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ABSTRACT

Large language models (LLMs) becomes the dominant paradigm for the chal-
lenging task of text-to-SQL. LLM-empowered text-to-SQL methods are typically
categorized into prompting-based and tuning approaches. Compared to prompting-
based methods, benchmarking fine-tuned LLMs for text-to-SQL is important yet
under-explored, partially attributed to the prohibitively high computational cost. In
this paper, we present DB-GPT-Hub, an open benchmark suite for LLM-empowered
text-to-SQL, which primarily focuses on tuning LLMs at large scales. The proposed
benchmark consists of: 1. a standardized and comprehensive evaluation of text-
to-SQL tasks by fine-tuning medium to large-sized open LLMs; 2. a modularized
and easy-to-extend codebase with mainstream LLMs and experimental scenarios
supported, which prioritizes fine-tuning methods but can be easily extended to
prompt-based setting. Our work investigates the potential gains and the performance
boundaries of tuning approaches, compared to prompting approaches and explores
optimal solutions tailored to specific scenarios. We hope DB-GPT-Hub, along with
these findings, enables further research and broad applications that would otherwise
be difficult owing to the absence of a dedicated open benchmark. The project code
has been released anonymously at https://github.com/anonymity-360/DB-GPT-Hub.

1 INTRODUCTION

The task of text-to-SQL, which converts natural utterances into SQL queries, has emerged as a
popular topic in both natural language processing and database (Yu et al., 2018b; Deng et al.,
2022). It effectively narrows the gap between non-expert users and database systems, significantly
enhancing data processing efficiency. Essentially, text-to-SQL can be characterized as a sequence-to-
sequence modeling task (Sutskever et al., 2014), where the database schema and the natural language
question are transformed into a sequential input, while the desired SQL query serves as the sequential
output target. Early works focus on fine-tuning domain-specific Transformer models and developing
decoding techniques specifically for the task, leveraging SQL syntax, semantics, and the complex
interplay between questions and databases (Scholak et al., 2021; Qi et al., 2022).

While recently large language models (LLMs) such as ChatGPT (Brown et al., 2020) and GPT-4 (Ope-
nAI, 2023a) have showcased their remarkable capabilities in engaging in human-like communication
and understanding complex queries, LLMs have emerged as a new paradigm for text-to-SQL (Liu
et al., 2023; Trummer, 2022). Notably, since 2023, the majority of top-performing solutions on the
Spider leaderboard (Yale, 2018) have been methods based on LLMs.

The most recent advancement in this area involves employing LLMs for generating accurate SQL
queries through in-context learning (ICL) techniques, notably zero-shot and few-shot prompting
(OpenAI, 2023b; Dong et al., 2023; Pourreza & Rafiei, 2023). Beyond the inherent challenge of
ambiguity and complexity, the laborious efforts for annotating SQL query-response exemplars by
domain experts hinder the process of scaling-up data hungry LLMs for text-to-SQL applications.
Meanwhile, another prominent approach is fine-tuning LLMs using additional task-specific training
data to enhance their efficacy for text-to-SQL tasks Li et al. (2023a); Sun et al. (2023). The
remarkable performances achieved in these works indicate the immense potential of fine-tuning.
However, compared to prompting approaches, fine-tuning approaches have been relatively under-
explored, partially attributed to the prohibitively high computational cost. Recent systematic studies
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(Gao et al., 2023; Zhang et al., 2024) still mainly highlight the ICL abilities of LLMs and their
accuracy in generating SQL queries in relevant tasks.

Up until now, there still has not been a universally acknowledged open benchmark for tuning
approaches, which impedes researchers and practitioners from comparing methods and reproducing
results, potentially slowing down advancement in this field. As a first step towards addressing these
challenges, in this work, we present a holistic framework, namely DB-GPT-Hub,. Apart from existing
works that mostly focus on few-shot prompting strategies or tuning relatively smaller LLMs,
our work focuses on tuning larger LLMs. In all, DB-GPT-Hub consolidates essential research
assets (e.g., data, model services, evaluation methods, documentation) with following distinct merits:

• Standardization. We establish a standardized pipeline in an open-source codebase, with uni-
fied experimental settings and containerized environments, to enable transparent and consistent
comparisons of LLM models after text-to-SQL tasks tuning.

• Comprehensiveness. We conduct extensive benchmarking that covers a range of medium to
large-sized, fine-tuned LLMs across various experimental scenarios and explore their relative
performance compared to prompting methods. Our work comprises one of the most pragmatic and
expansive sets of benchmark suites available.

• Extensibility. As a rapidly evolving field, novel LLM-based methods constantly emerge, and
the best practice continuously evolves. Following our documentation and protocols, one could
effortlessly incorporate novel ingredients into our codebase: new datasets, new modules, new
models (or model services), and new evaluation programs. Moreover, our framework offers easy
compatibility with various prompting techniques. The high extensibility will eventually benefit the
research area of text-to-SQL.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 A GENERALIZED SETUP

The input of text-to-SQL task is a natural language question q and the database information D.
The output is the SQL s corresponding to the question. The database D = {S,Kp,Kf} includes
database schema S, primary keys Kp and foreign keys Kf , where S usually contains multiple tables
Tk : S = {T1, T2, ...Ts...}. Each table Tk has table name Nk, column names cj and column data
types tj . Therefore, Tk = {Nk, (ck1, tk1), (ck2, tk2)...}. Consider the queries may come from various
database domains, we formulate the data into a set of triples M = {(qi, si,Di)}, with i denoting the
index of the query, the output and source database.

2.2 PROMPT-BASED AND FINE-TUNING SETTINGS

Based on how LLMs are used for text-to-SQL generations, the problem settings can be categorized
into two scenarios: zero-shot/few-shot prompting and fine-tuning.

Zero-shot / Few-shot Prompting. In zero-shot scenarios, no exemplar is provided while in few-
shot a few input–output exemplars are provided to prompt LLMs. Formally, given a pretrained
LLM parameterized by θ, the question qi, and k exemplars (k ≥ 0), the objective is maximize the
probability of generating the correct SQL si from the LLM:

max
si

PLLMθ
(si|σ(qi,M)), |M| = k (1)

where Θ and σ(qi,M) 1 denotes a representation space of the target question qi by incorporating
relevant information from exemplars.

Fine-tuning. The fine-tuing process involves adapting the pretrained LLMθ to generate SQL from
the input sequences by tuning the model with text-to-SQL datasets, which contain a collection of
serialized inputs qi and corresponding SQL outputs si pairs. The object of fine-tuning is minimize

1σ(qi,M) technically denotes the information set generated by qi and M.
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the empirical loss:

min
θ

L(ŝi(LLMθ), si|σ(qi)), (2)

where L is the loss function to measure the difference between the generated SQL and the groundtruth.

