fusion achieves the best overall performance
(AUC 74.8%, ACC 70.2%). Most notably, it dramatically improves Specificity to 70.6% (a +13.4%
gain over GAT-Baseline and +3.0% over Transformer-Fusion).

Conclusion: The results suggest that depression-related patterns are not uniformly distributed across
static and dynamic modalities. The static GAT-Baseline tends to over-diagnose (High Sensitivity,
Low Specificity). By employing the residual gating mechanism, RG-Fusion dynamically weighs the
contribution of temporal vs. static features for each brain region. This effectively filters out false
positives, leading to a much more balanced and clinically reliable diagnostic model.

25



Under review as a conference paper at ICLR 2026

A.8 DETAILED INTERPRETABILITY ANALYSIS

This section provides an in-depth analysis of the interpretable components of NH-GCAT, examin-
ing how each module contributes to model explainability and offers neurobiologically meaningful
insights into MDD pathophysiology.

A.8.1 FREQUENCY-SPECIFIC NEURAL DYNAMICS ANALYSIS

To validate our RG-Fusion module’s ability to capture depression-relevant neural oscillations, we
conducted a frequency-specific analysis by separately feeding low-frequency (0.01-0.08 Hz) and
high-frequency (0.1-0.25 Hz) BOLD signals into the trained model.

Experimental Setup. We filtered the original BOLD signals into two frequency bands using a
bandpass filter implemented in the preprocessing pipeline:

» Low-frequency band (0.01-0.08 Hz): Known to contain depression-relevant neural oscilla-
tions (Calhoun et al.| [2014)

* High-frequency band (0.1-0.25 Hz): Typically considered to contain physiological noise
and artifacts

For each frequency band, we performed 5-fold cross-validation using identical train/test splits and
model parameters as in our main experiments. We then compared the classification performance
(AUC) between the two frequency bands.

Results. Figure 3[a) illustrates the performance comparison between low-frequency and high-
frequency inputs. The model achieved significantly higher AUC with low-frequency inputs
(mean=0.742, SD=0.019) compared to high-frequency inputs (mean=0.679, SD=0.032). A paired
t-test confirmed the statistical significance of this difference (p = 0.0037).

Table 9: AUC values for low-frequency and high-frequency BOLD inputs across 5-fold cross-
validation.

Fold Low-frequency AUC High-frequency AUC
Fold 1 0.7549 0.7262

Fold 2 0.7694 0.6894

Fold 3 0.7187 0.6447

Fold 4 0.7243 0.6425

Fold 5 0.7409 0.6917

Mean (SD) 0.742 (0.019) 0.679 (0.032)

Neurobiological Interpretation. These findings confirm that our RG-Fusion module effectively
captures depression-relevant neural oscillations predominantly manifested in low-frequency BOLD
dynamics. This aligns with previous research indicating that depression-related functional connec-
tivity alterations are most pronounced in the low-frequency band (Calhoun et al., 2014} Ding| [2025).
The model’s ability to leverage these frequency-specific patterns contributes to its superior classifi-
cation performance compared to models that rely solely on static functional connectivity.

A.8.2 HIERARCHICAL CIRCUIT ORGANIZATION ANALYSIS

We analyzed directional differences in hierarchical layer distributions between MDD and HC
groups across depression-related neural circuits, as shown in Figure 5] The mapping be-
tween neural circuits and AAL regions is as follows: 1) DMN: Angular_L, Angular R, Cingu-
lum_Post_L, Cingulum_Post_R, Frontal_Sup_Medical L, Frontal_Sup_Medical R, Precuneus_L, Pre-
cuneus_R; 2) FPN: Frontal Inf_Oper_L, Frontal _Inf_Oper_R, Frontal Mid_L, Frontal Mid_R, Pari-
etal_Inf L, Parietal Inf R; 3) LIN: Amygdala_L, Amygdala_R, Hippocampus_L, HIppocampus_R,
ParaHippocampal L, ParaHippocampal R; 4) RN: Caudate L, Caudate_R, Frontal Mid_-Orb_L,
Frontal Mid_Orb_R, Pallidum_L, Pallidum_R, Putamen_L, Putamen_R; 5) SN: Cingulum_Ant_L,
Cingulum_Ant R, Insula_L, Insula_R.
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Figure 5: Directional differences in hierarchical layer distributions between MDD and HC groups.

Positive values (red) indicate higher proportions in MDD, negative values (blue) indicate higher
proportions in HC. *p < 0.05, **p < 0.01.

fr

Angular_L Frontal_Sup_Medial_L [ Frontal_Inf_Oper_R
[ Amygdala_R ParaHippocampal_R Caudate_L

Figure 6: Spatial locations of the significant brain regions in the AAL atlas.

