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ABSTRACT

Driven by the increasing use of visual localization (VL) in AR/VR and au-
tonomous systems, privacy-preserving localization is a critical societal necessity.
Current VL systems rely on cloud-based 3D scene representation storage and
client-side feature extraction, thus creating significant privacy risks. A privacy
breach is framed as a malicious actor recovering privacy-preserving representa-
tions being sent from the client to the server. This paper therefore aims at finding
out what can be recovered from these representations and comparing the multiple
privacy-preserving solutions within the literature. We define privacy as the in-
ability to recover personally identifiable information from image representations,
acknowledging that general scene details do not inherently represent a privacy
breach. We assess the degree of privacy of a representation by evaluating the
amount of sensitive information it contains. To that end, we introduce a new pri-
vacy attack in which we train a diffusion model to reconstruct images through
conditioning on different groups of privacy-preserving representations. We then
measure what can be recovered in the images through a set of comprehensive ex-
periments, which effectively act as a proxy to evaluate the degree of privacy of the
initial representations. We apply this comprehensive evaluation protocol on differ-
ent privacy-preserving representations and provide the first comparison between
multiple branches of privacy-preserving visual localization methods. We plan on
releasing code and trained checkpoints.

1 INTRODUCTION

Visual localization (VL), a core component of self-driving cars Heng et al. (2019) and autonomous
robots Lim et al. (2015), refers to the task of estimating the 6DoF camera pose from which an
image was captured. VL systems require a representation of the scene in which the pose can be
estimated. Such representations may be a 3D Structure-from-Motion (SfM) point clouds (Sarlin
et al., 2019; Humenberger et al., 2022), a database of images with known intrinsic and extrinsic
parameters (Zhou et al., 2020; Sattler et al., 2019), the weights of neural networks (Kendall et al.,
2015; Brachmann et al., 2017), neural radiance fields (Moreau et al., 2022; Chen et al., 2024) or 3D
Gaussians representations (Pietrantoni et al., 2025a). A pose may be estimated either by extracting
descriptors from an image, matching them with descriptors in the 3D scene representation, and
solving a minimal problem or in a render and compare optimization scheme where query image
representations are iteratively aligned with 3D scene representations.

With the growing adoption of localization services in AR/VR, autonomous vehicles, and mobile
applications, safeguarding user data has become a critical priority. Therefore, privacy-preserving
visual localization is a fundamental societal necessity to enable scalable, secure, and ethical deploy-
ment in real-world environments. In practice, visual localization systems rely on cloud services to
store 3D scene representations, while the client extracts relevant image features from the target im-
age to be localized before transmitting them to the server. Protecting both the 3D map and the 2D
query data is equally vital, as vulnerabilities in either could compromise user privacy and system
integrity. This paper primarily focuses on the latter, framing the privacy breach as an adversary
recovering information transmitted between the client and server. Our attack is directly applicable
to renderings of 3D models, and hence can be used to potentially recover private details from 3D
representations. Yet, we do not explore this direction in this work but rather focus on 2D query data.
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Following prior work Pittaluga et al. (2019); Chelani et al. (2021); Pietrantoni et al. (2023); Zhou
et al. (2022); Chelani et al. (2025), we define privacy as the inability to retrieve personally identifi-
able information (e.g., faces, license plates, pictures, documents, or texture details) from the image
representation. We further assume that general scene details, including coarse geometry or semantic
information, do not represent a privacy breach. This is because, in the context of visual localization,
a minimum level of discriminative information is required to achieve accurate localization. Expo-
sure of broad semantic or geometric information is therefore expected within a visual localization
pipeline. Privacy, however, is inherently subjective and context-dependent, influenced by environ-
mental factors, legal frameworks, and individual values. As such, the primary challenge lies in
quantifying privacy and identifying effective mechanisms for it.

