
Published as a conference paper at ICLR 2023

DECISION TRANSFORMER UNDER RANDOM
FRAME DROPPING

Kaizhe Hu∗, Ray Chen Zheng∗
Tsinghua University, Shanghai Qi Zhi Institute
hkz22@mails.tsinghua.edu.cn

Yang Gao, Huazhe Xu
Tsinghua Universtiy, Shanghai AI Lab, Shanghai Qi Zhi Institute

ABSTRACT

Controlling agents remotely with deep reinforcement learning (DRL) in the real
world is yet to come. One crucial stepping stone is to devise RL algorithms that
are robust in the face of dropped information from corrupted communication or
malfunctioning sensors. Typical RL methods usually require considerable online
interaction data that are costly and unsafe to collect in the real world. Further-
more, when applying to the frame dropping scenarios, they perform unsatisfacto-
rily even with moderate drop rates. To address these issues, we propose Decision
Transformer under Random Frame Dropping (DeFog), an offline RL algorithm
that enables agents to act robustly in frame dropping scenarios without online
interaction. DeFog first randomly masks out data in the offline datasets and ex-
plicitly adds the time span of frame dropping as inputs. After that, a finetuning
stage on the same offline dataset with a higher mask rate would further boost the
performance. Empirical results show that DeFog outperforms strong baselines
under severe frame drop rates like 90%, while maintaining similar returns under
non-frame-dropping conditions in the regular MuJoCo control benchmarks and
the Atari environments. Our approach offers a robust and deployable solution for
controlling agents in real-world environments with limited or unreliable data.

1 INTRODUCTION

Imagine you are piloting a drone on a mission to survey a remote forest. Suddenly, the images
transmitted from the drone become heavily delayed or even disappear temporarily due to poor com-
munication. An experienced pilot would use their skill to stabilize the drone based on the last
received frame until communication is restored.

0.0 0.3 0.6 0.9
Frame Drop Rate

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e 

Re
tu

rn

DeFog 
(Ours)
Online 
RL Agent 
(TD3)

Figure 1: RL performance in the
Hopper-v3 environment under different
frame drop rates.

In this paper, we aim to empower deep reinforcement
learning (RL) algorithms with such abilities to control re-
mote agents. In many real world control tasks, the deci-
sion makers are separate from the action executor (Saha
& Dasgupta, 2018), which introduce the risk of packet
loss and delay during network communication. Further-
more, sensors such as cameras and IMUs are sometimes
prone to temporary malfunctioning, or limited by hard-
ware restrictions, thus causing the observation to be un-
available at certain timesteps (Dulac-Arnold et al., 2021).
These examples lead to the core challenge of devising the
desired algorithm: controlling the agents against frame
dropping, i.e., a temporary loss of observations as well as
other information.

∗equal contribution

1



Published as a conference paper at ICLR 2023

Figure 1 illustrates how a regular RL algorithm performs under different frame drop rates. Our
findings indicate that RL agents trained in environments without frame dropping struggle to adapt
to scenarios with high frame drop rates, highlighting the severity of this issue and the need to find a
solution for it.

This problem gradually attracts more attention recently: Nath et al. (2021) adapt vanilla DQN al-
gorithm to a randomly delayed markov decision process; Bouteiller et al. (2020) propose a method
that modifies the classic Soft Actor-Critic algorithm (Haarnoja et al., 2018) to handle observation
and action delay scenarios. In contrast to the frame-delay setting in previous works, we try to solve
a more challenging problem where the frames are permanently lost. Moreover, previous methods
usually learn in an online frame dropping environment, which can be unsafe and costly.

In this paper, we introduce Decision Transformer under Random Frame Dropping (DeFog), an of-
fline reinforcement learning algorithm that is robust to frame drops. The algorithm uses a Decision
Transformer architecture (Chen et al., 2021) to learn from randomly masked offline datasets, and
includes an additional input that represents the duration of frame dropping. In continuous control
tasks, DeFog can be further improved by finetuning its parameters, with the backbone of the Deci-
sion Transformer held fixed.

We evaluate our method on continuous and discrete control tasks in MuJoCo and Atari game envi-
ronments. In these environments, observations are dropped randomly before being sent to the agent.
Empirical results show that DeFog significantly outperforms various baselines under frame dropping
conditions, while maintaining performance that are comparable to the other offline RL methods in
regular non-frame-dropping environments.

2 RELATED WORKS

2.1 CONTROL UNDER FRAME DROPPING AND DELAY

The loss or delay of observation and control is an essential problem in remote control tasks (Balemi
& Brunner, 1992; Funda & Paul, 1991). In recent years, with the rise of cloud-edge computing
systems, this problem has gained even more attention in various applications such as intelligent
connected vehicles (Li et al., 2018) and UAV swarms (Bekkouche et al., 2018).

When reinforcement learning is applied to such remote control tasks, a robust RL algorithm is
desired. Katsikopoulos & Engelbrecht (2003) first propose the formulation of the Random Delayed
Markov Decision Process. Along with the new formulation, a method is proposed to augment the
observation space with the past actions. However, previous methods (Walsh et al., 2009; Schuitema
et al., 2010) usually stack the delayed observations together, which leads to an expanded observation
space and requires a fixed delay duration as a hard threshold.