27



Under review as a conference paper at ICLR 2026

Analysis Method. For each subject, our HC-Pooling module assigned brain regions to three hier-
archical levels (Layer-1: high-level integration, Layer-2: intermediate processing, Layer-3: primary
processing). For each brain region, we calculated the proportion of subjects in each diagnostic group
(MDD and HC) that assigned the region to each layer. We then computed the directional difference
between these proportions (MDD - HC) and normalized these differences to the range [-1, 1] by
dividing by the maximum absolute difference across all regions and layers. This normalization
preserves the directionality of effects while enabling direct comparison across regions. Positive val-
ues indicate higher proportions in MDD, while negative values indicate higher proportions in HC.
Statistical significance was assessed using Chi-square tests of independence.

Results. Our analysis revealed significant between-group differences in hierarchical organization
across multiple circuits, with six regions showing statistically significant alterations (Figure [3)), and
their spatial locations in AAL atlas are shown in Figure [6]

Circuit-specific Interpretations. The directional differences reveal distinct patterns of hierarchi-
cal reorganization in MDD:

1. Default Mode Network (DMN): MDD exhibits a bidirectional reorganization with in-
creased Layer-1 representation in Frontal_Sup_Medial _L (0.39, p < 0.05) but decreased
Layer-1 in Angular_L (-0.14, p < 0.05). This suggests a functional imbalance within the
DMN, with hyperactivity in medial prefrontal regions (associated with self-referential pro-
cessing) and altered integration in parietal nodes. This pattern aligns with the pathological
rumination and altered self-focus characteristic of depression.

2. Frontoparietal Network (FPN): Frontal Inf_ Oper R shows substantially decreased
Layer-1 representation (-0.88, p < 0.05) and increased Layer-3 representation (0.74) in
MDD, indicating a significant reduction in high-level integration of this key cognitive con-
trol region. This supports the executive dysfunction hypothesis of depression, where im-
paired top-down control contributes to negative cognitive biases and difficulty disengaging
from negative stimuli.

3. Limbic Network (LIN): We observed opposing patterns in limbic regions: ParaHip-
pocampal _R showed increased Layer-1 representation (0.81, p < 0.05) while Amygdala_R
showed decreased Layer-1 (-0.74, p < 0.05) and increased Layer-2 (0.72) representation
in MDD. This suggests a reorganization of emotional processing circuits, with altered in-
tegration between memory-related (parahippocampal) and emotion-generating (amygdala)
regions, consistent with emotional dysregulation in depression.

4. Reward Network (RN): Caudate_L showed the strongest effect, with significantly higher
Layer-1 representation in MDD (0.85, p < 0.01) and lower Layer-2 (-0.68). This sub-
stantial reorganization of a key reward processing region may reflect compensatory mecha-
nisms for anhedonia, with increased high-level integration potentially serving to counteract
reward deficits.

These findings demonstrate how our HC-Pooling module captures clinically meaningful alterations
in circuit hierarchy that align with established neurobiological models of depression. The directional
nature of these differences provides novel insights into the specific reorganization patterns across
hierarchical layers that may contribute to depression pathophysiology.

A.8.3 CAUSAL INTER-CIRCUIT INTERACTION ANALYSIS

We leveraged our VLCA mechanism to examine directed information flow among neural circuits,
revealing distinct patterns of information reception in MDD versus HC groups.

Analysis Method. For each subject, we extracted the attention weights from the VLCA module,
representing the strength of directed connections between circuits. To focus on the most significant
connections while reducing noise, we first computed group averages for MDD and HC subjects,
then applied a graph pruning technique that retained only the top-2 strongest outgoing connections
(excluding self-connections) for each circuit. Finally, we normalized the weights across both groups
to facilitate between-group comparison. The normalized weights were visualized as chord diagrams
(Figure [3(c-d)).
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Results.

Quantitative analysis of the attention weights revealed several key differences in circuit-

level information reception between MDD and HC groups, as detailed in Table

Table 10: Circuit-level attention weights for MDD and HC groups after top-2 connection pruning.

Source Circuit Target Circuit HC Weight MDD Weight

DMN SN 0.846 0.652
DMN LIN 0.685 0.614
FPN DMN 0.361 0.006
FPN LIN 0.000 0.502
FPN RN 0.000 0.082
SN DMN 0.000 0.000
SN FPN 0.000 0.000
LIN DMN 0.113 0.000
LIN FPN 0.586 0.174
LIN SN 0.479 0.000
LIN RN 0.301 0.150
RN DMN 0.000 0.476
RN FPN 0.330 0.475
RN SN 0.000 1.000
RN LIN 0.398 0.000

Neurobiological Interpretation. Our analysis revealed six key alterations in circuit-level infor-
mation reception in MDD:

1.

