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Abstract

With the success of CLIP training for learning transferable visual representations,
fine-tuning CLIP models on smaller datasets for better downstream performance is
an important area of research. A method for improving CLIP models is to increase
the difficulty of negative examples. While the majority of research has focused
on manually crafting hard negative captions, this strategy requires additional en-
gineering labor, fails to generalize to different domains, and causes additional
overfitting. Here, we conduct an empirical study to systematically explore an alter-
native approach: construct minibatches that include similarity clusters to increase
the difficulty of negative examples. We propose a generalized framework, called
SimCLIP, for similarity-based CLIP fine-tuning. By enforcing that each minibatch
contains clusters of similar examples, SimCLIP fine-tuning can improve model
performance compared to standard CLIP fine-tuning. We extensively study which
SimCLIP configurations and factors contribute most to downstream performance.
We also analyze SimCLIP’s performance on rare special sets, compositionality
of attributes, and generalization across dataset sizes. Our observations provides
better understanding of similarity-based minibatch construction methods as well as
new insights into CLIP fine-tuning. The code for our experiments is available at
https://github.com/sx-liu/SimCLIP/.

1 Introduction

In recent years, language-guided visual representation learning, such as CLIP [19], BLIP [14] and
FLAVA [23], has become an effective method for learning visual representations. Contrastive objec-
tives [1] are commonly used to align image-text pairs in a joint representation space. One example is
the infoNCE loss [25, 19], which is effective in learning joint vision-language representations and
extendable with other objectives [23, 30, 31]. The most well-known joint vision-language representa-
tion model is CLIP [19], which is trained via infoNCE loss over a large corpus of image-text pairs
and has demonstrated strong performance in various vision-only and vision-language downstream
tasks.

Pre-trained CLIP models are often fine-tuned for improved performance within specific domains or
downstream tasks, where the fine-tuning process involves continued training with the same CLIP
objective but over a specific fine-tuning dataset of image-text pairs. However, a problem with CLIP
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Figure 1: An overview of SimCLIP, a generalized framework for CLIP fine-tuning via similarity
clusters. (a) We sample each similarity cluster via text embedding similarity; (b) We construct
each minibatch with a proportion of it consisting of similarity clusters and the remaining sampled
independently, and (c) We perform fine-tuning with CLIP objective.

fine-tuning is that CLIP training alone is often too "easy" and allows the model to shortcut without
improving visual representations [29]. Intuitively, contrastive objectives will only force the model to
gain enough representation power to distinguish between different images presented within the same
minibatch, and images within a minibatch are distinct enough that the model can easily distinguish
them without needing to learn to represent image details. Therefore, one prominent research direction
for improving CLIP fine-tuning has been how to create effective hard-negatives within minibatches
during fine-tuning.

Previous work focuses on manually constructing hard-negative captions [29, 31]. These approaches
rely on heavily-engineered rule-based construction methods, which can be labor-intensive and hard
to automate/generalize, and have the risk of overfitting the model on certain language pattern [10].
Another possible approach for making the negatives in a minibatch "hard" is through inclusion of
similarity clusters, such that we sample similar image-text pairs from the fine-tuning dataset instead
of manual construction of new hard-negative data. The main advantage of this approach is that it
does not require manual engineering of specific rules for hard negative construction, while still being
able to train with high-quality, hard negative examples. While there is some relevant research on the
optimal sampling strategy for single-mode contrastive learning objectives [20], there has been little
existing exploration in the context of multi-modal contrastive learning. The existing attempt at this
approach [29] only tried one particular setting: adding one additional similar image-text pair to every
instance in the minibatch.

In this paper, we aim to systematically explore this similarity cluster approach. We propose SimCLIP,
a generalized framework of CLIP fine-tuning with similarity clusters that allow construction of
minibatches with varying similarity cluster sizes, proportions, and other configurations. We then
conduct extensive experiments over these various configurations and analyze their effects on various
downstream task performances. The key contribution of this empirical study is as follows:

• We propose SimCLIP, a generalized framework of CLIP fine-tuning with similarity clusters.

