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Abstract

Recent research shows that large language models are susceptible to privacy attacks that
infer aspects of the training data. However, it is unclear if simpler generative models, like
topic models, share similar vulnerabilities. In this work, we propose an attack against
topic models that can confidently identify members of the training data in Latent Dirichlet
Allocation. Our results suggest that the privacy risks associated with generative modeling
are not restricted to large neural models. Additionally, to mitigate these vulnerabilities, we
explore differentially private (DP) topic modeling. We propose a framework for private topic
modeling that incorporates DP vocabulary selection as a pre-processing step, and show that
it improves privacy while having limited effects on practical utility.

1 Introduction

Deep learning models’ propensity to memorize training data presents many privacy concerns. Notably, large
language models are particularly susceptible to privacy attacks that exploit memorization (Carlini et al.,
2021b; 2023). In this paper, we aim to investigate whether simpler probabilistic models, such as topic
models, raise similar concerns. Our specific focus lies on examining probabilistic topic models like Latent
Dirichlet Allocation (LDA) (Blei et al., 2003).

Topic modeling is an unsupervised machine learning (ML) method that aims to identify underlying themes
or topics within a corpus. Despite the recent successes of large language models (LLMs), Probabilistic topic
models are still widely used due to their interpretability and straightforward implementation for text analysis.
Furthermore, topic models continue to be developed for a variety of applications and downstream tasks like
document classification, summarization, or generation (Boyd-Graber et al., 2017; Wang et al., 2019).

Researchers apply topic models across a variety of domains where privacy concerns arise. For example, many
studies in the medical domain use topic models to analyze datasets with sensitive attributes (Mustakim et al.,
2021). Additionally, topic models are widely used for various government or national defense applications.
For instance, researchers applied LDA to better understand Twitter activity aimed at discrediting NATO
during the Trident Juncture Exercises in 2018 (Uyheng et al., 2020). To ensure ethical and responsible use
of ML, it is crucial to consider the privacy implications associated with topic modeling.

Probabilistic topic models like LDA serve as a basic Bayesian generative model for text. Neural topic models
and language models can learn complex generative processes for text based on observed patterns in the
training data. However, LDA requires the generative process for documents to be explicitly defined a priori
with far fewer parameters and a Bag-of-Words (BoW) text representation. Investigating LDA’s susceptibility
to privacy attacks provides broader context for the privacy vulnerabilities researched in contemporary ML
models. Additionally, our work informs practitioners who may opt to use simpler topic models under an
unjustified impression that they do not share the same vulnerabilities of LLMs.

To explore the privacy in topic modeling, we conduct membership inference attacks (MIAs) which infer
whether or not a specific document was used to train LDA. We propose an attack based on an LDA-specific
query statistic designed to exploit memorization. This query statistic is integrated into the Likelihood Ratio
Attack (LiRA) framework introduced by Carlini et al. (2021a). We show that our attack can confidently
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infer the membership of documents included in the training data of LDA which indicates that the privacy
risks in generative modeling are not restricted to large neural models.

To mitigate such vulnerabilities, we explore differential privacy (DP) for topic modeling. DP acts a direct
defense against MIAs by providing a statistical guarantee that the output of some data analysis is indistin-
guishable regardless of any one user’s inclusion in the analysis. While several DP topic modeling algorithms
in the literature attempt to protect individual privacy, previous works largely disregard the privacy of the
model’s accompanying vocabulary set (Zhao et al., 2021; Huang & Chen, 2021; Huang et al., 2022; Decarolis
et al., 2020; Park et al., 2018; Wang et al., 2022). Instead, they consider the vocabulary set as given or
public information. However, in practice, the vocabulary set is derived from the training data and can leak
sensitive information. We propose an algorithm for DP topic modeling that provides privacy in both the
vocabulary selection and learning method. By incorporating DP vocabulary selection into the private topic
modeling workflow, our algorithm enhances privacy guarantees and bolsters defenses against the LiRA, while
having minimal impact on practical utility.

2 Background and Notation

To begin, let us establish notation and provide a formal definition of topic models.

Definition 2.1 (Topic Model) For a vocabulary size of V and k topics, a topic model Φ ∈ [0, 1]k×V is a
matrix whose rows sum to 1 representing each topic as a distribution over words.

We let fG(D) denote the process of learning a model parameterized by latent variables in G on a corpus
D with M documents drawn from the underlying data distribution D. The function fG incorporates the
learning algorithm to estimate G’s latent variables and returns the learned topic model Φ. Our definition
assumes that the primary objective of topic modeling is to estimate Φ. While G is also associated with other
latent variables that may define the document generation process, Φ best achieves the goals associated with
topic modeling by summarizing the relevant themes in the corpus.

2.1 Latent Dirichlet Allocation

Blei et al. (2003) define LDA where each document is assumed to contain a mixture of topics. LDA assumes
that each document d ∈ D is represented by a k-dimensional document-topic distribution θ ∼ Dirichlet(α),
and the entire corpus is represented by k V -dimensional topic-word distributions ϕ ∼ Dirichlet(β). Fur-
thermore, it follows a simple bag-of-words approach where each word in a document is generated by first
sampling a topic from the document’s topic distribution and then sampling a word from the chosen topic’s
distribution over words.

The process of estimating Φ presents a Bayesian inference problem typically solved using collapsed Gibbs
sampling or variational inference (Griffiths & Steyvers, 2004; Hoffman et al., 2010). Each entry Φz,w repre-
sents the probability of drawing word w from topic z. The entire topic model Φ represents the likelihood of
each word appearing in each topic, which can be used to estimate the document-topic distribution θ for any
given document.

