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Abstract

This paper introduces a novel framework that
combines Large Language Models (LLMs)
with mathematical knowledge graphs (KGs) to
solve Math Word Problems (MWPs). Current
methods leveraging LLMs for MWPs primar-
ily rely on fine-tuning or prompt engineering;
the former operates as a black box with lim-
ited interpretability, while the latter completely
depends on the inherent abilities of LLMs. In
contrast, our approach enables explicit and in-
terpretable mathematical reasoning by dynam-
ically linking linguistic patterns to structured
mathematical knowledge. We present two com-
prehensive knowledge graphs—MWPEN-KG
(English) and MT700-KG (Chinese)—that cap-
ture essential mathematical concepts and rela-
tionships for problem-solving. The framework
leverages LLMs to decompose problems into
mathematical concepts while simultaneously
accessing relevant entities and paths in KG to
guide step-by-step solutions. Extensive experi-
ments across five MWP benchmarks (MAWPS,
MathQA, Math23K, Ape210k, CM17K) using
four different LLMs (DeepSeek-Chat, GPT-4o,
GPT-3.5-Turbo, Qwen-Turbo) reveal the frame-
work’s superior performance compared to con-
ventional methods, achieving state-of-the-art
results on all five datasets. Our work demon-
strates that combining LLMs with KGs has sig-
nificant potential in solving MWPs. !.

1 Introduction

Math Word Problems (MWPs) present complex
narrative texts that describe real-world scenarios
with embedded quantitative relationships, requir-
ing solutions for specific unknown quantities(Ahn
et al., 2024). Solving MWPs remains a signifi-
cant challenge in artificial intelligence research,
demanding not only sophisticated linguistic com-
prehension but also precise semantic alignment
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Figure 1: Comparing our method with other baselines.
10 Prompt and CoT Prompt rely solely on the intrin-
sic knowledge of LLMs, while Embedding Retrieval,
MindMap, and our method use KG to enhance LLMs.

between natural language expressions and math-
ematical principles to uncover the implicit logical
frameworks within textual descriptions.

The development of Large Language Models
(LLMs) has driven substantial progress in MWP
solving(Ahn et al., 2024), primarily through two
directions: task-specific fine-tuning and prompt en-
gineering. Task-specific fine-tuning involves adapt-
ing pre-trained LLMs to the MWP domain by train-
ing them on extensive datasets, improving their
performance on benchmark tests. However, de-



spite their good performance, the decision-making
processes remain a black box(Hassija et al., 2024).
This lack of transparency raises concerns about the
reliability of the solutions they provide, especially
in educational contexts. Traditional prompt engi-
neering, on the other hand, leverages carefully de-
signed input prompts to guide LLMs to generate de-
sired responses without additional training(Sahoo
et al., 2024). This approach is highly dependent
on the quality of the prompts and often struggles
to capture the subtle mathematical dependencies
inherent in complex problems.

Recent studies in general question-answering
tasks have demonstrated the efficacy of integrating
Knowledge Graphs (KGs) with language models to
enhance reasoning abilities(Sun et al., 2023; Wen
et al., 2023; Jiang et al., 2023). KGs provide struc-
tured knowledge representations that can offer clear
reasoning paths for language models, reducing their
hallucinations. Even if the knowledge graph is in-
complete, it can still increase the reasoning ability
of language models to some extent(Saxena et al.,
2020; Xu et al., 2024).

However, applying KGs to MWP solving
presents unique challenges. While the integration
of KGs with LLMs has shown potential in areas
such as commonsense reasoning(Liu et al., 2021;
Wang et al., 2023; Toroghi et al., 2024), its applica-
tion to MWP solving remains relatively unexplored.
MWPs require models not only to identify explicit
keywords mentioned in the text but also to infer and
apply latent mathematical concepts(e.g., rate cal-
culations, proportional relationships). These con-
cepts are often implied rather than stated directly,
necessitating a level of abstraction and conceptual
understanding that goes beyond surface-level text
analysis(Verschaffel et al., 2020). Additionally,
solving MWPs involves sequential and interdepen-
dent reasoning steps that must be executed in the
correct order to arrive at the correct solution.

