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ABSTRACT

Dense object detection is crucial and favorable in the industry and has been popular
for years with the success of the multi-level learning framework. By delivering the
learning of objects into a multi-level feature pyramid, such a divide-and-conquer
solution eases the optimization difficulty. However, this learning paradigm has
a major shortcoming left behind. The shallow levels take tons of computational
burden due to their high resolutions of the feature maps, heavily slowing down the
inference speed. In this paper, we aim for minimal modifications to exchange a
better speed-accuracy trade-off. The outcome is SlimHead, a very simple, efficient,
and generalizable head network, which further unleashes the potential of multi-
level learning for dense object detectors. It operates in two stages: Slim and
Fat, initially plugging interpolator before the head network functions to “slim”
the feature pyramid, and then recovering the features to original solution space
by “fatting” the feature pyramid. Thanks to its flexibility, operations with higher
computational complexity can be easily integrated to benefit accuracy without loss
of inference efficiency. We also extend our SlimHead to multiple high-level vision
tasks such as arbitrary-oriented object detection, pedestrian detection, and instance
segmentation. Extensive experiments on PASCAL VOC, MS COCO, DOTA, and
CrowdHuman demonstrate the broad applicability and the high practical value of
our method. All the source code and tutorials will be made publicly available.

1 INTRODUCTION

Dense object detection is a long-standing research topic in computer vision and continues to have
a positive impact on relevant fields, such as arbitrary-oriented object detection (Yang et al., 2019;
Yu & Da, 2023), pedestrian detection (Shao et al., 2018), and instance segmentation (Tian et al.,
2021; 2020). Until now, it still holds an unshakable dominant position in industrial applications due
to its excellent speed-accuracy trade-off and friendliness to low-end edge devices. Objects vary in
size. The community therefore comes to a solution of multi-level learning that delivers the learning
of large objects to deep levels (feature maps with low resolution) and the learning of small ones to
shallow levels (feature maps with high resolution). A typical example is FPN-like methods (Lin
et al., 2017a), building a multi-level feature pyramid to process the backbone features and predict the
instances in parallel at multiple levels. This learning paradigm has been validated to be effective and
thus becomes dominant in the field of dense object detection (Lin et al., 2017b; Kong et al., 2020;
Tian et al., 2019; Zhang et al., 2020; Li et al., 2020; Feng et al., 2021).

Recently, a bunch of research breakthroughs in dense object detection focus on enhancing the
consistency between classification and localization (Jiang et al., 2018; Li et al., 2020; Zhang et al.,
2021; Li et al., 2022b; Feng et al., 2021), alleviating localization ambiguity (He et al., 2019; Choi
et al., 2019; Li et al., 2020; Zheng et al., 2022; 2023b), as well as improving localization quality
(Rezatofighi et al., 2019; Zheng et al., 2020; 2021; Wang et al., 2020). Although multi-level learning
is the foundation of all the above works, there is still one major shortcoming left behind, which
is common sense yet little attention has been paid to: The shallow level in high resolution is too
time-consuming. A problem caused by the defect is that the head networks occupy a large proportion
of computations, even though they are lightweight in terms of model parameters. As shown in figure 1,
a head network with only 15.6% parameters can produce 52.0% FLOPs (floating point operations).
Furthermore, the multi-levels are parallel, which indicates that the operations are usually shared
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between different levels. This makes heavy operators (e.g., deformable conv (Zhu et al., 2019)) that
are beneficial for accuracy improvement more computationally burdensome.

In this paper, we rethink the multi-level learning paradigm by investigating performance sensitivity,
where we delve into the intrinsic property of the head networks and find out which components are
essential to accuracy and speed. A natural outcome of our exploration is a very simple, efficient,
and generalizable head network, termed SlimHead, for dense object detection. In our design ethos,
SlimHead operates in two stages: Slim and Fat. In the first stage Slim, we inject an interpola-
tor before the head network functions to “slim” the feature pyramid. This produces a compact
and efficient head network. Then, in the second stage Fat, we employ the inversed interpolator
to “fat” the feature pyramid. As such, the features are recovered to the original solution space.
We find that this key difference between our SlimHead and the traditional head networks is es-
sential to reducing computations and holding accuracy. We show that when integrated correctly,

Head

Backbone & Neck

84.4%

48.0%

52.0%

15.6%

Parameters FLOPs

Figure 1: The head networks occupy a large propor-
tion of computational complexity, even though they
are lightweight in terms of model parameters. This
problem is common among dense object detectors.

this plug-and-play strategy elegantly aligns the solu-
tion space of predictions and therefore none of extra
modifications are required. As a result, SlimHead en-
ables us to notablely alleviate the computational bur-
den of the head networks while maintaining compa-
rable accuracy. Furthermore, operations with higher
computational complexity (e.g., deformable conv
(Zhu et al., 2019)) can be effortlessly integrated to
achieve accuracy gains without loss of efficiency.
As a fringe benefit, our method can also save GPU
memory usage (reduced by 15.1% on ResNet-18),
which is more user-friendly for deployment on low-
end edge devices.