2.2 Memorization and Privacy

Understanding memorization in machine learning is critical for trustworthy deployment. Neural model’s large
parameter space and learning method introduce training data memorization which increases with model
size or observation duplication (Carlini et al., 2023; Feldman & Zhang, 2020). Memorization introduces
vulnerabilities to attacks on privacy, such as membership inference, attribute inference or data extraction
attacks (Shokri et al., 2017; Song & Raghunathan, 2020; Carlini et al., 2021b).

Schofield et al. (2017) note that document duplication in topic models concentrates the duplicated document’s
topic distribution θ over less topics, and briefly refer to this phenomenon as memorization. Their findings
are consistent with studies on memorization and text duplication in large language models (Carlini et al.,
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2023). In this work, we investigate the memorization and privacy of topic models using membership inference
attacks (MIA).

2.3 Membership Inference Attacks

In an MIA the adversary learns if a specific observation appeared in the model’s training data (Homer et al.,
2008; Shokri et al., 2017). These attacks serve as the foundation for other attacks like data extraction, and
could violate privacy alone if the adversary learns that an individual contributed to a dataset with a sensitive
global attribute (i.e. a dataset containing only patients with disease X).

Prior to attacking ML models, researchers explored exploiting aggregate statistics released in genome-wide
association studies (GWAS) (Homer et al., 2008). Shokri et al. (2017) introduced one of the first MIAs on
ML models. While most MIAs exploit deep learning models, few studies investigate topic models. Huang
et al. (2022) propose three simple MIAs to evaluate their privatized LDA learning algorithm. However,
they evaluate their attacks using precision and recall and fail to show that their attack confidently identifies
members of the training data.

To evaluate an MIA’s ability to confidently infer membership, we examine the attack’s true positive rate
(TPR) at low false positive rates (FPR) (Carlini et al., 2021a). Receiver operator characteristic (ROC) and
area under the curve (AUC) analysis may be useful, but we must be wary of the axes. To accurately capture
the TPR at the low FPRs of interest, we visualize ROC curves using log-scaled axes.

3 MIAs Against Topic Models

In this section, we detail our MIA against topic models based on the LiRA framework, and empirically
demonstrate its effectiveness.

3.1 Threat Model

We consider a threat model where the adversary has black-box access to the learned topic-word distribution
Φ, but not other latent variables captured by G. The adversary can not observe intermediate word counts,
learning method, or hyper-parameters used while learning Φ. We also assume that the adversary has query
access to the underlying data distribution D, which allows them to train shadow models on datasets drawn
from D.

Under the typical query model, we could consider queries as a request to predict a document-topic distribution
θ̂ given a document. However, θ̂d would hold little meaning without access to Φ. Furthermore, a clever
adversary could query many specially selected documents to reconstruct Φ. Therefore, we remove this level
of abstraction and assume that the adversary is given direct access to Φ as the output of our topic model.

3.2 Attack Framework

In the LiRA framework of Carlini et al. (2021a), the adversary performs hypothesis testing to determine
whether or not a target document d was in the training data. Specifically, we consider Tin(d) = {Φ ←
fG(D ∪ {d})|D ∈ D} and Tout(d) = {Φ← fG(D\{d})|D ∈ D} where Tin(d) is the distribution of Φ learned
with d, and Tout(d) is the distribution of Φ learned without d. Given an observed Φobs, we would like to
construct the likelihood ratio test statistic Λ as follows:

Λ(Φ, d) = p(Φobs|Tin(d))
p(Φobs|Tout(d)) , (1)

where p(Φobs|Tx(d)) is the probability density function of Φobs under Tx(d) (Carlini et al., 2021a).

However, the ratio in Equation 1 is intractable because it requires integrating over all Φ with all possible
D with and without d. Instead, the adversary applies a carefully chosen query statistic ζ : (Φ, d) → R on
all Φ to reduce the problem to 1-dimension. The test proceeds by calculating the probability density of
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ζ(Φobs, d) under estimated normal distributions from T̃in(d) = {ζ(Φ, d) | Φ ← fG(D ∪ {d}), D ← D} and
T̃out(d) = {ζ(Φ, d) | Φ← fG(D\{d}), D ← D}:

Λ(Φ, d) = p(ζ(Φobs, d)|N (µin, σ2
in))

p(ζ(Φobs, d)|N (µout, σ2
out))

, (2)

where µ and σ2 are the mean and variance of T̃in(d) and T̃out(d).

In the online LiRA, the adversary must train N shadow topic models with and without d to estimate T̃in(d)
and T̃out(d). Appendix A contains the full online LiRA algorithm. To ease the computational burden of
training N shadow topic models for each target document, Carlini et al. (2021a) propose an offline variant
of the LiRA. In the offline LiRA, the adversary can evaluate any d after learning a collection of N shadow
topic models once by comparing ζ(Φobs, d) to a normal estimated from T̃out(d) with a one-sided hypothesis
test. Appendix B contains the full offline LiRA algorithm.

Designing ζ is crucial to the attack’s success. In supervised learning scenarios, the adversary can directly
query the model and use the loss of an observation to inform the statistic (Carlini et al., 2021a). However,
because topic models are unsupervised learning tasks, the adversary encounters the challenge of identifying
an informative statistic that can be computed efficiently using Φ. Hence, ζ must be carefully tailored to
topic models for the attack to be effective.