In order to explore the possibility of applying
KGs to the field of MWP solving, we propose a
novel framework, which dynamically integrates
LLMs with mathematical KGs to enhance both
the reasoning ability and reliability. Our approach
employs LLMs as linguistic parsers to decompose
problems into mathematical concepts while simul-
taneously activating relevant entities in the KG.
The retrieved KG paths then serve as explicit rea-
soning scaffolds, guiding the LLM to solve the
problems step by step. We call this framework
KEMRP (Knowledge-Enhanced Math Reasoning

Path).
The main contributions are summarized as fol-
lows:

1) We propose a novel framework named
KEMRP that combines mathematical KGs
and LLMs to solve MWPs for the first time,
which leverages structured data from KGs and
the inherent reasoning abilities of LLMs to en-
hance the accuracy and reliability in solving
MWPs.

2) We construct two mathematical knowledge
graphs: MWPEN-KG (English) and MT700-
KG (Chinese). These structured resources
explicitly ground mathematical concepts and
their relationships for MWP solving.

3) We conducted extensive experiments with
four backbone models (DeepSeek-v3, GPT-
40, GPT-3.5-Turbo, and Qwen-Turbo) across
five MWP benchmarks: MAWPS(Koncel-
Kedziorski et al., 2016), MathQA(Amini
et al., 2019), Math23K(Wang et al., 2017a),
Ape210k(Zhao et al., 2020), and CM17K(Qin
et al., 2021). The results show consistent supe-
riority over conventional prompting methods,
achieving new state-of-the-art performance on
all five datasets, and validating the effective-
ness of KG-enhanced reasoning.

2 Related Work

2.1 KG-enhanced LLM

Due to the hallucination of LLMs and their lack of
interpretability, researchers proposed to use KGs
to enhance LLMs. There are three main directions:
(1) incorporating KG into LLM in the pre-training
stage(Zhang et al., 2019; Xiong et al., 2019; Sun
et al., 2021; Wang et al., 2021), (2) fine-tuning
LLMs with KGs(Liu et al., 2020; Ye et al., 2022;
Wang et al., 2022; Dernbach et al., 2024; Tian et al.,
2024), and (3) integrating KGs during the inference
stage(Jiang et al., 2023; Wen et al., 2023; Sun et al.,
2023; Dong et al., 2025; Jia et al., 2025). For (1),
KGs are typically incorporated into training objec-
tives, which usually have a higher training cost, but
have the best effect for specific goals. For (2), the
architecture of the encoder and decoder is designed
to adapt KG structure, enabling models to internal-
ize new knowledge while preserving their inherent
reasoning abilities. However, this approach also in-
volves significant costs for knowledge updates. For
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Figure 2: The overview of our framework. In the first stage, some related entities are selected. In the second stage,
two reference paths, the head path and tail path, are selected. In the third stage, LLM is prompted to generate the

final reasoning path and answer.

(3), KG is converted into natural language and inte-
grated into prompts. Although this approach may
not achieve complete knowledge internalization, it
leverages the robust abilities of current LLMs to
deliver satisfactory results. Besides, this method
provides a high degree of scalability and flexibil-
ity(Sahoo et al., 2024).

2.2 Math Word Problem

The automatic solving of MWPs has attracted
widespread attention for a long time(Ahn et al.,
2024). Early approaches primarily relied on rule-
based methods and statistical methods, which ex-
hibited considerable limitations in their applica-
tion scope and performance (Bakman, 2007; Hos-
seini et al., 2014; Koncel-Kedziorski et al., 2015;
Mitra and Baral, 2016; Zhou et al., 2015). As
Deep Neural Solver(DNS)(Wang et al., 2017b)
was proposed, neural network approaches based on
encoder-decoder architectures (such as Seq2Seq)
were applied to address MWP solving tasks(Wang
et al., 2018; Shen and Jin, 2020; Chatterjee et al.,
2023; Bin et al., 2023; Raiyan et al., 2023; Hu et al.,
2023). In recent years, with the development and
widespread application of LL.Ms, researchers have
increasingly focused on using LLMs to build MWP
solvers.

Researchers primarily employ two directions to
develop MWP solvers utilizing LLMs. The first
direction implements knowledge distillation strate-
gies(Liang et al., 2022, 2023a,b), wherein the math-
ematical problem-solving abilities of large-scale

language models are transferred to smaller, special-
ized models through supervised learning. The sec-
ond approach leverages prompt engineering, such
as Chain-of-Thought (CoT)(Wei et al., 2023; Tan
et al., 2024; Kojima et al., 2023; Zhou et al., 2022),
where carefully crafted prompts are designed to
guide LLMs through the mathematical reasoning
process. These methods rely on models’ inherent
knowledge to solve MWPs. Few researchers ex-
plore the integration of external knowledge through
KG into LLM for MWP solving. This study works
for this.