The highlights of this paper are two-fold:

• We reawaken the issue of the efficiency bottleneck in dense object detection. The outcome of
our exploration is a very simple, efficient, and generalizable head network, termed SlimHead,
which achieves a better speed-accuracy trade-off. Thanks to its flexibility, operations with
higher computational complexity can be effortlessly integrated to achieve accuracy gains
without loss of efficiency. The superiorities of our SlimHead: Better accuracy, faster speed,
easy-to-implement, and lower GPU memory usage.

• We extend our SlimHead to multiple high-level vision tasks, e.g., arbitrary-oriented object
detection, pedestrian detection, and instance segmentation. The results on PASCAL VOC
(Everingham et al., 2010), MS COCO (Lin et al., 2014), DOTA (Xia et al., 2018), and
CrowdHuman (Shao et al., 2018) demonstrate the broad applicability and the high practical
value of our method.

2 BACKGROUND

2.1 MULTI-LEVEL LEARNING IN OBJECT DETECTION

Multi-level learning, also referred to as the neck+head network, is a conventional paradigm to detect
objects with various sizes in a manner of feature pyramids (Ren et al., 2015; Liu et al., 2016; Redmon
& Farhadi, 2018; Lin et al., 2017b; Bochkovskiy et al., 2020; Jocher et al., 2022). Prosperous research
progress has been made on how to build stronger neck networks. For example, the pyramidal feature
hierarchy follows the principle of the bottom-up pathway. Typical approaches such as SSD (Liu
et al., 2016) and STDN (Zhou et al., 2018) directly leverage multiple feature levels as the prediction
layers. Since FPN (Lin et al., 2017a), the feature fusion has gotten more and more research interest.
The basic idea is to deliver the knowledge of deep feature levels to the shallow feature levels again
by top-down pathway and lateral connections. DSSD (Fu et al., 2017), PANet (Liu et al., 2018),
NAS-FPN (Ghiasi et al., 2019), and Bi-FPN (Tan et al., 2020), respectively studied the deconvolution,
bottom-up path augmentation, Neural Architecture Search (NAS), and repeated bi-directional feature
pyramids for building a powerful neck network. ASFF (Liu et al., 2019) proposed to conduct weighted
spatial feature fusion for each level. In (Kong et al., 2018), nonlinear global attention is proposed to
reconfigure the deep feature pyramid. QueryDet (Yang et al., 2022a) added a P2 level, query head,
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and sparse conv for the speed-accuracy trade-off, but it needed some necessary hand-crafted designs
for using sparse conv ops and must search for a better hyper-parameter for the loss functions again as
the prediction maps change. YOLOF (Chen et al., 2021a) built a single-level dense object detector.
While YOLOF successfully reduces the computational burden, it relies on some tailored designs for
single-level models, e.g., stacked dilation blocks and uniform matching. This makes it difficult to
generalize single-level models to popular multi-level ones.

2.2 HEAD NETWORKS IN OBJECT DETECTION

Head networks are commonly used for further refining the features from the upstream networks. The
typical components are stacked convolution ops. The number of conv ops usually ranges from 1 (RPN
(Ren et al., 2015)) to 6 (TOOD (Feng et al., 2021)), among which, 4 conv layers are widely adopted,
e.g., RetinaNet (Lin et al., 2017b), FCOS (Tian et al., 2019), etc. Some object detectors adopt the
full-connect (FC) layer in head networks, e.g. R-CNN series (Ren et al., 2015; Cai & Vasconcelos,
2018; Pang et al., 2019; He et al., 2017). Another special is Double-Head (Wu et al., 2020), which
empirically observes the FC layer is suitable for the classification branch while the localization branch
favors the conv layer more. Dynamic Head (Dai et al., 2021a) considered 3 kinds of attention in
the head network, i.e., scale-, spatial-, and task-aware. GFocal (Li et al., 2020) proposed to jointly
optimize classification and localization and removed the center-ness branch proposed by FCOS.
DDQ-FCN (Zhang et al., 2023) integrated channel fusion in the head while GFocalV2 (Li et al., 2021)
added an FC module to predict the localization quality estimation. PAA (Kim & Lee, 2020) leveraged
score-voting NMS (Non-Maximum Suppression) while VFNet (Zhang et al., 2021) proposed box
refinement with star-shape box feature representation. Some approaches proposed better bounding
box representation for capturing the localization ambiguity, e.g., Gaussian distribution representation
(He et al., 2019; Choi et al., 2019) and probability distribution representation (Li et al., 2020; Qiu
et al., 2020), thereby enhancing the localization quality. There are also some methods to improve
the detection performance without losing inference efficiency, e.g., label assignment (FreeAnchor
(Zhang et al., 2019), ATSS (Zhang et al., 2020), PAA (Kim & Lee, 2020), OTA (Ge et al., 2021), DW
(Li et al., 2022b), SELA (Zheng et al., 2023a)), loss function (GHM (Li et al., 2019), and IoU-based
losses (Yu et al., 2016; Rezatofighi et al., 2019; Zheng et al., 2020; 2021; He et al., 2021)), and
knowledge distillation (LD (Zheng et al., 2022; 2023b), FGD (Yang et al., 2022b), PKD (Cao et al.,
2022), CrossKD (Wang et al., 2024)).

In the above methods, the operations in the head networks are usually parallel across feature levels.
Little attention is paid to the imbalanced efficiency between different feature levels. In this work,
we rethink multi-level learning and propose a new SlimHead method to balance the computational
complexity between the shallow levels and the deep ones.

