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Abstract

This paper introduces a novel framework that001
combines Large Language Models (LLMs)002
with mathematical knowledge graphs (KGs) to003
solve Math Word Problems (MWPs). Current004
methods leveraging LLMs for MWPs primar-005
ily rely on fine-tuning or prompt engineering;006
the former operates as a black box with lim-007
ited interpretability, while the latter completely008
depends on the inherent abilities of LLMs. In009
contrast, our approach enables explicit and in-010
terpretable mathematical reasoning by dynam-011
ically linking linguistic patterns to structured012
mathematical knowledge. We present two com-013
prehensive knowledge graphs—MWPEN-KG014
(English) and MT700-KG (Chinese)—that cap-015
ture essential mathematical concepts and rela-016
tionships for problem-solving. The framework017
leverages LLMs to decompose problems into018
mathematical concepts while simultaneously019
accessing relevant entities and paths in KG to020
guide step-by-step solutions. Extensive experi-021
ments across five MWP benchmarks (MAWPS,022
MathQA, Math23K, Ape210k, CM17K) using023
four different LLMs (DeepSeek-Chat, GPT-4o,024
GPT-3.5-Turbo, Qwen-Turbo) reveal the frame-025
work’s superior performance compared to con-026
ventional methods, achieving state-of-the-art027
results on all five datasets. Our work demon-028
strates that combining LLMs with KGs has sig-029
nificant potential in solving MWPs. 1.030

1 Introduction031

Math Word Problems (MWPs) present complex032

narrative texts that describe real-world scenarios033

with embedded quantitative relationships, requir-034

ing solutions for specific unknown quantities(Ahn035

et al., 2024). Solving MWPs remains a signifi-036

cant challenge in artificial intelligence research,037

demanding not only sophisticated linguistic com-038

prehension but also precise semantic alignment039

1We will publicize our code after the paper has been ac-
cepted.

Figure 1: Comparing our method with other baselines.
IO Prompt and CoT Prompt rely solely on the intrin-
sic knowledge of LLMs, while Embedding Retrieval,
MindMap, and our method use KG to enhance LLMs.

between natural language expressions and math- 040

ematical principles to uncover the implicit logical 041

frameworks within textual descriptions. 042

The development of Large Language Models 043

(LLMs) has driven substantial progress in MWP 044

solving(Ahn et al., 2024), primarily through two 045

directions: task-specific fine-tuning and prompt en- 046

gineering. Task-specific fine-tuning involves adapt- 047

ing pre-trained LLMs to the MWP domain by train- 048

ing them on extensive datasets, improving their 049

performance on benchmark tests. However, de- 050
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spite their good performance, the decision-making051

