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Abstract

Despite the impressive multilingual capabilities of recent large language
models (LLMs), the mechanisms underlying their language-specific process-
ing remain largely unclear. In this paper, we investigate how LLMs handle
multilingualism through the lens of sparse autoencoders (SAEs), uncover-
ing distinctive patterns that offer new insights into their internal workings.
Specifically, we introduce two novel concepts—task instruction—focused (TF)
and heading-focused (HF) SAE features—and use them to reveal intrinsic
discrepancies between high- and low-performing languages. Our analysis
yields several key findings: (1) SAEs provide concrete evidence that LLMs
have a precise understanding of prompt structure; (2) heading keywords
(e.g., “Question,” “Choices,” and “Answer”) play a distinct role in LLM
processing; and (3) low-performing languages exhibit a relative deficiency
in TF features compared to high-performing languages.

Building on these insights, we propose two practical strategies to improve
zero-shot multilingual performance: (1) incorporating English heading key-
words and (2) amplifying TF features through steering. Our approach im-
proves zero-shot performance in low-performing languages by up to 3.7%
on average on ARC-Challenge and MMLU, while also shedding new light
on fundamental differences between high- and low-performing languages
in LLMs. Our code is available at https://github.com/ihcho2/SAE-ML.

1 Introduction

Large language models (LLMs) have revolutionized the field of natural language processing,
demonstrating remarkable performance across a wide range of tasks. Among these, their
multilingual capabilities have attracted significant attention. Extensive research has been
dedicated to enhance multilingual performance, such as language-specific finetuning (Ade-
lani et al., 2021; Wilie et al., 2020), injecting language capabilities through continual learning
(Shi et al., 2024; Cahyawijaya et al., 2023), adapter-based fine-tuning (Yong et al., 2022),
prompting (Li et al., 2023b), among others. However, despite their impressive performance,
the precise underlying mechanisms that enable LLMs to handle multilingual tasks remain
elusive. Gaining deeper insights into these processes is crucial, not only for advancing our
theoretical understanding of LLMs but also for addressing the persistent performance gaps
across different languages (Cahyawijaya et al., 2024).

A promising direction in this space is cross-lingual in-context learning (X-ICL) (Winata
et al., 2021), which aims to enhance target language performance by transferring knowledge
from a pivot language, leveraging the robust in-context learning capabilities of LLMs
(Brown et al., 2020). This approach is computationally efficient—requiring no parameter
tuning—and provides a direct means to explore various aspects of multilingualism in LLMs.
In this study, we extend this line of research by incorporating sparse autoencoders (SAEs),
an emerging tool in mechanistic interpretability, to further investigate the multilingual
processing mechanisms of LLMs.
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SAEs, an entirely unsupervised approach, are rapidly emerging as a key tool in mechanistic
interpretability. By using a sparsity loss term to reconstruct input embeddings (i.e., LLM
dense embeddings), SAEs have proven effective—albeit to some extent—in decomposing
these embeddings into sparse features, each corresponding to human-understandable
concepts (Sharkey & Beren, 2022; Bricken et al., 2023). In this work, we demonstrate that this
effective tool can yield novel insights into the underlying mechanisms of multilingualism in
LLMs. Specifically, we analyze SAE patterns using parallel corpora, multilingual-ARC (Lai
et al., 2023) and multilingual-MMLU (OpenAl, 2024), spanning multiple languages, seeking
for distinct, consistent patterns across languages.

Our analysis reveals several key findings:

1. SAEs provide concrete and tangible evidence that LLMs have a precise grasp of
prompt structure, effectively distinguishing between headings, task instructions,
and test example segments. Our ablation results show that this understanding is
impressively accurate.

2. We introduce two types of SAE features—task-instruction-focused features (TF
features) and heading-focused features (HF features)—and identify fundamen-
tal discrepancies in these features between high- and low-performing languages,
offering novel insights into their intrinsic differences.

3. Specifically, low-performing languages exhibit a relative lack of TF features com-
pared to high-performing languages. Notably, we observe a strong correlation
between the number of TF features and overall performance, highlighting their
critical role in language-specific performance.

4. SAEs reveal that headings play a distinct role in LLM processing, as evidenced
by the presence of multiple features that primarily activate on headings (i.e., HF
features).

Based on above findings, we present two practical methods to enhance multilingual perfor-
mance:

1. English Heading Prompts: Motivated by the distinctive role of headings in LLMs,
we demonstrate that using English headings consistently enhances performance
in low-performing languages. This approach is based on the rationale that, since
LLMs are predominantly English-centric and treat English as a pivot language, they
can more effectively leverage the critical function of headings when presented in
English rather than in low-performing languages.

2. Amplifying TF Features: We show that amplifying the identified English TF fea-
tures can enhance performance across both high- and low-performing languages.
Notably, this approach not only improves low-performing languages but also high-
performing languages, verifying the crucial role of TF features in LLMs’ overall
language performance.

