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Abstract

Protein Language Models (PLMs) create high-
dimensional embeddings that can be transformed
into interpretable sparse features using Sparse Au-
toencoders (SAEs), where each feature activates
on specific protein elements or patterns. How-
ever, scalably identifying which features are co-
hesive and reliable enough for protein annotation
remains challenging. We address this by develop-
ing a validation pipeline combining three comple-
mentary methods: (1) expanded database match-
ing across 20+ annotation sources including hi-
erarchical codes, (2) feature-guided local struc-
tural alignment to identify structurally consistent
activation regions, and (3) LLM-based feature
description generation. Our annotation pipeline
demonstrates three key properties of SAE features
that make them a useful source of functional anno-
tation complementary to existing methods. First,
they can represent more granular patterns than
existing protein databases, enabling the identifica-
tion of sub-domains within proteins. Second, they
can detect missing annotations by finding pro-
teins that display recognizable structural motifs
but lack corresponding database labels. Here, we
automatically identify at least 491 missing CATH
topology annotations with our pipeline. Third,
they can maintain structural consistency across
unseen proteins. Of our 10,240 SAE features, we
find 615 that are consistently structurally similar
in unannotated metagenomic proteins, allowing us
to structurally match at least 8,077 metagenomic
proteins to characterized proteins. This provides
a rapid annotation pipeline with constant time
search regardless of database size, that automati-
cally includes structural and function information
about the feature that triggered the match.
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1. Introduction

Proteins play essential roles in nearly all biological pro-
cesses, yet our ability to annotate their functional elements
lags behind recent growth in sequence data. With the ad-
vent of metagenomics, vast datasets of protein sequences
have been identified, but many remain functionally unchar-
acterized (Karin & Steinegger, 2025). Traditional com-
putational methods annotate proteins based on similarity
to well-characterized peers, but these approaches struggle
when sequence similarity is low (Karin & Steinegger, 2025).

Recent advances in protein language models (PLMs) like
ESM-2 (Lin et al., 2023) have demonstrated remarkable
ability to capture evolutionary patterns across the protein
universe. However, ESM embeddings cannot easily be trans-
lated into interpretable features that represent specific pro-
tein domains. Sparse autoencoders (SAEs) have emerged as
powerful tools for mechanistic interpretability, and when ap-
plied to PLMs, they can decompose dense embeddings into
interpretable features that frequently correspond to func-
tional protein elements without biological supervision (Si-
mon & Zou, 2024), (Adams et al., 2025). This remarkable
correspondence suggests that SAE features could serve as a
foundation for efficient functional annotation.

However, not all SAE features are suitable for annotation.
Some may be polysemantic, activating on multiple unrelated
concepts, while others may represent patterns meaningful
to the model but not interpretable by humans who rely on
structural, sequential, and functional annotations.

To harness SAE features for practical annotation, we need
to systematically identify features that correspond to inter-
pretable biological concepts. To identify cohesive features,
we focus on those that activate most strongly on groups
of proteins that are functionally or structurally related, as
defined by meeting one of three validation criteria:

1. A single annotation from an existing annotation
database is predictive of feature activation

2. The activating regions of the highest activating proteins
are structurally similar

3. A language model can generate a feature description
that is predictive of activation, as validated in a held-
out set of proteins
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Figure 1. Workflow for protein-latent feature applications.

In this work, we analyze latent features from an SAE trained
on Layer 18 of ESM-2 650M, yielding 10,240 features (re-
ferred to throughout as f/feature-number, e.g., f/401). This
layer was chosen as it sits in the middle of ESM, similar to
natural language LLM SAE work that focused on middle
layers (Templeton et al., 2024). Our analysis proceeds in
two main parts. First, we develop and evaluate our three-
pronged validation approach, demonstrating how expanded
database matching, feature-guided local structural align-
ment, and LLM-based pattern recognition complement each
other to identify cohesive features. We show this approach
doubles annotation coverage, identifying over 60% of fea-
tures with strong correspondence to biological annotations
(F'1 > 0.8), based on sampling 1000 of our features. With
local structural alignment, we find an additional 2.4% of the
features with worse correspondence to existing databases,
but high structural similarity.

Second, we demonstrate three practical applications that
highlight the unique advantages of SAE features for protein
annotation: (1) capturing granular subdomains within exist-
ing annotations that reveal discrete functional units, (2) de-
tecting missing annotations by identifying proteins with rec-
ognizable structural motifs that lack corresponding database
labels, and (3) enabling zero-shot generalization to novel
metagenomic proteins, including those without matches to
existing protein families, specifically, Pfam (Bateman et al.,
2004).