processes remain a black box(Hassija et al., 2024).052

This lack of transparency raises concerns about the053

reliability of the solutions they provide, especially054

in educational contexts. Traditional prompt engi-055

neering, on the other hand, leverages carefully de-056

signed input prompts to guide LLMs to generate de-057

sired responses without additional training(Sahoo058

et al., 2024). This approach is highly dependent059

on the quality of the prompts and often struggles060

to capture the subtle mathematical dependencies061

inherent in complex problems.062

Recent studies in general question-answering063

tasks have demonstrated the efficacy of integrating064

Knowledge Graphs (KGs) with language models to065

enhance reasoning abilities(Sun et al., 2023; Wen066

et al., 2023; Jiang et al., 2023). KGs provide struc-067

tured knowledge representations that can offer clear068

reasoning paths for language models, reducing their069

hallucinations. Even if the knowledge graph is in-070

complete, it can still increase the reasoning ability071

of language models to some extent(Saxena et al.,072

2020; Xu et al., 2024).073

However, applying KGs to MWP solving074

presents unique challenges. While the integration075

of KGs with LLMs has shown potential in areas076

such as commonsense reasoning(Liu et al., 2021;077

Wang et al., 2023; Toroghi et al., 2024), its applica-078

tion to MWP solving remains relatively unexplored.079

MWPs require models not only to identify explicit080

keywords mentioned in the text but also to infer and081

apply latent mathematical concepts(e.g., rate cal-082

culations, proportional relationships). These con-083

cepts are often implied rather than stated directly,084

necessitating a level of abstraction and conceptual085

understanding that goes beyond surface-level text086

analysis(Verschaffel et al., 2020). Additionally,087

solving MWPs involves sequential and interdepen-088

dent reasoning steps that must be executed in the089

correct order to arrive at the correct solution.090

In order to explore the possibility of applying091

KGs to the field of MWP solving, we propose a092

novel framework, which dynamically integrates093

LLMs with mathematical KGs to enhance both094

the reasoning ability and reliability. Our approach095

employs LLMs as linguistic parsers to decompose096

problems into mathematical concepts while simul-097

taneously activating relevant entities in the KG.098

The retrieved KG paths then serve as explicit rea-099

soning scaffolds, guiding the LLM to solve the100

problems step by step. We call this framework101

KEMRP (Knowledge-Enhanced Math Reasoning102

Path). 103

The main contributions are summarized as fol- 104

lows: 105

1) We propose a novel framework named 106

KEMRP that combines mathematical KGs 107

and LLMs to solve MWPs for the first time, 108

which leverages structured data from KGs and 109

the inherent reasoning abilities of LLMs to en- 110

hance the accuracy and reliability in solving 111

MWPs. 112

2) We construct two mathematical knowledge 113

graphs: MWPEN-KG (English) and MT700- 114

KG (Chinese). These structured resources 115

explicitly ground mathematical concepts and 116

their relationships for MWP solving. 117

3) We conducted extensive experiments with 118

four backbone models (DeepSeek-v3, GPT- 119

4o, GPT-3.5-Turbo, and Qwen-Turbo) across 120

five MWP benchmarks: MAWPS(Koncel- 121

Kedziorski et al., 2016), MathQA(Amini 122

et al., 2019), Math23K(Wang et al., 2017a), 123

Ape210k(Zhao et al., 2020), and CM17K(Qin 124

et al., 2021). The results show consistent supe- 125

riority over conventional prompting methods, 126

achieving new state-of-the-art performance on 127

all five datasets, and validating the effective- 128

ness of KG-enhanced reasoning. 129

2 Related Work 130

2.1 KG-enhanced LLM 131

Due to the hallucination of LLMs and their lack of 132

interpretability, researchers proposed to use KGs 133

to enhance LLMs. There are three main directions: 134

(1) incorporating KG into LLM in the pre-training 135

stage(Zhang et al., 2019; Xiong et al., 2019; Sun 136

et al., 2021; Wang et al., 2021), (2) fine-tuning 137

LLMs with KGs(Liu et al., 2020; Ye et al., 2022; 138

Wang et al., 2022; Dernbach et al., 2024; Tian et al., 139

2024), and (3) integrating KGs during the inference 140

stage(Jiang et al., 2023; Wen et al., 2023; Sun et al., 141

2023; Dong et al., 2025; Jia et al., 2025). For (1), 142

KGs are typically incorporated into training objec- 143

tives, which usually have a higher training cost, but 144

have the best effect for specific goals. For (2), the 145

architecture of the encoder and decoder is designed 146

to adapt KG structure, enabling models to internal- 147

ize new knowledge while preserving their inherent 148

reasoning abilities. However, this approach also in- 149

volves significant costs for knowledge updates. For 150
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Figure 2: The overview of our framework. In the first stage, some related entities are selected. In the second stage,
two reference paths, the head path and tail path, are selected. In the third stage, LLM is prompted to generate the
final reasoning path and answer.