By combining both approaches, we achieve average performance gains of up to 3.70% on
m-MMLU and 1.94% on m-ARC for low-performing languages.

In summary, our main contribution is the introduction of two new types of SAE features
(TF and HF features) which offers fresh insights into the fundamental discrepancies across
languages in LLMs.

2 Related Work

2.1 Approaches to Understanding Multilingualism in Large Language Models

Various approaches have been proposed to analyze multilingualism in LLMs. For instance,
some studies have explored multilingual reasoning abilities through self-attention layers
(Hou et al., 2023; Li et al., 2023a), while others have identified language-specific neurons
(Zhao et al., 2024) or examined language-centricity using the decoder-lens methodology



Published as a conference paper at COLM 2025

(Kargaran et al., 2024; Geva et al., 2022). Another promising and widely adopted approach
involves leveraging the robust in-context learning (ICL) capabilities of LLMs (Winata et al.,
2021).

In-context learning (ICL)—the emerging ability of LLMs to tackle a variety of tasks by
leveraging just a few exemplars within a prompt—has become a dominant paradigm in
natural language processing (Brown et al., 2020). Building on this capability, cross-lingual
ICL (X-ICL) (Winata et al., 2021) aims to enhance performance in a target language by trans-
ferring knowledge from a pivot language. Recent studies have explored various strategies
to improve target language performance, which is often low-resource. For example, Tanwar
et al. (2023) show that semantically similar exemplars are crucial for effective language
transfer, while Winata et al. (2022) find that mixing exemplars from multiple languages can
also enhance performance. Cahyawijaya et al. (2024) propose in-context query alignment,
which selects exemplars most similar to the test query and incorporates their translation
pairs to further improve ICL performance in low-resource languages. Zhang et al. (2024)
argue that the effectiveness of language transfer largely depends on the quality of the
prompt template. Additionally, Tu et al. (2025) demonstrate that simply exposing models to
multiple languages could sometimes improve performance regardless of the precise context.

While these works predominantly focus on the X-ICL framework—a cross-lingual transfer
setup in which knowledge is transferred from a pivot language to a target language via
in-context learning—we shift our focus to the zero-shot setting. Our primary objective is
not to facilitate transfer, but rather to investigate the fundamental discrepancies between
languages. We believe the zero-shot setting is better suited for uncovering these intrinsic
differences in LLM behavior while also providing an opportunity to explore an under-
studied area.

2.2 Sparse Autoencoders as a Key Analytical Tool

Sparse autoencoders (SAEs) have become a prominent method for sparse dictionary learning,
aiming to break down LLM embeddings into sparse, mono-semantic features (Huben et al.,
2024). While they have demonstrated remarkable success in identifying ground truth
features in controlled, toy experiment settings (Sharkey & Beren, 2022), applying them to
real LLMs presents several challenges. Despite these hurdles, SAEs remain a widely used
baseline in mechanistic interpretability due to their simplicity and effectiveness (Lieberum
et al., 2024).

SAEs, consisting of an encoder and a decoder, use a squared error reconstruction loss and a
sparsity penalty:
e = LS 02 a L .
SAE — N Z HX X HZ + sparsity 1)
i=1

where x(!) represents the original LLM dense embedding, and () is the reconstructed

output of the SAE:
& = Wee (0 (Wene(x1))) @

For the activation function ¢, various techniques are used, such as JumpReLU (Lieberum
et al., 2024) and TopK-ReLU (Gao et al., 2024). Each column of Wy, is designed to capture
sparse, mono-semantic concepts, which we refer to as SAE features throughout this paper.

In this study, we leverage SAEs to investigate multilingualism in LLMs, uncovering several
intriguing patterns. To the best of our knowledge, this is one of the first works to apply
SAEs in the study of multilingualism.

3 Analyzing Multilingualism in LLMs with SAEs

3.1 Motivation

Inspired by the impressive performance of sparse autoencoders (SAEs) in mechanistic
interpretability, researchers have recently begun applying them to a range of practical tasks
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beyond interpretability (Demircan et al., 2024; Wu et al., 2025; Kantamneni et al., 2025).
Building on this momentum, we explore their potential in the study of multilinguality. In
this work, we demonstrate that SAEs can indeed yield novel insights into multilingual
processing as well.

3.2 Our Objective and Approach

Our primary goal is to gain deeper insights into how LLMs process multilingualism. To
achieve this, we take a straightforward approach by analyzing SAE-derived patterns across
parallel multilingual corpora, focusing on identifying both consistent and distinct patterns
between high- and low-performing languages. Ultimately, we aim to leverage these findings
to improve performance in low-performing languages.

3.3 Proposed Methods

In this work, we present a series of findings and discussions on intriguing SAE patterns
across languages. We begin by defining two key types of SAE features: Task Instruction-
Focused (TF) and Heading-Focused (HF) features. Our analysis reveals a consistent dis-
crepancy between high- and low-performing languages with respect to these feature types.
Building on these findings, we propose two novel approaches for enhancing multilingual
performance: English Heading Prompts (EHP) and Amplifying TF features (ATF).