• We conduct extensive experiments over various configurations within the SimCLIP frame-
work, and identify factors that are important (e.g. cluster size and proportion) and unimpor-
tant (e.g. neighborhood size) for downstream performance.

• We identified downstream tasks where SimCLIP will help. We empirically demonstrate that
SimCLIP learns better representations of rare specialized classes. We observe that SimCLIP
may not perform well on tasks that require understanding order and compositionally of
attributes.

• We demonstrate that SimCLIP performs well when fine-tuning on both small datasets such
as COCO [16] and larger datasets such as CC3M [22].
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2 Related Work

Fine-tuning in Multi-modal Contrastive Learning After the original CLIP model [19] was
proposed, a series of methods have been introduced to improve the fine-tuning quality of the multi-
modal contrastive learning, which can be broadly categorized into two research directions. The
first direction focuses on how to further enhance model performance by augmenting the data and
fine-graining the alignment. FILIP [27] proposes token-level alignment by maximum similarity
between visual and textual tokens. Other works, such as OSCAR [15], VinVL [32], align multi-
level semantic elements inside the texts and images. While OSCAR and VinVL only extracts these
semantics within the visual modality, some follow-up studies propose more fine-grained semantic
space alignment for both modalities, such as Pyramidclip [5] and Softclip [4]. These methods usually
rely on some off-the-shelf ROI feature extractors or the rich annotation of some specific datasets.
Another direction is to better supervise or regularize the original CLIP objective. Cyclip [7] proposes
a regularization on representation space, which enforces the cycle consistency of the learned features.
Notably, regularizations can also be used along with aforementioned augmentations. For example,
SGVL [9] leverages scene graphs to incorporate structured representations into fine-tuning.

Hard Negative Mining Hard negatives are leveraged to improve representation learning [8, 26, 6],
contrastive learning [20, 11], as well as vision-language representation learning [29, 31]. Suitably
constructed hard negatives can also be used for in-depth evaluations of these representations [24,
29, 18, 33, 10]. Specifically, NegCLIP [29] opens the boundary of hard negative construction by
suggesting swapping the position of certain components inside a positive caption. Following this
direction, a few other works, such as SVLC [3], Rösch et al. [21], investigate how to better extend or
fine-grain these hard negatives. Other works focuses on how to better incorporate these negatives into
training, such as through intra-modal and ranking cross-modal regularizations [31].

While all these previous research on vision-language representation learning concentrates on some
data manipulations, this paper will try to uncover the possibility of mining hard negative without
those artifacts, such as extracted semantic elements or manually synthesized hard negatives. We
will explore a fine-tuning strategy that only uses existing training data and enforce hard contrastive
objectives through special minibatch construction methods.

3 Method

The strong alternative sampling purposed in [29] suggests the following: When constructing a
training minibatch, for each randomly sampled training instance, we will additionally sample one out
of its three nearest neighbors in the embedding space to include in the minibatch. While not discussed
in detail in the original paper, this approach intends to increase the training minibatch similarity and
potentially fix the lack of hard contrast from the image modality.

Algorithm 1 Similarity Sampling

1: Input: Training data X = (x1, x2, . . . , xn), Embeddings
E = (e1, e2, . . . , en), Batch size N , Cluster size k, Similarity
proportion p, Neighborhood size s

2: Output: Sampled minibatch B
3: Randomly sample a minibatch B ⊂ X of size N(1− p)