Despite the significant advances achieved with few-shot prompting of LLMs, it remains a formidable
challenge for a pretrained LLM to rely solely on its parametric knowledge and prompting to accurately
process highly complex SQL queries.

Parameter-Efficient Fine-tuning. Medium to large-sized models with billions of parameters, are
prohibitively expensive to fine-tune in order to adapt them to particular tasks or domains. Parameter-
Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of large pretrained models to
various downstream applications by only fine-tuning a small number of (extra) model parame-
ters instead of all the model’s parameters. Two mostly commonly used techniques are LoRA (Hu
et al., 2021), which proposes to freeze pretrained model weights and inject trainable layers (rank-
decomposition matrices) in each transformer block, and its quantized version QLoRA (Dettmers
et al., 2023). Throughout the benchmark, we use these two strategies consistently to tune the LLMs.
See Section 3 and Section 4 for details of tuning benchmark design and experimental results.

3 BENCHMARK DESIGN AND RESOURCES

3.1 SETUP

Datasets. We conduct experiments mainly on the following 2 well recognized public datasets:

• Spider (Yu et al., 2018b). Spider is a large-scale cross-domain dataset consisting of 10,181 natural
language queries, 5,693 unique complex SQL queries across 200 databases, covering 138 domains.
The standard protocol for this dataset divides it into 8,659 training examples and a holdout of 2,147
test examples across 34 databases. SQL queries are categorized into four difficulty levels, i.e., easy,
medium, hard and extra hard.

• BIRD (Li et al., 2023b). It comprises an extensive dataset with 12,751 unique question-SQL pairs,
encompassing 95 large databases. SQL queries are categorized into three difficulty levels, i.e.,
simple, moderate and challenge. Notably, the SQL queries in the BIRD dataset tend to be more
intricate than those in the Spider dataset.

Moreover, our codebase universally supports tuning a wide range of popular dataset, such as Wik-
iSQL (Zhong et al., 2017), CoSQL (Yu et al., 2019), Chase (Guo et al., 2021) (see Appendix A.1
for the detailed statistics of each dataset.) and due to the page limit, we continually post updated
experimental results on the project site2.

Query-response Construction. We construct query-response pairs from the datasets so that LLMs
can be tuned with (Gao et al., 2023; Xue et al., 2023b). Following Gao et al. (2023), we formulate the
pairs using the widely-used Text Representation Prompt (Nan et al., 2023) (TRP) format for train,
development and test split for all the datasets throughout the experiments.

Shown in Listing 1, TRP represents both schema and query in natural language. In addition, it adds
instructions at the very beginning of the prompt to guide LLMs. See Listing 2 and Listing 3 in
Appendix A.4 for full examples.

1

2 I want you to act as a SQL terminal in front of a database and below is an
description of the database schema. Write a response that appropriately completes
the request.

3

4 /∗ Instruction ∗/
5 Database concert singer contains tables such as stadium, singer, concert,

singer in concert.

2https://github.com/anonymity-360/DB-GPT-Hub/blob/main/docs/eval llm result.md
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Figure 1: An open benchmarking pipeline using DB-GPT-Hub.

6 Table stadium has columns such as Stadium ID, Location, Name, Capacity, Highest,
Lowest, Average. Stadium ID is the primary key.

7 Table singer has columns such as Singer ID, Name, Country, Song Name,
Song release year, Age, Is male. Singer ID is the primary key.

8 Table concert has columns such as concert ID, concert Name, Theme, Stadium ID,
Year. concert ID is the primary key.

9 Table singer in concert has columns such as concert ID, Singer ID. concert ID is
the primary key.

10 The Stadium ID of concert is the foreign key of Stadium ID of stadium.
11 The Singer ID of singer in concert is the foreign key of Singer ID of singer.
12 The concert ID of singer in concert is the foreign key of concert ID of concert.
13

14 Please give SQL statement to answer the following question:
15

16 Q: How many singers do we have?
17 Response: SELECT DISTINCT country FROM singer WHERE age > 20.
18

Listing 1: Query-response Pairs in TRP Format on Spider Dataset.

Metrics. We use two commonly used metrics, exact-set-match accuracy (EM), execution accuracy
(EX) to evaluate the performance of all models. EM measures the matched SQL keywords between
the predicted SQL query and its corresponding ground truth while EX compares the execution output
of the predicted SQL query with that of the ground truth SQL query on some database instances. EX
provides a more precise estimate of the model’s performance since there may be multiple valid SQL
queries for a given question. For both metrics, the higher is considered the better. We mainly use EX
to evaluate the accuracy of SQLs in the paper. See Appendix A.2 for details.

Base LLMs. We benchmark a range of medium to large-sized LLM variants from 4 prominent
LLM families: GLM (Zeng et al., 2022), Qwen (Bai et al., 2023), Baichuan (Baichuan, 2023) and
Llama (Touvron et al., 2023).

• ChatGLM3-6B, the up-to-date open version of ChatGLM, an open bilingual language model based
on GLM framework.

• Qwen-7B/14B/72B-Chat, a series of aligned models of Qwen.

• Baichuan2-7B/13B-Chat, the up-to-date collection of aligned models of Baichuan.

• LLaMA2-7B/13B/70B-Chat3, the up-to-date aligned version of LLaMA.

• CodeLLaMA-7B/13B/70B-Instruct, an aligned version of LLaMA-2-13B, tuned with code data.

To ensure a fair comparison, we use the same maximal context length 2048 for all the LLMs. During
the evaluation, we leave 512 tokens for response generation. We set the argument temperature as 0 to
eliminate the influence of randomness.

Tuning Methods. As the scale of the dataset is notably smaller than that of LLMs, we apply the
PEFT strategies –LoRA and QLoRA – to tune the LLMs, respectively. For medium-sized models

3Due to the page limitation, we have omitted the suffix “-Chat” from the names of LLMs in the tables
throughout the following sections. For instance, “Qwen-7B” should be read as “Qwen-7B-Chat” model.
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(7B/13B), we adopt 1 Nvidia A100 Tensor Core GPU to run training and inference. For large-sized
models (70B), we adopt 8 A100s.

Benchmark Pipeline. Figure 1 presents the open benchmarking pipeline implemented in DB-
GPT-Hub. This pipeline will facilitate future research in this area and help promote reproducible
work.

3.2 CODEBASE

To facilitate the innovation of the community, our DB-GPT-Hub contains a well-modularized, easy-
to-extend codebase for standardization of implementation, evaluation, and ablation of text-to-SQL
methods.