3 METHODOLOGY

Our goal is to search which components are essential in building an efficient and powerful head
network. Through a series of experiments, the outcome is SlimHead, a very simple, efficient,

P3

P4

P5

P6
P7

Figure 2: Feature pyramid with
actual size. Shallow levels oc-
cupy tons of computation. The
computation of each level is 4
times that of the deeper one.

flexible, and generalizable head network for dense object detection.

3.1 ANALYSIS ON MULTI-LEVEL LEARNING

Overall structure analysis. Multi-level learning is defined as a par-
allel optimization problem:

min
Θ

∑
i

L(H(Xi|Θ), Gi), (1)

where i is the level index, Xi is the features at level i, H is the head
network functions with shared parameters Θ, Gi is the corresponding
ground-truth supervision at level i, and L is the given loss function. A
typical form of multi-level learning in dense object detection can be
seen in figure 2, which consists of 5 feature levels from P3 to P7 and
has been widely adopted in the popular dense object detectors, e.g.,
RetinaNet (Lin et al., 2017b), FCOS(Tian et al., 2019), GFocal (Li
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X HX z X SX HSX z X SX HSX FHSX z

H ϕ S H ϕ S H F ϕ

Plain Head SlimHead w/o Fat stage SlimHead

H ϕ S FHead network function Projection layer Slim stage Fat stage

Figure 3: A typical multi-level learning of head network (Left) vs. our SlimHead (Right). X: Features from the
upstream network, e.g., backbone & FPN. z: Output logits for both class scores and bounding boxes. Plain Head
(Left) consists of 5 pyramid levels from P3 to P7. SlimHead w/o Fat stage (Middle): We only introduce the
Slim stage to slim the features X , which releases the computational burden of shallow levels. SlimHead (Right):
we further employ the Fat stage which transforms the feature HSX back to its original dimention.

et al., 2020), TOOD (Feng et al., 2021), etc. It is easy to see that for such an optimization problem,
three terms will affect the model capability.

1. The network function H - maps the semantic features to logits with specific physical meanings.
Generally, H consists of a series of stacked convolutions to refine the features. It is noteworthy that
H is usually parallel across different levels since the parameters are shared.

2. The input features Xi - affect the whole optimization process and model efficiency.

3. The loss function L - determines the optimization direction. This is also parallel between levels.

Let’s delve deeper into features Xi. Firstly, Xi ∈ Rb×C×Hi×Wi is the output features from the
upstream network, i.e., backbone & FPN, where b and C are the batch size and the number of
channels, Wi and Hi are the width and the height of feature map. The resolution of Xi determines
the inference speed. The higher the resolution of feature maps, the slower the inference speed, and
vice versa. Secondly, the resolution of Xi also determines the number and the size of anchors, which
has a significant impact on the accuracy. Since L is not about inference speed, in the following, we
investigate the sensitivity of H and Xi to accuracy and speed.

40.1 37.0

49.4

40.6

44.4
46.4

AP FPS

36.3

38.3

39.239.4

SlimHead 4 conv 3 conv 2 conv 1 conv

Figure 4: Accuracy and speed versus number
of conv layers.

Plain Head analysis. The plain head is the foundation
of the current dense object detectors (Lin et al., 2017b;
Tian et al., 2019; Zhang et al., 2020; Li et al., 2020; 2021;
Zhang et al., 2021; Li et al., 2022b; Feng et al., 2021), as
shown in figure 3Left. Given a head network function
H and a projection layer ϕ, the multi-level features X =
{Xi}, i = 3, 4, 5, 6, 7, from the upstream networks will
be refined and projected to the output logits z = ϕHX . A
naive approach to reducing the computational burden of
the head network is to reduce the number of conv layers.
In figure 4, we reduce the conv layers one by one. It shows
that the detection accuracy degrades as the number of
conv layers decreases, though the inference speed becomes
faster. This indicates that the head network needs multiple
conv ops to refine the features. Using fewer conv ops in head networks cannot reach a good accuracy.
We wonder which components in the head network are essential to achieving a better speed-accuracy
trade-off.

3.2 SLIMHEAD

According to figure 2, the shallow levels are too time-consuming, limiting the efficiency of dense
object detectors. In this paper, we encourage exploring new insights on the intrinsic property of head
networks. We observe that the feature dimention can be shrunk for getting inference speedup while
maintaining comparable accuracy as long as the logit map dimention is hold. To keep the context
flow, we introduce the proposed SlimHead first. There are two stages in our design ethos. In the
following, we will delve into the Slim and Fat stages.
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Backbone Neck Head network function Projection layer AP

FPS

0 15 30 45 60 75 90 105 120 32 33 34 35 36 37 38 39 40

32 34 36 38 40 42 44 46 48
GFLOPs

PlainHead

SlimHead
w/o I−1

SlimHead

PlainHead

SlimHead
w/o I−1

SlimHead

Figure 5: GFLOPs, accuracy (AP), and speed (FPS) comparison between various head network designs. Our
SlimHead significantly reduces the computational complexity for the head networks. Meanwhile, we achieve a
comparable accuracy of 39.4 AP and 46.4 FPS (25.4% speedup). In the middle group, it shows a severe AP drop
if we do not transform the features back to their original sizes.