3 Method

In this section, we present our framework, which
consists of three main components: Entity Recogni-
tion and Expansion, Path Discovery, and Reasoning
Construction. Figure 2 shows the overview of our
framework.

1) Entity Recognition and Expansion: We
identify and expand the set of key entities
from problems using LLMs and KG-based
similarity matching.

2) Path Discovery: We explore and extract rele-
vant reasoning paths from the KG that connect
key mathematical concepts.

3) Reasoning Construction: External knowl-
edge is integrated into the input of LLM, al-
lowing LLM to take advantage of both its in-
herent knowledge and external information



Role: Mathematics Education Expert, Language Expert
Style: Precise, Intuitive, Concise

Task: You will be given a math problem and some reference materials. The reference materials include some mathematical
concepts that might be related to the problem and two conceptual paths. Please use these materials to solve the math
problem, show your thinking step by step, and create a conceptual path for solving the problem.

Output Format: JSON
Example:

Input:

{

"problem': "Children from XX School's second grade are planting trees along one side of a path. They plant a tree every
2 meters (including trees at both ends of the path). They find that a total of 11 trees are planted. How long is the

path?",

"entities": ["Line Segment Length Calculation", "Tree Planting Problem", "Tree Planting at Both Ends Problem"],
"paths": [“conceptl -> concept2 -> concept3", "concept4 -> concept5 —> concept6"]

Output:

{

"path": "concept path generated from the problem, format as [xxx] —> [xxx] —> [xxx1",

"interpret": "your interpretation for the concepts on the concept path",

"analyze": "the process of solving the problem, step by step",

"answer": "Provide the final answer without any extra information, if there are multiple answers, separate them with
commas",

Your task:

Figure 3: The prompt template for the Reasoning Construction stage. It enhances LLMs with related entities and

two paths (head and tail) to generate the final result.

to generate the final reasoning path and the
answer.

3.1 Entity Recognition and Expansion

In this stage, we construct an entity set £ =
{eb.el, ... el } through the integration of LLM
and KG to facilitate the final problem-solving pro-
cess.

For a given a Math Word Problem (MWP) query
@, we initially employ a LLM to extract several
mathematical keywords through one-shot prompt-
ing. The prompt is given in Appendix B. Subse-
quently, these identified keywords K and entities
E in KG are encoded into dense embeddings re-
spectively. We then compute the cosine similarity
between the mathematical entities from the prob-
lem and those in the KG, selecting the entities with
the highest similarity scores to form the entity set
EP0 — ego, e’fo, . ,eﬁ)\? )

Specifically, for Chinese language tasks, we im-
plement an additional semantic rule-based simi-
larity matching approach(We call it Logical Simi-
larity). For each Chinese keyword, we perform a
comprehensive comparison with every entity in the
KG. Given a keyword k£ € K and an entity e € F,
we obtain their respective word segmentation sets
Wi and W,. The overlap between these sets is
evaluated, and if the number of common elements
exceeds predetermined thresholds ¢, or ¢,,¢, the en-
tity e is incorporated into the entity set £,. The
detailed implementation is outlined in Algorithm
1.

Following entity identification, we extend EP°
with the neighbors of all entities in the set EP°,

The extended entity set is then refined through
LLM-based filtering to eliminate irrelevant en-
tities, resulting in EP! = {egl, 611)1, o e]]’\}}.
This process is iteratively executed for m rounds
to construct the final refined entity set £ =
{ef™, el™, ..., e}, ensuring both coverage and
relevance of the mathematical concepts. For sim-
plicity, we denote EP™ as EP in the following dis-

cussions.

3.2 Path Discovery

In this stage, we discover meaningful paths within
the knowledge graph that connect relevant mathe-
matical concepts to solve the given problem. This
process consists of two main steps: path prepara-
tion and path selection. First, we prepare a set of
candidate paths derived from the knowledge graph,
along with a set of path pairs that include several
similar pairs. Then, we select the most relevant
paths by identifying start and end entities and an-
alyzing path similarities. The following sections
detail these steps.