We start with formally defining TF and HF features that we consider particularly interesting,
which serve as the building blocks for our analysis.

Definition of Task Instruction-Focused Features (TF Features) We identify several fea-
tures that primarily activate on the task instruction segment and are largely deactivated
in other parts of the prompt. We define these as task instruction-focused features (TF fea-
tures). Specifically, a feature is considered a TF-feature if the proportion of its activated
tokens within the task instruction exceeds p% of all its activated tokens, computed over the
ARC-Challenge training set (approximately 1,000 examples). Formally, features that meet
the following criterion are defined as TF features:

Y 1[SAEE.(X;) > 0]

Vf st Ex
f Y T[S Az (X,); > 0]

®)

Where t is the feature index, x denotes the total number of tokens, x7 indicates the number
of task instruction tokens, SAEg,. denotes the SAE encoder, SAEE,.(X;); represents the
activation of feature ¢ on the i-th token, and 1 represents the indicator function. We set
p = 0.8 as the default value. An example of an actual TF-feature is shown in Figure 2.

Definition of Heading-Focused Features (HF-Features) Another notable type of SAE
feature we observe is those that activate primarily on headings (see Figure 3 for an example).
We define these as heading-focused features (HF features) using a similar definition:

Yicr L[SAEguc(X;)r > 0]

Vfi st. E
S st BX S0 11S ALy (X,)r > 0]
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Where H represents the set of headings, which are three words: “Question”, “Choices”, and
“Answer” in our study (See Appendix A.1 for details).

ENGLISH HEADING PROMPTS (EHP) In Section 4.3, we demonstrate that headings
hold a unique significance for LLMs, evidenced by the existence of multiple SAE features
that activate primarily on headings only (i.e., HF features). This finding suggests that
headings play a crucial role in LLM processing, leading us to hypothesize that converting
headings to English—the primary pivot language for these models—could enhance performance
in low-performing languages. Notably, this approach is highly efficient because headings
are typically fixed and do not require domain-specific knowledge, eliminating the need
to modify or introduce new vocabulary for different test queries. As a result, our English
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Heading Prompt (EHP) can be directly applied across various domains. This simple idea
consistently improves performance in both MMLU and ARC especially for low-performing
languages. Furthermore, EHP outperforms using an entire English task instruction, further
validating the valuable role that headings play in LLMs.

AMPLIFYING TF FEATURES (ATF) Several recent studies have highlighted the importance
of high-quality task instructions (Srivastava et al., 2024), suggesting that task instructions
could be crucial for LLM performance. Building on these findings, as well as our new
insights in Section 4.2 that low-performing languages typically lack TF features, we propose
Amplifying TF Features (ATF), a method that activates TF features derived from the English
training set. Formally,

ATF: Vi X;=X;+a- Y Sp(t) 5)
teDrr

Here, X represents the original embedding, Drr denotes the set of chosen English TF
features, and Sp(t) refers to the SAE decoder’s t-th column (or feature). Drr and « are
tuned on the validation set.

We demonstrate that ATF can further enhance performance, even for high-resource lan-
guages, highlighting the critical role of a thorough understanding of task instructions in
achieving superior performance.

3.4 Experimental Settings

Datasets We utilize multilingual versions of two widely used multiple-choice question-
answering benchmarks: multilingual- MMLU (STEM) (OpenAl, 2024) and multilingual-
ARC- Challenge (Lai et al., 2023). MMLU (STEM) assesses knowledge across diverse subject
areas in STEM, while ARC focuses on reasoning based on grade-school science knowledge,
assembled to encourage research in advanced question-answering. Both are formed as
four-option multiple-choice questions, following their original format.

Models and SAEs A key requirement of our study is access to well-trained SAEs. Fortu-
nately, Lieberum et al. (2024) and He et al. (2024) provide suites of pretrained SAEs for the
Gemma?2 and Llama3.1 models. Accordingly, we use the Gemma2-2B-IT, Gemma2-9B-IT,
and Llama3.1-8B-Instruct models along with their corresponding SAEs in our experiments.
Unless otherwise stated, our primary analysis focuses on the middle-layer SAE.

Experimental Details As discussed in the Introduction, we adopt a zero-shot setting,
which remains relatively underexplored but provides a clearer lens into the fundamental
differences in how LLMs process various languages. The baseline prompt used in our
experiments—comprising a task instruction, headings, and a test query—is detailed in
Appendix A.1. We employ greedy decoding and accuracy as our primary evaluation metric.

For our language selection, we consider total of ten languages. To ensure sufficient com-
parability, we selected languages present in both m-MMLU and m-ARC (e.g., languages
appearing only in one dataset, such as Swahili, were excluded). Our final selection includes
English (En), German (De), Chinese (Zh), Spanish (Es), French (Fr), Portuguese (Pt), Indone-
sian (Id), Arabic (Ar), Hindi (Hi), and Bengali (Bn). They are roughly grouped into two,
high- and low-performing language groups, based on their downstream performance.