Stage-I: Slim. We propose to inject an interpolator S with a scaling ratio r into the head network
before refining features by the head network functions H. Note that this strategy can be conceptually
applied to any level, but we found it unnecessary for deeper levels since they are not the efficiency
bottleneck of the model. Thus, we introduce a level selector K ∈ {3, 4, 5, 6, 7} to select i ⩽ K levels
to apply the Slim stage:

SX = S(Xi; r), i ⩽ K. (2)

Stage-II: Fat. In the Fat stage, we further inject an inversed interpolator F with a scaling ratio 1/r
before the projection layer, which can be written as

FHSX = F
(
H(S(Xi; r));

1

r

)
, i ⩽ K. (3)

This enables us to transform the features back to their original dimention, which guarantees the same
number of predicted boxes for each anchor location. All the hyperparameters involved in the training
process keep consistent, e.g., the same anchor definition, the same label assignment, and the same
hyperparameters in loss functions. As a result, the solution space of optimization remains unchanged.
The illustration of SlimHead can be seen in figure 3Right.

There are four appealing advantages of the proposed SlimHead: 1) The Slim stage makes the feature
pyramid X slimmer, which substantially release the computational burden of shallow levels. When
the scaling ratio r = 1, SlimHead degrades to the original head networks. For cases where r < 1,
the computational complexity of the level is reduced to r2 of the original. 2) As the computational
complexity is reduced, operations with higher computational complexity can be integrated without
severe speed degradation, e.g., deformable conv (Zhu et al., 2019). 3) As the feature dimention of
the shallow levels decreases, the GPU memory usage can also be notablely reduced. 4) SlimHead is
highly generalizable. In most previous methods (Lin et al., 2017b; Li et al., 2020; Tian et al., 2019;
Feng et al., 2021), no matter what feature aggregation operations are used, our method can be easily
incorporated into the dense object detectors.

SlimHead analysis. To investigate the intrinsic property of the head networks, we compare two
SlimHead variants. The first one adopts the Slim stage only, which we call “SlimHead w/o Fat
stage”, as shown in figure 3Middle. The second is the full version of SlimHead (figure 3Right).
In figure 5, we showcase the performance sensitivity of the proposed SlimHead. It can be seen
that both SlimHeads largely reduce the computational complexity of object detector. Intriguingly,
“SlimHead w/o Fat stage” produces severe accuracy drops of about −7.5 AP. If we add the Fat stage,
our full version of SlimHead can achieve a comparable accuracy of 39.4 AP vs. 40.1 AP (baseline)
while gaining a speedup of 25.4 %. This indicates that it is necessary to keep the solution space
of optimization since all the hyper-parameters involved in label assignment and loss function are
tailored based on the sizes of the output logit maps.

In figure 4, our SlimHead shows promising results that can achieve considerable speedup while
maintaining high detection accuracy. More attempts to reduce the computational burden of multi-level
learning can be found in the Appendix (section A.2), despite we found that our SlimHead is the most
simple and effective among them.
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Table 1: Ablation with different interpolation func-
tions. We study 3 interpolation modes: “nearest”,
“max-pool”, and “bilinear”.

Mode AP AP50 AP75 FPS
baseline 40.1 58.2 43.1 37.0
nearest 39.7 57.8 42.8 43.9

max-pool 39.7 58.0 42.7 43.2
bilinear 39.5 57.8 42.5 43.7

Table 2: Ablation with different level selector K.

K AP AP50 AP75 FPS
baseline 40.1 58.2 43.1 37.0

3 41.4 59.4 44.8 38.0
4 41.1 59.2 44.3 40.7
5 40.6 58.9 43.7 41.3
6 40.0 58.5 43.4 41.3
7 39.6 58.2 42.9 41.9

Table 3: Ablation with different scaling ratio r. DCN
denotes that we apply DCN (Zhu et al., 2019) to the
first two layers of the head networks.

r DCN AP AP50 AP75 FPS
1.0 40.1 58.2 43.1 37.0
0.9 39.2 57.7 42.4 38.0
0.8 39.2 57.6 42.1 39.9
0.7 39.6 58.0 42.6 40.6
0.6 39.2 57.6 42.4 42.2
0.5 39.7 57.8 42.8 43.9
0.4 37.9 56.3 40.2 45.1
1.0 ✓ 42.0 60.0 45.6 29.9
0.9 ✓ 40.9 59.3 44.3 31.7
0.8 ✓ 40.9 58.9 44.2 34.0
0.7 ✓ 41.0 59.2 44.4 35.2
0.6 ✓ 40.7 58.9 44.1 36.8
0.5 ✓ 41.4 59.4 44.8 38.0
0.4 ✓ 39.6 57.9 42.3 39.6

4 EXPERIMENTS

In this section, we conduct experiments on the challenging MS COCO benchmark (Lin et al., 2014).
The train / val sets are COCO train2017 (118K images) and val2017 (5K images), respectively. We
report the COCO-style average precision (AP) as the main metric. Since our method is proposed
for efficient object detection, we also report Frame Per Second (FPS) for evaluating the inference
speed. The inference speeds are measured on a single RTX 3090 GPU for all detectors. We adopt the
MMDetection (Chen et al., 2019) framework. All hyper-parameters except the scaling ratio r and the
level selector K remain unchanged for a fair comparison. In the ablation study, we adopt the popular
one-stage object detector GFocal (Li et al., 2020) with ResNet-50 (He et al., 2016) backbone and
FPN (Lin et al., 2017a) neck as the baseline. Unless otherwise stated, the classic single-scale 1× (12
epochs) training schedule with 1333× 800 resolution is adopted by default. 2× training schedule
indicates we train the network for 24 epochs with multi-scale training [480 : 960].