3.3 Designing an Effective Query Statistic ζ

Effective model query statistics for the LiRA framework must satisfy the following criteria: the statistic
should increase for d when d is included in the training data (T̃in(d) > T̃out(d)) to enable the offline
LiRA, and the estimated distributions T̃in(d) and T̃out(d) are approximately normal to allow for parametric
modeling. Ideally, the statistic should be related to how the model may memorize the training data to
provide an intuitive interpretation for attack performance.

First, we consider statistics from the simple MIAs on LDA presented by Huang et al. (2022). They propose
three statistics derived from the target document’s estimated topic distribution θ̂: the entropy of θ̂, the
standard deviation of θ̂, and the maximum value in θ̂. The intuition behind their chosen statistics comes
from the observation that a document’s topic distribution tends to concentrate in a few topics when included
(or duplicated) in the training data (Schofield et al., 2017). However, Huang et al. (2022) apply global
thresholds to these statistics instead of using them as query statistics to derive the LiRA test statistic as in
Equation 2.

We propose an attack that leverages the LiRA framework with an improved query statistic to directly exploit
LDAs generative process. Our query statistic is a heuristic for the target document’s log-likelihood under
LDA. To compute this statistic on Φ for a given document d, the adversary maximizes the log-likelihood of
the document over all possible document-topic distributions such that:

ζ(Φ, d) = max
θ

log p(d|θ, Φ)

= max
θ

∑
w∈d

log(
∑

z

θz ∗ Φz,w), (3)

where we optimzie over θ ∈ [0, 1]k s.t.
∑

z θz = 1. In practice, we use SciPy’s out-of-the-box optimization
methods to estimate ζ(Φ, d) (Virtanen et al., 2020).

Compared to the statistics proposed by Huang et al. (2022), our statistic more directly exploits LDAs gener-
ative processes and is based on the observation that a document’s likelihood under the target model increases
when included in the training data. Therefore, using ζ allows us to better reason about memorization in
topic models. We verify our criteria for the proposed statistic in Appendix C. Additionally, Appendix C
contains an evaluation of other candidate statistics where we show that our statistic significantly outperforms
other statistics based on the attacks in Huang et al. (2022).
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Figure 1: Histograms of the statistic ζ(Φ, d) evaluated on different types of documents in TweetRumors
when d ∈ Dtrain (blue) and when d /∈ Dtrain (orange). Outliers are documents that contains many words
that appear infrequently in D and inliers contain many words that appear frequently in D. Long documents
contain more words than a standard deviation away from the mean document length and short documents
contain less. The word count for the inlying document is within one standard deviation of the mean.

The LiRA with statistic ζ directly exploits memorization and per-example hardness. The attack accounts
for the natural differences in ζ on various documents by estimating the likelihood ratio under distributions
based on T̃in(d) and T̃out(d). This enables the LiRA to outperform simple attacks like in Huang et al.
(2022) that use global thresholds on the other query statistics based on θ̂. Therefore, we propose the LiRA
with statistic ζ as a stronger alternative to attack topic models.

3.4 Memorization and Per-Example Hardness

To verify aspects of memorization and per-example hardness for probabilistic topic models, we estimate and
visualize T̃in(d) and T̃out(d) in an experiment similar to Carlini et al. (2021a) and Feldman & Zhang (2020).
Consistent with their findings, we show that outlying and hard-to-fit observations tend to have a large effect
on the learned model when included in the training set for LDA. The histograms in Figure 1 display the
estimated distributions for various types of documents.

When included in the training data for Φ, longer and outlying documents increase ζ(Φ, d). We note that
the word probability Φz,w in certain topics dramatically changes for words that appear infrequently in D or
words that occur many times in d. Together, these factors affect the learned topic model Φ and shift ζ(Φ, d).

The simple fact that the model is more likely to generate specific documents after inclusion in the training
data hints toward memorization. Because the generative process for documents in LDA is extremely simple
compared to language models, they do not learn verbatim sequences of words. Instead, topic model’s ability
to “memorize" the training data is due to learning based on word co-occurrences.

Long documents are inherently harder to fit than shorter documents. Because the log-likelihood for a
document d is the sum of independent log-probabilities for generating each word in d, the magnitude of
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ζ(Φ, d) is naturally higher for longer documents. Additionally, the model may struggle to capture coherent
topic structures for longer documents because they tend to contain words from a wider range of topics.

The LiRA turns our observations on memorization and per-example hardness into a MIA. When the words
in a document become more common in the training set, Φ will reflect the new word co-occurrences in a few
specific topics which tends to increase ζ(Φ, d). This effect is amplified when the document contains many
rare words from the vocabulary set. Therefore, the attacker can easily differentiate between T̃in(d) and
T̃out(d) for long and outlying documents.

3.5 Attack Evaluation Set-Up

We evaluate our attack against three datasets: TweetRumors, 20Newsgroup and NIPS1. We apply standard
text pre-processing procedures for each dataset: removal of all non-alphabetic characters, tokenization, re-
moval of stop words, removal of tokens longer than 15 characters, removal of tokens shorter than 3 characters,
and lemmentization.2 Appendix D provides the basic data profile for each dataset after pre-processing.

To initiate the attack, we randomly sample half of the data to learn and release Φobs. Next, we train N
shadow topic models by repeatedly sampling half of the data to simulate sampling from D. Like in Carlini
et al. (2021a), this setup creates some overlap between shadow model training data and target model training
data which presents a strong assumption made to accommodate the smaller size of our datasets. We do not
expect performance to significantly decrease using disjoint datasets as observed by Carlini et al. (2021a).

We compare our LiRA against each of the attacks presented by Huang et al. (2022). To replicate their
attacks, we randomly sample half of the dataset to learn Φobs. Using Φobs, we estimate each documents’
topic-distribution θ̂ and compute the maximum posterior, standard deviation, and entropy on θ̂. We directly
threshold the each of these statistics to evaluate membership for every document in the dataset.