Utilizing PLM SAE features in this annotation pipeline
offers natural advantages: First, because the top structures
for each feature can be pre-computed, during a search, hits

can be found in constant-time search regardless of database
size. Second, because we know the feature(s) triggering the
hit, the search can automatically include known structural
or functional information about that feature (such as its
links to existing databases or a natural language description).
Finally, because the features are found in an unsupervised
manner, the search can find structural hits based on features
not in existing databases.

2. Related Work
Traditional Sequence-Based Annotation Methods

Functional annotation of uncharacterized proteins has his-
torically relied on sequence conservation approaches. Hid-
den Markov Models and Position-Specific Scoring Matrices
form the foundation of major databases including CATH
(Orengo et al., 1997) via Gene3D (Buchan et al., 2002) and
Pfam (Bateman et al., 2004). These have been integrated
into unified resources like UniProt (Consortium, 2015) and
InterPro (Hunter et al., 2009), with search tools like Inter-
ProScan enabling annotation of arbitrary sequences (Jones
et al.,, 2014). However, these methods struggle with di-
vergent sequences, particularly from metagenomic sources,
leading to specialized databases like Novel Metagenomic
Pfams (NMPfamsDB) (Baltoumas et al., 2024) that specifi-
cally curate sequences lacking Pfam annotations.

Structure-Based Approaches

The advent of AlphaFold 2 (Jumper et al., 2021) has cat-
alyzed a shift toward 3D structure-based annotation methods.
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Figure 2. We find additional databases greatly expand our ability to find cohesive features. Hierarchical codes like Pfam clans often
correspond more closely to a feature than any individual Pfam code, indicating the SAE learns features at different levels of specificity.

This has enabled new databases focused on structural sim-
ilarity, such as the Encyclopedia of Domains (Lau et al.,
2024) based on the Merizo tool (Lau et al., 2023). How-
ever, large-scale structural searching remains computation-
ally challenging despite algorithmic advances like TMa-
lign (Zhang & Skolnick, 2005) and CEalign (Shindyalov &
Bourne, 1998). FoldSeek addresses this by converting struc-
tural similarity search into sequence matching using a 3D-
informed alphabet, achieving orders-of-magnitude speedup
(van Kempen et al., 2022). Merizo-search uses embeddings
trained on CATH domains for rapid structural matching
(Kandathil et al., 2025). While powerful, these approaches
have limitations: FoldSeek doesn’t automatically provide
domain-specific functional information about the region(s)
of each protein that triggered the match, and Merizo-search
is constrained to identify hits based on supervised training
on CATH annotations.

Interpretable Features from Protein Language Models

Recent work has begun exploring sparse autoencoders
(SAEs) for extracting interpretable features from protein
language models. InterPLM (Simon & Zou, 2024) demon-
strated correspondence between individual amino acid acti-
vations and UniProtKB annotations, while InterProt (Adams
et al., 2025) associated protein-level SAE activations with
Pfam families. However, these approaches achieved limited
coverage, leaving over 75% of features unexplained when
using stringent matching criteria.

Our work extends this foundation by: (1) incorporating the
full InterPro database across 20+ annotation sources includ-
ing hierarchical codes, (2) developing systematic structural
validation through feature-guided local structural alignment,
and (3) integrating LLM-based pattern recognition to iden-

tify features missed by existing databases. This comprehen-
sive approach doubles annotation coverage while enabling
practical applications for both missing annotation detection
and novel protein characterization.

3. Using existing database annotations, local
structural alignment, and LLMs to screen
SAE features for cohesiveness

3.1. Combining protein annotation databases identifies
structurally and functionally cohesive features

We expand annotation coverage by incorporating the full
InterPro database (Hunter et al., 2009), which includes an-
notations from UniProtKB, Pfam, CATH / Gene3D (Orengo
etal., 1997), (Buchan et al., 2002), and 19 other sources. We
evaluate associations at the protein level rather than amino
acid level, allowing us to capture cases where feature activa-
tions occur near—but not exactly on—annotated elements,
and enabling us to combine both protein-level annotations
(like Pfam domains) and more granular annotations (like
binding sites and motifs in UniProtKB). We also include
hierarchical codes such as Pfam clans and CATH topologies
to capture broader biological concepts.

For each SAE feature, we sample up to 1100 proteins across
10 activation levels (up to 100 proteins each for activation
0, 0.1, etc up to 1.0) and test whether any single annotation
code can predict high versus low feature activation, calculat-
ing F1 scores between predicted and actual activations. This
approach doubles our annotation coverage. As shown
in Figure 2, expanding beyond single databases increases
the percentage of features with F1 > 0.8 from approxi-
mately 25% to over 60%. The highest-performing features



Towards functional annotation with latent protein language model features

are distributed relatively evenly across UniProtKB anno-
tations, Pfam clans, Gene3D/CATH codes, and individual
Pfam families, demonstrating that SAE features capture bio-
logical concepts at multiple levels of granularity. Features
with moderate performance (F1 0.5-0.75) are predominantly
associated with UniProtKB categories.