Altered DMN Information Reception: In MDD, DMN receives significantly reduced
input from frontoparietal networks (FPN—DMN: 0.361 in HC vs. 0.006 in MDD) and
limbic networks (LIN—DMN: 0.113 in HC vs. 0.000 in MDD), while receiving novel
input from reward networks (RN—DMN: 0.000 in HC vs. 0.476 in MDD). This reconfigu-
ration suggests impaired cognitive and emotional regulation of self-referential processing,
with abnormal integration of reward signals—potentially underlying negative self-focused
rumination characteristic of depression.

. Reduced Salience Network Modulation: SN receives diminished regulatory input from

DMN (DMN—SN: 0.846 in HC vs. 0.652 in MDD) and complete loss of emotional input
from limbic networks (LIN—SN: 0.479 in HC vs. 0.000 in MDD), while receiving novel
and maximal input from reward networks (RN—SN: 0.000 in HC vs. 1.000 in MDD). This
suggests dysregulated salience attribution with abnormal prioritization of reward-related
information—consistent with altered incentive processing in depression.

. Reconfigured Limbic Network Inputs: LIN receives novel regulatory input from fron-

toparietal networks (FPN—LIN: 0.000 in HC vs. 0.502 in MDD), slightly reduced input
from DMN (DMN—LIN: 0.685 in HC vs. 0.614 in MDD), and complete loss of reward-
related input (RN—LIN: 0.398 in HC vs. 0.000 in MDD). This pattern suggests com-
pensatory cognitive control over emotional processing with concurrent disconnection from
reward systems—potentially reflecting increased regulatory effort and emotional-reward
decoupling in depression.

. Altered Frontoparietal Control Network Inputs: FPN receives increased reward net-

work input (RN—FPN: 0.330 in HC vs. 0.475 in MDD) with concurrent reduction in
limbic system input (LIN—FPN: 0.586 in HC vs. 0.174 in MDD). This suggests a shift
from emotional to reward-related influences on cognitive control processes—potentially
reflecting altered motivational influence on executive function in depression.

. Reward Network Input Reconfiguration: RN receives reduced emotional input from

limbic networks (LIN—RN: 0.301 in HC vs. 0.150 in MDD) and slightly increased input
from frontoparietal networks (FPN—RN: 0.000 in HC vs. 0.082 in MDD). This suggests
diminished emotional influence on reward processing with increased cognitive modula-
tion—potentially underlying the cognitive override of natural reward responses in depres-
sion.
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6. Global Network Reorganization: Overall, MDD exhibits a systematic shift in information
flow, with increased reward network output to other circuits, emergence of frontoparietal-
to-limbic connectivity, reduced limbic network output, and diminished frontoparietal in-
fluence on default mode processing. This global reorganization reflects fundamental alter-
ations in the hierarchical processing of self-referential, cognitive, emotional, and reward
information.

These patterns reveal a comprehensive reorganization of inter-circuit information reception in MDD,
characterized by altered regulatory inputs to self-referential processing, compensatory cognitive
control over emotional processing, abnormal reward signal integration, and fundamental discon-
nection between reward and emotional systems. This circuit-level reconfiguration aligns with core
MDD symptoms including negative self-focus, emotional dysregulation, anhedonia, and cognitive
control deficits, while providing a neurobiologically grounded framework for understanding depres-
sion pathophysiology.

A.8.4 INTEGRATION OF MULTI-LEVEL INTERPRETABILITY

The three complementary analyses above provide a comprehensive, multi-level interpretation of
depression neurobiology through the lens of our NH-GCAT model:

* Local Level (RG-Fusion): Frequency-specific analyses demonstrate the model’s height-
ened sensitivity to low-frequency neural oscillations associated with depression, thereby
facilitating effective pattern recognition and enhancing classification accuracy.

* Circuit Level (HC-Pooling): Hierarchical organization analysis reveals circuit-specific
alterations in information processing hierarchy, aligning with clinical manifestations of
depression.

* Network Level (VLCA): Causal interaction analysis uncovers altered patterns of directed
information flow among neural circuits, characterizing the global dysregulation observed
in MDD.

This multi-level interpretability not only enhances the model’s transparency but also provides mech-
anistic insights into how local neural abnormalities propagate to circuit-level dysfunction and ulti-
mately manifest as network-level dysregulation in depression.

Clinical Implications. The interpretability features of NH-GCAT offer several potential clinical
applications:

1. Biomarker Identification: The frequency-specific neural patterns identified by RG-Fusion
could serve as potential biomarkers for depression diagnosis.

2. Treatment Targeting: The circuit-specific hierarchical abnormalities revealed by HC-
Pooling could guide targeted interventions such as transcranial magnetic stimulation (TMS)
or deep brain stimulation (DBS).

3. Monitoring Disease Progression: The causal circuit interactions quantified by VLCA
could be used to monitor disease progression and treatment response.