For each experiment, we learn Φ using scikit-learn’s implementation of LDA with default learning param-
eters.3 For TweetSet and 20Newsgroup we set the number of topics k to 5 and 20 respectively based on
the data’s known distribution across topics: TweetSet contains tweets collected on 5 major news events and
20Newsgroup contains newsgroup documents across 20 different newsgroups. For NIPS, we vary k for exper-
imentation purposes. In practice, k is known by the attacker who can observe the dimensions of Φ. We learn
N = 128 shadow models, replicate each experiment 10 times and report our results across all iterations.

We interpret Λ as a predicted membership score where a higher value indicates that the document is more
likely to be a member of the training data. We empirically estimate our attacks’ performance by evaluating
the TPR at all FPRs and plot the attack’s ROC curve on log-scaled axes.

3.6 Attack Evaluation Results

First, we compare our online attack performance against the attacks in Huang et al. (2022) at an FPR of
0.1% in Table 1. Figure 2 displays the ROC curves for the online and offline variant of our attacks. Table 1
and Figure 2 demonstrate that our LiRA outperforms each of attacks in Huang et al. (2022).

Because the LiRA considers the likelihood-ratio of d, it accounts for per-example hardness and dominates the
attacks by Huang et al. (2022) at all FPR’s. As noted by Carlini et al. (2021a), attacks that directly apply
global thresholds do not consider document level differences on the learned model and fail to confidently
identify members of the training data. Stronger attacks, like our LiRA, should be used to empirically evaluate
the privacy associated with topic models.

To understand how the number of topics in Φ influence attack performance, we vary the number of topics
k on NIPS and attack the resulting model. Table 2 shows the the attack performance as we vary k. As k
increases, we see that TPR increases at an FPR of 0.1%. Additionally, we note minor differences between
online and offline attack performance.

1The evaluation code and source for each dataset is included in the Availability section (5).
2Tokenization, stop words, and lemmatization implemented via python package nltk https://www.nltk.org
3https://scikit-learn.org/
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Table 1: Attack TPR at 0.1% FPR with 128 Shadow Models

Dataset Our Attack Huang et al. Huang et al. (2022)
Online LiRA Maximum Posterior Standard Deviation Entropy

TweetRumors 12.8% 0.19% 0.19% 0.18%
NIPS (k = 10) 44.9% 1.69% 1.69% 1.31%
20Newsgroup 21.1% 0.57% 0.57% 0.53%

Figure 2: Online and Offline ROC Attack Comparison on Each Dataset (128 Shadow Models, NIPS k=10)

Table 2: Attack TPR at FPR of 0.1% While Varying k on NIPS

Number of Topics k Online LiRA Offline LiRA
5 31.8% 31.8%
10 44.9% 43.6%
15 60.5% 56.0%
20 67.9% 63.2%
25 72.5% 70.2%
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The number of parameters in Φ grows linearly by the length of the vocabulary set as k increases. With
more topics and more parameters, document’s word co-occurrence structure is typically better represented
in the document’s learned topic distribution. Consequently, increasing k enhances the impact of including
the document in the training data on the likelihood of a document resulting in better attack performance.

Overall, our findings demonstrate that despite their simple architecture, topic models exhibit behavior that
resembles memorization and are vulnerable to strong MIAs.

4 Private Topic Modeling

Designing private ML solutions is an active field of research. In topic modeling, the literature is largely
focused on differential privacy (DP). DP acts as a direct defense against privacy attacks like MIAs by limiting
the effect one data point can have on the learned model. Furthermore, DP provides a clear, quantifiable
method for reasoning about privacy loss.

4.1 Differential Privacy

DP provides strong theoretical guarantees of individual-level privacy by requiring the output of some data
analysis to be indistinguishable (with respect to a small multiplicity factor) between any two adjacent
datasets x and x′.

Definition 4.1 (Differential Privacy (Dwork et al., 2006b;a)) Let M : Xn → R be a randomized
algorithm. For any ε ≥ 0 and δ ∈ [0, 1], we say that M is (ε, δ)-differentially private if for all adjacent
databases x, x′ ∈ Xn and every S ⊆ R

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

The notion of adjacency is critical. For any text dataset, we say that two corpora D and D′ are author-level
adjacency if they differ by one author’s documents. This notion enforces DPs promise of individual level
privacy by considering adjacency at the user level.

If two corpora D and D′ differ by one document, then adjacency is at the document-level. This relaxed notion
of adjacency can satisfy author-level adjacency if we assume that each document has a unique author. For
corpora the most relaxed notion of adjacency is word-level adjacency. Two corpora D and D′ are word-level
adjacent if they differ by one word in one document.

To achieve differential privacy we must add noise whose magnitude is scaled to the worst-case sensitivity of
the target statistics from all adjacent datasets. Researchers have explored word-level adjacency to control
sensitivity, but this approach offers weak privacy guarantees. For instance, most DP collapsed Gibbs sampling
algorithms for learning LDA rely on perturbing word-count statistics by adding noise scaled to word-level
adjacency (Zhao et al., 2021; Huang & Chen, 2021; Huang et al., 2022).

There are a variety of other algorithms for DP topic modeling: Park et al. (2018) propose DP stochastic
variational inference to learn LDA, Decarolis et al. (2020) use a privatized spectral algorithm to learn LDA,
and Wang et al. (2022) satisfy DP by adding noise directly to Φ. These algorithms satisfy various notions
of DP and use differing notions of adjacency. Table 5 in Appendix E summarizes each DP topic modeling
implementation.