This metric serves dual purposes: quantifying annota-
tion correspondence and screening for feature cohesive-
ness—features that correspond strongly to existing annota-
tions likely represent understandable biological elements
suitable for annotation purposes.

3.2. Feature-guided local structural alignment
independently identifies structurally cohesive
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Figure 3. RMSD vs. F1 for existing database annotations. Many
features with high RM S D10 do not correspond closely with
existing annotations, while the vast majority of features with low
RM S Do correspond with existing database annotations.

To better understand what causes these features to fire, we
turn to structural analysis. This serves two benefits. First,
we can track structural subdomains that may not have their
own annotation. Second, we can track structural elements
that fire even when an annotation is missing. InterPLM
(Simon & Zou, 2024) demonstrated that when a feature
associated with an existing annotation activates on a pro-
tein that lacks this corresponding annotation, what initially
appears to be an erroneous feature activation can actually in-
dicate missing or incorrect database labels. Through manual
inspection, they identified three features that were correctly
identifying functional patterns in proteins that should have
been annotated but weren’t. However, investigating each fea-
ture individually for missing labels through manual verifica-
tion would be infeasible at scale, motivating our automated
pipeline for systematically identifying such annotation gaps.

To scale up this process, we introduce a procedure for
Feature-Guided Local Structural Alignment to find “struc-
turally cohesive” features, meaning the regions that activate
highly have a consistent 3D structure, even if it has not
necessarily been annotated. In our procedure, we sample
20 AlphaFold-predicted structures from the top activating
proteins of a given SAE feature (activation above 0.7), after
de-duplicating for structures from gene orthologs. We then
crop all selected structures to the 100 amino acids surround-
ing the peak activating SAE amino acid. We run pairwise
local alignment between all possible pairs, and score the
alignments with backbone RM S D19, a modification of
Root Mean Square Deviation that allows for more lenience
for longer alignments (Carugo & Pongor, 2001). We use this
rather than RMSD because it advantages longer alignments,
finding more complex conserved structures rather than, for
example, a single alpha helix match. Because we are only
aligning cropped structures, we can use a robust structural
alignment algorithm, CEalign (Shindyalov & Bourne, 1998)
with minimal cost. Additionally, by restricting alignments
to regions where the SAE feature activates, this procedure
ensures we evaluate structural similarity in functionally rel-
evant areas.

In Figure 3 we see that better structural alignment (lower
RM S D1o) is correlated (pearson r=0.53) with higher an-
notation code F1 scores. Specifically, 92% of features with
RM S D1y < 5 have a code-based F1 > .8, while only 51%
of features with an RM SD1oy > 5 have a code-based F1
> .8. This helps serve as a filter for feature cohesiveness.
That is, for pairwise alignments with low RM S D1gg, we
would expect they indeed share a local structural feature,
even if one protein is missing an annotation, or is an unchar-
acterized novel protein. Since RM S D1(q scores below 4
consistently indicate clear structural similarity, we use this
as our stringent threshold. Scores between 4 and 5 also typi-
cally represent genuine structural similarity but with some
false positives, making this our more permissive threshold
for broader coverage.

3.3. Large Language Models identify additional
cohesive features missed by other methods

While many features fire on a single existing database an-
notation code, other features appear to fire on shared traits
across existing annotations. Thus, asking LLMs to reason
over protein data is a natural step in developing better fea-
ture descriptions that can be used for protein annotation. We
adapt the automated pipeline from InterPLM (Simon & Zou,
2024), using Claude-3.5 Sonnet (New) to generate feature
descriptions by providing it with protein metadata from our
expanded annotation sources along with examples of 40 pro-
teins showing varying levels of maximum feature activation.
The LLM analyzes these examples to identify what protein
and amino acid characteristics cause the feature to activate
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Figure 4. LLM-based F1 score vs. annotation code-based F1 score
on the same train/val split.

at different levels, generating natural language descriptions
of the underlying biological patterns.

As validation, we test whether these LLM-generated de-
scriptions can predict feature activation levels on held-out
proteins. We evaluate the ability of both the generated de-
scriptions and the expanded annotation metadata to classify
proteins as high or low activating for each feature, calculat-
ing F1 scores on a separate test set to ensure the descriptions
capture generalizable patterns rather than overfitting to the
training examples.

We find that the LLM’s ability to describe a feature is highly
correlated with the F1 score of the single best annotation
code, as shown in Figure 4. That is, though we want the
model to reason about a combination of codes, a primary
driver of performance is the primary existing database anno-
tation.