3.2.1 Path Preparation

The knowledge graph is represented as G =
{(e,r,€e')|e,e’ € U,r € R}, where ¥ and R de-
note the set of entities and relations, respectively.
A triple (e, r, e’) represents that there exists a re-
lation r between the entity e and the entity ¢’
In this step, we first construct a set of candidate
paths p = {p|p = (e1, ea, ..., e,)} within the KG.
Specifically, for each entity in the KG, we generate
all possible paths originating from that entity, with
path lengths ranging from 2 to 6. This length con-
straint is based on the "six degrees of separation”



Algorithm 1 Logic Similarity Check

Require: keyword, entity, te, tne
Ensure: boolean result
1: listl < Segment(keyword)
list2 < Segment(entity)
if len(listl) = len(list2) then
benchmark < len(list2) X t,
else
benchmark < len(list2) X tpe
end if
score <0
result < False
for segl € listl do
for seg2 € list2 do

R A O S i
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12: if segl = seg2 then

13: score < score + 1

14: if score > benchmark then
15: result < True

16: end if

17: end if

18: end for

19: end for

theory(Guare, 2016), which states that any two
individuals in social networks can be connected
through a chain of at most six intermediate connec-
tions. This theory suggests that any two nodes can
be linked through a chain of "friend-of-a-friend"
relationships within six steps. Subsequently, dupli-
cate paths are removed.

Next, we construct a set of similar path pairs
SP = {(pi,pj)|pi,p; € P}. Each element in
this set is a pair of paths, where the two paths are
considered to be similar. Specifically, for any two
paths p; and p; in the set P, we determine whether
they share any common entities. If they do, the pair
is added to the set S P.

3.2.2 Path Selection

For a given problem query Q, we prompt LLMs to
identify the start entity egqr+ and end entity eq,q
from EP. The prompt can be found in Appendix
B. Subsequently, we extract two subsets from the
path set P: the start path set Py, containing
all paths that contain eg,,¢, and the end path set
Pyq containing all paths that contain ec,q. For
each possible pair of paths (pl,, P’ ;), Where
Plrart € Pstart and p!,, € Pepg, we compute their
semantic similarity, which depends on whether

(Pl 1are» P)q) is in the set SP and the cosine sim-
ilarity of p’,,,, and p’ .4 The specific implemen-

tation is provided in Algorithm 2. The paths with
the highest similarity score, denoted as pgq,+ and
Pends are selected as the optimal start and end paths
respectively.

Algorithm 2 Path Semantic Similarity

Require: pathl, path2, SP
Ensure: Similarity score score
1: score < 0

2: if (pathl, path2) € SP then
3 score < score + 1

4: end if
5
6
7

. cos_score < cos_similarity(pathl, path2)
. Sscore < score + cos_score
: return score

3.3 Reasoning Construction

In this stage, LLMs are prompted to generate the
final reasoning path and ultimate solution. The
prompt is constructed with the following compo-
nents: role and style, task instructions, the prob-
lem statement, the entity set EP obtained from the
first stage, the start path pg,+ and the end path
Peng derived from the second stage, and an illustra-
tive example. The LLM is expected to produce a
reasoning path, an interpretation of the reasoning
process, an analysis of the problem, and the final
answer. The prompt template is provided in figure
3. Notably, the generated reasoning path can be
considered as a reference to augment the mathe-
matical knowledge graph, enhancing its alignment
with MWPs.

4 Experiments

4.1 DataSets

MWP We consider five MWP datasets, including
two English datasets: MAWPS(Koncel-Kedziorski
et al., 2016) and MathQA(Amini et al., 2019), as
well as three Chinese datasets: Math23K(Wang
et al., 2017a), Ape210K(Zhao et al., 2020) and
CM17K(Qin et al., 2021). We rank the difficulty
levels of these datasets: MWAPS and Math23k are
the easiest, Ape210K is next, and MathQA and
CM17k are the most difficult. In order to compare
with the SOTA models conveniently, we select the
test sets in these datasets for experiments. Follow-
ing previous work(Zhu et al., 2023), we employ
accuracy as the evaluation metric for all datasets.

KG For the Math23k and Ape210k datasets,
we employed a Chinese mathematical knowledge



Table 1: Results for different datasets. The SOTA models are: (Toshniwal et al., 2024) for MAWPS, (Zhang and
Moshfeghi, 2022) for MathQA, (Tan et al., 2024) for Math23k, (Liang et al., 2023a) for Ape210k and (Liang et al.,