4 Main Findings and Discussions

41 SAEs Provide Tangible Evidence that LLMs Have a Precise Understanding of the
Prompt Structure

Large language models (LLMs) have demonstrated notable performance on a wide range of
tasks, which suggest that they possess a robust understanding of input prompts. However,
their sensitivity to even minor prompt modifications (Shivagunde et al., 2024; Cho et al,,
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— Teature #333/ Prompt in DE_DE Feature #7479 / Prompt in DE_DE Feature #11077 / Prompt in DE_DE

Figure 1: Can SAEs Effectively Differentiate Between Example and Non-Example Seg-
ments in More Challenging Inputs? (We use Gemma2-9B-IT in this experiment). We
intentionally added a reminder sentence at the end to assess whether the features can
dynamically toggle (i.e., activate, deactivate, and then reactivate) for non-example segments,
thereby demonstrating their flexibility. The prompt consists, in order, of a task instruction, a
test example query, choice options, and a reminder. The figure above shows that multiple
features activate in both the initial and final segments, while the test-query portion in the
middle remains strictly deactivated. These results provide compelling evidence that LLMs
have a precise awareness of the structure of the prompt (e.g., task-instruction-related parts
and the test-query components).

2024) raises important questions about what it truly means for an LLM to “understand” a
prompt—and whether we can obtain more fine-grained evidence of this comprehension
beyond downstream task performance (Cho et al., 2025).

In this work, we demonstrate that sparse autoencoders (SAEs) provide compelling evidence
that LLMs possess a precise understanding of distinct prompt segments. Our findings reveal
that LLMs can effectively differentiate among task instructions, main example (i.e., test
query), and headings. Figures 2 and 3 illustrate this phenomenon: Figure 3 (b) shows that
Feature #14428, classified as an HF feature by our definition, activates primarily on headings
across all examined languages, while the bottom of Figure 2 shows that Feature #9349 fires
predominantly on task instructions across all studied languages (i.e., it is a TF feature). The
presence of these features serves as strong, tangible evidence that LLMs possess an accurate
understanding of prompt structure, and that comprehension is, to some extent, universally
shared across languages.

To further evaluate LLMSs’ ability to distinguish prompt segments, we conducted a study in
which we added a sentence irrelevant to the main example (i.e., the test query). Specifically,
we inserted a “Reminder” sentence—"Make sure your answer is one of A, B, C, or D.”—at
the end of the prompt. If the LLM activates features on this non-example segment, along
with the previous non-example segments before the test query, it provides stronger evidence
of its precision in distinguishing between main example and non-main example segments.
In other words, we aim to assess whether the features can dynamically toggle (on, off, and
then on again), demonstrating their flexibility. As shown in Fig. 1, Features #333, #7479,
#11077, among others (using Gemma2-9B-IT), effectively differentiate these segments. The
existence of these highly accurate segment-aware features offers valuable insights into how
LLMs truly understand the prompt.

4.2 Low-performing Languages Relatively Lack Task Instruction-Focused Features

An intriguing type of feature we observe is the task instruction-focused (TF) features, as
defined in Section 3.3. To analyze these features, we first compute their statistics and
compare the number of TF features across different languages. Specifically, we process
all tokens in the ARC training set through the SAE encoder and collect the top 500 most
frequently activated features. This top-500 selection ensures that we focus on the most
meaningful features, filtering out those that activate only sporadically (e.g., once in every
thousand tokens), which are likely to be less significant. Then, we compute the number of
TF features (p=0.8) and the results are shown at the top of Figure 2.

Overall, we observe three key findings regarding TF features:
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Figure 2: Existence of Task Instruction-Focused (TF) Features and Their Correlation
with Language Performance: (a) The first three plots at the top row show a strong cor-
relation between language performance and the number of TF features. This consistent
trend across three different models—Gemma2-2B-IT, Llama3.1-8B-Instruct, and Gemma?2-
9B-IT—suggests that TF features can provide new insights into the causes of performance
gaps between languages in LLMs. (b) (Feature #9349 in Gemma2-9B-IT): Although many TF
features are multilingual, there is often a significant difference in their activation frequency:
notably, low-performing languages (as shown in the bottom row) have fewer tokens activat-
ing these features.

TF Features Shed Light on LLM Prompt Processing SAEs are trained in a completely
unsupervised, bag-of-embeddings fashion, with no inherent expectation that TF features
would emerge. Thus, their presence—and especially their abundance—is both surprising
and significant, as it offers concrete, measurable proof that LLMs can differentiate between
task instruction segments and non-task instruction segments within a prompt. This finding
provides valuable insights into how LLMs break down and process prompts, and paves the
way for promising future research directions.

TF Features Provide Deeper Insights into Language Discrepancies As illustrated in Fig-
ure 2 (a), the number of TF features differs significantly between high- and low-performing
languages. Additionally, the number of TF features exhibits a decent correlation with overall
downstream performance (see Figure 2), suggesting that these features could play a crucial
role in language performance.