Hester & Stone (2013) propose predicting delayed states with a random forest model, while
Bouteiller et al. (2020) tackle random observation and action delays in a model-free manner by rela-
belling the past actions with the current policy to mitigate the off-policy problem. Nath et al. (2021)
build upon the Deep Q-Network (DQN) and propose a state augmentation approach to learn an agent
that can handle frame drops. However, these methods typically assume a maximum delay span and
are trained in online settings. Recently, Imai et al. (2021) train a vision-guided quadrupedal robot
to navigate in the wild against random observation delay by leveraging delay randomization. Our
work shares the same intuition of the train-time frame masking approach, but we utilize a Decision
Transformer backbone with a novel frame drop interval embedding and a performance-improving
finetuning technique.

2.2 TRANSFORMERS IN REINFORCEMENT LEARNING

Researchers recently formulate the decision making procedure in offline reinforcement learning as
a sequence modeling problem using transformer models (Chen et al., 2021; Janner et al., 2021). In
contrast to the policy gradient and temporal difference methods, these works advocate the paradigm
of treating reinforcement learning as a supervised learning problem (Schmidhuber, 2019), directly
predicting actions from the observation sequence and the task specification. The Decision Trans-
former model (Chen et al., 2021) takes the encoded reward-to-go, state, and action sequence as

2



Published as a conference paper at ICLR 2023

input to predict the action for the next step, while the Trajectory Transformer (Janner et al., 2021)
first discretizes each dimension of the input sequence, maps them to tokens, then predicts the fol-
lowing action’s tokens with a beam search algorithm.

The concurrent occurrence of these works attracted much attention in the RL community for further
improvement upon the transformers. Zheng et al. (2022) increases the model capacity and enables
online finetuning of the Decision Transformer by changing the deterministic policy to a stochastic
one and adding an entropy term to encourage exploration. Tang & Ha (2021) train transformer-based
agents that are robust to permutation of the input order. Apart from these works, various attempts
have been made to improve transformers in multi-agent RL, meta RL, multi-task RL, and many
other fields (Meng et al., 2021; Xu et al., 2022; Lee et al., 2022; Reid et al., 2022).

3 METHOD

In this section, we first describe the problem setup and then introduce Decision Transformer under
Random Frame Dropping (DeFog), a flexible and powerful method to tackle sporadic dropping of
the observation and the reward signals.

3.1 PROBLEM STATEMENT

In the environment with random frame dropping, the original state transitions of the underlying
Markov Decision Process are broken; hence, the observed states and rewards follow a new transition
process. Inspired by the Random Delay Markov Decision Process proposed by Bouteiller et al.
(2020), we define the new decision process as Random Dropping Markov Decision Process:

Definition 1 (Random Dropping Markov Decision Process (RDMDP))
An RDMDP could be described asM = ⟨S,A,R, µ,P,D,OS ,OR⟩, where S,A are the state and
action space, P (st+1 | st, at) is the state transition possibility, R(st, at) is the reward function,
µ(s0) is the initial state distribution. D is the Bernoulli Distribution of frame dropping, OS is the
function that emits the observation, and OR the function that emits the cumulative rewards. In the
frame dropping setting, we assume the cumulative reward Rt =

∑t
τ=0 rt is observed instead of the

immediate reward rt.

At each timestep t, a drop frame indicator dt ∈ {0, 1} is drawn from the distribution D, with
d = 1 indicating that the frame is dropped and d = 0 the opposite. The observed state ŝt and the
cumulative reward R̂t of the timestep are updated by

ŝt = OS(st, ŝt−1, d) = d · ŝt−1 + (1− d) · st (1)

R̂t = OR(Rt, R̂t−1, d) = d · R̂t−1 + (1− d) ·Rt (2)

The observation and the cumulative reward repeats the last observed one ŝt−1 and R̂t−1 respectively
if the current frame is dropped. If the current frame arrives normally, the observation and cumulative
reward is updated. Note that the rewards are cumulated on the remote side, so the intermediate
rewards obtained during the dropped frame are also added. Following the definition in the Decision
Transformer where a target return Rtarget is set for the environment, we define the real and observed
reward-to-go as gt = Rtarget −Rt, and ĝt = Rtarget − R̂t respectively.

The goal of DeFog is to extract useful information from the offline dataset so that the agent can act
smoothly and safely in a frame-dropping environment.

3.2 DECISION TRANSFORMER UNDER RANDOM FRAME DROPPING

We choose Decision Transformer as our backbone for its expressiveness and flexibility as an offline
RL learner. To attack the random frame dropping problem, we adopt a three-pronged approach.
First, we modify the offline dataset by randomly masking out observations and reward-to-gos during
training, and dynamically adjust the ratio of the frames masked. Second, we provide a drop-span
embedding that captures the duration of the dropped frames. Third, we further increase the robust-
ness of the agent against higher frame dropping rates by finetuning the drop-span encoder and action
predictor after the model is fully converged. A full illustration of our method is shown in Figure 2.