2023a) for CM17k.
Method MAWPS MathQA Math23K Ape210k CM17k
GPT-3.5-Turbo & IO prompt  0.8414 0.6118 0.7080 0.5938 0.5229
GPT-40 & 10 prompt 0.9265 0.8081 0.8770 0.7858 0.7688
GPT-3.5-Turbo & CoT 0.7693 0.3283 0.6190 0.4908 0.3650
GPT-40 & CoT 0.9552 0.7601 0.8970 0.7784 0.7477
Embedding Retrieval 0.9302 0.8131 0.8790 0.8226 0.7940
MindMap 0.9140 0.6124 0.9030 0.8202 0.7230
Prior SOTA 0.9570 0.8300 0.9430 0.7700 0.7880
GPT-40 & Ours 0.9565 0.8154 0.9360 0.8304 0.8327
DeepSeek-v3 & Ours 0.9635 0.8318 0.9480 0.8798 0.8028

graph from TAL?, which contains 998 nodes
and 1743 edges. We call it 100TAL-KG. As
for the MAWPS and MathQA datasets, we con-
structed a specialized English knowledge graph
called MWPEN-KG, comprising 313 nodes and
719 edges. Additionally, for the CM17k dataset,
we developed a Chinese knowledge graph named
MT700-KG, which has 704 nodes and 724 edges.
The details of how we constructed them are pre-
sented in the Appendix A.

4.2 Baselines

We employed standard prompting (1O
prompt)(Brown et al., 2020), Chain-of-Thought
prompting (CoT prompt)(Wei et al., 2023), em-
bedding retrieval, and MindMap(Wen et al., 2023)
as baseline models. Notably, both embedding
retrieval and MindMap are KG-enhanced LLM
methods, similar to our approach. Moreover, for
each dataset, we pick previous state-of-the-art
(SOTA) works for comparison.

4.3 Implementation Details

Four backbone models were used: DeepSeek-v3,
GPT-40, GPT-3.5-Turbo, and Qwen-Turbo, all ac-
cessed through the OpenAl API interface. To op-
timize data processing efficiency and ensure stan-
dardized output, we configured the response format
parameter in our API calls to consistently receive
responses in JSON format. In all experiments, the
iteration count m in the first stage was set to 3.
For the Chinese dataset experiments, we manually
evaluated the performance of different similarity

*https://ai.100tal.com/openData/knowledgeGraph

threshold parameter values, and the final parameter
settings were: t. was set to 1/2, while ¢,,. was set
to 2/3.

4.4 Main Results
4.4.1 Comparison to Other Methods

We conducted experiments across five datasets us-
ing different approaches. As we can see in Ta-
ble 1, Chain-of-Thought prompting(CoT) does not
consistently outperform standard prompting(IO
prompt) in MWP-solving tasks. However, KG-
enhanced LLM approaches demonstrate supe-
rior performance. The Embedding Retrieval and
MindMap approaches surpass both 10 prompting
and CoT on four datasets (MathQA, Math23K,
Ape210k, and CM17k), while our method achieves
state-of-the-art performance across all five datasets,
with particularly notable improvements on Chinese
datasets Ape210k and CM 17k, which improve by
10.98% and 4.47% respectively. Significantly, our
approach demonstrates substantial improvements
over conventional prompting methods on more
challenging datasets such as MathQA and CM17k,
with performance gains of 2.37% and 6.39% re-
spectively. These results substantiate the effective-
ness of our method in handling complex MWP
scenarios, validating its robustness and generaliz-
ability across varying difficulty levels.

4.4.2 Comparison of Different Backbone

As a plug-and-play framework, we evaluated our
method’s performance with different backbone
models and compared it with Chain-of-Thought
prompting. The results are shown in Table 2.



Table 2: Performance of CoT and our method using different backbones.

Method MAWPS MathQA Math23K Ape210k CM17k
Qwen-Turbo & CoT 0.9362 0.5688 0.7520 0.6512 0.5329
GPT-3.5-Turbo & CoT  0.7693 0.3283 0.6190 0.4908 0.3650
GPT-40 & CoT 0.9552 0.7601 0.8970 0.7784 0.7477
DeepSeek-v3 & CoT 0.9542 0.7022 0.9330 0.8334 0.7700
Qwen-Turbo & Ours 0.9357 0.6043 0.8260 0.7112 0.6015
GPT-3.5-Turbo & Ours  0.8262 0.3408 0.6690 0.4374 0.3210
GPT-40 & Ours 0.9565 0.8154 0.9360 0.8304 0.8327
DeepSeek-v3 & Ours 0.9635 0.8318 0.9480 0.8798 0.8028

For simpler datasets(MAWPS and Math23K), our
method shows greater improvements with models
that have relatively weaker reasoning abilities (such
as GPT-3.5-Turbo). However, for more challeng-
ing datasets(MathQA and CM17k), our method
demonstrates higher improvements when paired
with models having stronger reasoning abilities
(like DeepSeek-v3 and GPT-40). Notably, when
our method is combined with weaker models on
difficult datasets, performance actually deteriorates.
We analyze these phenomena as follows:

* For simple datasets: Weaker models typi-
cally lack basic knowledge foundations. Our
method directly fills these knowledge gaps,
leading to significant performance improve-
ments. However, stronger models already
possess robust reasoning abilities. Since our
method introduces information they likely al-
ready know, the improvement margin is lim-
ited.