TF Features Are Generally Universal, but Their Activation Frequency Is Lower for Low-
Performing Languages The bottom of Figure 2 shows that although Feature #9349 in
Gemma?2-9B-IT’s SAE activates across all languages, low-performing languages exhibit a
lower activation frequency (as indicated in the last row), highlighting subtle discrepancies
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between high- and low-performing languages (more examples in Appendix A.1). We argue
that these consistent patterns—wherein low-performing languages lack TF features in both
number and frequency—indicate that TF features play a crucial role in LLMs” multilingual
performance.

Opverall, the key takeaway is that TF features are strong candidates for playing a crucial role
in the multilingual performance of LLMs.

4.3 The Importance of Headings in LLMs
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(a) Lenient HF Features: #14230 (b) Strict HF-Features: #14428

Figure 3: Existence of Various HF features (using Gemma2-9B-IT). The abundance of these
features serves as evidence that headings hold a special significance for LLMs compared
to other general words, indicating that LLMs have a clear understanding and focus on
headings when processing the prompt. The figures above suggest that HF features can be
further classified into lenient and strict HF features.

Another intriguing class of features we identify is the heading-focused (HF) features, as
defined in Section 3.3. Similar to TF features, the emergence of HF features is surprising, as
there is no inherent guarantee that they should exist. For example, as shown in Figure 3(b),
feature #14428 (using Gemma2-9B-IT) consistently activates on headings across multiple
languages. The abundant existence of HF features provide clear evidence that LLMs possess
a sophisticated understanding of headings—a critical component of prompt structure.

Another noteworthy observation is the presence of somewhat “noisy” HF features. For
instance, Figure 3 (a) shows Feature #14230, which is clearly heading-aware, as it activates
strongly on headings, though not as precisely as Feature #14428 in Figure 3 (b). Given that
no model is perfect, such imperfections in SAEs can be understood. Nevertheless, this
suggests that there could be many more HF features than our measurements if we also
account for the lenient ones. Investigating TF and HF features in more detail would be an
interesting area for future work.

4.4 Enhancing Low-performing Language Performance: English Heading Prompts
(EHP)

Based on our findings, we have identified multiple HF features, indicating that LLMs
place significant emphasis on headings, which play a unique role in their mechanism.
Inspired by this observation, we introduce English Heading Prompts (EHP), a method that
replaces headings with English words. This approach is motivated by the fact that LLMs
are predominantly English-centric and use English as the pivot language, enabling them to
more effectively leverage the critical role of headings when presented in English rather than
in low-performing languages.

The results, summarized in Table 1, show that EHP consistently improves performance
across languages, with a relatively larger impact on low-performing languages. These
findings empirically validate our hypothesis that headings play a crucial role in LLM
operations. What is especially noteworthy is that EHP outperforms the use of a complete
English task instruction (denoted as ETI in Table 2). Despite ETI generally containing a
larger word count in English, EHP proves to be more effective, further underscoring the
important role headings play in LLMs.
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Task: Multilingual ARC-Challenge

HPL \ LPL \ Avg.
Gemma2-9B-IT En De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 90.30 8498 8508 87.05 8575 8576 8345|7854 7234 57.68| 8572 73.00
ZS + EHP 90.30 8524 85.16 8731 8575 86.11 85.08 ‘ 79.31 7311 58.80 ‘ 85.93 74.08
ZS + EHP + ATF 90.82 85.84 85.76 87.65 86.27 86.88 85.51 | 80.43 73.54 59.91 86.48 74.85
Gemma2-2B-IT En De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 7193 5811 6201 6441 6506 63.04 6012|5030 4811 33.73 | 6212 44.05
ZS + EHP 7193 5948 6123 6484 6438 63.12 60.38 ‘ 50.56 48.97 34.94 ‘ 62.24 44.82
ZS + EHP + ATF 7245 60.09 62.52 65.52 64.89 6415 61.58 | 51.59 49.91 36.48 63.12 45.99

Llama3.1-8B-Instruct ~ En De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.

Zero-shot (ZS) 7245 5391 5952 5849 5622 5635 49.83 | 4524 4029 3124 | 5572 38.92
ZS + EHP 7245 5588 5926 59.52 56.65 57.63 51.20 ‘ 45.67 40.72  30.99 ‘ 56.69 39.13
ZS + EHP + ATF 7391 56.22 5952 6046 57.08 5892 5150 | 46.35 4158 31.76 57.28 39.90
Task: Multilingual-MMLU (STEM)

Gemma2-9B-IT HPL LPL Avg.