4: Calculate the number of clusters: ncluster = pN
k

5: for i = 1 to ncluster do
6: Randomly sample an anchor point xm ∈ X
7: Compute cosine similarities between embeddings em and

embeddings of other points (e1, e2, ...)
8: Construct Neighborhood S by selecting top s(k−1) points

by largest embedding cosine similarities to xm

9: Randomly select k − 1 points from S to form S′

10: Add the anchor xm and points in S′ to B
11: end for
12: return B

We follow the trace of this work
and propose a more generalized
version of strong alternative sam-
pling, as illustrated in Figure 1:
for total batch size N , instead
of sampling 1 close neighbor
per instance in the minibatch,
we construct a proportion p of
our minibatch with pN

k similar-
ity clusters where each similar-
ity cluster has size k, while the
remaining 1 − p proportion is
randomly sample individual in-
stances. At the beginning of each
training epoch, we will calculate
the text embeddings of all the
training samples using the text
encoder of the CLIP model. To
construct each similarity cluster
within each minibatch, we first randomly sample one training image-text pair as the anchor point, then
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we retrieve s(k − 1) nearest neighbors of the anchor by text embedding to form a "neighborhood"
(where s is the "neighborhood size"), and lastly, we randomly select k − 1 instances from the neigh-
borhood to form a similarity cluster of size k together with the starting instance. We call the CLIP
models fine-tuned with minibatches with similarity clusters SimCLIP for short. Existing works can
often be viewed as a special case of this generalized scheme: we have regular CLIP fine-tuning when
p = 0 or k = 1; the strong alternative sampling in NegCLIP [29] (i.e. NegCLIP without manually
constructed additional hard negative text samples) can be viewed as SimCLIP with k = 2, p = 1.0
and s = 3.

SimCLIP also supports warmup similarity proportion: instead of setting the similarity proportion p
to be a constant, we can also gradually increase this factor exponentially throughout the fine-tuning
epochs until it reaches a final proportion of p. We divide the total number of epochs into I intervals
of similar length. We start with a similarity proportion of 0.5I−1p for the first interval, and then we
double the similarity proportion for each subsequent interval (so the proportion for the final interval
is p).

4 Experiments

4.1 Research Questions
Since SimCLIP is a general framework with configurable settings, we need to find out how each factor
affects fine-tuning performance, and which configurations are optimal. Our first research question
is RQ1: How do various configurable factors of SimCLIP affect fine-tuning performance?
Specifically, we are interested in the effects of the following factors: cluster size k, similarity
proportion p, warmup vs fixed similarity proportions, neighborhood size s, similarity embedding
type (i.e. constructing similarity clusters via text embeddings vs image embeddings), and online vs
offline similarity embeddings (i.e. whether we use current model’s embeddings to construct similarity
clusters or use the pre-fine-tune model’s embeddings).

In addition to the configurations, we also conduct analysis over SimCLIP’s performance under various
scenarios to determine the strengths/weaknesses of SimCLIP. We pick 2 specific scenarios that were
known to be challenging for regular CLIP fine-tuning: rare special sets (RQ2) and compositionality
of attributes (RQ3). We explain the intuition behind each scenario and detail the experiment setups
within sections 4.5 and 4.6. Through RQ2 and RQ3, we aim to gain a better understanding of which
situations are ideal for applying SimCLIP.

Finally, due to computational constraints, most of our experiments will be conducted on a relatively
small dataset, and we would like to verify RQ4: does SimCLIP, especially with the optimal
configuration from RQ1, works well when fine-tuning on a much larger dataset?

4.2 Dataset and Fine-tuning Details
Dataset We use Microsoft COCO dataset [16] as the primary data source in most of the experiments.
COCO dataset consists of 118K images in the training split and 5k images in the validation split.
Each image in this dataset includes 5 corresponding captions. We randomly sample one out of five
captions each time during CLIP fine-tuning.

Fine-tuning We use clip-vit-base-patch321 variant of OpenAI CLIP model as the baseline pre-
trained model, and follow the regular CLIP objective [19] during the fine-tuning process. On COCO
dataset, under each configuration, we fine-tune the model for 20 epochs on 4 A40 GPUs with batch
size N = 1024, and select the checkpoint with top average Recall@1 accuracy on COCO validation
set for downstream evaluation. All the other hyperparameters are listed in table 3 in appendix.