* For difficult datasets: Strong models inher-
ently possess powerful reasoning abilities, and
our method can effectively assist them in their
thought process, reducing the difficulty of rea-
soning. However, weaker models, limited in
both abilities and knowledge base, may ac-
tually perform worse when presented with
knowledge beyond their processing ability.

4.5 Ablation Study

4.5.1 Performance with Only Entities or Only
Paths

To investigate the effectiveness of each stage, we
conducted ablation studies by removing either enti-
ties or paths from the prompt while keeping other
components. Using Deepseek-v3 as our back-
bone model, we performed experiments across five

datasets, with results shown in Table 3. Overall,
performance declines regardless of whether enti-
ties or paths are missing, with a greater decline
observed when entities are absent in the difficult
datasets MathQA and CM17k. In contrast, on the
simpler datasets MAWPS and Math23K, a greater
performance decline occurs when paths are missing.
One possible reason is that for strong models, intro-
ducing "extra" conceptual relations is not important
for unlocking their reasoning potential when solv-
ing simple mathematical problems. However, when
addressing difficult mathematical problems, refer-
encing reasoning paths is more likely to help the
model discover hidden solutions.

4.5.2 Performance with Different Iteration
Count

To investigate the impact of the iteration count m
in the first stage, we selected 1000 MWPs from the
MAWPS and CM17k datasets, respectively. We
conducted experiments with parameter settings of
m = 1, m = 2, and m = 3, using GPT-4o0 as
the backbone. As is shown in Table 4, for simple
datasets, increasing the iteration count m has little
impact on performance, which may be due to the
limited room for effect improvement. In contrast,
increasing the iteration count m improves the per-
formance of our method on difficult datasets. This
result also demonstrates the potential of our ap-
proach in solving difficult MWPs. However, as the
iteration count increases, the associated costs also
rise, making it essential to select an appropriate
value.

4.6 Further Analysis: Why our method works
on MWPs?

One notable feature of MWPs is the presence of
numerous implicit details, which often complicate
the problem-solving process. Recalling the pro-



Table 3: Performance of our method with different components.

Method MAWPS MathQA Math23K Ape210k CM17k Average
without entities  0.9524 0.8237 0.9300 0.8188 0.7905  0.8630
without paths 0.9538 0.8181 0.9290 0.8240 0.7799  0.8610
KEMRP 0.9635 0.8318 0.9480 0.8798 0.8028  0.8850

Problem: To beautify the campus, the school plans to purchase a total of 200 plants of types A and B for
landscaping. Each type A plant costs 80, and each type B plant costs 100. If the total expenditure on types A and B
plants is 17,600, how many plants of each type does the school purchase?

method, solution set of equations

Entities: system of linear equations, equations, algebra, budget and cost, variables, elimination method, substitution

Paths: [word problem — variables — equations — system of linear equations — solving systems of equations],
[equations — solving systems of equations — elimination method — solution set of equations]

Final reasoning path: [word problem — budget and cost — variables — equations — system of linear equations —
solving systems of equations — elimination method — solution set of equations — verify solution]

Answer: 120, 80

Figure 4: An illustration of the application of our method on a sample problem.

Table 4: Performance with different iteration count m.

DataSet MAWPS CM17k
m=1 0.953 0.741
m=2 0.956 0.772
m=3 0.957 0.780

cess that we as humans solve MWPs, we first ex-
tract given conditions and unknown quantities from
the information provided, and then establish rela-
tionships between those known conditions and the
unknowns. For simple problems, one or two rea-
soning steps may suffice to reach a solution. For
instance, a basic arithmetic problem might only
involve addition or subtraction to find the unknown.
However, complex problems often require multiple
reasoning steps and involve intermediate concepts
that may initially seem unrelated to the problem
statement.

As illustrated in Figure 4, in the first stage of our
method, we extract the explicit known conditions
and unknown quantities from the problem and then
expand upon them. As the number of iterations
increases, more and more hidden related entities
are discovered, expanding the reasoning scope for
the LLMs. In the second stage, we simulate human
thought processes, firstly identify the start and end
entities directly related to the problem, and then
seek potential paths to connect these entities, pro-
viding a more direct scaffold for the LLMs. In the

third stage, we guide the LLLMs through prompts
to utilize the information gathered in the previous
stages, constructing a logical reasoning path step
by step to arrive at the final solution. By systemati-
cally guiding the LLMs through these stages, we
enhance their ability to handle MWPs, ensuring
they can navigate the complex relationships and
concepts inherent in these problems.