En De Zh Es Fr Pt Id | Ar Hi Bn | HRL Avg. LRL Avg.
Zero-shot (ZS) 6372 57.04 5493 59.94 5837 5626 53.05|48.04 51.02 4617 | 57.31 49.57
ZS + EHP 63.72 5892 56.73 60.17 59.31 5884 57.04 ‘ 50.86 53.05 48.67 58.79 52.40
ZS + EHP+ATF 63.95 60.25 58.22 60.49 59.75 59.15 57.12 | 52.90 53.83 49.22 59.57 53.27
Gemma2-2B-IT En De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 4718 3956 4032 4125 4029 4039 39.60 | 3549 3522 30.78 | 4023 33.83
ZS + EHP 4718 40.32 4095 41.62 4049 41.02 39.30 ‘ 36.28 35.55 31.91 ‘ 40.62 34.58
ZS + EHP + ATF 47.71 4095 41.82 4228 41.98 41.72 40.15 | 36.78 36.35 33.53 41.48 35.55

Llama3.1-8B-Instruct ~ En De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 48.71 3950 40.62 41.82 4029 40.39 38.44 ‘ 34.86 34.29 30.78‘ 40.18 33.31

ZS + EHP 4871 39.43 4195 41.88 4049 41.02 3830 | 3539 3426 3191 40.51 33.85
ZS + EHP + ATF 48.71 39.76 42.28 4241 4049 41.58 38.73 | 36.28 35.49 33.13 40.87 34.97

Table 1: Overall results of our proposed approaches. We observe that our methods
consistently improve performance across both high-performing (HPL) and low-performing
(LPL) languages.

4.5 Enhancing Multilingual Performance Via Amplifying TF Features (ATF)

In the previous sections, we discovered the existence of multiple TF features and observed
distinct behaviors across high- and low-performing languages, along with a strong cor-
relation between the TF feature ratio and overall task performance. Motivated by these
findings, we introduce a new methodology, “Amplifying TF Features (ATF)” as defined in
Section 3.3. In this approach, for each language, we first derive TF features from the English
ARC-Challenge training set using equation (3). We then randomly select a subset of these TF
features for steering. The number of selected features |Drr/|, the specific TF features chosen,
and the value of a are all tuned on the validation set of the target language.

The results in Table 1 indicate that ATF is effective for both low- and high-performing
languages. We believe these findings provide concrete evidence that TF features play a
crucial role in LLMs’ performance, an intriguing finding that offers a novel insight into the
multilingual capabilities of LLMs.

4.6 An Additional Interesting Type of SAE Features Not Covered in This Work, but
Worth Noting

We also identify features that may contribute to label bias in LLMs. For instance, Feature
#4306 predominantly activates on headings and alphabetic answer choices but consistently
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Model: Gemma2-9B-IT |

Task: Multilingual ARC-Challenge

\ HPL \ LPL \ Avg.

| De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 8498 85.08 87.05 8575 8576 8345|7854 7234 57.68 85.72 73.00
7S + EHP 85.24 85.16 8731 8575 86.11 85.08 | 79.31 73.11 58.80 85.93 74.08
Abl 1) ZS + ETI 84.64 8473 8654 8575 8622 8379 | 7914 7174 5794 85.58 73.15
Abl2)ZS+EHP + ETI | 84.64 85.16 86.79 85.84 8622 8422 |79.14 7268 58.11 85.73 73.54

| Task: Multilingual- MMLU (STEM)

\ HPL \ LPL \ Avg.

| De Zh Es Fr Pt Id | Ar Hi Bn | HPL Avg. LPL Avg.
Zero-shot (ZS) 57.04 5493 5994 5837 5626 53.05 | 48.04 51.02 46.17 57.31 49.57
ZS + EHP 5892 56.73 60.17 59.31 5884 57.04 | 50.86 53.05 48.67 58.79 52.40
Abl 1) ZS + ETI 58.84 5743 59.62 5814 5876 55.01 | 50.94 50.55 46.64 58.56 50.79
Abl 2)ZS + EHP + ETI | 58.84 57.20 60.09 59.23 59.23 55.87 | 51.49 5258 45.85 58.92 51.45

Table 2: Ablation results on the distinctiveness of headings (using Gemma2-9B-IT). Using
English headings in the prompt generally improves performance, and interestingly, this is
often more effective than using the entire English task instruction—indicating that headings
play a unique and powerful role in LLMs.

shows zero activation for "A’ alone (see Figure 6), regardless of the specific example. We
believe this bias could contribute to the well-known label-bias issue in LLMs. Suppressing
these features by steering may help mitigate this problem, and we leave this promising
direction for future work.

5 Conclusion

This paper investigates whether sparse autoencoders (SAEs) can enhance our understanding
of how large language models (LLMs) handle multilingualism. We introduce two novel
types of SAE features: Task Instruction-Focused (TF) features and Heading-Focused (HF)
features. Our analysis reveals several novel insights: (1) TF and HF features shed light on
how LLMs parse and process prompt structures; (2) headings play a particularly important
role in prompts, as evidenced by the abundance of HF-features; and (3) TF features are
crucial for multilingual performance. Based on these findings, we propose two practical ap-
proaches to enhance multilingual performance: English Heading Prompts and Amplifying
TF Features, which consistently enhances performance, especially for low-performing lan-
guages. To the best of our knowledge, this work is among the first to explore the versatility
of SAEs in multilingualism, highlighting their potential and offering fresh insights into their
underlying mechanisms.