4.3 Evaluation Tasks and Protocol

In order to evaluate the overall performance as well as generalization capabilities of the fine-tuned
CLIP models, we evaluate the models on COCO validation set and several downstream datasets.
COCO and Flickr30k [28] validation sets for retrieval evaluation, and CIFAR-100 [12] and Ima-
geNet [2] for classification evaluation. Flickr30k dataset is a large corpus of image-text pairs with
well annotated data samples. For fairness of comparison, we use CLIP_benchmark2 as the platform

1https://huggingface.co/openai/clip-vit-base-patch32
2https://github.com/LAION-AI/CLIP_benchmark
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for evaluation. The CIFAR-100 dataset includes 10,000 tiny images of resolution 32× 32 for testing,
which consists of 100 classes evenly distributed. ImageNet validation set contributes another 50,000
images evenly sampled from 1,000 categories, containing a wide variety of objects. For these two
classification tasks, we follow the evaluation instructions proposed along with the original CLIP
paper3. These datasets supports two different evaluation strategy and contains single or multiple
object images of varied resolutions, which provides a comprehensive evaluation for our CLIP models.

4.4 RQ1: How various configuration factors affect fine-tuning performance

1 2 4 8 16 32 64 128256
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Figure 2: Downstream Classification performance of Sim-
CLIP with varying cluster size k and similarity proportion p,
with and without warmup. Note that when k = 1 or p = 0,
we perform regular CLIP fine-tuning. The error bars are
estimated with 3 random seeds. For this experiment, we set
s = 1, and we use k = 16 for the proportion plot on the right.
We found that optimal k usually lies within the medium val-
ues (between 8 and 64); with fixed similarity proportion, the
optimal p is 0.5, while with warmup the optimal p goes to
1.0.

Cluster Size k, similarity propor-
tion p, and warm-up vs fixed pro-
portion These three factors deter-
mine the "difficulty" of the mini-
batches. Larger k and p make the
contrastive objective more challeng-
ing for the model by including larger
similarity clusters (so more "hard"
contrastive pairs) and more similarity
clusters in each minibatch, but they
also make overall data distribution
of the minibatch farther away from
the original fine-tuning dataset, which
may destabilize training. For this eval-
uation, we repeat each configuration
with 3 different random seeds to ob-
tain more accurate results.

We show the effects of cluster size on
downstream classification task accura-
cies in Figure 2. Among the classifi-
cation task results, we found that the
best similarity proportion is p = 0.5
with fixed similarity proportion and
p = 1.0 with warm-up. This indicates
that, without warm-up, filling half of each minibatch with similarity clusters seems to achieve the
best balance between training stability and difficulty of the contrastive objective, while with warmup
we can go up to p = 1.0 since in the earlier epochs the effective proportion is lower. We also found
that for warmup and fixed proportions with optimal p, the best cluster size k seems to be 8 and 64
respectively, with second best both at k = 16, all of which are medium values.

1 2 4 8 16 32 64 128256
Cluster Size k

89.5

90.0

90.5

91.0

91.5

Average R@5 of Retrieval
p=0.5
p=1.0+Warmup

Figure 3: Retrieval accuracies of Sim-
CLIP with varying cluster size k, sim-
ilarity proportion p, with and without
warmup. The best k on retrieval tasks
are slightly larger (between 64 and 128
across configurations)

We also show results on the retrieval tasks in Figure 3.
We found that the optimal k on retrieval tasks (64-128)
is higher than that on classification tasks, but the perfor-
mance still falls off when k reaches 256.

Overall, the results indicate that cluster sizes larger than
those used in prior works (k = 2) can improve perfor-
mance on downstream tasks. The optimal k are medium-
sized and cannot be too large. A medium-sized similarity
proportion works well without warmup, but with warmup
we can use a large similarity proportion. We also found
that fine-tuning with warmup yields slightly better top per-
formance averaged across classification and retrieval tasks.
We include full results on individual tasks in Sections B.1
and B.2 in Appendix.