(3), KG is converted into natural language and inte-151

grated into prompts. Although this approach may152

not achieve complete knowledge internalization, it153

leverages the robust abilities of current LLMs to154

deliver satisfactory results. Besides, this method155

provides a high degree of scalability and flexibil-156

ity(Sahoo et al., 2024).157

2.2 Math Word Problem158

The automatic solving of MWPs has attracted159

widespread attention for a long time(Ahn et al.,160

2024). Early approaches primarily relied on rule-161

based methods and statistical methods, which ex-162

hibited considerable limitations in their applica-163

tion scope and performance (Bakman, 2007; Hos-164

seini et al., 2014; Koncel-Kedziorski et al., 2015;165

Mitra and Baral, 2016; Zhou et al., 2015). As166

Deep Neural Solver(DNS)(Wang et al., 2017b)167

was proposed, neural network approaches based on168

encoder-decoder architectures (such as Seq2Seq)169

were applied to address MWP solving tasks(Wang170

et al., 2018; Shen and Jin, 2020; Chatterjee et al.,171

2023; Bin et al., 2023; Raiyan et al., 2023; Hu et al.,172

2023). In recent years, with the development and173

widespread application of LLMs, researchers have174

increasingly focused on using LLMs to build MWP175

solvers.176

Researchers primarily employ two directions to177

develop MWP solvers utilizing LLMs. The first178

direction implements knowledge distillation strate-179

gies(Liang et al., 2022, 2023a,b), wherein the math-180

ematical problem-solving abilities of large-scale181

language models are transferred to smaller, special- 182

ized models through supervised learning. The sec- 183

ond approach leverages prompt engineering, such 184

as Chain-of-Thought (CoT)(Wei et al., 2023; Tan 185

et al., 2024; Kojima et al., 2023; Zhou et al., 2022), 186

where carefully crafted prompts are designed to 187

guide LLMs through the mathematical reasoning 188

process. These methods rely on models’ inherent 189

knowledge to solve MWPs. Few researchers ex- 190

plore the integration of external knowledge through 191

KG into LLM for MWP solving. This study works 192

for this. 193

3 Method 194

In this section, we present our framework, which 195

consists of three main components: Entity Recogni- 196

tion and Expansion, Path Discovery, and Reasoning 197

Construction. Figure 2 shows the overview of our 198

framework. 199

1) Entity Recognition and Expansion: We 200

identify and expand the set of key entities 201

from problems using LLMs and KG-based 202

similarity matching. 203

2) Path Discovery: We explore and extract rele- 204

vant reasoning paths from the KG that connect 205

key mathematical concepts. 206

3) Reasoning Construction: External knowl- 207

edge is integrated into the input of LLM, al- 208

lowing LLM to take advantage of both its in- 209

herent knowledge and external information 210
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Figure 3: The prompt template for the Reasoning Construction stage. It enhances LLMs with related entities and
two paths (head and tail) to generate the final result.

to generate the final reasoning path and the211

answer.212

3.1 Entity Recognition and Expansion213

In this stage, we construct an entity set Ep =214

{ep0, e
p
1, . . . , e

p
N} through the integration of LLM215

and KG to facilitate the final problem-solving pro-216

cess.217

For a given a Math Word Problem (MWP) query218

Q, we initially employ a LLM to extract several219

mathematical keywords through one-shot prompt-220

ing. The prompt is given in Appendix B. Subse-221

quently, these identified keywords K and entities222

E in KG are encoded into dense embeddings re-223

spectively. We then compute the cosine similarity224

between the mathematical entities from the prob-225

lem and those in the KG, selecting the entities with226

the highest similarity scores to form the entity set227

Ep0 =
{
ep00 , ep01 , . . . , ep0N

}
.228

Specifically, for Chinese language tasks, we im-229

plement an additional semantic rule-based simi-230

larity matching approach(We call it Logical Simi-231

larity). For each Chinese keyword, we perform a232

comprehensive comparison with every entity in the233

KG. Given a keyword k ∈ K and an entity e ∈ E,234

we obtain their respective word segmentation sets235

Wk and We. The overlap between these sets is236

evaluated, and if the number of common elements237

exceeds predetermined thresholds te or tne, the en-238

tity e is incorporated into the entity set Ep. The239

detailed implementation is outlined in Algorithm240

1.241

Following entity identification, we extend Ep0242

with the neighbors of all entities in the set Ep0.243

The extended entity set is then refined through 244

LLM-based filtering to eliminate irrelevant en- 245

tities, resulting in Ep1 =
{
ep10 , ep11 , . . . , ep1N

}
. 246

This process is iteratively executed for m rounds 247

to construct the final refined entity set Epm = 248

{epm0 , epm1 , . . . , epmN }, ensuring both coverage and 249

relevance of the mathematical concepts. For sim- 250

plicity, we denote Epm as Ep in the following dis- 251

cussions. 252

3.2 Path Discovery 253

In this stage, we discover meaningful paths within 254

the knowledge graph that connect relevant mathe- 255

matical concepts to solve the given problem. This 256

process consists of two main steps: path prepara- 257

tion and path selection. First, we prepare a set of 258

candidate paths derived from the knowledge graph, 259

along with a set of path pairs that include several 260

similar pairs. Then, we select the most relevant 261

paths by identifying start and end entities and an- 262

alyzing path similarities. The following sections 263

detail these steps. 264

3.2.1 Path Preparation 265

The knowledge graph is represented as G = 266

{⟨e, r, e′⟩|e, e′ ∈ Ψ, r ∈ R}, where Ψ and R de- 267

note the set of entities and relations, respectively. 268

A triple ⟨e, r, e′⟩ represents that there exists a re- 269

lation r between the entity e and the entity e′. 270

In this step, we first construct a set of candidate 271

paths p = {p|p = (e1, e2, . . . , en)} within the KG. 272

Specifically, for each entity in the KG, we generate 273

all possible paths originating from that entity, with 274

path lengths ranging from 2 to 6. This length con- 275

straint is based on the "six degrees of separation" 276
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Algorithm 1 Logic Similarity Check