Still, we find interesting cases where the LLM quantitatively
improves performance. For example, for one of our features,
noted as /3174, the LLM identifies “this feature activates on
transmembrane domains in multi-pass membrane proteins,
particularly those involved in protein complex assembly and
ion transport across membranes.” This description, which
focuses on transmembrane domains across a broader range
of proteins than would be covered by a single Pfam family
or clan, allows the description to outperform existing an-
notation codes. Similarly, for another feature (f/4896), the
LLM writes, “This feature activates on precursor regions
of secreted peptide hormones and neuropeptides that un-
dergo proteolytic processing to produce bioactive signaling
molecules.” This LLM description correctly identifies that
the feature fires on several different types of peptide hor-
mones and neuropeptides, even though they do not share a

GO code.

Finally, the LLM can sometimes still interpret polysemantic
features that appear to fire on two distinct protein elements.
For example, f/3118 appears to fire at both the phospho-
histidine of histidine kinases, and at chlorine channel sites
for proton-coupled chloride transporters. While we have
not been able to find a sequential or structural similarity
between these two kinds of sites, the LLM correctly de-
scribes that the feature, “activates on functional domains
involved in ion-mediated signaling, particularly histidine
kinase domains and chloride channel domains that facilitate
ion transport across membranes.” Thus, the LLM descrip-
tion is consistently able to get a nearly perfect predictive
F1. Ideally this feature would fire on a single monosemantic
concept, and this demonstrates room for improvement in
the SAE and limitations of using this F1 score to identify
purely monosemantic concepts. However, this description
can still help us with feature annotation as it reveals that
the activating proteins are likely one of two connected types
that function in a similar pathway.

We also analyze the 21 cases from our sampled features
where the code-based F1 is at least .2 or more higher than
the LLM-generated description’s F1, that is, the LLM un-
derperformed. In 20 of these cases, we find that precision
was higher than recall. In fact, in 17 of the 21, precision
was higher than .8 while for only 1 of the 21 cases was
recall higher than .8. This indicates that the LLM is some-
times writing overly specific descriptions, so it is missing a
broader view of what causes the feature to activate. For ex-
ample, for £/657, the description is “This feature activates on
catalytic domains of intradiol ring-cleavage dioxygenases
and carboxypeptidases,” which achieves an F1 of 0.5, but a
precision of .875. The description is missing other elements
besides these that also cause the feature to fire. In fact, this
feature is highly associated with the Pfam clan CL0287, 7
stranded beta sandwiches. This does potentially point a way
forward for the LLMs. Their focus is likely driven by hav-
ing too few examples in order to fit into the context window.
This suggests additional activating examples might help
them identify the broadest possible applicable description.

4. Using PLM SAE features to enhance protein
annotation

Having identified cohesive features using our three ap-
proaches, we now show three benefits of utilizing these
features. In particular, we utilize these features to iden-
tify discernible subdomains within existing annotations that
have been specifically researched in the literature. Second,
we utilize these features to scalably identify missing CATH
annotations. Finally, we utilize these features to rapidly iden-
tify structural matches for unseen metagenomic proteins in
NMPfamsDB.
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4.1. SAE features capture granular subdomains
interpretable through targeted literature search

While our annotation matching successfully identifies co-
herent features, it also reveals an important limitation: we
can identify the types of proteins where features activate,
but not always what specific elements within those proteins
cause the activation. This limitation, however, highlights
a key advantage of SAE features—their ability to capture
functional granularity beyond existing annotation schemes.
Multiple distinct SAE features often share the same top an-
notation code yet activate on different structural subregions,
revealing functional subdomains that current databases treat
as single units.

Figure 5 illustrates both this limitation and opportunity.
Eight different features (/253, /515, /1505, /1579, f/1712,
/1731, £/2768, and /3288) all achieve high F1 scores for
the same Pfam clan annotation (APC clan, CL0062), yet
each activates on distinct protein regions—different trans-
membrane alpha helices, cytoplasmic domains (f/253), and
extracellular domains (f/515). While our annotation-based
screening identifies these as coherent features, it cannot ex-
plain their specific functional roles, demonstrating both the
power of SAE features to decompose protein families and
the need for methods to interpret this finer granularity.

To bridge this gap, we tested whether language models could
automatically retrieve literature discussing the specific pro-
tein regions where features activate. We provided OpenAl’s
o4-mini-high with the 10 highest-activating proteins for se-
lected features, their gene descriptions from UniProtKB,
and precise amino acid positions of peak activation, asking
it to search for literature describing these specific regions.