We build upon the seminal work from Pittaluga et al. (2019), which derives a privacy attack designed
to reconstructing images from the high dimensional descriptors typically used for pose estimation.
These descriptors contain a massive amount of privacy sensitive information that can easily be re-
covered through the privacy attack. In this context, privacy is assessed via a proxy by evaluating the
amount of information recovered in the reconstructed image. In contrast to Pittaluga et al. (2019),
which employs a feedforward convolutional network (CNN) to regress RGB values for the privacy
attack, we propose a novel diffusion-based approach that addresses some of the limitations of the
prior method. Concretely, the feedforward convolutional approach in (Pittaluga et al., 2019) is
ill-suited for inverting sparse privacy-preserving representations and struggles to account for uncer-
tainty, resulting in suboptimal inversions. Instead, our diffusion-based privacy attack optimizes a
denoising network to iteratively reconstruct images, conditioning the denoising process on privacy-
preserving representations. The conditioning is achieved at two levels: locally, by concatenating
pixel-level representations, and globally, by injecting structural information via a graph neural net-
work. This multi-scale conditioning enables a more robust and comprehensive framework, allowing
more accurate inversion even from sparse representations.

We also extend the evaluation framework proposed in Pittaluga et al. (2019), where to evaluate
the privacy only image-level metrics are applied on the reconstructed images. We argue that these
metrics fail to adequately capture the extent of leaked privacy-sensitive information, thus only par-
tially reflecting the true level of privacy risk. To address this limitation, we follow the approach in
(Pietrantoni et al., 2025b), where privacy is characterized through the descriptive capacity of ad-
vanced vision-language models (VLMs). We believe these models are better suited for quantifying
privacy, as they can capture fine-grained details with comprehensive class granularity. This capabil-
ity enables a more nuanced understanding of privacy risks compared to predefined object detectors,
which were proposed as privacy metrics in (Pietrantoni et al., 2023).

In addition to the above metrics, i.e., perceptual visual similarities and VLM-based description sim-
ilarities, we introduce a new privacy evaluation metric based on diffusion models. We leverage the
probabilistic nature of diffusion models and evaluate the variability of the reconstruction from dif-
ferent random initial states. This proxy is a powerful way of measuring the amount of information
contained in image representations.

In the last few years, multiple works have been proposed to tackle privacy-preserving visual local-
ization (PPVL). These approaches can be classified into two main categories, geometric obfuscation
methods (Speciale et al., 2019a;b; Shibuya et al., 2020; Geppert et al., 2020), which obfuscate the ge-
ometry of the scene while keeping image representations (descriptors) intact for downstream visual
localization, and descriptor obfuscation methods (Dusmanu et al., 2021; Ng et al., 2022; Pittaluga
& Zhuang, 2023; Pietrantoni et al., 2023; Wang et al., 2024; Pietrantoni et al., 2025a), which use
image representations that contain little to no privacy sensitive information. However, these methods
all use different privacy evaluation protocols and make independent claims of their level of privacy.
In this work, we are the first to provide a shared benchmark and privacy evaluation protocol based
on a comprehensive set of metrics for these methods. For reproducibility purposes and to foster
evaluation of others representations, we plan on releasing code and trained checkpoints.

In summary: 1) We propose a new powerful diffusion-based inversion method, used as a privacy at-
tack to reconstruct images from privacy-preserving representations. 2) We offer an in-depth compar-
isons of multiple privacy-preserving visual localization methods through a new unified and complete
privacy evaluation protocol.
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2 RELATED WORK