Neighborhood size We demonstrate how neighborhood
size s affects the downstream task performance in Figure
4. We do not see a clear trend on whether larger s helps

3https://github.com/openai/CLIP
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Figure 4: Downstream task performance of
SimCLIP with different neighborhood sizes,
with k = 16. This shows that choosing larger
neighborhoods (s > 1) is unnecessary.
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Figure 5: Retrieval accuracies of SimCLIP with
various configurations on MSCOCO validation set
over the epochs fine-tuned (k = 16, s = 1). Text
embeddings yield more stable performance across
various configurations.

with downstream performance. In fact, picking the simplest setting s = 1 yields good performance,
especially on the classification tasks. This indicates that selecting a neighborhood size larger than 1
is unnecessary. We include full results of this analysis in Figure 10 in Appendix.

p=0.5 p=1.0 warmup

Task Type Dataset Online Offline Online Offline

Retrieval

COCO R@1 62.77 62.25 60.50 64.38
COCO R@5 86.39 86.19 83.93 87.38
Flickr30k R@1 78.36 78.70 78.82 78.63
Flickr30k R@5 93.86 94.79 94.28 93.81

Classification

CIFAR-100 Top1 61.77 60.29 63.31 60.31
CIFAR-100 Top5 87.02 85.23 87.84 85.94
ImageNet Top1 53.72 52.87 55.07 52.25
ImageNet Top5 80.59 80.34 81.46 79.41

Table 1: Downstream Task Performance of SimCLIP with
Online vs. Offline Embeddings, k = 16, s = 1. Online
Embedding achieves better performance on the majority of
metrics.

Online vs Offline We evaluate the
performance difference between on-
line and offline text embeddings in Ta-
ble 1, where we compare all the ac-
curacies on two top-ranking variants
of SimCLIP. We found that the Sim-
CLIP with online embeddings consis-
tently outperforms offline embeddings
among the classification tasks, but on-
line embeddings only win half of the
retrieval metrics. Therefore, using on-
line text embeddings may be worth-
while despite computational overhead
if we want optimal downstream clas-
sification performance.

Text Embeddings vs Image Embeddings We generally found that using text embedding to
construct similarity clusters yields more consistent results in SimCLIP fine-tuning. We compare
the validation retrieval performance over the fine-tuning epochs in Figure 5 under three different
settings. While using both embeddings yielded similar performance under some configurations, the
performance is significantly worse with image embedding under other configurations (such as p=1.0
without warmup). Therefore, using text embeddings to compute similarity clusters yields more stable
performance across configurations. Full results of this analysis are shown in Figure 11 in Appendix.

4.5 RQ2: Does SimCLIP improve performance on images from rare special sets?

One major intuition behind the similarity cluster approach is the following scenario: with a fine-tuning
dataset D and batch size N , there is a small subset B ∈ D of a certain concept with |B| << |D|

N ,
then in most of the minibatches during regular CLIP fine-tuning, there will be at most one instance
from B in the minibatch. The model only needs to learn to distinguish whether an instance belongs
to B or not. Moreover, the model is not forced to learn differences within B. SimCLIP mitigates
this problem by forcing similar instances within the same minibatch, thus forcing the model to learn
details that can distinguish between different B instances when similarity clusters of multiple B
instances appear in the minibatches.

To verify this intuition, we conduct the following experiment: we mix 50 MNIST [13] digits (5 from
each class, with caption "A MNIST digit of {}") into the training split of COCO dataset, and then
we fine-tune CLIP model with the mixed data. Our evaluation metric is zero-shot digit classification
on MNIST test set using the same text templates as the captions. The 50 MNIST digits represent
the "rare special set" situation: they belong to a separate class from regular COCO images, they are
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very rare in number (50 in 118K), and there is a well-defined "intra-B" task (digit classification) that
the pre-trained CLIP model performs poorly on (only 20.61% accuracy). In order to perform well
on the digit classification task, the model must learn to distinguish between MNIST digits during
fine-tuning, rather than simply being able to distinguish an MNIST digit from regular COCO images.