These interpretability analyses demonstrate how NH-GCAT bridges the gap between data-driven
machine learning and neuroscientific understanding, offering both predictive power and mechanistic
insights into depression pathophysiology.

A.9 DISCUSSION ON CLINICAL RELEVANCE AND FUTURE DIRECTIONS

Beyond classification accuracy, a primary goal of developing mechanism-aware models like NH-
GCAT is to bridge the gap between computational findings and clinical practice. This section dis-
cusses the clinical relevance of our model’s neurobiological findings, particularly those from the
Variational Latent Causal Attention (VLCA) module, and outlines a key future direction in person-
alized psychiatry.
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Alignment with Known Pathophysiology. Our VLCA module identified abnormally increased
directed information flow from the Reward Network (RN) to the Default Mode Network (DMN)
as a significant feature distinguishing individuals with MDD from healthy controls. This finding
is highly congruent with established neurobiological theories of depression. It provides a plausible
mechanistic link between two core symptom domains: anhedonia (a blunted response to reward,
associated with RN dysfunction) and pathological rumination (maladaptive, self-referential thought,
associated with DMN hyperactivity). The model’s discovery suggests a pathway through which
dysfunctional reward signals are pathologically integrated into the brain’s self-referential processing
stream, perpetuating a cycle of negative self-focus and diminished pleasure.

Alignment with Treatment Mechanisms. Crucially, the inter-circuit connections highlighted by
our model are not merely statistical artifacts; they represent known targets for antidepressant in-
terventions. The DMN, and its connectivity with other large-scale networks, is a well-established
locus of modulation for various treatments, including Selective Serotonin Reuptake Inhibitors (SS-
RIs). For instance, multiple studies have demonstrated that successful antidepressant treatment
is associated with the normalization of DMN connectivity patterns (Dunlop et al., |2017). There-
fore, the RN—DMN hyperconnectivity identified by NH-GCAT represents a clinically relevant and
treatment-sensitive neurobiological signature, validating that our model is learning features with
genuine clinical significance.

Potential for Predicting Therapeutic Response and Personalized Medicine. The strong align-
ment between our model’s findings and known treatment mechanisms points directly to a critical
future application: predicting individual therapeutic response. While traditional group-level analy-
ses can identify general biomarkers, NH-GCAT can quantify the strength of these directed circuit
interactions (e.g., the RN—DMN connection) on a subject-specific basis. This capability allows for
the formulation of a precise, testable clinical hypothesis: The baseline magnitude of RN—DMN in-
formation flow in a patient, as quantified by our VLCA module, may serve as a predictive biomarker
for their response to therapies known to target reward and rumination circuits.

For example, patients exhibiting extreme hyperconnectivity might be predicted to respond more fa-
vorably to treatments designed to decouple these systems, such as specific classes of antidepressants,
ketamine, or targeted psychotherapies like cognitive behavioral therapy.

Validating this hypothesis requires longitudinal datasets containing pre- and post-treatment neu-
roimaging data, which was beyond the scope of the current study. Nevertheless, the ability of NH-
GCAT to generate such specific, interpretable, and individual-level neurocomputational markers
underscores its potential as a tool for advancing personalized psychiatry, moving beyond one-size-
fits-all diagnostic labels toward biologically informed, individualized treatment strategies.

A.10 FURTHER DISCUSSION

Limitations. While NH-GCAT demonstrates strong performance and interpretability, several lim-
itations remain. First, the model is trained and evaluated solely on the REST-meta-MDD dataset,
which predominantly comprises Chinese participants. This may limit its generalizability to pop-
ulations with different genetic backgrounds or cultural contexts. Second, depression is inherently
heterogeneous, yet our current framework does not distinguish between clinical subtypes due to lim-
ited phenotypic information. Third, our neurocircuitry-inspired design relies on predefined circuit
definitions from the literature, potentially overlooking individual variability in circuit organization.

Potential Societal Impacts. Given that our research involves psychiatric disorder diagnosis, it is
important to consider its broader societal implications. NH-GCAT has the potential to enhance our
understanding of depression neurobiology and improve diagnostic accuracy, particularly in cases
where traditional clinical assessment is challenging. By providing objective, brain-based markers of
depression, our approach could help reduce stigma associated with psychiatric disorders and vali-
date patients’ experiences. However, as with any Al-assisted diagnostic system, NH-GCAT should
be viewed as a complementary tool to support clinical decision-making rather than replace compre-
hensive psychiatric evaluation. The final diagnostic decisions should always integrate neuroimaging
findings with clinical expertise and patient-reported symptoms. As we move toward clinical transla-
tion, developing appropriate guidelines for responsible implementation will be essential.
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B LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
assistance tool. The primary role of the LLM was to aid in polishing the text by improving grammar,
clarity, style, and conciseness. The LLM was not used for generating core research ideas, proposing
methodologies, conducting experiments, analyzing results, or drawing scientific conclusions. All
claims, results, and the scientific narrative remain the original work of the authors, who take full
responsibility for all content presented in this paper.