Privacy-preserving visual localization and mapping aim to mitigate the risk of inversion attacks,
where attackers reconstruct recognizable images from point clouds, stored descriptors, or the rep-
resentations exchanged between a client and a server. As demonstrated by Pittaluga et al. (2019),
given a set of local descriptors with their 2D positions, it is possible to recover the original image via
an inversion attack. Pittaluga et al. (2019) also show that their method can be extended to enable the
reconstruction of detailed and recognizable scene content even from sparse 3D point clouds, thereby
showing that storing such point clouds poses a significant privacy risk. To prevent such attacks and
increase the degree of privacy, geometric obfuscation methods have been introduces to conceal the
position of 2D/3D points. In particular, Speciale et al. (2019a;b) and Shibuya et al. (2020) transform
2D points into 2D lines. By extension, Lee et al. (2023) lift pairs of points to lines and Moon et al.
(2024), relying on a set of spatial anchors, obtain a set of lines with non uniform direction distri-
bution to make the inversion more challenging. Another strategy consists in swapping coordinates
between random pairs of points (Pan et al., 2023) or performing partial pose estimation against dis-
tributed partials maps (Geppert et al., 2022). Such obfuscation methods have also been used in the
context of SLAM (Shibuya et al., 2020) and Structure-from-Motion (SfM) (Geppert et al., 2020;
2021). These schemes aim to prevent inversion attacks by hiding the 2D positions, thus avoiding the
applicability of the attacks. However, as shown by Chelani et al. (2021; 2025), the point positions
may be recovered by identifying point neighborhoods, e.g., from co-occuring descriptors, thus again
enabling inversion attacks. Therefore, more recent privacy-preserving VL methods focus on obfus-
cating the descriptors and representations rather than the geometry. Dusmanu et al. (2021); Ng et al.
(2022) and Pittaluga & Zhuang (2023) lift descriptors to affine subspaces or to an obfuscated mani-
fold in order to prevent direct inversion. Zhou et al. (2022) and Wang et al. (2024) perform matching
based solely on geometry, eliminating the need for image-based descriptors at the cost of reduced
localization accuracy. In an orthogonal direction, Pietrantoni et al. (2023; 2025a) demonstrates
that replacing high-dimensional descriptors with segmentation labels containing less information
effectively prevents inversion attacks. In this work, we propose a shared inversion framework and
evaluation protocol to assess the privacy level of most of these methods.

Conditional Diffusion Models. Diffusion models have emerged as a powerful class of generative
models, enabling high-fidelity synthesis of complex data distributions by gradually adding noise to
data and learning to reverse the diffusion process to generate samples (Ho et al., 2020; Dhariwal
& Nichol, 2021). Subsequent works have focused on improving sampling through methods like
DDIM Song et al. (2020) and DPM Lu et al. (2022), developing alternative formulation such as a
continuous-time framework Feng et al. (2023) or improving visual fidelity with models using tech-
niques like CLIP-based text encoders and denoising in a latent space Rombach et al. (2022); Saharia
et al. (2022). Conditional diffusion models Ho et al. (2020); Rombach et al. (2022) convert condi-
tioning signals into coherent and semantically meaningful data samples. Local conditioning signals
such as depth, edges or human pose aim controlling the structure of the generated samples while
signals such as text aim at controlling the style of the generated samples. Many structures have
been introduced to efficiently incorporate the conditioning Zhang et al. (2023); Ye et al. (2023);
Mou et al. (2024). In this work, we finetune a diffusion model Rombach et al. (2022) jointly condi-
tioned on different representations and aim to measure the level of private data still contained in the
representations.

3 DIFFUSION-BASED PRIVACY ATTACK

We first describe our privacy attack, which consists of a diffusion model trained to capture image dis-
tributions conditioned on a variety of dense or sparse image representations. Then, we introduce our
multi-modal low rank adaptation (LoRA) finetuning scheme that allows us to further enhance train-
ing efficiency and to leverage the representational priors of large pretrained models. An overview of
our pipeline is provided in Fig. 1.

Conditioning diffusion for inversion. Our privacy attack involves reconstructing an original image
from its privacy-preserving representation using a diffusion model, conditioned on this representa-
tion. Diffusion models Ho et al. (2020); Dhariwal & Nichol (2021) are generative models charac-
terized by two key processes: a forward process, where noise is iteratively added to the training
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Figure 1: Overview of our privacy attack pipeline. Given a privacy preserving representation (fine-
grained segmentation or a set of keypoints, e.g., obtained from de-obfuscation Chelani et al. (2025),
and descriptors), the network progressively denoises the noisy input tensor in a latent space before
decoding it to the image associated with the representation. The network is conditioned locally on
the privacy preserving representation through concatenation and globally through cross attention by
encoding the set of keypoints or mask centroids with a GNN. LoRA modulation further allows for
the inversion of different types of segmentation or descriptors with a single model.

sample, and a backward process, where a network learns to denoise the noisy sample by iteratively
predicting the added noise. The forward process consists in adding Gaussian noise to a sample x0

drawn from the true distribution q, gradually transforming it into a noise-only distribution. The
probability of transitioning is described by q(xt|xt−1) = N(xt,