0 2 4 6 8 10
Fine-tune Epoch

20

40

60

80

Ac
cu

ra
cy

MNIST Zero-shot Classification Accuracies
CLIP
SimCLIP

Figure 6: The MNIST zero-shot classification accu-
racies at the end of each epoch for the MNIST Mix-
in experiment. SimCLIP significantly improves
the model’s representations of digits from just 50
MNIST digits mixed into 118K COCO image-text
pairs.

We fine-tune CLIP on our mixed dataset with
both regular CLIP and SimCLIP (k=16, p=1.0,
no warmup) for 10 epochs, and we show the
zero-shot digit classification accuracy in Figure
6. We see that SimCLIP is clearly able to better
distinguish the different digits in MNIST with
the same amounts of fine-tuning. Therefore,
SimCLIP indeed improves performance on rare
special sets.

4.6 RQ3: Does
SimCLIP help CLIP with understanding
compositionality of attributes?

Prior works found that one significant weak-
ness of CLIP models are their inability to un-
derstand and process compositionality, yielding
image/text representations that are invariant to
different compositions of attributes [29]. Several benchmarks have been created to thoroughly eval-
uate this weakness, such as ARO [29] and SugarCrepe [10]. ARO contains four subtasks built on
three separate datasets, the VG-Attribution, VG-Relation, COCO Order and Flickr30k Order,
where the evaluated model must distinguish between similar captions with flipped word ordering or
relationships. SugarCrepe is another benchmark designed for compositionality evaluation. that is
designed to be less biased and hackable compared to previous benchmarks. There are 3 different
types of tasks included in this benchmark, REPLCAE, SWAP and NEGATE/ADD, corresponding to 3
different methods of producing the confusion options.

1 2 4 8 16 32 64 128256
Cluster Size k

44

46

48

50

ARO Average Acc
p=1.0
p=0.5
p=1.0+Warmup

1 2 4 8 16 32 64 128256
Cluster Size k

80

81

SugarCrepe Average Acc
p=1.0
p=0.5
p=1.0+Warmup

Figure 7: Accuracies of SimCLIP on ARO and SugarCrepe
benchmarks, with s = 1. Note that when k = 1, we perform
regular CLIP fine-tuning, and larger k (i.e. SimCLIP) did
not improve performance in most tasks.

These tasks have typically been tack-
led via manually designing hard-
negative captions that targets composi-
tionality of attributes. We evaluate var-
ious SimCLIP settings on these bench-
marks to see if SimCLIP can improve
CLIP’s performance on these tasks as
well. The results are shown in Fig-
ure 7. Unfortunately, SimCLIP did
not seem to be able to improve the
model’s performance on most tasks,
with only small gains on SugarCrepe
REPLACE and NEGATE/ADD tasks
and no improvement on any other
tasks compared to regular CLIP fine-
tuning (i.e. k = 1). Full results of
this analysis is shown in Figure 12 in
Appendix.

4.7 RQ4: Does SimCLIP generalize to larger fine-tuning datasets than COCO?

To verify whether SimCLIP works on larger fine-tuning datasets than COCO, we fine-tuned the same
CLIP model on CC3M [22], which has a 22.6X larger training set compared to COCO. We pick one
of the better SimCLIP configurations determined in section 4.4 (p = 1.0, k = 16, s = 1, online with
warmup). We follow the same fine-tuning protocol for CC3M, except with fewer total epochs (5
instead of 20) due to computational limits. We show the results in Table 2. We found that SimCLIP
outperforms regular fine-tuning on all 4 evaluation tasks, which indicates that SimCLIP also works
well on larger fine-tuning datasets.
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5 Conclusions

Dataset CLIP SimCLIP

COCO R@1 39.09 39.94
COCO R@5 70.72 71.86
Flickr30k R@1 66.19 66.97
Flickr30k R@5 87.08 88.43
CIFAR-100 Top1 62.17 64.28
CIFAR-100 Top5 87.65 88.11
ImageNet Top1 50.27 52.40
ImageNet Top5 78.01 79.91

Table 2: Downstream Task Performance of
regular CLIP and SimCLIP after fine-tuning
on CC3M.