C EXTENDED COMPARATIVE ANALYSIS AND EXTERNAL GENERALIZATION

To ensure the robustness of our findings and address potential variations in experimental setups
across published works, we conducted two additional rigorous evaluations: (1) a controlled re-
production of baseline methods under identical experimental conditions on the REST-meta-MDD
dataset, and (2) an external zero-shot generalization test on an independent dataset (the Japanese
Strategic Research Program for the Promotion of Brain Science (SRPBS)) to evaluate cross-dataset
transferability.

C.1 SRPBS DATASET AND PREPROCESSING

To evaluate the generalization capability of NH-GCAT, we utilized the Japanese Strategic Research
Program for the Promotion of Brain Science (SRPBS) multi-site dataset. The SRPBS-MDD rs-
fMRI dataset comprises N = 336 subjects (171 MDD, 165 HC) collected from 5 distinct clinical
centers in Japan. This dataset introduces significant domain shifts regarding scanner protocols and
population demographics compared to the REST-meta-MDD dataset.

The participant demographics are as follows: The mean age was 42.3 &+ 13.1 years (range 18-80),
with the MDD group averaging 40.8 & 10.3 years and the HC group 43.9 £ 15.3 years. The sex
distribution was balanced, with 167 males (49.7%) and 169 females (50.3%). For the MDD group,
the mean Beck Depression Inventory-II (BDI-II) score was 26.8 4+ 10.7, indicating moderate to
severe depressive symptoms. We applied the same preprocessing pipeline and feature extraction as
described in Appendix [A.T|to ensure feature alignment.

C.2 CONTROLLED BASELINE REPRODUCTION ON REST-META-MDD

While Table[T]in the main text reports metrics directly from original publications to provide a broad
context, Table[TT]| presents a strictly controlled comparison. Here, we re-evaluated all general graph
baselines and a subset of state-of-the-art methods (BPI-GNN, BrainIB, CI-GNN, LCCAF) for which
official code was open-source and reproducible in our environment. All models in this comparison
were trained using the exact same 5-fold cross-validation splits and hardware setup as NH-GCAT to
eliminate variations arising from data partitioning or computational resources.

1. General Graph Baselines: GCN, GIN, GraphSAGE, GPS, and GAT, which were imple-
mented within our framework.

2. Reproducible SOTA Methods: A subset of specialized MDD classification models (BPI-
GNN, BrainIB, CI-GNN, and LCCAF) selected based on the availability and reproducibil-
ity of their open-source code.

Results Analysis. As shown in Table@ under these strictly controlled conditions, NH-GCAT con-
tinues to demonstrate state-of-the-art performance, achieving the highest AUC (78.5%), Accuracy
(73.8%), and Fl-score (75.0%). Notably, while simple architectures like GAT achieve high sen-
sitivity (77.5%), they suffer from significant drops in specificity (57.2%), indicating a bias toward
positive class prediction. In contrast, NH-GCAT maintains a balanced profile (Sensitivity: 76.4%,
Specificity: 71.0%), confirming that our hierarchical causal modeling effectively distinguishes true
depressive patterns from healthy controls without overfitting to the majority class or noise. Among
the specialized SOTA methods, BrainIB remains the strongest competitor but still lags behind NH-
GCAT by 5.9% in AUC and 3.5% in F1-score.
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To further visualize the stability of NH-GCAT, Figure [/| displays the Receiver Operating Charac-
teristic (ROC) and Precision-Recall (PR) curves across the 5-fold cross-validation on REST-meta-
MDD. The shaded regions represent the standard deviation across folds. The ROC curves (Figure
[7h) demonstrate a consistent convex shape with minimal variance, confirming that the model’s dis-
criminative power is robust to data partitioning. Similarly, the PR curves (Figure[7p) maintain high
precision even at higher recall levels, indicating that the model effectively minimizes false posi-
tives—a crucial capability often compromised in imbalanced psychiatric datasets.

Table 11: Performance comparison on the REST-meta-MDD dataset comparing NH-GCAT against
general graph baselines and selected reproducible SOTA methods (5-fold cross-validation). All
models were trained and tested on identical data splits. Best results are bolded; second best are
underlined.