While each DP topic modeling algorithm has their advantages and disadvantages, there are some common
themes across implementations. First, the iterative nature of learning algorithms for LDA posses a difficult
composition issue when managing the privacy loss. Next, many implementations use relaxed notions of
adjacency to control sensitivity. Finally, none of the existing methods address the privacy concerns with
releasing the vocabulary set corresponding to Φ.
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4.2 DP Vocabulary Selection

Releasing the topic-word distribution Φ without ensuring the privacy of the accompanying vocabulary set
can lead to privacy violations because the vocabulary set is derived directly from the data. Topic models
with comprehensive vocabulary sets tend to include many infrequently used words from the corpus which
makes them more vulnerable to MIAs (as shown in section 3.4). Furthermore, even if the values in Φ are
private, the overall release of the topic-word distribution can not satisfy DP because the vocabulary set
accompanied by Φ is not private.

To illustrate this point, consider a scenario where we have a corpus D with a single document d. If we apply
DP topic modeling to release Φ without changing the vocabulary set, then we release all of the words in d.
This clearly compromises the privacy of the document in D. If we chose not to release the vocabulary set,
Φ loses practical interpretability. To address this issue, it is necessary to explore methods for differentially
private vocabulary selection.

DP vocabulary selection can be formalized as the DP Set-Union (DPSU) (Gopi et al., 2020). If we assume
each author i contributes a subset Wi ⊆ U of terms in their documents, DPSU seeks to design a (ε, δ)-DP
algorithm to release a vocabulary set S ⊆ ∪iWi such that the size of S is as large as possible. Researchers
first approached this problem with the intent to release the approximate counts of as many items as possible
in ∪iWi (Korolova et al., 2009; Wilson et al., 2019). Their algorithms guarantee privacy by constructing a
histogram of ∪iWi, adding noise to each word frequency in the histogram, and releasing all word frequencies
that fall above a certain threshold. These implementations upper-bound the sensitivity based on the maxi-
mum the number of words contributed by all users (∆0 = maxi |Wi|) to account for users contributing more
than one word. However, most users contribute significantly less than ∆0 so this method wastes sensitivity.
Gopi et al. (2020) propose algorithms that build weighted histograms with update policies that help control
sensitivity. Intuitively, the update policy stops increasing the weights of words in the histogram after they
reach some cutoff Γ which is set using the parameter α. Carvalho et al. (2022) propose an improved algo-
rithm for DPSU which is well fit for vocabulary selection because it allows for one user to contribute the
same term multiple times.

4.3 Fully Differentially Private Topic Modeling

We propose a high-level procedure for fully DP topic modeling (FDPTM), in Algorithm 1. FDPTM composes
the privately selected vocabulary set S and the private topic-word distribution Φ. Theorem 4.1 states the
privacy guarantees associated with FDPTM. The proof is deferred to Appendix F.

Algorithm 1 Fully Differentially Private Topic Modeling (FDPTM)
1: Require: Corpus D, DP vocabulary selection algorithm M1 and DP topic modeling algorithm M2.
2: Apply standard pre-processing and tokenization: Dpre ← PRE(D)
3: Apply DP vocabulary selection to corpus: S ←M1(Dpre)
4: Remove all words w ∈ Dpre if w /∈ S: Dsan ← SAN(Dpre, S)
5: Learn Φ using DP topic modeling: Φ←M2(Dsan)
6: Release: Topic-word distribution Φ and corresponding vocabulary set S

Theorem 4.1 (Privacy Guarantee of FDPTM) If M1 for selecting the vocabulary set satisfies (ε1, δ1)-
DP and M2 for topic modeling satisfies (ε2, δ2)-DP, then the overall release of Φ satisfies (ε1 +ε2, δ1 +δ2)-DP.

Implementing FDPTM requires a few key considerations. First, the process depends on carefully tuning the
privacy parameters and other parameters within M1 and M2. Second, the data curator must ensure that
M1 and M2 satisfy the same notion of differential privacy and adjacency.

Overall, FDPTM is a modular framework for releasing meaningful topic-word distributions. Although our
evaluations focus on LDA, other topic models for specific uses can easily fit into the proposed procedure.
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4.4 FDPTM Evaluation Set-Up

We empirically evaluate our FDPTM using the TweetRumors dataset with k = 5. We ensure author-level
privacy via document-level adjacency under the assumption that each document has a unique author. This
assumption necessary for controlling sensitivity and is common to most DP NLP solutions. We accomplish
this by using the DPSU solution proposed by Carvalho et al. (2022) for vocabulary selection and DP LDA
learning algorithm by Zhu et al. (2016) because they satisfy the same notion of privacy. For DPSU, we fix
the privacy parameter δ = 10−5 and set the parameter α = 3 to control the cut-off value Γ like in Carvalho
et al. (2022).

To evaluate utility, we first vary the privacy loss parameter for DPSU and analyze utility when LDA is
non-private. We study the interaction between DP vocabulary selection and DP LDA by fix the privacy loss
parameter for one mechanism and vary the privacy loss parameter for the other mechanism. Specifically, we
first fix ε2 = 3 for DP LDA and vary ε1 for DPSU. Then, we fix ε1 = 3 and vary ε2. We vary our privacy
loss parameters in intervals across common ε choices for DP ML solutions. Typically, ε > 1 provides very
weak theoretical privacy guarantees, but tend to be effective for providing empirical privacy.