Software Architecture. Figure 1 presents the pipeline and architecture of our codebase. Pipelines
are decomposed into following parts:

• Dataset Construction. Raw text-to-SQL data is processed into a suitable format (e.g., TRF shown
in Listing 1 ) to tune LLMs. This includes integrating the schema and database description into a
prompt as an instruction, along with various question representations to boost performance during
training and evaluation. Additionally, we will select different few-shot strategies, such as example
selection and organization, to construct the evaluation dataset Gao et al. (2023).

• Training. Our codebase supports the fine-tuning of open-source LLMs with PEFT strategies. We
support most of the public architecture with small to large-sized model scales, such as Qwen,
Llama, Baichuan, and ChatGLM.

• Prediction. Our codebase supports SQL query inference for open-source LLMs with its fine-tuned
version and closed-source LLMs as well. We support the few-shot and zero-shot method to generate
SQLs for specific scenarios.

• Evaluation. Our repository holds different metrics(EX, EM, valid efficiency score(VES)) to
evaluate the performance of generated SQL from different perspectives.

Implementations. The codebase is built with the PyTorch framework (Paszke et al., 2017), upon
the open source project DB-GPT (Xue et al., 2023a; 2024a). We release the code with Apache License
2.0 and we are committed to actively maintain the repository.

4 EXPERIMENTS

In this section, with the utility of DB-GPT-Hub, we formally evaluate the text-to-SQL process
to determine the performance differences among various LLMs and explore the effect of training
paradigms that influence tuning performance of LLMs.

4.1 MAIN RESULTS

Table 1 and Table 2 show the evaluation results, measured by EX, on Spider and BIRD datasets,
respectively 4. The results in EM on both datasets can be found in Table 6 and Table 7 in Appendix B.

Best Models. Unsurprisingly, tuned CodeLlama families, whose base models haven been optimized
for code generation and infilling, show consistently better performance over other competitors on
both datasets. Specifically, we have achieved the following key insights:

• As shown in the right-most columns in Table 1 and Table 2, The fine-tuned, small-sized CodeLlama
(e.g., CodeLlama-7B-LoRA5) exhibits comparable, and in some cases even superior, performance
to other tuned medium to large-sized open LLMs, such as Qwen-14B/72B-LoRA.

• CodeLlama-70B-LoRA is universally optimal.
4For large-sized (70B) models, we found that DeepSpeed optimization is incompatible with QLoRA, so we

have left this data blank for the time being.
5We use the suffix ’-LoRA/QLoRA’ to denote the LoRA/QLoRA PEFT strategies applied to tune LLMs, i.e.,

’-LoRA’ means the LLM is tuned with LoRA.

5
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MODEL EASY MEDIUM HARD EXTRA OVERALL

BASE L/QL BASE L/QL BASE L/QL BASE L/QL BASE L/QL

LLAMA2-7B 0.000 0.887/0.847 0.000 0.641/0.623 0.000 0.489/0.466 0.000 0.331/0.361 0.000 0.626/0.608
LLAMA2-13B 0.000 0.907/0.911 0.000 0.729/0.700 0.000 0.552/0.552 0.000 0.343/0.319 0.000 0.680/0.664
LLAMA2-70B 0.411 0.915/− 0.229 0.732/− 0.190 0.560/− 0.072 0.392/− 0.241 0.687/−

CODELLAMA-7B 0.214 0.923/0.911 0.177 0.756/0.751 0.092 0.586/0.598 0.036 0.349/0.331 0.149 0.702/0.696
CODELLAMA-13B 0.698 0.940/0.940 0.600 0.789/0.744 0.408 0.684/0.626 0.271 0.404/0.392 0.529 0.746/0.727
CODELLAMA-70B 0.722 0.962/− 0.625 0.812/− 0.443 0.716/− 0.302 0.432/− 0.567 0.771/−

BAICHUAN2-7B 0.577 0.871/0.891 0.352 0.630/0.637 0.201 0.448/0.489 0.066 0.295/0.331 0.335 0.603/0.624
BAICHUAN2-13B 0.581 0.903/0.895 0.413 0.702/0.675 0.264 0.569/0.580 0.187 0.392/0.343 0.392 0.678/0.659

QWEN-7B 0.395 0.855/0.911 0.256 0.688/0.675 0.138 0.575/0.575 0.042 0.331/0.343 0.235 0.652/0.662
QWEN-14B 0.871 0.895/0.919 0.632 0.702/0.744 0.368 0.552/0.598 0.181 0.367/0.458 0.573 0.663/0.701
QWEN-72B 0.831 0.927/− 0.635 0.756/− 0.489 0.621/− 0.277 0.367/− 0.600 0.712/−

CHATGLM3-6B 0.000 0.855/0.843 0.000 0.605/0.603 0.000 0.477/0.506 0.000 0.271/0.211 0.000 0.590/0.581

Table 1: Evaluations on Spider: EX of base models vs fine-tuned models on each split of complexity
and overall dataset. “L” and “QL” denote “LORA” and “QLoRA” tuing methods, respectively.

MODEL SIMPLE MODERATE CHALLENGE OVERALL

BASE L/QL BASE L/QL BASE L/QL BASE L/QL

LLAMA2-7B 0.000 0.214/0.211 0.000 0.108/0.112 0.000 0.076/0.069 0.000 0.169/0.168
LLAMA2-13B 0.000 0.226/0.217 0.000 0.073/0.086 0.000 0.097/0.069 0.000 0.167/0.163
LLAMA2-70B 0.082 0.210/− 0.013 0.138/− 0.014 0.126/− 0.055 0.241/−

CODELLAMA-7B 0.010 0.299/0.076 0.065 0.149/0.146 0.000 0.112/0.128 0.085 0.237/0.223
CODELLAMA-13B 0.120 0.375/0.373 0.042 0.176/0.179 0.042 0.141/0.140 0.089 0.294/0.293
CODELLAMA-70B 0.191 0.423/− 0.091 0.191/− 0.063 0.159/− 0.149 0.328/−

BAICHUAN2-7B 0.051 0.231/0.208 0.024 0.082/0.084 0.000 0.069/0.105 0.038 0.171/0.161
BAICHUAN2-13B 0.048 0.0230/0.182 0.013 0.088/0.067 0.021 0.111/0.069 0.035 0.176/0.136

QWEN-7B 0.035 0.235/0.225 0.012 0.073/0.095 0.014 0.083/0.082 0.023 0.171/0.172
QWEN-14B 0.188 0.288/0.252 0.049 0.136/0.120 0.028 0.111/0.110 0.131 0.226/0.198
QWEN-72B 0.253 0.289/− 0.112 0.093/− 0.048 0.083/− 0.190 0.209/−

CHATGLM3-6B 0.000 0.204/0.185 0.000 0.089/0.074 0.000 0.056/0.042 0.000 0.156/0.129

Table 2: Evaluations on BIRD: EX of base models vs fine-tuned models on each split of complexity
and overall dataset. “L” and “QL” denote “LORA” and “QLoRA” tuing methods, respectively.