√
1− βtxt−1, βtI), where βt is a

timestep-dependent noise level. The reverse process aims at predicting xt from xt−1 and is for-
mulated as pθ(xt−1, xt) = N(xt−1, µθ(xt, t),Σθ(xt, t)), where µθ and Σθ are parametrized by a
neural network called denoising network. In practice, the denoising network predicts the noise and
the training objective consists in minimizing the KL divergence between between the true (unknown)
and approximated reverse process distributions. This objective can be simplified by minimizing the
difference between predicted noise and the noise added during the forward process

L = Ex0,ϵ N(0,I)∥ϵ− ϵθ(xt, t)∥ ,

with xt =
√
αtx0+

√
1 + αtϵ, where αt =

∏t
s=1(1−βs) is a closed-form reparameterization used

to simplify training objectives.

In this work, we elect to condition the reverse process on a privacy-preserving representation cpp.
The reverse process therefore becomes

pθ(xt−1|xt, cpp) = N(xt−1, µθ(xt, t, cpp),Σθ(xt, t, cpp)) ,

and the resulting training objective for the inversion network is L = Ex0,ϵ∼N(0,I)∥ϵ− ϵθ(xt, c, t)∥.
For each time step t of the schedule, the conditioning is performed locally on the pixel-level by
concatenating, on the channel dimension, the privacy-preserving representation to the noisy sample
xt. The resulting concatenated tensor is fed to the denoising network which extracts the information
contained within the privacy-preserving representation to progressively denoise the sample.

To strengthen the conditioning signal and ensure maximal fidelity in the reverse process, we further-
more add a global conditioning through cross-attention layers in the denoising network. Given a set
of N keypoint locations or N centroid center locations, we divide the image space in S subwin-
dows. Within each subwindow s, we construct a sparse graph using the keypoints/centers, and apply
a graph attention network to compress structural information, yielding an embedding gs that captures
the compositionality of the privacy-preserving representation. The S embeddings are concatenated
and passed to the cross-attention layers of the denoising network.

Multi-modal low rank adaptation. To leverage the semantic and structural priors contained within
a pretrained text-to-image diffusion foundation model Rombach et al. (2022) and to compensate for
the scarcity of training data associated with privacy-preserving representations, we use Low-Rank
Adapdation (LoRA) Hu et al. (2022). LoRA is a parameter-efficient fine-tuning technique based
on the hypothesis that weight updates during fine-tuning have low intrinsic dimensionality, enabling
the adaptation of models with a large number of parameters. Formally, weights matrices of the
original model are frozen and a new set of low-rank matrices are instead introduced. A weight
matrix W∈ Rdk belonging to the original model is adapted as follows: W′ = W + α

rBA, where
A ∈ Rdr and B ∈ Rrk are the low rank matrices, r << min(d, k) the target rank, and α controls

4
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the adaptation strength. The adaptation happens on a per layer basis, as such two low rank matrices
are learnt and stored per layer.

To further improve both the robustness and the efficiency of our inversion model, instead of training
a set of LoRA weights for each representation type that we want to invert, we train a single set of
LoRA weights per group of similar representations and modulate the low-rank adaptation accord-
ingly. We hypothesize that representations within the same group (for example sparse descriptors or
fine grained segmentations) are sufficiently similar to enable the geometric and semantic informa-
tion required for inversion to be captured by shared low-rank matrices. This shared representation
leverages similarities between representations which could yield synergies while the signal is sim-
ply modulated to account for the differences between individual representations. Inspired by Stracke
et al. (2024), we perform modulation within the LoRA low-rank subspace to enable regularization
and prioritize critical details essential for inversion. Concretely, given a group of C representations
{ci}Ci=1, a learnable embedding hl

c is assigned to each representation c for every layer l, which
serves as input to two small MLPs predicting a scale s = f l

s(h
l
c) and a bias b = f l

b(h
l
c). Given an

input xc conditioned on c and the weight matrix W associated to a layer l, the modulation for the
layer is then effectively described by

W′xc = Wxc +
α
r (B+ (f l

s(hc) ∗Axc + f l
b(hc))) ,

yielding an efficient model that can invert multiple representations with limited overhead and effi-
cient training.