4.1 ABLATION STUDY

The interpolation function I. We study 3 interpolation functions I. The first one is nearest
neighbors interpolation. The second is the max-pooling algorithm. The third is bilinear interpolation.
In this experiment, we only apply I and I−1 at the shallowest level, i.e., the level selector K = 3.
The results are reported in Tab. 1. It can be seen that our method can achieve detection accuracy
comparable to the baseline model, while also being more efficient. Among the 3 interpolations, the
nearest one is simple and efficient, which also reaches the highest accuracy. Thus, in the following
experiments, we adopt the nearest neighbors interpolation by default.

The level selector K. The core of SlimHead can be conceptually applied to any level. We conduct
an experiment to observe the changes in detection performance when applying SlimHead to pyramid
levels from shallow to deep. Benefit by the efficiency of SlimHead, we adopt DCN (Zhu et al., 2019)
at the first two layers. Tab. 2 shows that our method can achieve a better and faster performance
when K ⩽ 5, i.e., the shallow levels. We find that the detection performance degrades when we
apply SlimHead to deeper levels. Also, it does not benefit inference speed much, as deep levels are
not a bottleneck in computational complexity. Therefore, in practice, we usually apply SlimHead at
shallow levels.

The scaling ratio r. When applying SlimHead, the shallow-level features will be temporarily
transformed into a small feature space to reduce computational complexity. We study the impact of
r and the results are reported in Tab. 3. In this experiment, we set K = 3, i.e., we only apply our
SlimHead to the shallowest level. One can see from the first group in Tab. 3 that our method can
achieve accuracy comparable to the baseline model (r = 1). Particularly, when r = 0.5, we achieved
an FPS of 43.9, accelerating the inference speed of the detector by nearly 20.3%. To go one step
further, we incorporate DCN (Zhu et al., 2019) into our SlimHead, where only the first two layers are

6
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Figure 6: Left: The effect of SlimHead on objects of different scales. The average size of the image is shown
by a black box. Right: The AP curves of objects whose box areas fall in the interval [t2, (t+ 16)2].

replaced. The second group in Tab. 3 shows us a promising improvement in detection accuracy. If
we directly replace the convolution with DCN on the original head networks (r = 1), the detector
will significantly slow down to a speed of 29.9 FPS. Noticeably, our SlimHead achieves 41.4 AP
and 38.0 FPS at r = 0.5, which is even better and faster than the baseline model (the 1-st row). It
shows that we can improve the object detector by + 1.3 AP while gaining speed acceleration for
free, which was unaffordable in previous methods because shallow levels take up a large proportion
of the computational burden, especially for the improved conv ops, e.g., DCN. Besides, it is worth
noting that our method achieves a peak of AP improvement at r = 0.5. This suggests that it would be
better to transform the shallow level to a size similar to the neighboring one. In the following, we set
r = 0.5 by default.

The effect of SlimHead on objects of different scales. Since our method changes the feature map
size of the head networks, it may produce different effects on objects of different scales. Firstly, we
report the APS , APM , and APL in Tab. 4. It can be seen that our method improves the AP performance

Table 4: Performance comparison of Slim-
Head on objects with different scales.

SlimHead FPS AP APS APM APL

37.0 40.1 23.3 44.4 52.5
✓ 38.0 41.4 22.7 45.4 55.9

on medium and large objects but shows a slight AP drop
on small objects. This is presumably because we keep
the middle and deep levels unchanged, while the shallow
levels are equipped with our SlimHead. The inevitable
loss of information in shallow levels leads to performance
degradation of small objects. Nevertheless, our method
largely improves the accuracy of medium/large objects.
Further, we conduct a more comprehensive evaluation of
accuracy at various object scales. We borrow the idea of zone evaluation (Zheng et al., 2023a). The
evaluated object scale is set to t = 0, 16, 32 · · · , 320. We evaluate the detector with the ground-truth
objects and the detections if their box areas fall in the interval [t2, (t+16)2]. As shown in figure 6Left,
our method can achieve comparable AP performance at the object scale of 322. It degrades the AP
at a very small object scale t ⩽ 16, i.e., tiny objects. In figure 6Right, one can see that our method
shows superiority when the object scale t > 32. When t < 32, the two AP curves are tightly close
together since the performance degradation is slight enough. This demonstrates our SlimHead has a
positive impact on a wide range of object scales.

4.2 COMPARISON WITH STATE-OF-THE-ART HEAD NETWORKS

In this subsection, we compare our method with state-of-the-art head networks. Our SlimHead is
built on the strong dense object detector TOOD (Feng et al., 2021). We set the level selector K = 3
and DCN Zhu et al. (2019) is applied to the first three layers of the head network. Except that the
single level detector YOLOF adopts ResNet-101 backbone, all the others adopt ResNet-50 backbone.
The training is conducted on the single-scale 1× (12 epochs) training schedule, which is a classic
training setting in the detection community. The results are reported in Tab. 5. One can see that our
SlimHead lifts the AP score by +0.9 upon the strong baseline TOOD, even bringing an inference
speedup. For the first time, we achieve >43.0 AP on COCO val2017 in dense object detection under
the clean settings of ResNet-50 single-scale 1× training, while maintaining an FPS of >30. It is
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Table 5: Performance comparison with state-of-the-art head networks among dense object detectors on MS
COCO val2017. FPS is measured on a single RTX 3090 GPU.