Performance Improvement on Tuning. Table 1 and Table 2 (also shown in Table 9 in Appendix B)
illustrate the improvement of PEFT strategies of LLMs on both datasets, highlighting the LLMs profi-
ciency to adapt to high-quality text-to-SQL training data. Notably, tuning yields a larger improvement
on Spider compared to BIRD, measured by EX. This suggests that the benefits of tuning become
increasingly important in less complex tasks.

MODEL EX EM TIME COST (HOUR) GPU MEMORY (GB)

LORA QLORA LORA QLORA LORA QLORA LORA QLORA

LLAMA2-7B 0.626 0.608 0.581 0.564 4.12 5.74 23.5 16.9
LLAMA2-13B 0.680 0.664 0.640 0.632 7.26 8.82 34.8 29.6

CODELLAMA-7B 0.702 0.696 0.668 0.665 4.33 6.74 23.8 16.7
CODELLAMA-13B 0.746 0.727 0.701 0.682 7.26 8.82 34.8 29.6

BAICHUAN2-7B 0.603 0.624 0.588 0.602 3.33 7.52 20.9 11.5
BAICHUAN2-13B 0.678 0.659 0.607 0.606 8.12 15.3 34.4 17.5

QWEN-7B 0.652 0.662 0.610 0.621 2.57 6.45 28.9 17.1
QWEN-14B 0.663 0.701 0.658 0.665 4.23 11.32 38.4 18.1

Table 3: The comparison between LoRA and QLoRA on Spider across different perspectives: EX
and EM are the performance metrics; the training time and max GPU memory cost are the resource
metrics.
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Figure 2: The improvement on tuning with LoRA strategy across subgroups of different complexities.

Performance for Different SQL Difficulty Levels. In Figure 2, using three 7B models for instance,
we present the efficacy of tuned LLMs against a spectrum of SQL generation difficulty levels. For all
three tuned models, the results highlight that the size of improvement is negatively correlated with
the complexities and tuning brings more significant improvement on easy tasks, which reveals the
importance of tuning over simpler tasks than difficult ones.

LoRA vs QLoRA We summarize the EX, EM, Time Cost, and GPU memory metrics in Table 3.
Firstly, not surprisingly, we see limited differences in generation performance, measured by EX and
EM, between models tuned with LoRA and QLoRA. Secondly, consistent with the quantization
mechanism, QLoRA takes more time to converge with less GPU memory. For example, compared to
Qwen-14B-LoRA, its QLoRA counterpart takes 2× of time with only 50% GPU memory.

To conclude, in circumstances with restricted computational resources, QLoRA is an efficient tuning
alternative that can save memory without sacrificing performance.

4.2 ANALYSIS I: FINE-TUNING VS FEW-SHOT PROMPTING

In this subsection, we explore the improvements with tuning compared to few-shot prompting.

Setup. We take two model families –Llama2 and Qwen– and conduct our investigations primarily
on the Spider dataset. We use the method DAIL Selection (Gao et al., 2023), which currently ranks as
the second-best open-source model on the Spider leaderboard, to construct the few-shot prompt. It
selects exemplars those have good similarity with both queries and responses, better preserving the
mapping in between the query-response pairs.

Core Insights. Due to the page limitation, we put the full results in Table 8 in Appendix B. In both
zero-shot and few-shot (1/3/5-shot) evaluation scenarios, tuned LLMs demonstrate superior results,
highlighting the LLMs proficiency to adapt to high-quality text-to-SQL training data.

Effect of Number of Exemplars in Prompting. In addition to the superior performances of tuned
LLMs, Figure 4 reveals that, for strong (large-sized) models, the EX margin of tuned against base
model becomes less prominent on few-shot scenarios. For example, the EX of Qwen-72B-LoRA vs
Qwen-72B on 3-shot: 68.5 vs 64.8 and on 5-shot: 68.4 vs 65. This is more clearly observed from a
different perspective in Figure 3, where the curves for Qwen-13B/72B is flat at low levels.

This fact is possibly because these Qwen-72B already has strong SQL reasoning capabilities, which
has barely been discussed in other text-to-SQL benchmarking works.

In all, fine-tuned models exhibit superior SQL reasoning abilities compared to non-tuned models in
few-shot generation scenarios; however, the margin of improvement is relatively small for robust
models like Qwen-72B.

Effect of Model Size. From Figure 4, we interpret the few-shot performance w.r.t. the model size
for four models (two base models and two tuned models) and observe that:

• Larger models consistently achieve better results in few-shot scenarios compared to their smaller-
sized counterparts.
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Figure 3: Few-shot evaluations on Spider: EX improvement on few-shot scenarios over zero-shot.
EX(k-shot) represents the EX of the target (untuned/tuned) model under k-shot scenario minus EX
of the base model in zero-shot scenario, i.e., in (a), Improvement on EX(Qwen-LoRA, 3-shot) =
EX(Qwen-LoRA, 3-shot) - EX(Qwen, 0-shot).
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Figure 4: Few-shot evaluations on Spider: the EX performance of Llama2 / Qwen and their tuned
counterparts with varying model size.

• For a given few-shot scenario, the performance margin of tuning method over prompting method
comes closer when the size of LLMs grows. For example, for 1-shot scenario, the performance
improvement on EX of Qwen-LoRA over Qwen is 31.0, 24.1 and 3.5 for 7B, 14B and 72B,
respectively.

Recall that the exact figure of few-shot evaluations can be found at Table 8 in Appendix B. Overall,
tuning methods continue to outperform prompting methods while the performance gap narrows as
the size of the LLMs increases.

4.3 ANALYSIS II: FINE-TUNING WITH MORE EXEMPLARS

In this subsection, we explore the possibility of enhancing the performance of LLMs by adding more
contextual examples during fine-tuning.

Setup. We use Qwen-7B as the base model and construct additional three few-shot (1/3/5-shot) train-
ing sets to fine-tune the model. Specifically, the 1/3/5-shot training sets consist of query-response pairs
with an additional 1/3/5 exemplars. For a given model, we also evaluate its few-shot performances,
same as in section 4.2.

Core Insights. Shown in Table 4, we primarily conclude with two insights:

• In a zero-shot evaluation scenario, tuning with additional exemplars does not yield a significant
improvement in performance. See the “0-shot” column. This is possible because the training corpus
(more examples) mismatches the evaluation setting (no examples).