Model AUC ACC SEN SPE F1
External SOTA models (Re-implemented)

BPI-GNN 70.1(4.8) 67.2(29) 7348.1) 60.6(6.5) 69.73.7)
BrainIB 72.6 (4.0) 704 (3.4) 72.0(6.0)0 68647 71.5(3.8)
CI-GNN 69.5(4.3) 66.5(3.4) 645(9.6) 68.6(11.6) 66.3(4.6)
LCCAF 61.8(3.1) 623(2.0) 613(82) 633(09.2) 62.6(3.6)
General Graph Baselines

GCN 70.6 2.4) 658(1.1) 67.2(10.0) 64.2(10.1) 66.8(4.0)
GIN 70.8(2.0) 66.3(1.9) 65.7(14.4) 67.0(12.7) 66.3(5.2)
GraphSAGE 69.8 (2.6) 65.6(1.5) 64.1(74) 673(8.5) 65.8(2.8)
GPS 67.6 (5.0) 643(3.9) 633(164) 655(109) 63.9(8.4)
GAT 71.53.2) 67.727) 771509.0) 572094 71.2@3.3)
NH-GCAT (Ours) 78.5(1.7) 73.8(1.4) 76.4(5.8) 71.0(6.6) 75.0(1.8)
Improvement +5.9 +34 -1.1 +2.4 +3.5

C.3 EXTERNAL GENERALIZATION TO SRPBS

To assess clinical utility, we performed a zero-shot evaluation where models trained on REST-meta-
MDD were directly tested on the SRPBS dataset without any fine-tuning. This represents a chal-
lenging scenario due to significant differences in scanner manufacturers and acquisition protocols
between the two datasets.

Results Analysis. Table[I2]summarizes the external validation performance. As expected, all mod-
els experienced a performance drop compared to internal cross-validation, reflecting the domain
shift. However, NH-GCAT demonstrated superior generalization capabilities:

* Overall Discriminability: NH-GCAT achieved the highest AUC (69.8%) and Accuracy
(65.7%), significantly outperforming the next best method (GPS) by +4.2% in AUC and
+2.5% in Accuracy. This indicates that the latent representations learned by NH-GCAT are
more robust to site-specific noise.

* Balanced Predictions: While models like GCN achieved high sensitivity (81.4%), their
specificity collapsed to 38.4%, suggesting the model generalized poorly by over-predicting
the pathological class. Similarly, BrainIB skewed towards specificity (60.7%) at the cost of
sensitivity. NH-GCAT provided the most stable trade-off (Sensitivity: 71.5%, Specificity:
59.8%).

» Impact of Neurocircuitry Priors: The superior generalization of NH-GCAT supports our
hypothesis that incorporating neurobiological priors (via HC-Pooling) acts as an effective
regularizer. By forcing the model to learn interactions between established neural circuits
rather than arbitrary node connections, the model focuses on biological signal that is con-
served across populations, rather than dataset-specific artifacts.

We provide a visual comparison of the generalization performance in Figure[8] plotting the ROC and
PR curves for NH-GCAT against key baselines on the external SRPBS dataset. Despite the signifi-
cant domain shift, NH-GCAT (red line) maintains a superior envelope over competing methods. In
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NH-GCAT (Ours)

BrainlB BPI-GNN

GCN GIN GraphSAGE GPS GAT

(a) Receiver Operating Characteristic (ROC) Comparison

LCCAF CI-GNN BrainlB BPI-GNN NH-GCAT (Ours)

GCN GIN GraphSAGE GPS GAT

(b) Precision-Recall (PR) Comparison

Figure 7: Internal Validation Performance Curves. Detailed comparison of (a) ROC and (b)
Precision-Recall curves for NH-GCAT against baseline models on the REST-meta-MDD dataset
(5-fold cross-validation). NH-GCAT demonstrates a dominant area under the curve compared to
competing methods, maintaining high precision even at higher recall rates.

the ROC space (Figure[8h), NH-GCAT demonstrates a steeper initial ascent, implying better identi-
fication of true positives at low false-positive rates. The PR comparison (Figure [8p) is particularly
revealing: while baselines like GCN exhibit a sharp drop in precision as recall increases (indicative
of numerous false positives), NH-GCAT sustains a more balanced profile. This visual evidence re-
inforces that the neurocircuitry-inspired priors help the model learn transferable biological features
rather than site-specific noise.

C.4 DETAILED PERFORMANCE VISUALIZATION AND COMPARISON

To address the need for a direct and intuitive comparison of discriminative power, we visualized
the overlaid Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves of NH-
GCAT against key baselines (including general GNNs like GAT, GCN, GPS, GraphSAGE, GIN,
and specialized models like CI-GNN, BrainIB, BPI-GNN, LCCAF).

C.4.1 INTERNAL VALIDATION ON REST-META-MDD

Figure Q] presents the performance curves under the strictly controlled 5-fold cross-validation setting
on the REST-meta-MDD dataset.

ROC Analysis (Figure Eh): NH-GCAT (solid blue line) demonstrates a dominant performance
envelope, achieving the highest Area Under the Curve (AUC = 0.785).
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Table 12: External validation on the SRPBS dataset. Models were trained on REST-meta-MDD and
tested on SRPBS (Zero-Shot). Best results are bolded; second best are underlined.