6 Acknowledgements

This research was supported in part by Other Transaction award HR0011249XXX from the
U.S. Defense Advanced Research Projects Agency (DARPA) Friction for Accountability
in Conversational Transactions (FACT) program. Additionally, this research used the
Delta advanced computing and data resource which is supported by the National Science
Foundation (award OAC 2005572) and the State of Illinois. Delta is a joint effort of the
University of Illinois Urbana-Champaign and its National Center for Supercomputing
Applications.

References

David Ifeoluwa Adelani, Jade Abbott, Graham Neubig, Daniel D’souza, Julia Kreutzer,
Constantine Lignos, Chester Palen-Michel, Happy Buzaaba, Shruti Rijhwani, Sebastian
Ruder, et al. Masakhaner: Named entity recognition for african languages. Transactions of
the Association for Computational Linguistics, 9:1116-1131, 2021.

10



Published as a conference paper at COLM 2025

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan
Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-
Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume,
Shan Carter, Tom Henighan, and Christopher Olah. Towards monosemanticity: De-
composing language models with dictionary learning. Transformer Circuits Thread, 2023.
https:/ /transformer-circuits.pub /2023 /monosemantic-features /index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877-1901, 2020.

Samuel Cahyawijaya, Holy Lovenia, Tiezheng Yu, Willy Chung, and Pascale Fung. Instruc-
talign: High-and-low resource language alignment via continual crosslingual instruction
tuning. arXiv preprint arXiv:2305.13627, 2023.

Samuel Cahyawijaya, Holy Lovenia, and Pascale Fung. Llms are few-shot in-context low-
resource language learners. arXiv preprint arXiv:2403.16512, 2024.

Ikhyun Cho, Gaeul Kwon, and Julia Hockenmaier. Tutor-icl: Guiding large language
models for improved in-context learning performance. In Findings of the Association for
Computational Linguistics: EMINLP 2024, pp. 9496-9506, 2024.

Ikhyun Cho, Changyeon Park, and Julia Hockenmaier. The power of bullet lists: A simple
yet effective prompting approach to enhancing spatial reasoning in large language models.
In Findings of the Association for Computational Linguistics: NAACL 2025, pp. 3047-3057,
2025.

Can Demircan, Tankred Saanum, Akshay K Jagadish, Marcel Binz, and Eric Schulz. Sparse
autoencoders reveal temporal difference learning in large language models. arXiv preprint
arXiv:2410.01280, 2024.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv
preprint arXiv:2406.04093, 2024.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward
layers build predictions by promoting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022.

Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances
Liu, Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions
of features from llama-3.1-8b with sparse autoencoders. arXiv preprint arXiv:2410.20526,
2024.

Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou, Guangtao Zeng,
Antoine Bosselut, and Mrinmaya Sachan. Towards a mechanistic interpretation of multi-
step reasoning capabilities of language models. arXiv preprint arXiv:2310.14491, 2023.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=F76bwRSLeK.

Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel
Nanda. Are sparse autoencoders useful? a case study in sparse probing. arXiv preprint
arXiv:2502.16681, 2025.

Amir Hossein Kargaran, Ali Modarressi, Nafiseh Nikeghbal, Jana Diesner, Francois Yvon,
and Hinrich Schiitze. Mexa: Multilingual evaluation of english-centric llms via cross-
lingual alignment. arXiv preprint arXiv:2410.05873, 2024.

11


https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK

Published as a conference paper at COLM 2025

Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo, Thuat Nguyen, Franck Dernoncourt,
Ryan A Rossi, and Thien Huu Nguyen. Okapi: Instruction-tuned large language models
in multiple languages with reinforcement learning from human feedback. arXiv preprint
arXiv:2307.16039, 2023.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
Inference-time intervention: Eliciting truthful answers from a language model. Advances
in Neural Information Processing Systems, 36:41451-41530, 2023a.

Shuang Li, Xuming Hu, Aiwei Liu, Yawen Yang, Fukun Ma, Philip S Yu, and Lijie Wen.
Enhancing cross-lingual natural language inference by soft prompting with multilingual
verbalizer. arXiv preprint arXiv:2305.12761, 2023b.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma
scope: Open sparse autoencoders everywhere all at once on gemma 2. arXiv preprint
arXiv:2408.05147, 2024.

OpenAl. Multilingual mmlu dataset. Hugging Face, 2024. URL https://huggingface.co/
datasets/openai/MMMLU.

Lee Sharkey and Dan Braun Beren. [interim research report] taking features out of superpo-
sition with sparse autoencoders., 2022.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng
Wang, Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A
comprehensive survey. arXiv preprint arXiv:2404.16789, 2024.