We evaluate the utility of the FDPTM using topic coherence (Mimno et al., 2011), which can be a useful
proxy for measuring the interpretability of topics. Topic coherence for a topic t is defined as

coherence(t; V (t)) =
M∑

m=2

m−1∑
l=1

log
D(v(t)

m , v
(t)
l ) + 1

D(v(t)
l )

, (4)

where D(v) is the document frequency of word v (i.e. the number of documents where word v occurs),
D(v, v′) is the co-document frequency of words v and v′ (i.e. the number of documents where v and v′ both
occur), and V (t) = {v(t)

1 , ..., v
(t)
M } is list of the M most probable words in topic t. A high topic coherence

score suggests that the top M terms have higher co-document frequencies which makes the topic easier to
understand because the terms are more semantically similar or coherent. In our analysis, we select each
topic’s top M = 10 words and report the average across each topic.

We also test FDPTM against the online LiRA to empirically evaluate the privacy of FDPTM. For each
attack we learn 64 shadow models. Like before, we conduct attacks while varying ε1 ∈ {1, 5, 10} and fixing
ε2 = 5. Then, we fix ε1 = 5 and vary ε2. We repeat each experiment 10 times and report the results across
each iteration.

4.5 FDPTM Evaluation Results

Figure 3 displays topic coherence as we increase ε1. Figure 4 displays topic coherence as we vary either ε
and hold the other constant. We include the average vocabulary size as we increase ε1 in Appendix G.

Topic coherence remains stable after ε = 3, suggesting that increasing the privacy loss for DPSU may not
affect topic coherence after a certain point. When comparing coherence while increasing ε2, we see that
ε1 decreases coherence regardless of ε2. In Figure 4, coherence plateaus around ε1 = 3 while increasing ε2
continues to boost coherence. Consequently, increasing ε1 yields diminishing utility returns faster.

Figure 5 presents the ROC curves that explore the how the interaction between DP vocabulary selection and
DP LDA affect attack performance. We gain some empirical privacy under FDPTM by decreasing LiRA
performance at all FPRs. Generally, we see that attack performance decreases similarly as we decrease
either privacy loss parameter. Furthermore, we gain empirical privacy by decreasing LiRA performance at
all FPRs.

DPSU decreases attack performance because we shrink the size of the vocabulary set, limiting the number
of parameters in Φ, and forcing each documents’ topic distribution to look more like other documents’ topic
distributions. The nature of learning on word co-occurrences forces Φ to reflect identifiable changes when
infrequently used words suddenly become more common to the training data. By removing these words with
DPSU, we limit the ability for outliers to have large effects on the topic model.

10
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Figure 3: Topic coherence as ε1 increases and LDA is not private. The non-private baseline for topic
coherence is very small compared to the figure (≈ −1117). The error bars represent one standard deviation
from the mean topic coherence.

Figure 4: Topic Coherence as ε Increases. The blue line shows the the results while varying ε1 for DPSU
and holding ε2 = 3. Orange displays results for varying ε2 for DP LDA while holding ε1 = 3.

Figure 5: Attack ROCs while varying privacy loss parameters for DPSU and DP LDA. On the right-hand
side, we fix ε2 = 5 for DP LDA and vary ε1 ∈ {1, 5, 10} for DPSU. On the left-hand side, we fix ε1 and vary
ε2 at the same intervals. We provide the non-private baseline in red for reference.

11
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Our results indicate that dedicating most of the privacy budget to DP LDA, rather than DPSU, increases
utility at the same privacy level. Intuitively, we can inject less noise into DP LDA, and more into the
vocabulary selection algorithm (ε1 < ε2) to increase model interpretability at the same global privacy loss
(ε1 + ε2) and similar empirical privacy against the LiRA. This approach allows us balance model privacy
and utility in topic modeling.

5 Conclusions

In our work, we show that topic models exhibit aspects of memorization and successfully implement strong
MIAs against them. Although probabilistic topic models do not memorize verbatim sequences of text like
language models, they do memorize word frequency and occurrence. In some instances, knowledge of the
frequency of certain terms in a document constitutes a privacy violation regardless of their word ordering.

To combat MIAs and memorization, we propose a modular framework for implementing better private topic
models using differential privacy. Overall, the addition of DP vocabulary selection to the DP topic modeling
work-flow is important for guaranteeing private, interpretable releases of Φ. Not only does DP vocabulary
selection allow for fully DP releases of Φ, it also provides an effective defense against MIAs.

We highlight the greater need for continued development in the field of privacy-preserving ML. If simple
probabilistic topics models for text memorize their training data, then it’s only inevitable that large language
models and neural topic models memorize their training data. As ML models continue to become more
sophisticated and widely used, privacy concerns become increasingly relevant.

Limitations

While our results provide insights on topic models’ privacy, there are a few limitations of our methodology
and experiments. First, because we rely on a BoW document representation, we only identify that documents
with certain word frequencies are part of the training set. In practice, this may cause the attack to realize
more false positives. The datasets used in our attack evaluations did not include documents with overlapping
word combinations, and most reasonable documents contain very few sensible alternative word combinations
which eases the implications of this limitation.

Additionally, our utility assessments for FDPTM are constrained by the limitations of automated topic
evaluation methods. While different measures give us different insights into the topic model, the best
evaluations are typically based on human inspection (Hoyle et al., 2021). Other utility metrics that evaluate
topic models with metrics that estimate model fit, like perplexity, tend to be negatively correlated with
human-measured topic interpretability (Chang et al., 2009). Therefore, we use topic coherence because it is
associated with the human interpretability of topics.