Head Network FPS AP AP50 AP75 APS APM APL

RetinaNet (Lin et al., 2017b) 35.9 36.5 55.4 39.1 20.4 40.3 48.1
FCOS (Tian et al., 2019) 36.9 38.7 57.4 41.8 22.9 42.5 50.1
ATSS (Zhang et al., 2020) 36.9 39.3 57.5 42.8 24.3 43.3 51.3
Double-Head (Wu et al., 2020) 1.5 40.1 59.4 43.5 22.9 43.6 52.9
GFocal (Li et al., 2020) 37.0 40.1 58.2 43.1 23.3 44.4 52.5
PAA (Kim & Lee, 2020) 16.0 40.4 58.4 43.9 22.9 44.3 54.0
AutoAssign (Zhu et al., 2020) 34.5 40.4 59.6 43.7 22.7 44.1 52.9
YOLOF (Chen et al., 2021a) 29.5 40.5 59.8 43.9 23.0 44.9 53.8
OTA (Ge et al., 2021) 36.9 40.7 58.4 44.3 23.2 45.0 53.6
GFocalV2 (Li et al., 2021) 36.6 41.1 58.8 44.9 23.5 44.9 53.3
VFNet (Zhang et al., 2021) 31.2 41.5 59.1 45.2 24.4 45.4 53.9
DDQ-FCN (Zhang et al., 2023) 36.0 41.5 60.9 45.9 25.1 44.6 53.1
DDOD (Chen et al., 2021b) 36.7 41.6 55.9 45.1 23.4 44.8 55.3
DW + box refine (Li et al., 2022b) 35.0 42.1 59.9 45.1 24.2 45.3 55.9
TOOD (Feng et al., 2021) 33.6 42.3 59.6 45.9 25.8 45.6 54.9
DyHead (Dai et al., 2021a) 24.3 42.6 60.1 46.4 26.1 46.8 56.0
SlimHead (Ours) 34.2 43.2 60.4 47.0 24.2 47.0 58.5

Table 6: Detection performance on Faster R-
CNN and PSC. For Faster R-CNN (Ren et al.,
2015), the results are reported on COCO val2017.
For PSC (Yu & Da, 2023), the results are reported
on DOTA-v1.0.

Detector SlimHead AP AP50 AP75 FPS

Faster R-CNN 37.4 58.1 40.4 37.7
✓ 37.8 58.7 41.3 38.7

PSC 41.9 68.2 42.9 31.3
✓ 43.1 68.8 43.9 30.1

Table 7: Detection performance on CrowdHuman
(Shao et al., 2018) and PASCAL VOC (Evering-
ham et al., 2010). For CrowdHuman, we apply
DCN (Zhu et al., 2019) at the first layer, while it
is the first three layers for VOC.

Datasets SlimHead AP AP50 AP75 FPS

VOC 56.3 79.3 62.0 33.6
✓ 57.7 80.3 63.5 34.2

CrowdHuman 44.0 78.8 43.3 33.6
✓ 44.6 79.1 44.1 34.2

worth noting that although our method cannot be directly extended to the query-based detectors, e.g.,
DETR series (Carion et al., 2020; Zhu et al.) due to the significant structure differences among object
detectors, Tab. 5 shows us promising results that dense object detectors can still perform better
than query-based detectors at the algorithmic level. To be specific, DDQ-FCN (Zhang et al.,
2023) adopts the FCOS-like structure but with query-based learning. It follows the same one-to-one
bipartite matching as the DETR-based detector does. The results of Tab. 5 show that if the detection
network is aligned between the dense object detector and the query-based detector, our SlimHead
(43.2 AP) can still outperform query-based detector, i.e., DDQ-FCN (41.5 AP).

4.3 SLIMHEAD FOR OTHER OBJECT DETECTORS

In this subsection, we implement our SlimHead on 2 more popular object detectors. The first one
is the representative multi-stage dense-to-sparse object detector Faster R-CNN (Ren et al., 2015).
The second one is the recently popular arbitrary-oriented object detector PSC (Yu & Da, 2023). We
use ResNet-50 backbone and FPN neck. For Faster R-CNN, we apply SlimHead on RPN with the
same settings of K = 3 and DCN. For PSC, we apply SlimHead at the P4 level and DCN in the first
conv layer. For evaluating PSC, the train / val sets are DOTA-v1.0 (Xia et al., 2018) train / val sets,
respectively. As shown in Tab. 6, our method consistently boosts the detection performance of the two
types of object detectors while maintaining high efficiency, demonstrating the good generalization
ability of our method. Notice that our method does not show a speedup on PSC. This is presumably
because the DOTA dataset contains more small objects and thus we implement SlimHead only at the
P4 level. Nevertheless, our method achieves +1.2 AP on PSC.
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Table 8: Performance comparison of SlimHead on two instance segmentation methods. The results are reported
on MS COCO val2017. FPS is measured on a single RTX 3090 GPU.