Figure 2: Reconstruction output for different seed and similar conditioning. Visualization of
SIFT/SuperPoint/DPT/SAM2 conditioning. The ground truth image is displayed on the top left
and the conditioning is displayed on the bottom left. As opposed to segmentations, SIFT/Superpoint
display low variability under different seeds.

4 PRIVACY EVALUATION PROTOCOL

To assess the privacy level of a given obfuscated representation, we first try recovering the associated
image with our diffusion-based model and then evaluate the quality and semantic content of this
image with various perceptual and semantic metrics. The inversion model extracts information
contained in the input representation by mapping the latent representation into an interpretable RGB
space, enabling both visual and quantitative comparison with the original image content. The less
privacy-preserving the representation is, the more information it contains and the more faithful the
reconstructed image will be. Conversely, higher privacy-preservation yields less detailed or less
faithful image reconstructions.

Our models are trained on a combination of two large-scale datasets, MegaDepth Li & Snavely
(2018) and ScanNet-v2 Dai et al. (2017), which account for a total of two million training images
covering a wide variety of outdoor and indoor scenes. Two inversion models are trained: one for
sparse descriptors (using SIFT Lowe (1999), Superpoint DeTone et al. (2018), and Xfeat Potje et al.
(2024) features) and one for segmentations (using segmentations generated using SegLoc Pietran-
toni et al. (2023), GSFF Pietrantoni et al. (2025a), DPT Ranftl et al. (2021), and SAM2 Ravi et al.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Conditioning LPIPS ↑ FID ↑ SSIM ↓ RD(SSIM) ↓ RD(LPIPS) ↑ SCR ↓

C
am

br
id

ge

SD
es

c. SIFT 0.29 78 0.48 0.56 0.18 0.72
XFeat 0.26 73 0.58 0.63 0.12 0.74
SuperPoint 0.19 60 0.57 0.57 0.17 0.71

Se
g. SAM2 0.48 118 0.32 0.38 0.41 0.63

DPT ADE20k 0.58 146 0.29 0.31 0.53 0.60

7-
Sc

en
es

SD
es

c. SIFT 0.36 146 0.62 0.69 0.21 0.74
XFeat 0.21 105 0.75 0.84 0.10 0.77
SuperPoint 0.22 108 0.73 0.77 0.12 0.78

Se
g. SAM2 0.50 194 0.49 0.52 0.38 0.63

DPT ADE20k 0.60 240 0.46 0.48 0.50 0.57

Table 1: Inversion results on Cambridge Landmarks and 7-Scenes datasets comparing condition-
ing on local features versus segmentations. Higher FID,LPIPS,RD(LPIPS) as well as lower SSIM,
RD(SSIM),SCR indicates lower quality uncertain reconstruction implying higher degree of privacy.

(2024)), both with a LoRA rank of 64. More details are provided in supp. material. After training,
we apply our inversion models on the two most commonly used real-world datasets in visual local-
ization works, i.e., 7Scenes (Shotton et al., 2013) and Cambridge Landmarks (Kendall et al., 2015).
Importantly, none of these evaluation datasets were seen by the inversion model during training. To
measure privacy, we employ a range of evaluation metrics:

• Perceptual similarity is measured via LPIPS (Zhang et al., 2018) and FID (Heusel et al.,
2017). LPIPS (Learned Perceptual Image Patch Similarity) relies on a deep network that
was trained to align closely with human visual judgment. FID (Fréchet Inception Distance)
quantifies the realism and diversity of the reconstructed images. These metrics provide a
broad overview of the perceived visual fidelity.

• Structural similarity is measured via SSIM (Structural Similarity Index Measure) (Wang
et al., 2004), which measures image degradation as a perceived change in structural infor-
mation, while also incorporating important perceptual phenomena, including both lumi-
nance masking and contrast masking terms.