Finally, while our results are convincing, we conduct them with the same learning process (fG based on
LDA via Gibbs-sampling) and hyperparameters for the the shadow and target models with access to the
entire topic-word distribution Φ. In many practical use cases, researchers may not use LDA or release all
of Φ. A mismatch between shadow and topic models fG may impact attack accuracy, but we suspect to a
lesser extent than in neural models. Additionally, we believe that clever adversaries can reconstruct Φ given
partial or alternative releases of Φ. Determining the affect that different fG and releases of Φ have on attack
performance is left for future research.

Ethics Statement

The privacy attacks presented in this paper are for research purposes only. The methodology and code should
be used responsibly with respect for privacy considerations. Each of the datasets used in our experiments
are open access and do not pose a direct threat to the privacy of the users who contributed to them.
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Availability

The URLs for the datasets TweetRumors, 20Newsgroup and NIPS are https://www.zubiaga.org/
datasets, http://qwone.com/~jason/20Newsgroups and https://archive.ics.uci.edu/ml/datasets/
bag+of+words respectively. The code for the attack simulations is available at https://anonymous.4open.
science/r/topic_model_attacks-AD34.
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A The Online LiRA

The LiRA on topic models follows directly from the LiRA on supervised ML models proposed by Carlini
et al. (2021a). However, the attack on topic models differs because we use statistic ζ queried on Φ. Algorithm
2 contains the online LiRA.
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Algorithm 2 Online LiRA on Topic Models
1: Inputs: Target topic-word distribution: Φobs, target document: d, shadow model iterations: N , statistic

function: ζ, data distribution: D, and topic model fG .
2: Returns Likelihood Ratio Test Statistic: Λ
3: T̃in = {} ▷ Initialize empty sets
4: T̃out = {}
5: for N times do
6: D ← D ▷ Sample auxiliary data from distribution
7: Φin ← fG(D ∪ {d}) ▷ Train shadow model with target document
8: T̃in ← T̃in ∪ {ζ(Φin, d)}
9: Φout ← fG(D\{d}) ▷ Train shadow model without target document

10: T̃out ← T̃out ∪ {ζ(Φout, d)}
11: end for
12: Nin ← N (mean(T̃in), var(T̃in)) ▷ Estimate normals
13: Nout ← N (mean(T̃out), var(T̃out))
14: Λ← p(ζ(Φobs,d) | Nin)

p(ζ(Φobs,d) | Nout) ▷ Calculate test statistic
15: Return Λ

B The Offline LiRA

The offline LiRA on topic models also follows directly from the offline LiRA on supervised ML models
proposed by Carlini et al. (2021a). The offline variant benefits over the online variant because lines 3-9 can
be executed regardless of the target document d, and lines 11-17 can be repeated for any d after estimating
Tout once. Additionally, note that the test statistic Λ changes in line 15. Algorithm 3 contains the offline
LiRA.

Algorithm 3 Offline LiRA on Topic Models
1: Inputs: Target topic-word distribution: Φobs, target document: d, shadow model iterations: N , statistic

function: ζ, data distribution: D, and topic model fG .
2: Returns Likelihood Ratio Test Statistic: Λ
3: Tout = {} ▷ Initialize empty set
4: for N times do
5: D ← D ▷ Sample auxiliary data from distribution
6: Φout ← fG(D) ▷ Train shadow models without target document
7: Tout ← Tout ∪ {Φout}
8: end for
9: T̃out = {} ▷ Calculate Statistic Across Tout

10: for Φout in Tout = {} do
11: T̃out ← T̃out ∪ {ζ(Φout, d)}
12: end for
13: Nout ← N (mean(T̃out), var(T̃out)) ▷ Calculate Test Statistic
14: Λ← 1− Pr[Nout > ζ(Φobs, d)]
15: Return Λ

C Evaluating Candidate Query Statistics

In this section, we provide analysis for the proposed statistic ζ w.r.t. the two query statistic requirements
detailed in 3.3:

1. the statistic should increase for d when d is included in the training data (T̃in(d) > T̃out(d)) to
enable the offline LiRA.
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Figure 6: Boxplot of KL Divergences between Nin(d) and Nin(d) evaluated on 3000 documents.

2. The estimated distributions T̃in(d) and T̃out(d) are approximately normal to allow for parametric
modeling.

Additionally, we compare the proposed statistic to alternative statistics based on the attacks in Huang et al.
(2022) and show that our proposed statistic outperforms the alternatives.

Huang et al. (2022) propose three statistics: the entropy of θ̂, the standard deviation of θ̂, and the maximum
value in θ̂ where θ̂ is a document’s estimated topic distribution Huang et al. (2022). Each statistic requires
estimating the document’s topic distribution θ̂. They estimate θ̂ using sampling techniques, but for these
experiments, we choose to estimate θ̂ by performing the optimization from Eq. 3 for increased efficiency and
consistency with the proposed statistic in Eq. 3.

To tailor each statistic to fit within the LiRA framework, we make some minor modifications to the statistics
proposed by Huang et al. (2022). Because entropy naturally decreases when the document is included in
the training data, we use the negative entropy to satisfy the first requirement. Additionally, because the
maximum value in θ̂ is bound between [0,1] and tends to concentrate toward 1 for outliers, we apply the logit
transformation to promote adherence to the normality requirement, as illustrated by Carlini et al. (2021a).