In a pilot evaluation of 6 features, this approach success-
fully identified papers that discussed the exact regions high-
lighted by our features for 4 cases. For example, for /515,
the model retrieved literature on extracellular loops in APC
proteins, identifying the effects of mutations in this precise
extracellular gating region (Raba et al., 2014)—functional
detail entirely absent from the broader clan annotation. An
example prompt for this pilot, and more detail on the re-
trieved papers is in Appendix B.

This demonstrates that SAE features can reveal biologically
meaningful subdomains within existing annotations, but
realizing this potential requires methods to interpret their
specific functional roles. While literature search shows
promise for this task, it currently requires manual validation
and is limited by API availability. As these capabilities
improve, they could enable systematic annotation of the
functional subdomains that SAE features uniquely capture.

4.2. SAE features can identify missingness in existing
databases

Our local alignment procedure can specifically analyze fea-
tures that appear better conserved structurally than their
database annotations would suggest. Specifically, we ex-
amine proteins that all activate the same SAE feature but
differ in their annotation status—some have the expected
database annotation while others do not. When we measure
RM S D1yo between annotated and unannotated proteins,
we often find they align just as well structurally as anno-
tated proteins align with each other, as shown in Figure 6.
This suggests the unannotated proteins may have missing
database labels despite possessing the same structural motif.
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Figure 5. Eight SAE features correspond to the same Pfam clan (APC, CL0062) but activate on distinct structural components within
GAPI1_YEAST, including different transmembrane helices, cytoplasmic domains, and extracellular loops. Left: Each row shows feature
activation along the protein sequence with highly activated (> 0.8) residues highlighted in color, compared to the single Pfam domain
(gray). Right: Feature activations on AlphaFold predicted structure (AFDB: P19145) showing each feature highlighting distinct structural

components.
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For example, we note f/401, whose best code-based descrip-  4.3. Features can rapidly detect structural matches in
tion is that it fires on a CATH Topology (3.40.50) with F1 unannotated metagenomic proteins

of .84. However, several of the top activating proteins for
/401 in our dataset are not tagged with any CATH code
using Gene3D. Still, these structures have very low local
RMSD’s to structures that are tagged with the CATH code
using Gene3D, as shown in the figure, suggesting the CATH
code is missing.

A key advantage of feature-based annotation is that granular
features can detect conserved domains even when full pro-
teins show no sequence similarity to known families. This
enables annotation of highly divergent metagenomic se-
quences that lack Pfam matches, which we test using NMP-
famsDB (Baltoumas et al., 2024), a collection of metage-
To analyze this at scale, we reviewed the 20 proteins per  nomic proteins that do not have any Pfam matches.

feature randomly sampled in Section 3.2, looking at fea-
tures with a code-based F1 of .8 or above for a CATH code
or CATH topology. Across 221 features, we find 1,055
of those top activating proteins in Swiss-Prot that are not
tagged with a CATH code by Gene3D, but have strong local
structural similarity to a protein for that feature that does
have a Gene3D annotation.

We find that many of our features activate highly in pro-
teins the SAE was not trained on. Specifically, for over
50% of our features, there is at least one NMPfamsDB pro-
tein that activates that feature with a value > 0.7. Then,
by applying our local structural alignment procedure, we
can identify 615 features with strong median local struc-
tural alignments (RM SD1o0 < 5 for pairwise alignments
As external validation, we then compare the CATH tags between one Swiss-Prot protein and one metagenomic pro-
from Gene3D, a sequence-based model, to TED (Lau et al., tein) and 181 features with median RM SD1gp < 4. This
2024), which uses a deep learning structure-based approach.  is strong evidence these features activate on the same struc-
We find that 491 of these proteins indeed do have a hit for  tural element in both Swiss-Prot proteins and metagenomic
that same CATH topology in TED (see Appendix Table 2).  proteins, as seen in Figure 7.

For proteins that do not have hits even in TED, it is possible
that these features can fire on a subdomain within a CATH
code, though the entire structure is not similar enough to be
tagged.

In total using just these 615 features, we find matches be-
tween 12,526 metagenomic proteins in NMPfamsDB and
Swiss-Prot proteins with an RMSDyp9 < 5 (14.9% of
the 83,878 metagenomic proteins in NMPfamsDB we ana-
While we can verify these seemingly missing annotations for lyzed). At an RM SD; threshold of 4 or better, we can
CATH by using TED, there are SAE features that align with find matches for 8,077 metagenomic proteins (9.6%).
annotations from other databases like Pfam or UniProtKB.
Thus, this combination of screening for existing annota-
tions and local structural alignment can likely help identify
potential missing annotations beyond just CATH.

Perhaps unsurprisingly, many of the SAE features that align
structurally in the metagenomic proteins also have high
correspondence to CATH domains (378 of the 615 have a
code-based F1 above 0.8 for a CATH code). This further
highlights the importance of a high sensitivity approach
discussed earlier.