• In 1/3/5-shot evaluation scenarios, adding more contextual examples contributes to the notable
improvement over the counterpart tuned with 0-shot training corpus. It means that the performance
loss on few-shot evaluation for zero-shot training is caused by the prompt mismatch of training and
evaluation dataset.
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MODEL 0-SHOT 1-SHOT 3-SHOT 5-SHOT

EM EX EM EX EM EX EM EX

QWEN-7B 16.1 22.9 27.4 34.0 27.6 33.9 25.9 33.8
QWEN-7B-LORA (0-SHOT) 61.0 65.3 58.4 61.8 57.8 62.0 57.7 61.4
QWEN-7B-LORA (1-SHOT) 61.2 64.0 61.7 64.8 60.8 63.8 61.8 64.8
QWEN-7B-LORA (3-SHOT) 61.0 62.8 62.0 62.8 60.7 62.1 60.7 62.9
QWEN-7B-LORA (5-SHOT) 60.4 62.7 62.0 64.0 61.5 63.2 60.9 63.5
QWEN-7B-LORA (RANDOM-SHOT) 61.5 63.0 62.1 64.0 62.2 63.6 61.9 63.6

Table 4: Few-shot Evaluations on Spider: EM and EX of fine-tuned models with the different number
of examples in the training corpus.

• The random-shot strategy, which refers to randomly adding 0/1/3/5 examples into the training
corpus, achieves the highest EM scores. This finding is consistent with that proposed by (Sun et al.,
2023): diverse training corpus benefits the fine-tuning of LLMs.

5 RELATED WORK

5.1 LLM-EMPOWERED TEXT-TO-SQL METHODS

Driven by the considerable success of LLMs, the field of LLM-empowered text-to-SQL has captured
the interest of a large amount of researchers both in nature language process and database community
recently. The models on LLM-based text-to-SQL can be categorized into supervised fine-tuning based
and prompting based methods. Popular fine-tuned text-to-sql models are SQL-PaLM (Sun et al.,
2023), PICARD (Scholak et al., 2021) and RESDSQL (Li et al., 2023a). In contrast to supervised
fine-tuned models, prompting-based models do not require additional fine-tuning on task-specific
training data. Instead, they solely rely on the zero-shot and few-shot (Rajkumar et al., 2022; Liu et al.,
2023) capabilities inherent in LLMs. Within the prompting paradigm, the pivotal factor for query
representation lies in the design of the prompt (Wei et al., 2022; Zhou et al., 2022; Wang et al., 2022a).
In particular, DIN-SQL (Pourreza & Rafiei, 2023) introduces adaptive prompt strategies via task
decomposition to effectively address challenges associated with schema linking. DAIL-SQL (Gao
et al., 2023) proposes a refined prompt selection and organization strategy to improve the performance.
In DB-GPT-Hub, we offer scripts to support researchers in fine-tuning LLMs in accordance with
the methodologies established in SQL-PaLM. In addition, we also integrate the popular prompt
techniques used in DAIL-SQL.

5.2 TEXT-TO-SQL BENCHMARKS

A pivotal factor in the progression of text-to-SQL is the establishment of high-quality benchmarks.
Early benchmarks focus on single databases, including ATIS (Dahl et al., 1994), GeoQuery (Zelle
& Mooney, 1996), Academic (Li & Jagadish, 2014), Advising (Finegan-Dollak et al., 2018), and
more recent additions such as SEDE (Hazoom et al., 2021) and MIMICSQL (Wang et al., 2019).
These benchmarks and datasets are often adapted from real-life applications, with many containing
domain-specific knowledge that may not generalize effectively to unseen SQL domains. Hence,
large-scale cross-domain datasets featuring professional SQL queries, such as Squall (Shi et al.,
2020), Spider (Yu et al., 2018a), Spider-Syn (Gan et al., 2021), WikiSQL (Zhong et al., 2017), and
SparC (Yu et al., 2020), have been introduced to facilitate comprehensive method analyses.

In retrospect, we realize two concurrent works (Gao et al., 2023; Zhang et al., 2024) which perform
systematical benchmarking on text-to-SQL methods. Important distinctions of their work from
ours include: 1. comprehensiveness of benchmark settings: we evaluate both ICL and medium to
large-sized fine-tuning methods in an end-to-end manner while Gao et al. (2023) focus on ICL
methods and Zhang et al. (2024) assess various sub-tasks of the text-to-SQL process; 2. open source
of the codebase: we released a well-maintained open repository on Github containing all code and
data assets, which, to the best of knowledge, is one of the most popular text-to-SQL benchmark
repositories (over 1k stars so far), while neither of them has achieved this.
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6 CONCLUSION

In this study, we conduct a systematic benchmarking of the various LLMs within the text-to-SQL
pipeline. Our benchmarking provides a meticulous perspective on the pipeline, equipping the research
community with strategies to improve the semantic understanding of LLMs.

7 LIMITATIONS

The large computational resources required for LLM training might not be accessible to all researchers
and practitioners, which may limit the reproducibility of our findings.
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Appendices
A EXPERIMENTAL DETAILS

A.1 DATASET DETAILS

Spider (Yu et al., 2018b). It consists of 10,181 questions and 5,693 unique complex SQL queries
across 200 databases, covering 138 domains, each containing multiple tables. The standard protocol
for this dataset divides it into 8,659 training examples across 146 databases, 1,034 development
examples across 20 databases, and a holdout of 2,147 test examples across 34 databases. The databases
used in each of these sets are nonoverlapping. SQL queries are categorized into four difficulty levels,
based on the number of SQL keywords used, the presence of nested subqueries, and the usage of
column selections and aggregations.

BIRD (Li et al., 2023b). This dataset represents a pioneering, cross-domain dataset that examines
the impact of extensive database contents on text-to-SQL parsing. BIRD contains over 12,751
unique question-SQL pairs, 95 big databases with a total size of 33.4 GB. It also covers more than
37 professional domains, such as blockchain, hockey, healthcare and education, etc. BIRD also
introduces external knowledge as an additional resource to assist models in generating accurate
SQL queries. Specifically four sources of external knowledge were introduced: numeric reasoning
knowledge, domain knowledge, synonym knowledge, and value illustration. Notably, the SQL queries
in the BIRD dataset tend to be more intricate than those in the Spider dataset.

WikiSQL (Zhong et al., 2017). This dataset consists of a corpus of 80,654 natural statement expres-
sions and sql annotations of 24,241 tables. Each query in WikiSQL is limited to the same table and
does not contain complex operations such as sorting, grouping. The queries in WikiSQL are limited
to the same table and do not include complex operations such as sorting, grouping, subqueries, etc.

CoSQL (Yu et al., 2019). This dataset is a conversational version of the Spider task. CoSQL consists of
30,000 rounds and 10,000 annotated SQL queries from Wizard-of-Oz’s collection of 3k conversations
querying 200 complex databases across 138 domains. Each conversation simulates a realistic DB
query scenario in which a staff member explores the database as a user and a SQL expert uses SQL
to retrieve answers, clarify ambiguous questions, or otherwise inform.