5 Conclusion

In this paper, we present KEMRP, a novel frame-
work that pioneers the integration of LLMs with
KGs to enhance MWP-solving abilities. Our ap-
proach establishes explicit reasoning paths through
KG integration, thereby improving both perfor-
mance and reliability while addressing key chal-
lenges in MWP solving. To validate the effective-
ness of our approach, we conducted extensive ex-
periments across five different benchmarks using
four LLMs as backbones. The results demonstrate
the framework’s robust effectiveness. To accom-
modate existing MWP datasets, we constructed
two mathematical knowledge graphs (MWPEN-
KG and MT700-KG). We hope this study will offer
new research directions in the field of automated
MWP solving and drive further advancement in
this domain. Furthermore, we believe that the inte-
gration of knowledge graphs with LL.Ms not only
improves problem-solving accuracy but also pro-
vides crucial insights for building more reliable and
transparent Al systems.



Limitations

Although our framework demonstrates significant
advancements in solving MWPs through the inte-
gration of LLM and KG, there remain certain limi-
tations. First, the effectiveness of KEMRP relies on
the completeness and accuracy of the knowledge
graphs. Missing concepts, incomplete relations, or
errors within the KGs can lead to incorrect solu-
tions. Second, the performance of the framework
depends on the abilities of the backbone LLM. If
the language model has biases, produces inaccurate
information, or lacks certain knowledge—such as
GPT-3.5-Turbo’s weaker performance on complex
tasks—these issues can affect the final answers,
even when guided by KGs. Lastly, The multi-stage
framework introduces additional computational la-
tency compared to standalone LLM inference. This
could hinder real-time applications, especially in
resource-constrained environments. Addressing
these limitations will be crucial for advancing KG-
enhanced LLM frameworks toward robust, scal-
able, and truly interpretable MWP solvers.
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For MT700-KG, we manually extracted mathemati-
cal concepts from the Chinese mathematics curricu-
lum standards and textbooks and established con-
nections between them. For MWPEN-KG, we used
DeepSeek-v3 to extract keywords from problems in
MAWPS and MathQA, then rigorously filtered out
irrelevant keywords and established relationships
among the remaining ones. We defined five types of
relationships: composition, alias, prerequisite, and
related. Finally, we used DeepSeek-v3 to verify
all generated triples and artificially add important
entities and relationships that are not covered. All
relevant prompts are shown in Figure 5-7.

B Prompts

The prompts in our method are presented in Figure
8-14.
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Role: Mathematics Education Expert, Language Expert

Task: Determine whether the given word is a math keyword.
Output format: JSON

Example:

Input: "Pythagorean Theorem"

Output:

{

}

Your task:

"result": true

Figure 5: The prompt to determine whether a word is a mathematical keyword.

Role: Mathematics Education Expert, Language Expert
Task: Determine if there is a relationship between the two given mathematical keywords, and if so, what the relationship is.
Note: There are four types of relationships: composition, alias, prerequisite, and related.
Assume there are concepts A and B:
Composition means A is a component of B, or B is a component of A, such as the sine function and trigonometric functions.
Alias means B is another term for A, such as Pythagorean Theorem and Right Triangle Theorem.
Prerequisite means A is prior knowledge for B, or B is prior knowledge for A, such as triangles and the area of a triangle.
Related means A and B have a relationship but do not fall into the above three categories.
You have to strictly determine.|
Output format: JSON

Examplel:
Input: ["Pythagorean Theorem", "Right Triangle Theorem"]
Output:
"relationship": "Alias"
}
Example2:
Input: [Pythagorean Theorem], [equation]
Output:

"relationship": null

Your task:

Figure 6: The prompt to generate relationships between keywords.

Role: Mathematics Education Expert, Language Expert

Task: Determine whether two mathematical keywords have link. You must be very very strict. That is to say, if two keywords have no
direct relationship, you should say no.