Pairwise with code Pairwise with code

20 Pairwise with and without code 16 Pairwise with and without code

Count
Count

1 2 3 5 6 7 1.0 15 2.0 2.5 3.0 35 4.0

RMSD_100

(a) Histogram for /401 of RMSDioo for (b) Histogram for /581 of RM S Do for (c) Alignment for proteins with and with-
pairwise alignments pairwise alignments out CATH 3.4.50.

4
RMSD_100

Figure 6. Aligning structures with the top existing annotation to structures without the annotation reveals features like (a) {/401 and (b)
/581 with strong structural similarity despite different annotations. This can identify missing annotations in existing databases, like in (c)
showing an alignment for two proteins that activate on f/401 where one protein (QOP9AS) has and one protein (QSWSKO6) is missing the
CATH 3.40.50 annotation, the topology code for the Rossmann fold. For clarity, only the area around the feature is shown for QSWSK®6.
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Swiss-Prot (006984) and metagenomic protein FO01558.

Still, we also find additional features like /723 and /931
that correspond to a granular sub-domain within Pfam codes,
even though full domain Pfam hits have been screened out of
NMPfamsDB. As a final corroboration, for f/723 and /931,
we note that for several metagenomic proteins, if we run
FoldSeek on the protein, several of the top Swiss-Prot hits
also activate on our SAE feature. That demonstrates that,
for the proteins we trained on, these SAE features can be
used to find the same structural element found by FoldSeek.
However, using SAE features has a natural advantage over
FoldSeek, in that we can automatically provide the known
structural or functional information about the features that
triggered the alignment.

5. Conclusion

In this work, we demonstrate the potential benefits of using
latent features from protein language models for protein
annotation. We find features that consistently activate on
local, discernible elements of proteins, though this cannot
yet be understood automatically. We also find features that
can identify missing database annotations at scale, and find
features that allow us to characterize unseen, unannotated
metagenomic proteins. We can pre-compute the top proteins
for each feature, tie each feature to existing databases, and
generate LLM-descriptions. Thus, for a novel protein, this
workflow returns not only a structurally similar character-

ized protein, but also structural or functional information
about exactly the aligned region. This framework provides
a scalable annotation solution with unique computational
properties: O(1) search time, interpretable matches, and
subdomain-level sensitivity.

We note several important limitations of the work: first,
while LLMs can help in pulling relevant literature, iden-
tifying where within proteins these features fire remains
primarily a manual task due to hallucinations and the need
for careful verification. Second, our structural validation
approach requires conservation within 100 amino acids of
peak activation, which likely misses features that span mul-
tiple distant regions or involve flexible structural motifs.
Third, for now we rely on a single layer (Layer 18) of ESM-
2 650M and focus our annotation validation on Swiss-Prot
proteins, which increases the density of annotations within
structural matches but limits the space of proteins we can
match.

Future work should expand analysis across multiple layers
within protein language models, test on more powerful pro-
tein embedding models, and systematically evaluate how
the quality of the latent features influences our ability to find
structurally consistent matches. Additionally, more rigorous
benchmarking against existing annotation approaches like
FoldSeek and Merizo-search can highlight the benefits of
each method. Finally, other methods for clustering or subdi-
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viding PLM embeddings should be considered and tested.
We expect advances in LLM capabilities and more advanced
protein representations may drive further improvement on
these tasks, and hope this framework can provide a useful
proof-of-concept as this field develops further.

Code availability

Code is available at https://github.com/
ElanaPearl/interp-agents


https://github.com/ElanaPearl/interp-agents
https://github.com/ElanaPearl/interp-agents
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A. Flexible regions

We note that many features still have a high code-based F1 even though they also have high RM S D1¢9. Some of these are
regions that are structurally flexible, for example f/73 below. We show three proteins, each with a homeodomain-like region
highlight in orange and blue, and the highly activated region for /73 in pink.

~

B !

Figure 1. f/73 captures a variety of structures that all link two structurally consistent domains. Here, three proteins have homeolike-
domains are in orange and blue, while the highly active region for f/73 is in pink

P S PG @Q A,
PN I It PR
5™ 3¢
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B. Understanding granular features

For six features, we used o4-mini-high to attempt to find citations that discussed the specific regions of interest. An example
prompt is given below, followed by the best citation (where applicable) found by the model. Each citation returned by the
model was reviewed manually, as the model could sometimes hallucinate specific quotes or mutations that were not found
in the underlying papers. Where no relevant citation was retrieved, the feature was analyzed manually to determine its
specific function. Sometimes very promising literature about the specific region exists, but was not returned by o4-mini-high,
perhaps because of only asking about 10 gene-species combinations per feature. For example, manually searching for
additional papers revealed that /253 corresponds to the cytoplasmic loop between transmembrane domain 2 and 3 in a
topological model of amino acid permeases (Cosgriff & Pittard, 1997).