In this empirical study, we systematically explored
similarity-cluster-based CLIP fine-tuning. We pro-
posed a generalized framework of CLIP fine-tuning
with similarity clusters called SimCLIP, and we con-
ducted extensive experiments and analysis to deter-
mine the best configurations and the effects of Sim-
CLIP on downstream task performances. We also
discovered situations where SimCLIP is good at (e.g.
rare special sets) and not good at (e.g. composition-
ality of attributes) dealing with. Our findings can
be informative for future researchers when deciding
how to fine-tune a CLIP model and could bring new
insights into future research in CLIP fine-tuning.
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A Hyperparameters details

We provide additional details about hyperparameters used in our COCO experiments in Table 3.

Hyperparameter Value

Batch Size 1024
Learning Rate 1.0e-5
Epochs 20
Warmup Steps 200
Image Mean [0.48145466, 0.4578275, 0.40821073]
Image std [0.26862954, 0.26130258, 0.27577711]
Image Augmentation Resize; RandomCrop (0.8, 1.0)
Optimizer Momentum β1 = 0.9, β2 = 0.98
Weight Decay 0.1
Eps 1.0e-6
Optimizer AdamW [17]

Table 3: Hyperparameters of Fine-tuning Process

B Detailed Experiment results

B.1 Classification Details with various cluster size and similarity proportion

We present the detailed accuracies for classification tasks on CIFAR-100 and ImageNet in Figure 8.
The top-1 and top-5 per-class accuracies are plotted against cluster size k and similarity proportion p
respectively. Despite the high variance, we can still observe peaks at some medium values of k and p.
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Figure 8: Downstream Classification performance of SimCLIP with varying cluster size k and
similarity proportion p, with and without warmup. Note that when k = 1 or p = 0, we perform
regular CLIP fine-tuning.
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B.2 Retreival Details with various cluster size and similarity proportion

We present the detailed accuracies for retrieval tasks on COCO and Flickr30k in Figure 9. We
separately plot the image-to-text (i2t) and text-to-image (t2i) recall accuracies against the cluster size
k for two datasets.
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Figure 9: Retrieval accuracies of SimCLIP with varying cluster size k, similarity proportion p, with
and without warmup. Note that when k = 1, we perform regular CLIP fine-tuning.

B.3 Neighborhood Size Experiment Result Details

We present the details of neighborhood analysis in Figure 10. We evaluate the classification and
retrieval accuracies for the given SimCLIP configuration at s = 1, 3, 5, 10. The results shown in
Figure 4 indicates that choosing a neighborhood size of s = 1 is sufficient as there is no clear trend
of improvement with s > 1.
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Figure 10: Downstream task performance of SimCLIP with different neighborhood size, with k = 16.

B.4 Text Embeddings vs. Image Embeddings Experiment Result Details

We present the details of the effects of different embeddings in Figure 11. We show the t2i and
i2t accuracies on the validation set at the end of each epoch. We found that using text embeddings
generally yields more stable fine-tuning performance.
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Figure 11: Retrieval accuracies of SimCLIP with various configurations on MSCOCO validation set
over the epochs fine-tuned (k = 16, s = 1).

B.5 Compositionality Experiment Result Details

We present the details of evaluation on compositionality datasets ARO and SugarCrepe in Figure
12 and 13. We found that SimCLIP generally do not improve the model’s ability to understand
compositionally of attributes.
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Figure 12: VG-Attribution, VG-Relation, COCO Order and Flickr30k Order accuracies of
three variants of CLIP on ARO benchmark.
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Figure 13: Accuracies of three variants of CLIP on ARO and SugarCrepe benchmark.
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