Model AUC ACC SEN SPE F1
External SOTA models

BPI-GNN 61.2(1.5) 613(1.5) 74989 473095 6622.9)
BrainIB 64.4(19) 62824 648(7.00 60.73.2) 63.8(3.9)
CI-GNN 59.7(3.8) 59.6(1.7) 64.6(9.2) 545(12.5) 61.8(2.6)
LCCAF 53.7(3.7) 55.7(1.9) 582(225) 53.0(22.8) 55.3(11.8)
General Graph Baselines

GCN 61.039) 603(2.2) 81409.8) 384(73) 67437
GIN 62.2(4.1) 60.8(22) 76.1(7.7) 44.8(9.1) 663 (2.5)
GraphSAGE 63.7(2.8) 61.4(1.5) 744(158) 479(14.8) 65.6(5.6)
GPS 65.6(1.2) 63.2(0.9) 782(9.2) 47.6(11.1) 68.2(2.3)
GAT 62.0(8.0) 60.6(54) 64.4(26.5) 56.6(19.0) 60.3(13.7)
NH-GCAT (Ours) 69.8(2.2) 65.7(1.9) 71.5(12.7) 59.8(13.1) 67.6(4.2)
Improvement +4.2 +2.5 -9.9 -0.9 -0.6

LCCAF CI-GNN BrainlB BPI-GNN NH-GCAT (Ours)

GCN GIN GraphSAGE

(a) Zero-Shot ROC Generalization (SRPBS)

BrainlB

GCN GIN GraphSAGE

(b) Zero-Shot PR Generalization (SRPBS)

Figure 8: External Generalization Performance. Evaluation of zero-shot transferability on the in-
dependent SRPBS dataset. Models trained on REST-meta-MDD were tested directly on SRPBS. (a)
ROC curves and (b) Precision-Recall curves show that NH-GCAT maintains a superior performance
envelope compared to baseline methods, indicating stronger robustness to site-specific variations
and scanner effects.

35



Under review as a conference paper at ICLR 2026

* Early Detection Capability: Crucially, NH-GCAT exhibits a significantly steeper ascent
in the high-specificity region (x-axis: 0.0 — 0.2). At a strict False Positive Rate (FPR) of
0.2, NH-GCAT achieves a sensitivity of approximately 0.65, whereas the strongest base-
lines (e.g., BrainIB, pink line; BPI-GNN, brown line) struggle to surpass 0.55. This indi-
cates that NH-GCAT is far more effective at identifying positive cases while minimizing
misdiagnoses.

¢ Baseline Comparison: While methods like BrainIB (AUC = 0.726) and GAT (AUC =
0.715) show competitive performance, they are consistently enclosed by the NH-GCAT
curve. Notably, methods like LCCAF (yellow line) and GPS (light blue line) show limited
discriminative power with substantially lower AUCs (0.618 and 0.676, respectively).

Precision-Recall Analysis (Figure[9b): The Precision-Recall curves further corroborate the robust-
ness of our model, with NH-GCAT achieving the highest Average Precision (AP = 0.777).

Sensitivity
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* Stability of Precision: As Recall increases, NH-GCAT maintains a superior Precision level
compared to all baselines. For instance, at a Recall of 0.8, NH-GCAT sustains a Precision
above 0.7, whereas most baselines drop below 0.65.

* Robustness to False Positives: The gap between NH-GCAT and the cluster of baselines
(e.g., GIN, CI-GNN) highlights that our neurocircuitry-inspired architecture effectively re-
duces false positive predictions even when the decision threshold is relaxed.

1.0
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Precision
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GIN (AUC = 0.708) GIN (AP = 0.716)
GraphSAGE (AUC = 0.698) GraphSAGE (AP = 0.707)
GAT (AUC =0.715) GAT (AP =0.729)
T CI-GNN (AUC = 0.695) 0.2+ CI-GNN (AP =0.710)
BrainIB (AUC = 0.726) BrainIB (AP = 0.719)
BPI-GNN (AUC = 0.701) BPI-GNN (AP = 0.704)
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Figure 9: Overlaid Performance Curves on REST-meta-MDD (Internal 5-fold CV). (a) NH-
GCAT achieves the highest AUC (0.785), showing superior sensitivity at low false positive rates.
(b) The model maintains the highest Average Precision (AP = 0.777), indicating stable performance
across decision thresholds.

C.4.2 EXTERNAL GENERALIZATION ON SRPBS

To rigorously evaluate clinical transferability, Figure[I0]presents the overlaid curves on the indepen-
dent SRPBS dataset. These results represent a zero-shot setting, where models trained on REST-
meta-MDD were applied directly to SRPBS without any fine-tuning.