Chase (Guo et al., 2021). This data is to date the largest Chinese dataset for the cross-database
context-dependent Text-to-SQL problem. It consists of 5,459 question sequences (17,940 questions)
over 280 databases. Each question in Chase has rich semantic annotations, including its SQL query,
contextual dependency, and schema linking.

A.2 METRICS DETAILS

We clarify the properties of the two metrics in details.

Exact-set match accuracy (EM). EM treats each clause as a set and compares the prediction for
each clause to its corresponding clause in the reference query. A predicted SQL query is considered
correct only if all of its components match the ground truth. EM does not take values into account.

Execution accuracy (EX). EX compares the execution output of the predicted SQL query with that
of the ground truth SQL query on some database instances. Execution accuracy provides a more
precise estimate of the performance of the method as there may be multiple valid SQL queries for a
given question while EM only evaluates the predicted SQL against one of them.

A.3 IMPLEMENTATION DETAILS

All models are implemented using the PyTorch framework (Paszke et al., 2017). For parameter
scale with 7B and 13B models, we adopt 1 Nvidia A100 Tensor Core GPU to run training. For the
parameter scale of 70B model, we adopt 8*A100 to run training and inference.

Fine-tuning hyperparameters setting The hyperparameters of the training are shown in Table 5.
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Parameter 7B 13B 70B
GPUs 1*A100 1*A100 8*A100

max source length 2048 2048 2048
max target length 512 512 512
fine-tuning type lora lora lora

lora rank 64 64 64
lora alpha 32 32 32

lr 0.0002 0.0002 0.0002
epoch 8 8 8

Table 5: Parameter setting of fine tuning for different model scale

A.4 FEW SHOT PROMPTING

20 Given the following database schema :
21

22

23 Table advisor, columns = [∗,s ID,i ID]
24 Table classroom, columns = [∗,building,room number,capacity]
25 Table course, columns = [∗,course id,title,dept name,credits]
26 Table department, columns = [∗,dept name,building,budget] Table instructor,

columns = [∗,ID,name,dept name,salary] Table prereq, columns = [∗,course id,
prereq id]

27 Table section, columns = [∗,course id,sec id,semester,year,building,room number,
time slot id]

28 Table student, columns = [∗,ID,name,dept name,tot cred] Table takes, columns = [∗,
ID,course id,sec id,semester,year,grade]

29 Table teaches, columns = [∗,ID,course id,sec id,semester,year]
30 Table time slot, columns = [∗,time slot id,day,start hr,start min,end hr,end min]
31

32 Please write queries to answer the following questions:
33

34 Q: Find the title of courses that have two prerequisites.
35 Response: SELECT T1.title FROM course AS T1 JOIN prereq AS T2 ON T1.course id =

T2.course id GROUP BY T2.course id HAVING count(∗) = 2.
36

37 Q: Find the room number of the rooms which can sit 50 to 100 students and their
buildings.

38 Response: SELECT building , room number FROM classroom WHERE capacity BETWEEN 50
AND 100.

39

40 Q: Give the name of the student in the History department with the most credits.
41 Response: SELECT name FROM student WHERE dept name = 'History' ORDER BY tot cred

DESC LIMIT 1.
42

43 Q: Find the total budgets of the Marketing or Finance department.
44 Response: SELECT sum(budget) FROM department WHERE dept name = 'Marketing' OR

dept name = 16 'Finance'.
45

46 Q: Find the department name of the instructor whose name contains 'Soisalon'.
47 Response: SELECT dept name FROM instructor WHERE name LIKE '%Soisalon%'.
48

49 Q: What is the name of the department with the most credits?
50 Response: SELECT dept name FROM course GROUP BY dept name ORDER BY sum(credits)

DESC LIMIT 1.
51

52 Q: How many instructors teach a course in the Spring of 2010?
53 Response: SELECT COUNT (DISTINCT ID) FROM teaches WHERE semester = 'Spring' AND

YEAR = 2010.
54

55 Q: Find the name of the students and their department names sorted by their total
credits in ascending order.

56 Response: SELECT name, dept name FROM student ORDER BY tot cred.
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57

58 Q: Find the year which offers the largest number of courses.
59 Response: SELECT YEAR FROM SECTION GROUP BY YEAR ORDER BY count(∗) DESC LIMIT 1.
60

61 Q: What are the names and average salaries for departments with average salary
higher than 42000?

62 Response: SELECT dept name , AVG (salary) FROM instructor GROUP BY dept name
HAVING AVG (salary) > 42000.

63

64 Q: Find the minimum salary for the departments whose average salary is above the
average payment of all instructors.

65 Response: SELECT min(salary) , dept name FROM instructor GROUP BY dept name HAVING
avg(salary) > (SELECT avg(salary) FROM instructor).

66

67 Q: What is the course title of the prerequisite of course Mobile Computing?
68 Response: SELECT title FROM course WHERE course id IN (SELECT T1.prereq id FROM

prereq AS T1 JOIN course AS T2 ON T1.course id = T2.course id WHERE T2.title = '
Mobile Computing').

69

70

71 Q: Give the title and credits for the course that is taught in the classroom with
the greatest capacity.

72 Response: SELECT T3.title , T3.credits FROM classroom AS T1 JOIN SECTION AS T2 ON
T1.building = T2.building AND T1.room number = T2.room number JOIN course AS T3

ON T2.course id = T3.course id WHERE T1.capacity = (SELECT max(capacity) FROM
classroom).

73

74 Q: Find the name of students who took any class in the years of 2009 and 2010.
75 Response: SELECT DISTINCT T1.name FROM student AS T1 JOIN takes AS T2 ON T1.id =

T2.id WHERE T2.YEAR = 2009 OR T2.YEAR = 2010.
76

77 Q: Find the total number of students and total number of instructors for each
department.

78 Response: SELECT count(DISTINCT T2.id) , count(DISTINCT T3.id) , T3.dept name
FROM department AS T1 JOIN student AS T2 ON T1.dept name = T2.dept name JOIN
instructor AS T3 ON T1.dept name = T3.dept name GROUP BY T3.dept name.

79

80 Q: Find the buildings which have rooms with capacity more than 50.
81 Response: SELECT DISTINCT building FROM classroom WHERE capacity > 50

Listing 2: Full Examples of Text Representation Prompt on Spider Dataset.