Require: keyword, entity, te, tne
Ensure: boolean result

1: list1← Segment(keyword)
2: list2← Segment(entity)
3: if len(list1) = len(list2) then
4: benchmark ← len(list2)× te
5: else
6: benchmark ← len(list2)× tne
7: end if
8: score← 0
9: result← False

10: for seg1 ∈ list1 do
11: for seg2 ∈ list2 do
12: if seg1 = seg2 then
13: score← score+ 1
14: if score ≥ benchmark then
15: result← True
16: end if
17: end if
18: end for
19: end for

theory(Guare, 2016), which states that any two277

individuals in social networks can be connected278

through a chain of at most six intermediate connec-279

tions. This theory suggests that any two nodes can280

be linked through a chain of "friend-of-a-friend"281

relationships within six steps. Subsequently, dupli-282

cate paths are removed.283

Next, we construct a set of similar path pairs284

SP = {⟨pi, pj⟩|pi, pj ∈ P}. Each element in285

this set is a pair of paths, where the two paths are286

considered to be similar. Specifically, for any two287

paths pi and pj in the set P , we determine whether288

they share any common entities. If they do, the pair289

is added to the set SP .290

3.2.2 Path Selection291

For a given problem query Q, we prompt LLMs to292

identify the start entity estart and end entity eend293

from Ep. The prompt can be found in Appendix294

B. Subsequently, we extract two subsets from the295

path set P : the start path set Pstart containing296

all paths that contain estart, and the end path set297

Pend containing all paths that contain eend. For298

each possible pair of paths ⟨pistart, p
j
end⟩, where299

pistart ∈ Pstart and pjend ∈ Pend, we compute their300

semantic similarity, which depends on whether301

⟨pistart, p
j
end⟩ is in the set SP and the cosine sim-302

ilarity of pistart and pjend. The specific implemen-303

tation is provided in Algorithm 2. The paths with 304

the highest similarity score, denoted as pstart and 305

pend, are selected as the optimal start and end paths 306

respectively. 307

Algorithm 2 Path Semantic Similarity

Require: path1, path2, SP
Ensure: Similarity score score

1: score← 0
2: if ⟨path1, path2⟩ ∈ SP then
3: score← score+ 1
4: end if
5: cos_score← cos_similarity(path1, path2)
6: score← score+ cos_score
7: return score

3.3 Reasoning Construction 308

In this stage, LLMs are prompted to generate the 309

final reasoning path and ultimate solution. The 310

prompt is constructed with the following compo- 311

nents: role and style, task instructions, the prob- 312

lem statement, the entity set Ep obtained from the 313

first stage, the start path pstart and the end path 314

pend derived from the second stage, and an illustra- 315

tive example. The LLM is expected to produce a 316

reasoning path, an interpretation of the reasoning 317

process, an analysis of the problem, and the final 318

answer. The prompt template is provided in figure 319

3. Notably, the generated reasoning path can be 320

considered as a reference to augment the mathe- 321

matical knowledge graph, enhancing its alignment 322

with MWPs. 323

4 Experiments 324

4.1 DataSets 325

MWP We consider five MWP datasets, including 326

two English datasets: MAWPS(Koncel-Kedziorski 327

et al., 2016) and MathQA(Amini et al., 2019), as 328

well as three Chinese datasets: Math23K(Wang 329

et al., 2017a), Ape210K(Zhao et al., 2020) and 330

CM17K(Qin et al., 2021). We rank the difficulty 331

levels of these datasets: MWAPS and Math23k are 332

the easiest, Ape210K is next, and MathQA and 333

CM17k are the most difficult. In order to compare 334

with the SOTA models conveniently, we select the 335

test sets in these datasets for experiments. Follow- 336

ing previous work(Zhu et al., 2023), we employ 337

accuracy as the evaluation metric for all datasets. 338

KG For the Math23k and Ape210k datasets, 339

we employed a Chinese mathematical knowledge 340
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Table 1: Results for different datasets. The SOTA models are: (Toshniwal et al., 2024) for MAWPS, (Zhang and
Moshfeghi, 2022) for MathQA, (Tan et al., 2024) for Math23k, (Liang et al., 2023a) for Ape210k and (Liang et al.,
2023a) for CM17k.