• Reconstructed Diversity (RD) is a new measure we propose in this paper. Given a set of
reconstructed images obtained with the same conditioning representation but different ran-
dom seeds for input, we compute pairwise SSIM and LPIPS for this image set. High pair-
wise SSIM/low pairwise LPIPS between pairs suggests that the conditioning input tightly
governs the reconstruction, whereas low pairwise SSIM/high pairwise LPIPS implies the
diffusion model had to infer or ’hallucinate’ details due to insufficient guidance by the rep-
resentation, which indicate that the conditioning representation is more privacy-preserving.

• Semantic Content Recovery is a metric (Pietrantoni et al., 2025b) aimed to evaluate the
amount of semantic information (i.e., interpretable concepts for a human) contained in the
reconstructed image by querying a visual-language model (VLM) (Liu et al., 2024) which
describes the content of the images in fine details. We encode these descriptions with
KeyBert (Grootendorst, 2020) and compute cosine similarity between their embeddings to
evaluate the semantic content alignment between the two images.

5 EXPERIMENTAL RESULTS

In this section, we first perform a more general preliminary study, where we assess the image con-
tent recovered by the proposed diffusion-based inversion model conditioned on segmentations and
sparse descriptors. Building upon this, we then compare the privacy preservation level of several
privacy-preserving visual localization (PPVL) methods. Finally, we demonstrate the superiority of
our diffusion-based approach over the feed-forward convolutional privacy attack (FFConv) proposed
by Pittaluga et al. (2019) and provide further ablations.
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Figure 3: Reconstructions from various privacy-preserving visual localization schemes: SIFT Ran-
dom lines (RL SIFT) Speciale et al. (2019b), SIFT permutation (PP SIFT) Pan et al. (2023), Se-
gloc Pietrantoni et al. (2023), and GSFF Pietrantoni et al. (2025a). The ground truth image is
displayed on the top left and the conditioning is displayed on the bottom left. All methods capture
the coarse structure of the image, however segmentations better obfuscate small details/textures.

5.1 INVERSION RESULTS OF LOCAL FEATURES versus SEGMENTATIONS

We start this experimental section with a more general study aimed at evaluating the amount of
information encoded in segmentations and local descriptors by inverting them with our model. Thus,
we evaluate the faithfulness of images reconstructed from semantic segmentations generated by DPT
(Ranftl et al., 2021) (trained on ADE20k (Zhou et al., 2019)), from segmentation masks obtained
with SAM2 Ravi et al. (2024), and compare them to images reconstructed from sparse descriptors
SIFT (Lowe, 1999), SuperPoint (DeTone et al., 2018), and XFeat Potje et al. (2024). Results for
both the 7Scenes dataset and the Cambridge Landmarks dataset are reported in Table 1 and visual
examples are shown in Fig. 2. We average the metrics first over images in the scenes, then report
the average over the scenes in the tables. Full tables with per scene results can be found in the
Supplementary.

Sparse local descriptors encode sufficient information to enable high-fidelity image reconstruc-
tion. This is shown by all metrics in Table 1, demonstrating that even a sparse set of local descriptors
(between 500 and 1000 keypoints per image) retains sufficient data to enable high-fidelity image re-
construction. Low perceptual differences (LPIPS, FID) and high structural similarity (SSIM) suggest
that reconstructions are perceptually and statistically close to original images. Further, high SCR
scores suggest that the VLM model was able to recognize the semantic content in these images well.

Learnt versus handcrafted features. Learned descriptors (XFeat, SuperPoint) encode more in-
formation than handcrafted descriptors such as SIFT. Note that the difference in information is not
necessarily due to descriptor dimensionality (XFeat has 64 channels, SuperPoint 256, and SIFT 128)
but rather due to the training objective and higher representational objective of deep networks for
the learned descriptors compared to the gradient binning in SIFT.