82 Given the following database schema :
83

84 Table movies, columns = [∗,movie id,movie title,movie release year,movie url,
movie title language,movie popularity,movie image url,director id,director name,
director url]

85 Table ratings, columns = [∗,movie id,rating id,rating url,rating score,
rating timestamp utc,critic,critic likes,critic comments,user id,user trialist]

86 Table lists, columns = [∗,user id,list id,list title,list movie number,
list update timestamp utc,list creation timestamp utc,list followers,list url,
list comments,list description]

87 Table lists users, columns = [∗,user id,list id,list update date utc,
list creation date utc,user trialist,user subscriber,user avatar image url,
user cover image url,user eligible for trial,user has payment method]

88

89 Please write queries to answer the following questions:
90 Q: How many movies in the database were directed by Christopher Nolan?
91 Response: SELECT COUNT(∗) FROM movies WHERE director name = 'Christopher Nolan'.
92

93 Q: List all movies that have a popularity greater than 5000.
94 Response: SELECT movie title FROM movies WHERE movie popularity > 5000.
95

96 Q: Retrieve the URL of the most popular movie.
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97 Response: SELECT movie url FROM movies ORDER BY movie popularity DESC LIMIT 1;
98

99 Q: Which user IDs have rated a movie on the 1st of January 2021.
100 Response: SELECT DISTINCT user id FROM ratings WHERE rating timestamp utc BETWEEN

'2021−01−01 00:00:00' AND '2021−01−01 23:59:59';.
101

102 Q: What are the names of the directors for movies that have an image URL
containing 'poster'?

103 Response: SELECT DISTINCT director name FROM movies WHERE movie image url LIKE '%
poster%'.

104

105 Q: Give me the IDs and release years of movies that have both a rating score
higher than 4 and have been included in at least 10 lists created by users who
had a payment method when they created the list.

106 Response: SELECT m.movie id, m.movie release year FROM movies m JOIN ratings r ON
m.movie id = r.movie id JOIN lists users lu ON lu.user id = ANY(SELECT user id
FROM lists WHERE list id IN (SELECT list id FROM lists WHERE movie id = m.movie id
)) WHERE r.rating score > 4 AND lu.user has payment method = 1 GROUP BY m.movie id
, m.movie release year HAVING COUNT(DISTINCT lu.list id) >= 10.

107

108 Q: Find the title of the most popular movie among those that have never received
any critic comments.

109 Response: SELECT movie title FROM movies JOIN ratings ON movies.movie id = ratings
.movie id WHERE critic comments = 0 ORDER BY movie popularity DESC LIMIT 1;

110

111 Q: Find the names of movies from the year 2000 which have been added to at least
5 different lists and have an image URL available.

112 Response: SELECT DISTINCT m.movie title FROM movies m JOIN lists l ON m.movie id
IN (SELECT movie id FROM lists WHERE list id = l.list id) WHERE m.
movie release year = 2000 AND m.movie image url IS NOT NULL GROUP BY m.movie id
HAVING COUNT(DISTINCT l.list id) >= 5.

113

114 Q: Which user created the most number of lists while being a subscriber and
having a profile cover image?

115 Response: SELECT user id, COUNT(list id) as num lists FROM lists users WHERE
user subscriber = 1 AND user cover image url IS NOT NULL GROUP BY user id ORDER BY
num lists DESC LIMIT 1.

116

117 Q: Provide the critic made by users who rated a movie more than 3 but less than 5
and got at least 10 likes on their review.

118 Response: SELECT critic FROM ratings WHERE rating score BETWEEN 3 AND 5 AND
critic likes >= 10.

119

120 Q: How many lists were created by users who were subscribers and not trialists on
January 1st, 2020?

121 Response: SELECT COUNT(DISTINCT list id) FROM lists users WHERE user subscriber =
1 AND user trialist = 0 AND list creation date utc = '2020−01−01'.

122

123 Q: What are the titles of the lists which were created on '2022−05−15' and have
more than 50 comments?

124 Response: SELECT list title FROM lists WHERE list creation timestamp utc =
'2022−05−15' AND list comments > 50.

125

126

127 Q: What is the name and URL of the movie that has the latest rating timestamp?
128 Response: SELECT movie title, movie url FROM movies WHERE movie id = (SELECT

movie id FROM ratings ORDER BY rating timestamp utc DESC LIMIT 1).
129

130 Q: Which movie has the highest number of critic likes.
131 Response: SELECT movie id FROM ratings ORDER BY critic likes DESC LIMIT 1;
132

133 Q: Retrieve the list description and URL for lists created by trialists that have
been updated since 2021 and contain movies directed by Christopher Nolan.

134 Response: SELECT l.list description, l.list url FROM lists l JOIN lists users lu
ON l.list id = lu.list id JOIN movies m ON m.movie id IN (SELECT movie id FROM

18
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MODEL EASY MEDIUM HARD EXTRA OVERALL

BASE L/QL BASE L/QL BASE L/QL BASE L/QL BASE L/QL

LLAMA2-7B 0.000 0.827/0.810 0.000 0.614/0.574 0.000 0.408/0.443 0.000 0.307/0.295 0.000 0.581/0.564
LLAMA2-13B 0.000 0.867/0.835 0.000 0.670/0.670 0.000 0.483/0.517 0.000 0.386/0.349 0.000 0.640/0.632
LLAMA2-70B 0.327 0.847/− 0.112 0.679/− 0.075 0.454/− 0.018 0.382/− 0.142 0.635/−

CODELLAMA-7B 0.174 0.883/0.871 0.127 0.736/0.721 0.063 0.523/0.553 0.012 0.309/0.291 0.121 0.643/0.628
CODELLAMA-13B 0.617 0.910/0.910 0.545 0.727/0.688 0.377 0.624/0.556 0.224 0.365/0.382 0.487 0.706/0.682
CODELLAMA-70B 0.688 0.928/− 0.582 0.723/− 0.400 0.655/− 0.278 0.366/− 0.527 0.713/−

BAICHUAN2-7B 0.326 0.832/0.815 0.104 0.588/0.621 0.025 0.402/0.454 0.000 0.225/0.286 0.119 0.579/0.602
BAICHUAN2-13B 0.363 0.839/0.827 0.141 0.632/0.650 0.040 0.483/0.460 0.000 0.325/0.313 0.155 0.607/0.606

QWEN-7B 0.365 0.802/0.778 0.101 0.643/0.608 0.063 0.517/0.471 0.024 0.331/0.313 0.161 0.610/0.578
QWEN-14B 0.758 0.867/0.851 0.318 0.713/0.735 0.172 0.529/0.506 0.066 0.398/0.367 0.359 0.623/0.668
QWEN-72B 0.754 0.903/− 0.316 0.726/− 0.241 0.523/− 0.102 0.386/− 0.374 0.680/−

CHATGLM3-6B 0.000 0.776/0.763 0.000 0.564/0.533 0.000 0.457/0.477 0.000 0.261/0.224 0.000 0.521/0.542

Table 6: Evaluations on Spider: EM of base models vs fine-tuned models on each split of complexity
and overall dataset. “L” and “QL” denote “LORA” and “QLoRA” tuing methods, respectively.