Namrata Shivagunde, Vladislav Lialin, Sherin Muckatira, and Anna Rumshisky. Decon-
structing in-context learning: Understanding prompts via corruption. arXiv preprint
arXiv:2404.02054, 2024.

Pragya Srivastava, Satvik Golechha, Amit Deshpande, and Amit Sharma. Nice: To optimize
in-context examples or not? arXiv preprint arXiv:2402.06733, 2024.

Eshaan Tanwar, Subhabrata Dutta, Manish Borthakur, and Tanmoy Chakraborty. Multi-

lingual llms are better cross-lingual in-context learners with alignment. arXiv preprint
arXiv:2305.05940, 2023.

Yilei Tu, Andrew Xue, and Freda Shi. Blessing of multilinguality: A systematic analysis of
multilingual in-context learning. arXiv preprint arXiv:2502.11364, 2025.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata, Samuel Cahyawijaya, Xiaohong Li,
Zhi Yuan Lim, Sidik Soleman, Rahmad Mahendra, Pascale Fung, Syafri Bahar, et al.
Indonlu: Benchmark and resources for evaluating indonesian natural language under-
standing. arXiv preprint arXiv:2009.05387, 2020.

Genta Indra Winata, Andrea Madotto, Zhaojiang Lin, Rosanne Liu, Jason Yosinski, and
Pascale Fung. Language models are few-shot multilingual learners. arXiv preprint
arXiv:2109.07684, 2021.

Genta Indra Winata, Shijie Wu, Mayank Kulkarni, Thamar Solorio, and Daniel Preotiuc-
Pietro. Cross-lingual few-shot learning on unseen languages. In Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 777-791, 2022.

Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky,

Christopher D Manning, and Christopher Potts. Axbench: Steering llms? even simple
baselines outperform sparse autoencoders. arXiv preprint arXiv:2501.17148, 2025.

12


https://huggingface.co/datasets/openai/MMMLU
https://huggingface.co/datasets/openai/MMMLU

Published as a conference paper at COLM 2025

Zheng-Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji, David Ifeoluwa
Adelani, Khalid Almubarak, M Saiful Bari, Lintang Sutawika, Jungo Kasai, Ahmed
Baruwa, et al. Bloom+ 1: Adding language support to bloom for zero-shot prompting.
arXiv preprint arXiv:2212.09535, 2022.

Miaoran Zhang, Vagrant Gautam, Mingyang Wang, Jesujoba O Alabi, Xiaoyu Shen, Dietrich
Klakow, and Marius Mosbach. The impact of demonstrations on multilingual in-context
learning: A multidimensional analysis. arXiv preprint arXiv:2402.12976, 2024.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do
large language models handle multilingualism? arXiv preprint arXiv:2402.18815, 2024.

A Appendix

A1l Prompts Used in Our Study

Baseline Prompt

[Task Instruction in Language X]
["Question" in Language X]:
[Test Query]

["Choices" in Language X]:
A:

[Option A in Language X]
B:

[Option B in Language X]
C:

[Option C in Language X]
D:

[Option D in Language X]
["Answer" in Language X]:

Figure 4: Baseline Prompt. The baseline prompt used in our study. Headings are highlighted
in blue.

The baseline prompt we use in our study is shown in Figure 4 (a). The headings are
highlighted in blue, and each square bracket pair indicates a placeholder based on the test
query and language.

A.2 More Examples of SAE Features

In Section 4.2, we noted that even when a TF-feature is multilingual, the frequency of
activated tokens is generally lower in low-resource languages, indicating a clear distinction
between high- and low-resource languages. Here, we present another such feature in
Figure 5 along with corresponding statistics using the ARC dataset.

In Section 4.6, we introduced another potentially significant feature type that may contribute
to label bias. Examples of these features are illustrated in Figure 6.
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Figure 5: Decline in TF Feature Frequency for Low-performing Languages. We provide
another example of TF-features showing a significant reduction in activation frequency for
low-resource languages (see the last row).
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Figure 6: Features that may contribute to label bias: Feature #4306 exhibits behavior similar
to HF-features, as it strongly activates on headings. However, we observe a consistent
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examples.

14



	Introduction
	Related Work
	Approaches to Understanding Multilingualism in Large Language Models
	Sparse Autoencoders as a Key Analytical Tool

	Analyzing Multilingualism in LLMs with SAEs
	Motivation
	Our Objective and Approach
	Proposed Methods
	Experimental Settings

	Main Findings and Discussions
	SAEs Provide Tangible Evidence that LLMs Have a Precise Understanding of the Prompt Structure
	Low-performing Languages Relatively Lack Task Instruction-Focused Features
	The Importance of Headings in LLMs
	Enhancing Low-performing Language Performance: English Heading Prompts (EHP)
	Enhancing Multilingual Performance Via Amplifying TF Features (ATF)
	An Additional Interesting Type of SAE Features Not Covered in This Work, but Worth Noting

	Conclusion
	Acknowledgements
	Appendix
	Prompts Used in Our Study
	More Examples of SAE Features