Dense segmentations are harder to invert. Segmentations are inherently ambiguous due to the
wide range of potential visual content that a single mask can encode, i.e., there are multiple visually
dissimilar images that can lead to the same segmentation. This ambiguity is reflected in the Recon-

7
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Conditioning LPIPS ↑ FID ↑ SSIM ↓ RD(SSIM) ↓ RD(LPIPS) ↑ SCR ↓

C
am

br
id

ge

SD
O

bf
. Coord. Perm. (SIFT) 0.35 85 0.41 0.50 0.23 0.71

Random Lines (SIFT) 0.33 81 0.41 0.51 0.22 0.73
Coord. Perm. (SuperPoint) 0.29 66 0.43 0.57 0.17 0.74
Random Lines (SuperPoint) 0.28 67 0.43 0.57 0.17 0.74

Se
g. SegLoc 0.40 92 0.41 0.47 0.32 0.64

GSFF 0.43 98 0.33 0.39 0.36 0.63

7-
Sc

en
es

SD
O

bf
. Coord. Perm. (SIFT) 0.49 187 0.56 0.67 0.33 0.62

Random Lines (SIFT) 0.46 170 0.57 0.66 0.31 0.64
Coord. Perm. (SuperPoint) 0.40 184 0.60 0.72 0.22 0.68
Random Lines (SuperPoint) 0.37 168 0.62 0.72 0.21 0.69

Se
g. SegLoc 0.48 186 0.54 0.56 0.34 0.60

GSFF 0.50 195 0.38 0.42 0.39 0.59

Table 2: Inversion results on the Cambridge Landmarks and 7-Scenes datasets comparing inversion
results conditioned on PPVL representations. Higher FID,LPIPS,RD(LPIPS) as well as lower SSIM,
RD(SSIM),SCR indicates lower quality uncertain reconstruction implying higher degree of privacy.

Figure 4: Comparison of reconstructions between our inversion model (left) and a feed-forward
convolutional inversion model (right) for different level of keypoint sparsity (from left to right:
denser to sparser).

structed Diversity (RD) scores on both datasets: when sampling different initial noises, the inversion
model conditioned on segmentations produces wildly different images for a similar conditioning sig-
nal, leading to high pairwise LPIPS and low pairwise SSIM. In contrast, sparse descriptors produce
stable (up to (slight) variations in color) and accurate outputs (see Fig. 2).

Finer segmentation granularity helps inversion. SAM2, despite having per-image masks whose
concepts do not generalize across images, yields better inversion metrics than DPT which segments
semantic concepts. As shown in Fig. 2, SAM2 masks are much more fine grained than the broad
semantic masks created by DPT, which in turn results in much more discriminative segmentations
proving less obfuscation than broader and less numerous masks.

5.2 INVERSION RESULTS FROM PPVL REPRESENTATIONS

Reducing the encoded information (e.g., fewer descriptors or fewer segmentation masks) inherently
increases privacy, but a minimum level of discriminative information is still necessary for accurate
visual localization. In this section, we thus compare the vulnerability of several PPVL methods and
extract the representations with the hyperparameters that provide the best privacy-discriminativeness
trade-off. We compare four PPVL methods that represent the state-of-the-art in terms of localiza-
tion accuracy: we consider two sparse feature-based obfuscation methods, Random Lines Speciale
et al. (2019a) and Coordinate Permutation Pan et al. (2023), and two segmentation-based methods,
Segloc (Pietrantoni et al., 2023) and GSFF (Pietrantoni et al., 2025a). For the geometric obfuscation
methods, we first de-obfuscate the keypoints using (Chelani et al., 2025), then use the recovered
keypoints in combination with the sparse descriptors to condition the inversion process. The aver-
age numbers of keypoints per image per scene are reported in the supplementary material. For the
segmentation methods, we use the dense segmentation of the query image directly as the inversion
model’s conditioning signal. Results for both the 7Scenes and Cambridge Landmarks datasets are
reported in Table 2, evaluation protocol and metrics are the same as in the last section. In Fig. 3 we
qualitatively compare a few images reconstructed from different PPVL representations.