ROC Analysis (Figure [I0a): Despite significant domain shifts caused by different scanner proto-
cols, NH-GCAT (solid blue line) maintains a distinct performance advantage.

* Robustness to Domain Shift: While most baseline methods (e.g., LCCAF, CI-GNN)
suffer from severe performance degradation—with curves flattening towards the diago-
nal chance line, NH-GCAT preserves a convex shape, achieving the highest AUC of 0.698.
This indicates that the neurocircuitry-inspired features are biologically invariant rather than
site-specific artifacts.
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* Comparison with Strong Baselines: Even compared to the best-performing baseline
(GPS, light blue line, AUC = 0.656), NH-GCAT shows a consistent margin of improve-
ment. Notably, in the critical low-FPR region (x < 0.2), NH-GCAT demonstrates a
significantly steeper ascent compared to the cluster of baseline methods, establishing
a clear performance margin even against the strongest competitors.

Precision-Recall Analysis (Figure [I0b): The PR curves highlight the challenge of the zero-shot
task yet confirm NH-GCAT’s stability.

* Superior Precision Envelope: NH-GCAT achieves the highest Average Precision (AP =
0.689), significantly outperforming the next best method (BrainIB, AP = 0.629). As shown
in the plot, the NH-GCAT curve consistently stays above all others.

* Reliability at High Sensitivity: A key observation is the "tail” of the PR curve. At high
recall levels (> 0.8), where most models converge to the baseline prevalence (grey dashed
line), NH-GCAT maintains higher precision. This suggests that even when pushed to iden-
tify the majority of patients in a new dataset, our model introduces fewer false positives
than competing methods.

1.0 1.0
0.8 0.8
06 06
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GIN (AUC = 0.622) GIN (AP = 0.614)
GraphSAGE (AUC = 0.637) GraphSAGE (AP = 0.613)
GAT (AUC = 0.620) GAT (AP = 0.612)
0.2 CI-GNN (AUC = 0.597) 02 CI-GNN (AP = 0.604)
BrainlB (AUC = 0.644) BrainlB (AP = 0.629)
BPI-GNN (AUC = 0.612) BPI-GNN (AP = 0.602)
LCCAF (AUC = 0.537) LCCAF (AP = 0.547)
Chance level (AUC = 0.500) Baseline (AP = 0.509)
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(a) Zero-Shot ROC (SRPBS) (b) Zero-Shot PR (SRPBS)

Figure 10: Overlaid Generalization Curves on SRPBS (Zero-Shot Transfer). Models trained on
REST-meta-MDD were tested directly on SRPBS without fine-tuning. (a) NH-GCAT (Red) signif-
icantly outperforms baselines, demonstrating superior robustness to domain shifts. (b) Precision-
Recall curves confirm that NH-GCAT offers the most reliable clinical utility in unseen domains.

37



	Introduction
	Related Work
	Methodology
	Experiments
	Experimental Settings
	Performance Comparison
	Ablation Study
	Interpretability Analysis

	Conclusion
	Reproducibility & Ethics Statement
	Technical Appendices and Supplementary Material
	Dataset Details
	REST-meta-MDD Dataset
	Brain Parcellation and Graph Construction
	Circuit-specific Features

	Baseline Comparison Methodology
	Architectural Design Rationale and Comparison with Alternatives
	Rationale for Residual Gated Fusion (RG-Fusion)
	Rationale for Hierarchical Circuit Encoding (HC-Pooling) and ChildSumTreeLSTM
	Rationale for Variational Latent Causal Attention (VLCA)

	Implementation Details
	Architecture Specifications
	Hyperparameter Settings
	Training Procedure
	Implementation Environment
	Code Availability

	Extended Performance and Clinical Utility Analysis
	Receiver Operating Characteristic (ROC) Analysis
	Precision-Recall (PR) Analysis
	Decision Curve Analysis (DCA) for Clinical Utility

	Leave-One-Site-Out Cross-Validation Results
	Extended Ablation Studies
	Analysis of VLCA Variants
	Analysis of HC-Pooling Variants
	Analysis of RG-Fusion Variants

	Detailed Interpretability Analysis
	Frequency-specific Neural Dynamics Analysis
	Hierarchical Circuit Organization Analysis
	Causal Inter-circuit Interaction Analysis
	Integration of Multi-level Interpretability

	Discussion on Clinical Relevance and Future Directions
	Further Discussion

	LLM Usage Statement
	Extended Comparative Analysis and External Generalization
	SRPBS Dataset and Preprocessing
	Controlled Baseline Reproduction on REST-meta-MDD
	External Generalization to SRPBS
	Detailed Performance Visualization and Comparison
	Internal Validation on REST-meta-MDD
	External Generalization on SRPBS