Model SlimHead box mask FPSAP AP50 AP75 AP AP50 AP75

BoxInst 39.6 58.5 42.9 31.1 53.1 31.7 27.8
✓ 40.5 59.1 43.9 31.8 53.7 32.6 28.1

CondInst 39.3 58.3 42.4 35.7 56.2 38.1 29.3
✓ 40.9 59.6 44.2 36.9 57.4 39.5 29.7

Table 9: GPU memory usage and detection performance of SlimHead on 3 TOOD models. The results are
reported on MS COCO val2017. FPS is measured on a single RTX 3090 GPU. TS: training schedule.

Model TS SlimHead Memory (MB) Reduction AP AP50 AP75 FPS

ResNet-18 1× 2,105 38.0 54.6 40.7 47.1
✓ 1,788 ↓ 15.1% 39.1 55.4 42.4 47.4

ResNet-50 1× 3,967 42.3 59.6 45.9 33.6
✓ 3,653 ↓ 8.0% 43.2 60.4 47.0 34.2

Swin-L 2× 6,518 50.1 68.8 54.6 6.6
✓ 6,198 ↓ 4.9% 50.6 69.3 54.7 6.7

4.4 SLIMHEAD FOR OTHER DATASETS

Thus far, we have shown the effectiveness of our SlimHead on MS COCO and DOTA. We further
check out the generalizability of our method by conducting experiments on two more detection
datasets. The first one is PASCAL VOC (Everingham et al., 2010). We use the classic VOC 07+12
protocol. We train the detectors for 12 epochs and the learning rate decreases by a factor of 10 after 9
epochs. For VOC, we set the level selector K = 4 and use DCN in the first three layers of the head
networks. The second is the pedestrian detection dataset CrowdHuman (Shao et al., 2018) under
crowded scenarios. The train set is CrowdHuman train and the evaluation set is CrowdHuman val.
We train the detectors for 30 epochs and the learning rate decreases by a factor of 10 after 24 and 28
epochs. We adopt TOOD (Feng et al., 2021) with ResNet-50 backbone. We empirically found that
our method does not work at the shallowest level on CrowdHuamn, but works well at the P4 level.
For CrowdHuman, we only use DCN at the first layer of the head networks since we do not apply
SlimHead at the shallowest level, i.e., the P3 level. As shown in Tab. 7, our SlimHead improves the
detection performance on the two datasets. In the meantime, we keep a high model inference speed.

4.5 SLIMHEAD FOR INSTANCE SEGMENTATION

We further incorporate our SlimHead into instance segmentation methods. We use BoxInst (Tian
et al., 2021) and CondInst (Tian et al., 2020) with ResNet-50 backbone and FPN neck. We follow the
official training setting, in which the 1× training schedule is adopted. We set the level selector K = 4
and use DCN in all layers of the head network. The results are reported by box AP and mask AP on
COCO val2017. As shown in Tab. 8, our method can clearly improve the box AP and the mask AP
of the two instance segmentation methods. This indicates that our method has good generalization
ability, which is not only beneficial for object detection but also for instance segmentation tasks.
More importantly, our method does not produce an inference speed drop, but a slight speed-up. This
once again demonstrates that our method is highly generalizable and cost-free in practice.

4.6 SLIMHEAD FOR SAVING GPU MEMORY USAGE

As discussed in section 3.2, the GPU memory usage can also be reduced since the feature map
resolution of shallow levels decreases. Here, we report the train-time GPU memory usage, as shown
in Tab. 9. The mini-batch size of each GPU is 2 images. The level selector is set as K = 3, i.e.,
we only apply SlimHead at the P3 level. One can see that our SlimHead reduces GPU memory
usage by a large margin. GPU memory usage is reduced by 15.1%, 8.0%, 4.9% on ResNet-18,
ResNet-50, Swin-L (Liu et al., 2021), respectively. It is worth mentioning that the reduction in
GPU memory usage becomes significant as the model becomes lightweight. This demonstrates an
important advantage of our method, namely that it can save GPU memory usage, which we believe is
particularly helpful for low-end edge devices. In Tab. 9, we also report the detection accuracy along
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with FPS on the 3 models, i.e., ResNet-18, ResNet-50, Swin-L. It can be seen that our SlimHead
achieves consistent AP improvement on the three backbones. Also, it is efficient and FPS has been
increased.

5 CONCLUSION

In this paper, we revisit the popular multi-level learning framework in dense object detection. Shallow
levels are time-consuming, so we aim for minimal modification to achieve a better speed-accuracy
trade-off. A natural outcome is SlimHead, a very simple, efficient, and generalizable head network,
which further unleashes the potential of multi-level learning for dense object detectors. Our design
follows a two stage principle: Slim and Fat, which has 4 advantages: 1) reducing computational
complexity; 2) flexible combination with improved conv ops for better accuracy, e.g., DCN; 3) saving
GPU memory usage; and 4) highly generalizable to various detectors. Extensive experiments on
MS COCO, CrowdHuman, DOTA, PASCAL VOC, generic / arbitrary-oriented object detectors, and
instance segmentation have demonstrated the high practical value of our method.