Segmentation-based PPVL are more robust against privacy attack. The higher vulnerability of
local features observed in Section 5.1 also holds when we evaluate the geometric obfuscation PPVL
representations. For both Random Lines and Coordinate Permutation, perceptual and semantic re-
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SIFT Segloc
FFConv Ours no GC Ours FFConv Ours no GC Ours

CL 0.450 / 0.438 / 164.0 0.460 / 0.308 / 78.3 0.492 / 0.283 / 74.3 0.370 / 0.508 / 229.3 0.395 / 0.407 / 94.8 0.412 / 0.392 / 92.0
SIFT High Sparsity SIFT Medium Sparsity SIFT Low Sparsity

FFConv Ours FFConv Ours FFConv Ours
CL 0.382 / 0.588 / 247.5 0.405 / 0.485 / 130.0 0.427 / 0.502 / 197.5 0.455 / 0.360 / 96.8 0.450 / 0.438 / 164.0 0.492 / 0.283 / 74.3

Table 3: Inversion experiments on Cambridge Landmarks (CL) for SIFT descriptors and SegLoc
segmentations. Comparison of Feed Forward convolutional approach (FFConv) vs. our diffusion
based approach in term of reconstruction metrics (SSIM(↑), LPIPS (↓), FID (↓)).

covery metric in Table 2 indicate that the inversion model is able to recover more image content
from the de-obfuscated keypoints than from SegLoc and GSFF. The variability analysis also clearly
indicates that segmentations result in more uncertainty during the inversion. Finally, GSFF is the
most privacy-preserving visual localization method followed by SegLoc

Robustness of the inversion model to noisy keypoint locations. Even though the keypoint recov-
ery process for permutation and random lines results in 5 to 10 pixels of median error in terms of
recovered point positions (Chelani et al., 2025), this level of noise in the recovered keypoint po-
sitions still allows for the inversion model to reconstruct images with satisfying fidelity which, in
turn, results in a lower degree of privacy for geometric obfuscation methods. Coordinate permuta-
tion generally results in a slightly higher degree of privacy than random lines.

Segmentations privacy-discriminativeness tradeoff. Both GFSS and SegLoc segmentation
classes are learnt in a self-supervised way which inherently optimizes for the discriminativess of
the segmentation (as it is crucial characteristic for the downsteam localization task). This train-
ing regime therefore results in a slightly lower degree of privacy than other segmentations such as
DPT/SAM2. We further observe that GFSS segmentations leak less amount of sensitive information
than SegLoc, which may be caused by the generalizable nature of Segloc in combination with its
higher number of classes compared to the per-scene segmentations of GSFF.

5.3 GLOBAL CONDITIONING AND COMPARISON TO CONVOLUTIONAL INVERSION MODEL

We compare our diffusion-based inversion model to a feed forward convolutional inversion model
(FFConv). FFConv takes as input the same local conditioning as our diffusion-based model and
is trained to reconstruct images with a L2 and perceptual loss. One FFConv model is trained on
SIFT and another one on SegLoc. Results for Cambridge Landmarks are reported in Tab. 3 with
three levels of sparsity for SIFT keypoints (S1: avg. 2k kpts/img, S2: avg. 1k kpts/img, S3: avg.
500kpts/img). The feed-forward approach is able to approximately recover the structure of the
images (as illustrated by the slight drop of SSIM compared to our privacy attack) but mostly fails at
recovering the content and style of the images. The style and content are the most critical aspects
when it comes to privacy assessment, thus making our privacy attack a better tool for evaluating
privacy. Our diffusion approach also shows higher robustness under a higher level of sparsity. Visual
examples are shown in Fig. 4. Ablating the global structure conditioning (No GC) also leads to lower
reconstruction metrics underlining its importance in guiding the denoising process.

6 CONCLUSION

Motivated by the increasing importance of privacy in visual localization, this paper attempted to
compare different privacy-preserving methods within a new common comprehensive evaluation
framework. We introduced a novel diffusion-based privacy attack in which a diffusion model, condi-
tioned locally and globally on privacy-preserving representations, learns to denoise and reconstruct
images. Evaluating the quality of these reconstructed images with perceptual/diversity/semantic
metrics allows us to quantify the amount of information encoded in the associated privacy-preserving
representation. This subsequently acts as a proxy to measure the degree of privacy of the represen-
tation. We showed that segmentations provide a better degree of privacy than geometric obfuscation
methods as the latter rely on deep sparse descriptors encoding sensitive information in fine details.
In contrast, segmentation masks are inherently more ambiguous and encode less information al-
though this can be controlled with the granularity and the degree of semantic content in the concepts
captured by such classes. We hope that this work will open the way for more considerations around
privacy when designing and learning representations for visual localization.
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