MODEL SIMPLE MODERATE CHALLENGE OVERALL

BASE L/QL BASE L/QL BASE L/QL BASE L/QL

LLAMA2-7B 0.000 0.068/0.062 0.000 0.015/0.017 0.000 0.000/0.000 0.000 0.046/0.043
LLAMA2-13B 0.000 0.115/0.087 0.000 0.013/0.017 0.000 0.069/0.000 0.000 0.074/0.058
LLAMA2-70B 0.000 0.107/− 0.000 0.028/− 0.000 0.000/− 0.000 0.072/−

CODELLAMA-7B 0.000 0.228/0.059 0.000 0.089/0.086 0.000 0.058/0.062 0.000 0.128/0.119
CODELLAMA-13B 0.088 0.293/0.346 0.000 0.129/0.136 0.000 0.112/0.124 0.029 0.256/0.243
CODELLAMA-70B 0.102 0.348/− 0.059 0.124/− 0.032 0.087/− 0.082 0.255/−

BAICHUAN2-7B 0.000 0.078/0.068 0.000 0.022/0.017 0.000 0.000/0.000 0.000 0.054/0.046
BAICHUAN2-13B 0.010 0.073/0.056 0.000 0.004/0.018 0.000 0.014/0.000 0.035 0.045/0.037

QWEN-7B 0.000 0.067/0.082 0.000 0.010/0.015 0.000 0.007/0.013 0.000 0.043/0.055
QWEN-14B 0.000 0.089/0.084 0.000 0.028/0.021 0.000 0.014/0.021 0.000 0.064/0.059
QWEN-72B 0.154 0.243/− 0.023 0.048/− 0.012 0.038/− 0.042 0.089/−

CHATGLM3-6B 0.000 0.124/0.112 0.000 0.045/0.048 0.000 0.026/0.028 0.000 0.068/0.051

Table 7: Evaluations on BIRD: EM of base models vs fine-tuned models on each split of complexity
and overall dataset. “L” and “QL” denote “LORA” and “QLoRA” tuing methods, respectively.

lists WHERE list id = l.list id) WHERE lu.user trialist = 1 AND l.
list update timestamp utc > '2021−01−01' AND m.director name = 'Christopher Nolan
'.

135

136 Q: List all the directors along with the average rating score for movies they
directed that have over 1000 followers on Mubi lists.

137 Response: SELECT director name, AVG(rating score) AS avg rating FROM movies JOIN
ratings ON movies.movie id = ratings.movie id LEFT JOIN lists ON movies.movie id =
lists.list movie number GROUP BY director name HAVING SUM(list followers) > 1000.

Listing 3: Full Examples of Text Representation Prompt on BIRD Dataset.

B MORE EXPERIMENT RESULT

B.1 EM METRICS OF SPIDER DATASET

The EM metric of BIRD dataset are show in Table 6.

B.2 EM METRIC OF BIRD DATASET

The EM metric of BIRD dataset are show in Table 7.
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MODEL 0-SHOT 1-SHOT 3-SHOT 5-SHOT

EM EX EM EX EM EX EM EX

LLAMA2-7B 3.1 13.0 18.5 25.4 22.1 28.1 22.6 29.3
LLAMA2-7B-LORA 63.9 66.7 58.5 61.9 59.8 61.7 58.9 60.9

LLAMA2-13B 2.4 20.3 13.2 30.0 15.5 32.3 16.2 32.4
LLAMA2-13B-LORA 62.7 67.0 62.5 66.5 60.6 66.0 61.3 66.4

LLAMA2-70B 14.2 24.1 24.8 35.7 25.4 35.2 27.7 36.6
LLAMA2-70B-LORA 66.3 68.7 62.8 67.1 61.6 66.6 61.5 66.6

QWEN-7B 16.1 23.5 27.4 34.0 27.6 33.9 25.9 33.8
QWEN-7B-LORA 61.0 65.2 58.4 61.8 57.8 62.0 57.5 61.4

QWEN-14B 32.3 52.4 40.4 55.4 43.4 56.4 44.8 57.9
QWEN-14B-LORA 67.8 69.8 64.5 66.4 64.3 65.9 64.3 66.6

QWEN-72B 37.4 60.0 51.5 65.4 51.3 64.8 51.3 65.0
QWEN-72B-LORA 68.0 71.2 65.1 68.9 65.5 68.5 64.2 68.4

Table 8: Few shot evaluations on Spider: base models vs fine-tune models.

MODEL SPIDER BIRD

LORA QLORALORA QLORA

LLAMA2-7B ↑0.626↑0.608↑0.169↑0.168
LLAMA2-13B ↑0.680↑0.664↑0.167↑0.163
LLAMA2-70B ↑0.687 - ↑0.186 −
CODELLAMA-7B ↑0.453↑0.447↑0.228↑0.214
CODELLAMA-13B ↑0.217↑0.198↑0.204↑0.204
CODELLAMA-70B ↑0.204 − ↑0.179 −
BAICHUAN2-7B ↑0.268↑0.289↑0.133↑0.123
BAICHUAN2-13B ↑0.286↑0.267↑0.141↑0.101

QWEN-7B ↑0.417↑0.427↑0.148↑0.133
QWEN-14B ↑0.090↑0.128↑0.075↑0.068
QWEN-72B ↑0.112 − ↑0.019 −
CHATGLM3-6B ↑0.590↑0.581↑0.156↑0.128

Table 9: Evaluations on Spider and BIRD: EX improvement on tuning with LoRA / QLoRA over
base model.

B.3 MORE RESULTS ON FEW-SHOT EVALUATION

The execution accuracy of k-shots prompt on different models with it’s fine-tuned version are shown
in Table 8

B.4 LORA AND QLORA

The performance improvement of LoRA and QLoRA on Spider and BIRD are shown in Table 9

C ONGOING AND FUTURE WORK

We are currently exploring several extensions to deal with more complex dialogue and analytics cases
in our system. We are particularly interested in handling

• More powerful agents. Users may want our system not only to perform the analysis but also provide
more powerful abilities on text-to-SQL, such as sequential predictions (Jin et al., 2023; Xue et al.,
2024b) based on historical data and predictive decision abilities (Pan et al., 2023).
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• Integration of more model training techniques. In addition to pre-training, the community is also in-
terested in continual learning techniques for language models, such as continual pre-training (Jiang
et al., 2023), prompt learning (Wang et al., 2022b) or positional encoding techniques (Zhu et al.,
2024). The integration of these methods will greatly facilitate the research community in these
areas.
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