Limitations. As discussed in section 4.1, our method may show an adverse effect on tiny objects.
To address this, we can prevent applying SlimHead to the shallowest level. We also acknowledge
the limitation of our work that we did not extend our SlimHead to more complex detectors like
query-based detectors, e.g., DETR series (Carion et al., 2020; Zhu et al.; Dai et al., 2021b; Meng
et al., 2021; Liu et al.; Li et al., 2022a; Zhang et al.; Jia et al., 2023; Zong et al., 2023). As this might
require more specialized designs to accommodate their structures due to the significant differences
among object detectors.

Broader impact. Since our method is not designed for a specific application, it does not directly
involve societal issues.

6 REPRODUCIBILITY STATEMENT

Transparency and reliability are crucial to our research. In this statement, we summarise the measures
taken to facilitate the replication of our work and provide references to the relevant sections in the
main paper and appendix.

Source code. We intend to make our source code, model weights, datasets, and a detailed tutorial
available to the public following the paper’s acceptance. It will allow the following researchers to
access and utilize our code to reproduce our experiments and results. The detailed installation and
execution instructions will be listed in “README.md.”

Experimental setup. We provide the basic implementation information of our SlimHead in the
beginning of section 4. Besides, we provide the pseudo codes of our method, the forward function of
the head network. Kindly refer to the Appendix A.1.

We provide the above resources and references to ensure the reproducibility of our work. It enables
fellow researchers to verify our method, We also welcome any inquiries or requests for further
clarification on our methods.
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A APPENDIX

A.1 HOW TO IMPLEMENT SLIMHEAD

Alg. 1 provides the pseudo-code of SlimHead forward procedure.

Our SlimHead is quite simple to implement, it can be easily integrated into any dense object detection
pipeline in which multi-level learning is adopted.

A.2 MORE APPROACH TO ALLEVIATE THE COMPUTATIONS OF MULTI-LEVEL LEARNING

Following the discussion in section 3.2, we conduct two more designs of head networks to alleviate
the computations. The key idea is to reduce the computation burden of shallow levels. The first one
is the effect of the number of channels. As shown in figure 7Left, we reduce half of the channels
at P3, P4 levels. The second is that we gradually reduce the number of conv layers from the deep
level to the shallow level, as shown in figure 7Right. The results are reported in figure 8. It can be
seen that both designs can lower the GFLOPs by a large margin. However, they increase the model
parameters of the head networks since the weights cannot be shared between different levels. One
can see that our SlimHead achieves the best accuracy of 39.4 AP and the fastest inference speed of
46.2 FPS among the three designs. From the perspective of implementation, our SlimHead is also the
easiest approach with minimal modifications to the original head networks. Therefore, in our main
paper, we propose SlimHead as our final solution to the problem.
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Algorithm 1 SlimHead

def forward_slimhead(x, K):
"""
Args:

x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor.
K (integer): the level selector, K = {0, 1, 2, 3, 4}.

Returns:
tuple: Usually a tuple of classification scores and bbox prediction

- cls_scores (list[Tensor]): Classification scores for all scale levels, each is a
4D-tensor, and the channel number is num_classes.

- bbox_preds (list[Tensor]): Box logits for all scale levels, each is a 4D-tensor,
"""

# Output class score list and bbox list
cls_scores_list = []
bbox_preds_list = []

for idx, feat in enumerate(x):

# Slim Stage:
if idx < K: # Select shallow levels. idx = 0, 1, 2, 3, 4 corresponds to P3, P4, P5

, P6, P7 levels.
shape = feat.shape[2:]
feat = F.interpolate(feat, scale_factor=0.5, mode=’nearest’)

cls_feat = feat
reg_feat = feat

# Forward head network functions: 2 branches, 1 for classification, 1 for
localization.

for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat) # When applying DCN, some of cls_conv and

reg_conv will be DCN.
for reg_conv in self.reg_convs:

reg_feat = reg_conv(reg_feat)

# Fat Stage:
if idx < K: # Select shallow levels

cls_feat = F.interpolate(cls_feat, size=shape, mode=’nearest’)
reg_feat = F.interpolate(reg_feat, size=shape, mode=’nearest’)

# Projection layers
cls_score = self.projection_layer_cls(cls_feat)
bbox_pred = self.projection_layer_reg(reg_feat)

cls_scores_list.append(cls_score)
bbox_preds_list.append(bbox_pred)

return cls_scores_list, bbox_preds_list

X HX z

X z

H ϕ H1
H2

H3
H4

H5

HX

ϕ

Half channels at P3, P4 Stair-Head

H ϕHead network function Projection layer

Figure 7: Left. Reduce half of channels at P3, P4 in Plain Head. Right. Stair-Head: Set 1, 2, 3, 4, and 5
conv layers for P3 to P7, respectively. For Stair-Head, the head network function H consists of 5 conv ops
H1,H2, · · · ,H5. Different colors indicate that the conv layers do not share weight. X: Features from the
upstream network, e.g., backbone & FPN. z: Output logits for both class scores and bounding box coordinates.
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Figure 8: GFLOPs, model parameters (M), accuracy (AP), and speed (FPS) comparison between various head
network designs. Our SlimHead notablely reduces the computational complexity of the head networks while
keeping consistent model parameters. Meanwhile, we achieve the best accuracy of 39.4 AP and 46.4 FPS among
these designs.
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