Prompt for {/515

What do we know about the following proteins in these amino acid regions mentioned for each? Cite papers that
look specifically at or very near these regions

ACTP_PECCP Cation/acetate symporter ActP (Acetate permease) (Acetate transporter ActP) in Pectobacterium
carotovorum subsp. carotovorum (strain PC1) at 332

MNTH_AGRFC Divalent metal cation transporter MntH in Agrobacterium fabrum (strain C58 / ATCC 33970)
(Agrobacterium tumefaciens (strain C58)) at 309

KUP_CYTH3 Probable potassium transport system protein Kup in Cytophaga hutchinsonii (strain ATCC 33406 /
DSM 1761 / CIP 103989 / NBRC 15051 / NCIMB 9469 / D465) at 271

KUP_STRA1 Probable potassium transport system protein Kup in Streptococcus agalactiae serotype Ia (strain ATCC
27591/ A909 / CDC SS700) at 277

PUTP_STAAN Sodium/proline symporter (Proline permease) in Staphylococcus aureus (strain N315) at 310

In total (across all proteins) provide me only with 2-4 of the best matching citations and what we know about the
region from each paper

12
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Table 1. o4-retrieved feature citations for specific sub-domains.

Feature

04 description of best citation

Paper link

73

253

401

515

711

931

No citation retrieved discussed this specific subdomain (a flexible
linker region sandwiched between HTH domains).

No citation retrieved discussed this specific subdomain (in the cyto-
plasmic loop between TM2 and TM3).

“Schmidt et al. solved crystal structures of the Aquifex aeolicus Kdo
transferase (WaaA), a GT-B family homolog, revealing that the loop
encompassing residues 98—102 (equivalent to E. coli position ~101)
shapes the acceptor—substrate binding site...”

“Site-directed mutagenesis targeting extracellular loop 4 of S. aureus
PutP (residues 310, 314, 318) showed that altering the amino acid at
position 310 completely abolishes proline uptake...”

“In vivo cysteine cross-linking between TM2 and TM8—including
sites around residue 316—demonstrated that Mur] adopts both
inward- and outward-facing states during transport. Disruption of
membrane potential selectively destabilized the inward-facing con-
formation...”

“Residue 88 (human numbering) lies in the S-strand F of the TTR
fold, forming part of a critical hydrogen-bond network that stabilizes
the tetramer...”

https://pubmed.ncbi.nlm.nih.
gov/22474366/

https://www.sciencedirect.
com/science/article/pii/
S509692126140008352utm__
source=chatgpt.com
https://pubmed.ncbi.nlm.nih.
gov/30482840/

https://pmc.ncbi.nlm.nih.
gov/articles/PMC8122960/

C. Missing CATH annotations

Below we show the first 100 missing CATH annotations identified by our workflow, of the 491 that match with TED
annotations. We considered a match if TED contained a code that was within the same topology as the top CATH code for a
given feature. Best code represents the top CATH code for that feature, while TED label is the exact TED label for that
protein (which may either be a CATH homologous superfamily or topology).
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Table 2. Rows 1-50