Method MAWPS MathQA Math23K Ape210k CM17k

GPT-3.5-Turbo & IO prompt 0.8414 0.6118 0.7080 0.5938 0.5229
GPT-4o & IO prompt 0.9265 0.8081 0.8770 0.7858 0.7688

GPT-3.5-Turbo & CoT 0.7693 0.3283 0.6190 0.4908 0.3650
GPT-4o & CoT 0.9552 0.7601 0.8970 0.7784 0.7477

Embedding Retrieval 0.9302 0.8131 0.8790 0.8226 0.7940
MindMap 0.9140 0.6124 0.9030 0.8202 0.7230

Prior SOTA 0.9570 0.8300 0.9430 0.7700 0.7880

GPT-4o & Ours 0.9565 0.8154 0.9360 0.8304 0.8327
DeepSeek-v3 & Ours 0.9635 0.8318 0.9480 0.8798 0.8028

graph from TAL2, which contains 998 nodes341

and 1743 edges. We call it 100TAL-KG. As342

for the MAWPS and MathQA datasets, we con-343

structed a specialized English knowledge graph344

called MWPEN-KG, comprising 313 nodes and345

719 edges. Additionally, for the CM17k dataset,346

we developed a Chinese knowledge graph named347

MT700-KG, which has 704 nodes and 724 edges.348

The details of how we constructed them are pre-349

sented in the Appendix A.350

4.2 Baselines351

We employed standard prompting (IO352

prompt)(Brown et al., 2020), Chain-of-Thought353

prompting (CoT prompt)(Wei et al., 2023), em-354

bedding retrieval, and MindMap(Wen et al., 2023)355

as baseline models. Notably, both embedding356

retrieval and MindMap are KG-enhanced LLM357

methods, similar to our approach. Moreover, for358

each dataset, we pick previous state-of-the-art359

(SOTA) works for comparison.360

4.3 Implementation Details361

Four backbone models were used: DeepSeek-v3,362

GPT-4o, GPT-3.5-Turbo, and Qwen-Turbo, all ac-363

cessed through the OpenAI API interface. To op-364

timize data processing efficiency and ensure stan-365

dardized output, we configured the response format366

parameter in our API calls to consistently receive367

responses in JSON format. In all experiments, the368

iteration count m in the first stage was set to 3.369

For the Chinese dataset experiments, we manually370

evaluated the performance of different similarity371

2https://ai.100tal.com/openData/knowledgeGraph

threshold parameter values, and the final parameter 372

settings were: te was set to 1/2, while tne was set 373

to 2/3. 374

4.4 Main Results 375

4.4.1 Comparison to Other Methods 376

We conducted experiments across five datasets us- 377

ing different approaches. As we can see in Ta- 378

ble 1, Chain-of-Thought prompting(CoT) does not 379

consistently outperform standard prompting(IO 380

prompt) in MWP-solving tasks. However, KG- 381

enhanced LLM approaches demonstrate supe- 382

rior performance. The Embedding Retrieval and 383

MindMap approaches surpass both IO prompting 384

and CoT on four datasets (MathQA, Math23K, 385

Ape210k, and CM17k), while our method achieves 386

state-of-the-art performance across all five datasets, 387

with particularly notable improvements on Chinese 388

datasets Ape210k and CM17k, which improve by 389

10.98% and 4.47% respectively. Significantly, our 390

approach demonstrates substantial improvements 391

over conventional prompting methods on more 392

challenging datasets such as MathQA and CM17k, 393

with performance gains of 2.37% and 6.39% re- 394

spectively. These results substantiate the effective- 395

ness of our method in handling complex MWP 396

scenarios, validating its robustness and generaliz- 397

ability across varying difficulty levels. 398

4.4.2 Comparison of Different Backbone 399

As a plug-and-play framework, we evaluated our 400

method’s performance with different backbone 401

models and compared it with Chain-of-Thought 402

prompting. The results are shown in Table 2. 403
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Table 2: Performance of CoT and our method using different backbones.