Output format: JSON

Example:
Input: [Pythagorean Theorem], [Right Triangle Theorem]
Output: {
"has_link": true
}
Again, you must be very strict.
Your task:

Figure 7: The prompt to check the correctness of triples.
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Role: Mathematics Education Expert
Style: Direct, Intuitive, Concise
Task: Extract mathematical concepts from math problems.
Output Format: JSON
Example:
Input:
Children from XX School’s second grade are planting trees along one side of a path. They plant a tree every 2 meters
(including trees at both ends of the path). They find that a total of 11 trees are planted. How long is the path?
Output:
{
"keywords": ["combined work rates", "linear equations", "solving for variables"]

Your task:

Figure 8: The prompt to extract keywords from mathematical problems in the first stage.

e BEHEER
Rig: —fRi. BEW. 6%
f£5: MEFOAPREBFEES.
HHE: JSON
BilF :
g)\: ESRRPR_ERNNRRE—FNBHN—DER. NERMNSE2EM—RN (SEMALBHTH) , RERUM—HMTINE, X&ENBEEI DK
o
{
"keywords": [“{EWTE", "HEBEKEITE"]

+
REES :

Figure 9: Chinese prompt to extract keywords from mathematical problems in the first stage.

You are a mathematical teacher, please judge whether the keyword is helpful to solve the mathematical problem.
problem: {problem}
keyword: {keyword}
Json is the recommended output format:
"judge": true or false

Your task:

Figure 10: The prompt to determine whether a keyword is related to a mathematical problem in the first stage.

R—"EHFHMn, BHETATXBIERE N TR AZFemE -
jg)@: {problem}

x5 {keyword}

E{%ﬁﬁj sont&V Mt

"judge": true or false
b
fRE9ESS :

Figure 11: Chinese prompt to determine whether a keyword is related to a mathematical problem in the first stage.
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Role: Mathematics Education Expert, Language Expert

Style: Precise, Intuitive, Concise

Task: You will be given a math problem and a set of mathematical concepts. Solving the problem may require the use of
some of these concepts. Mentally work through the problem step by step and select the first and last concepts needed to
solve it.

Output Format: JSON

Example:

Input:

{

"question": "Children from XX School's second grade are planting trees along one side of a path. They plant a tree every
2 meters (including trees at both ends of the path). They find that a total of 11 trees are planted. How long is the
path?",

"concepts": ["work rate problems", "combined work rates", "linear equations", "solving for variables", "time taken to
complete work"]

H

Output:

{

"head": "linear equations",
"tail": "solving for variables"
+

Figure 12: The prompt to extract the head entity and the tail entity from mathematical problems in the second stage.

Bl HFBELER, IE5ER
Rig: fEE. B, B
g%: RGRE— TR, N—LEHFMS, BRAXTMHZOTATESERIEPNER, BEOR—S—SHE, HEEFTERINE—TEINRE—
%I\Eﬂﬁit: JSON
BIF:
v I"glgestion“: "SR RER T ERA/NARE S/ NEN—BER. DRRITER22AM RN (SERFALBMHTR) | RERIM—HMTIIR, XENE
A
, "concepts": ["{EMEA", "HERKEITH", "HHRSENBE", "MERAMREE", "—IRAPREE", "EERhaE ]
"head": "iERE]EL",
"tail": "HEBRKEITE"

Figure 13: Chinese prompt to extract the head entity and the tail entity from mathematical problems in the second
stage.

AR BPREER
Ritg: —fm. 50, @k
E5: RERE T RFEEN—LSEMY, OFE—EHIHSNMEARIEBE, BAETREMRBTON, ELEESRAZELEBOES, AN—FHS

B2, A—S—SHARERIMBRED, S HRRETITE.
g JSON

ilF:

LN

{

vs ;ngueStion": "EIESRRPR _ERIVNERE RN —LEN. DBRRMNSELRM—EN (DBRELEMTH) , REAI—HMTIUE, XFNEK
/"en-tit'ies": "[EBRKEE]. EMEA] . [Miniemia@] ",
“"paths": ["#31 — a2 —> W|I3", "#{I4 —> D5 —>H36"]

¥
“path": "H¥JEEERAMEZIEE, B Dox] = [xxx] —> [xxx]",
“interpret": "IXLMZHOA",
“"analyse": "—H—SRRQBIRE",
, "answer': "RAEZR, TREEZRNER, URESITER, A, 2R",
fREYEESS :

Figure 14: Chinese prompt template for the third stage.

14



	Introduction
	Related Work
	KG-enhanced LLM
	Math Word Problem

	Method
	Entity Recognition and Expansion
	Path Discovery
	Path Preparation
	Path Selection

	Reasoning Construction

	Experiments
	DataSets
	Baselines
	Implementation Details
	Main Results
	Comparison to Other Methods
	Comparison of Different Backbone

	Ablation Study
	Performance with Only Entities or Only Paths
	Performance with Different Iteration Count

	Further Analysis: Why our method works on MWPs?

	Conclusion
	KG
	Prompts