Protein Feature Best code TED label
Q01473 4 1.20.120.160 1.20.120
Q7Y0V9 52 3.30.530.20 3.30.530.20
QOWVI12 52 3.30.530.20 3.30.530.20
QIFVI6 52 3.30.530.20 3.30.530.20
Q8XA02 57 3.10.105.10 3.10.105.10
P46890 57 3.10.105.10 3.10.105.10
P77172 81 3.30.70.270 3.30.70.270
Q58121 112 1.20.58.340 1.20.58
028044 112 1.20.58.340 1.20.58
Q01473 119 1.20.120.160  1.20.120
Q49430 121 1.20.1560.10 1.20.1560.10
QOVFX2 129 1.20.5.500 1.20.5
Q5BL57 129 1.20.5.500 1.20.5
Q499U4 129 1.20.5.500 1.20.5
Q25C79 129 1.20.5.500 1.20.5
Q4UMJ9 159 1.20.1250.20 1.20.1250.20
P28246 159 1.20.1250.20 1.20.1250.20
QI9JXMS5 169 1.25.40.10 1.25.40.10
051072 180 1.25.40.10 1.25.40.10
Q8K4P7 180 1.25.40.10 1.25.40.10
Q8RWNO 194 3.40.395.10 3.40.395.10
QOWKVSE 194 3.40.395.10 3.40.395.10
Q09275 194 3.40.395.10 3.40.395.10
013769 194 3.40.395.10 3.40.395.10
Q8L7S0 194 3.40.395.10 3.40.395.10
Q2PS26 194 3.40.395.10 3.40.395.10
Q54KW6 196 1.25.40.10 1.25.40
P34511 218 1.25.40.20 1.25.40.20
P18540 251 3.40.50.2300 3.40.50.2300
022232 281 3.80.10.10 3.80.10
004615 310 2.60.210.10 2.60.210.10
Q9FKD7 310 2.60.210.10 2.60.210.10
Q9XHZ8 310 2.60.210.10 2.60.210.10
Q8C008 371 2.60.40.10 2.60.40
QI9STLS 399 3.40.140.10 3.40.140.10
QI9FG71 399 3.40.140.10 3.40.140.10
082264 399 3.40.140.10 3.40.140.10
QILYC2 399 3.40.140.10 3.40.140.10
Q04368 399 3.40.140.10 3.40.140.10
P76349 401 3.40.50.2000  3.40.50.2000
D3DJ42 401 3.40.50.2000  3.40.50.20
Q5WSK6 401 3.40.50.2000  3.40.50.2000
QY9SH31 419 3.40.50.2000 3.40.50
Q3E9A4 419 3.40.50.2000  3.40.50.2000
QILFP3 434 3.40.50.2000  3.40.50.2000
P75207 442 1.20.1560.10 1.20.1560.10
Q49430 443 1.20.1560.10 1.20.1560.10
Q9ZD06 449 3.30.2350.10  3.30.2350.10
Q8FB47 449 3.30.2350.10  3.30.2350.10
Q8ZGM2 449 3.30.2350.10  3.30.2350.10
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Table 3. Rows 51-100

Protein Feature Best code TED label
Q92HG4 449 3.30.2350.10  3.30.2350.10
P77607 544 3.40.50.1390 3.40.50.1390
Q8XA02 607 3.10.105.10 3.10.105.10
P46890 607 3.10.105.10 3.10.105.10
A9NCA7 713 3.40.50.2000  3.40.50.2000
067214 713 3.40.50.2000  3.40.50.2000
P37597 751 1.20.1250.20 1.20.1250.20
004292 789 3.30.450.20 3.30.450.20
Q9Z7F1 789 3.30.450.20 3.30.450.20
A2XBL9 789 3.30.450.20 3.30.450.20
Q39123 789 3.30.450.20 3.30.450.20
BOK165 843 3.30.479.30 3.30.479.30
P32233 848 3.40.50.300 3.40.50.300
Q2NLS82 848 3.40.50.300 3.40.50.300
AOAQOH2URH2 849 3.40.50.2000 3.40.50.2000
AOAQOH2URJ6 849 3.40.50.2000  3.40.50.2000
P33694 849 3.40.50.2000  3.40.50.2000
A1JSF2 873 3.40.50.300 3.40.50.300
P50837 889 3.30.420.10 3.30.420.10
Q60953 889 3.30.420.10 3.30.420.10
P53296 891 3.30.559.10 3.30.559.30
11S097 894 3.90.550.10 3.90.550.10
D37Z7ZN9 936 2.60.40.150 2.60.40.150
QI9C8E6 936 2.60.40.150 2.60.40.150
P54739 972 3.30.200.20 3.30.200.20
P54735 972 3.30.200.20 3.30.200.20
C4JDF8 1003 1.10.1200.10  1.10.1200.10
P39404 1013 3.40.50.2300 3.40.50.2300
083933 1016 1.20.1600.10  1.20.1600
P63400 1039 1.10.1760.20 1.10.1760
067248 1039 1.10.1760.20 1.10.1760
Q58299 1053 3.60.40.10 3.60.40.10
029259 1119 1.10.443.10 1.10.443.10
P07261 1119 1.10.443.10 1.10.443.20
083202 1205 3.30.70.270 3.30.70.270
P77172 1205 3.30.70.270 3.30.70.270
Q2NKCO 1205 3.30.70.270 3.30.70.270
Q10419 1233 2.40.30.170 2.40.30.170
P55501 1239 3.30.420.10 3.30.420.10
Q44493 1320 2.150.10.10 2.150.10.10
P75800 1329 3.30.70.1230  3.30.70.270
B5X7ZP2 1347 1.20.1250.20 1.20.1250.20
DOCCT2 1347 1.20.1250.20 1.20.1250.20
EOT2NO 1347 1.20.1250.20 1.20.1250.20
034353 1360 2.120.10.80 2.120.10.30
Q10412 1380 1.20.920.10 1.20.920
Q6YRK2 1416 3.30.70.270 3.30.70.270
B0XZV4 1447 1.20.1250.20 1.20.1250.20
083837 1466 1.25.40.10 1.25.40
QS8IARS 1482 2.30.42.10 2.30.42.10
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