Method MAWPS MathQA Math23K Ape210k CM17k

Qwen-Turbo & CoT 0.9362 0.5688 0.7520 0.6512 0.5329
GPT-3.5-Turbo & CoT 0.7693 0.3283 0.6190 0.4908 0.3650
GPT-4o & CoT 0.9552 0.7601 0.8970 0.7784 0.7477
DeepSeek-v3 & CoT 0.9542 0.7022 0.9330 0.8334 0.7700

Qwen-Turbo & Ours 0.9357 0.6043 0.8260 0.7112 0.6015
GPT-3.5-Turbo & Ours 0.8262 0.3408 0.6690 0.4374 0.3210
GPT-4o & Ours 0.9565 0.8154 0.9360 0.8304 0.8327
DeepSeek-v3 & Ours 0.9635 0.8318 0.9480 0.8798 0.8028

For simpler datasets(MAWPS and Math23K), our404

method shows greater improvements with models405

that have relatively weaker reasoning abilities (such406

as GPT-3.5-Turbo). However, for more challeng-407

ing datasets(MathQA and CM17k), our method408

demonstrates higher improvements when paired409

with models having stronger reasoning abilities410

(like DeepSeek-v3 and GPT-4o). Notably, when411

our method is combined with weaker models on412

difficult datasets, performance actually deteriorates.413

We analyze these phenomena as follows:414

• For simple datasets: Weaker models typi-415

cally lack basic knowledge foundations. Our416

method directly fills these knowledge gaps,417

leading to significant performance improve-418

ments. However, stronger models already419

possess robust reasoning abilities. Since our420

method introduces information they likely al-421

ready know, the improvement margin is lim-422

ited.423

• For difficult datasets: Strong models inher-424

ently possess powerful reasoning abilities, and425

our method can effectively assist them in their426

thought process, reducing the difficulty of rea-427

soning. However, weaker models, limited in428

both abilities and knowledge base, may ac-429

tually perform worse when presented with430

knowledge beyond their processing ability.431

4.5 Ablation Study432

4.5.1 Performance with Only Entities or Only433

Paths434

To investigate the effectiveness of each stage, we435

conducted ablation studies by removing either enti-436

ties or paths from the prompt while keeping other437

components. Using Deepseek-v3 as our back-438

bone model, we performed experiments across five439

datasets, with results shown in Table 3. Overall, 440

performance declines regardless of whether enti- 441

ties or paths are missing, with a greater decline 442

observed when entities are absent in the difficult 443

datasets MathQA and CM17k. In contrast, on the 444

simpler datasets MAWPS and Math23K, a greater 445

performance decline occurs when paths are missing. 446

One possible reason is that for strong models, intro- 447

ducing "extra" conceptual relations is not important 448

for unlocking their reasoning potential when solv- 449

ing simple mathematical problems. However, when 450

addressing difficult mathematical problems, refer- 451

encing reasoning paths is more likely to help the 452

model discover hidden solutions. 453

4.5.2 Performance with Different Iteration 454

Count 455

To investigate the impact of the iteration count m 456

in the first stage, we selected 1000 MWPs from the 457

MAWPS and CM17k datasets, respectively. We 458

conducted experiments with parameter settings of 459

m = 1, m = 2, and m = 3, using GPT-4o as 460

the backbone. As is shown in Table 4, for simple 461

datasets, increasing the iteration count m has little 462

impact on performance, which may be due to the 463

limited room for effect improvement. In contrast, 464

increasing the iteration count m improves the per- 465

formance of our method on difficult datasets. This 466

result also demonstrates the potential of our ap- 467

proach in solving difficult MWPs. However, as the 468

iteration count increases, the associated costs also 469

rise, making it essential to select an appropriate 470

value. 471

4.6 Further Analysis: Why our method works 472

on MWPs? 473

One notable feature of MWPs is the presence of 474

numerous implicit details, which often complicate 475

the problem-solving process. Recalling the pro- 476
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Table 3: Performance of our method with different components.

Method MAWPS MathQA Math23K Ape210k CM17k Average

without entities 0.9524 0.8237 0.9300 0.8188 0.7905 0.8630
without paths 0.9538 0.8181 0.9290 0.8240 0.7799 0.8610
KEMRP 0.9635 0.8318 0.9480 0.8798 0.8028 0.8850

Figure 4: An illustration of the application of our method on a sample problem.

Table 4: Performance with different iteration count m.