To evaluate the query statistic selection criteria, we fit an online attack using N = 256 shadow models
using each of our candidate statistics. We sample 1000 documents from each dataset to extract T̃in(d)
and T̃out(d) for each candidate statistic. We assess the first requirement by evaluating the KL-divergence
between two normal distributions estimated from T̃in(d) and T̃out(d). A positive KL-divergence between
Nin(d) = N (mean(T̃in(d)), var(T̃in(d))) and Nout(d) = N (mean(T̃out(d)), var(T̃out(d))) indicates that the
statistic is greater when d is included in the training data. Figure 6 displays a boxplot for the KL divergences
for each statistic. We note that all KL-divergences in Figure 6 are greater than 0 which indicates that T̃in(d)
> T̃out(d).

We evaluate the normality requirement by performing a Shipiro-Wilk test for each T̃in(d) and T̃out(d) with
control for the False Discovery Rate (FDR) using the Benjamini-Hochberg Procedure (Shapiro & Wilk, 1965;
Benjamini & Hochberg, 1995). The null hypothesis is that the data is drawn from a normal distribution.
Table 3 contains the the number of tests rejected with FDR control for each statistic at a significance level
of .05. Our analysis indicates that the distributions of T̃in/out(d) for our statistic tend to be normal more
often than the alternatives. We can expect to encounter fewer rejections as we increase N (i.e. increase the
sample size of T̃in/out(d)).

Finally, in Figure 7, we evaluate the attack performance of all statistics across each dataset. We show that
the LiRA with our proposed statistic dominates the other candidate statistics at all FPRs. While each of the
candidate statistics satisfies requirement 1, the long-whiskers and outliers associated with the logit maximum
posterior statistic in Figure 6 suggest that it would outperform other statistics because the model can more
easily differentiate between Nin(d) and Nout(d). However, the statistics’ lack of normality seems to hinder
performance.
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Table 3: Shapiro-Wilk Tests with FDR Control for 6000 Tests on Each Statistic (α = .05)

Statistic Number of Rejections Rejection %
Our Statistic 1335 22.25%
Negative Entropy 3584 59.73%
Logit Max Posterior 5191 86.52%
Standard Deviation 4621 77.02%

Figure 7: Online Attack Comparison Across Statistics on Each Dataset (256 Shadow Models, NIPS k=10)

D Data Profile

Table 4 contains the data profile for each dataset after pre-processing.

E Existing DP Topic Models

Table 5 summarizes centralized DP topic modeling algorithms available in the literature. The learning
methods included are Collapesed Gibbs Sampling (CGS), variational inference (VI), spectral algorithm (SA),
and Model Agnostic or Post-Hoc (PH).

F Proof of Theorem 4.1

Proof (sketch). First, let M1 be a (ε1, δ1)-DP vocabulary selection algorithm that returns a private vocabu-
lary set S, and M2 be a (ε2, δ2)-DP topic modeling algorithm that returns a private topic-word distribution
Φ. Now, let PRE be a function that takes a corpus D and applies standard pre-processing procedures, and
SAN be a function that takes a corpus D and a vocabulary set S and removes all words w ∈ D if w /∈ S.
Finally, let Mx represent the FDPTM algorithm such that for a corpus D

Mx = (M1(PRE(D)),
M2(SAN(PRE(D), M1(PRE(D))))).

Table 4: Dataset Profile After Pre-Processing

Dataset Number of Documents M Average Document Length Vocabulary Size V

TweetRumors 5,698 9 5,942
NIPS 1,494 893 10,346
20Newsgroup 18,037 84 74,781
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Table 5: A Brief Summary of the Existing Literature on DP Topic Modeling

Authors Notion of DP Notion of Adjacency Learning Method Other Technical Details
Zhu et al. (2016) Zhu et al. (2016) ε-DP document-level CGS
Zhao et al. (2021) Zhao et al. (2021) ε-DP word-level CGS
Huang and Chen (2021) Huang & Chen (2021) (ε, δ)-DP word-level CGS sub-sampling
Huang et al. (2022) Huang et al. (2022) Rényi-DP word-level CGS
Park et al. (2018) Park et al. (2018) (ε, δ)-DP document-level VI moments accountant and sub-sampling
Decarolis et al. (2020) Decarolis et al. (2020) Rényi-DP document-level SA local sensitivity from propose-test-release
Wang et al. (2022) Wang et al. (2022) Rényi-DP author-level PH pain-free smooth sensitivity

Figure 8: The length of the vocabulary set as ε1 for DPSU increases. The original vocabulary size is 5,942.

Definition F.1 (k-Stability (Thakurta & Smith, 2013)) A function f : U∗ → R is k-stable on input
D if adding or removing any k elements from D does not change the value of f , that is, f(D) = f(D′) for
all D′ such that D△D′ ≤ k. We say f is stable on D if it is (at least) 1-stable on D, and unstable otherwise.

Lemma F.1 (Composition with Stable Functions (Thakurta & Smith, 2013)) Let f be a stable
function, and let M be an (ε, δ)-DP algorithm. Then, their composition M(f(x)) satisfies (ε, δ)-DP.

The functions PRE and SAN are stable algorithms because each document is processed independently of the
others based on a standard set of rules. Simply, adding or removing a document from the corpus does not
affect the functions behavior on other documents,. Therefore, PRE and SAN are stable functions.

Via our definition of M1, and using the fact that PRE is a stable function, then the first term in Mx,
M1(PRE(D)), satisfies (ε1, δ1)-DP. The second term of Mx applies M2 which directly depends on M1 and
the stable functions PRE and SAN. Therefore, via adaptive composition, Mx is (ε1 + ε2, δ1 + δ2)-DP (Dwork
et al., 2006a). □

G Vocabulary Size as ε1 Increases

Figure 8 contains a plot for the size of the vocabulary set as the privacy loss parameter ε1 for DPSU increases.
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