DataSet MAWPS CM17k

m = 1 0.953 0.741
m = 2 0.956 0.772
m = 3 0.957 0.780

cess that we as humans solve MWPs, we first ex-477

tract given conditions and unknown quantities from478

the information provided, and then establish rela-479

tionships between those known conditions and the480

unknowns. For simple problems, one or two rea-481

soning steps may suffice to reach a solution. For482

instance, a basic arithmetic problem might only483

involve addition or subtraction to find the unknown.484

However, complex problems often require multiple485

reasoning steps and involve intermediate concepts486

that may initially seem unrelated to the problem487

statement.488

As illustrated in Figure 4, in the first stage of our489

method, we extract the explicit known conditions490

and unknown quantities from the problem and then491

expand upon them. As the number of iterations492

increases, more and more hidden related entities493

are discovered, expanding the reasoning scope for494

the LLMs. In the second stage, we simulate human495

thought processes, firstly identify the start and end496

entities directly related to the problem, and then497

seek potential paths to connect these entities, pro-498

viding a more direct scaffold for the LLMs. In the499

third stage, we guide the LLMs through prompts 500

to utilize the information gathered in the previous 501

stages, constructing a logical reasoning path step 502

by step to arrive at the final solution. By systemati- 503

cally guiding the LLMs through these stages, we 504

enhance their ability to handle MWPs, ensuring 505

they can navigate the complex relationships and 506

concepts inherent in these problems. 507

5 Conclusion 508

In this paper, we present KEMRP, a novel frame- 509

work that pioneers the integration of LLMs with 510

KGs to enhance MWP-solving abilities. Our ap- 511

proach establishes explicit reasoning paths through 512

KG integration, thereby improving both perfor- 513

mance and reliability while addressing key chal- 514

lenges in MWP solving. To validate the effective- 515

ness of our approach, we conducted extensive ex- 516

periments across five different benchmarks using 517

four LLMs as backbones. The results demonstrate 518

the framework’s robust effectiveness. To accom- 519

modate existing MWP datasets, we constructed 520

two mathematical knowledge graphs (MWPEN- 521

KG and MT700-KG). We hope this study will offer 522

new research directions in the field of automated 523

MWP solving and drive further advancement in 524

this domain. Furthermore, we believe that the inte- 525

gration of knowledge graphs with LLMs not only 526

improves problem-solving accuracy but also pro- 527

vides crucial insights for building more reliable and 528

transparent AI systems. 529
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Limitations530

Although our framework demonstrates significant531

advancements in solving MWPs through the inte-532

gration of LLM and KG, there remain certain limi-533

tations. First, the effectiveness of KEMRP relies on534

the completeness and accuracy of the knowledge535

graphs. Missing concepts, incomplete relations, or536

errors within the KGs can lead to incorrect solu-537

tions. Second, the performance of the framework538

depends on the abilities of the backbone LLM. If539

the language model has biases, produces inaccurate540

information, or lacks certain knowledge—such as541

GPT-3.5-Turbo’s weaker performance on complex542

tasks—these issues can affect the final answers,543

even when guided by KGs. Lastly, The multi-stage544

framework introduces additional computational la-545

tency compared to standalone LLM inference. This546

could hinder real-time applications, especially in547

resource-constrained environments. Addressing548

these limitations will be crucial for advancing KG-549

enhanced LLM frameworks toward robust, scal-550

able, and truly interpretable MWP solvers.551
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nections between them. For MWPEN-KG, we used 844

DeepSeek-v3 to extract keywords from problems in 845
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among the remaining ones. We defined five types of 848

relationships: composition, alias, prerequisite, and 849
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all generated triples and artificially add important 851

entities and relationships that are not covered. All 852
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B Prompts 854

The prompts in our method are presented in Figure 855

8-14. 856
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Figure 5: The prompt to determine whether a word is a mathematical keyword.

Figure 6: The prompt to generate relationships between keywords.

Figure 7: The prompt to check the correctness of triples.
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Figure 8: The prompt to extract keywords from mathematical problems in the first stage.

Figure 9: Chinese prompt to extract keywords from mathematical problems in the first stage.

Figure 10: The prompt to determine whether a keyword is related to a mathematical problem in the first stage.

Figure 11: Chinese prompt to determine whether a keyword is related to a mathematical problem in the first stage.
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Figure 12: The prompt to extract the head entity and the tail entity from mathematical problems in the second stage.

Figure 13: Chinese prompt to extract the head entity and the tail entity from mathematical problems in the second
stage.

Figure 14: Chinese prompt template for the third stage.
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