3



Published as a conference paper at ICLR 2023

Decision Transformer

Timestep Emb.

Drop-Span Emb.

Received Dropped Dropped Received

Figure 2: Decision Transformer under Random Frame Dropping (DeFog). Reward-to-go and
state are repeated from the previous steps if the current frame is dropped. Timestep and drop-span
embeddings, indicating the timestep and number of consecutive frame drops, are added onto the
encoded reward-to-go and state before being sent to the Decision Transformer backbone. Since
actions are not dropped, only the timestep embeddings are added to the encoded actions. The DT
backbone outputs the predicted action embeddings, which is passed through a decoder to obtain the
predicted actions.

3.2.1 DECISION TRANSFORMER BACKBONE

The Decision Transformer (DT) takes in past K timesteps of reward-to-go gt−K:t, observation
st−K:t, and action at−K:t as embedded tokens and predicts the next tokens in the same way as
the Generative Pre-Training model (Radford et al., 2018). Let ϕg, ϕs and ϕa denote the reward-to-
go, state, and action encoders respectively, the input tokens are obtained by first mapping the inputs
to a d-dimensional embedding space, then adding a timestep embedding ω(t) to the tokens.

Let ugt , ust and uat
denote the input tokens corresponding to the reward-to-go, the observation,

and the action of the timestep t respectively, and vgt , vst and vat
be their counterparts on the output

token side. DT could be formalized as:

ugt = ϕg(gt) + ω(t), ust = ϕs(st) + ω(t), uat = ϕa(at) + ω(t) (3)
vgt−K

, vst−K
, vat−K

, . . . , vgt , vst , vat
= DT(ugt−K

, ust−K
, uat−K

, . . . , ugt , ust , uat
) (4)

Online decision transformer (ODT) by Zheng et al. (2022) enables online finetuning of the decision
transformer models. We adopt the ODT model architecture because it has larger model capacity.
Following their work, we also omit the timestep embedding ω(t) in the gym environments.

During training time, instead of directly predicting the action at, we follow the setting of the ODT
to predict a Gaussian distribution for action from the output token of the state token inputs.

πθ (at | vst) = N (µθ (vst) ,Σθ (vst)) (5)

The covariance matrix Σθ is assumed to be diagonal, and the training target is to minimize the
negative log-likelihood for the model to produce the real action in the dataset T :

J(θ) =
1

K
E(a,s,g)∼T

[
−

K∑
k=1

log πθ (ak | vsk)

]
(6)

3.2.2 TRAIN-TIME FRAME DROPPING

To prepare the model for frame dropping, we manually mask out observation and reward-to-go
from the dataset. During the training stage, we specify an empirical dropping distribution D̂ and
periodically sample “drop-masks” from it. A drop-mask is a binary vector of the same size as the

4



Published as a conference paper at ICLR 2023

dataset and serves as the drop distribution D of an RDMDP. If a frame in the dataset is marked as
“dropped” by the current drop-mask, the observation and reward-to-go of that frame are overwritten
by the most recent non-dropped frame. We refer to the time span between the current frame and the
last non-dropped frame as the drop-span of that frame.

One key consideration for the training scheme is the distribution D̂ of the drop-mask. A natural
solution is to assume each frame has the same possibility pd to be dropped, and the occurrence of
dropped frame is independent. Under this assumption, the stochastic process of whether each frame
is dropped becomes a Bernoulli process. Additionally, we guarantee that the first frame for each
trajectory is not dropped. After a certain number of training steps, the drop-mask is re-sampled from
D̂ so that those dropped frames of the dataset could be used. We can also change D̂ as the training
proceeds, for example, to linearly increase the pd throughout training. However, we empirically find
that usually, a constant pd is sufficient.

3.2.3 DROP-SPAN EMBEDDING

In a frame dropping scenario, the agent must deal with the missing observation and reward-to-go
tokens. Instead of dropping the corresponding tokens in the input sequence, we repeat the last
observation or reward-to-go token and explicitly add a drop-span embedding to those tokens apart
from the original timestep embedding ω(t).

Let kt denote the drop-span since the last observation of timestep t, the drop-span encoder ψ maps
integer kt to a d-dimensional token the same shape as the other observed input tokens. The model
input with the drop-span embedding becomes:

uŝt = ϕs(ŝt) + ψ(kt) + ω(t), uĝt = ϕg(ĝt) + ψ(kt) + ω(t), uat
= ϕa(at) + ω(t) (7)

Since the actions are decided and executed by the agent itself, they do not face the problem of
frame dropping. The drop-span embedding is analogous to the timestep embedding in the Decision
Transformer, but it bears the semantic meaning of how many frames are lost. Compared to the
other indirect methods, the explicit use of drop-span embedding achieves better results. Detailed
comparison could be found in Section 4.5.

3.2.4 FREEZE-TRUNK FINETUNING

The combination of the train-time frame dropping and the drop-span embedding is effective in mak-
ing our model robust to dropped frames. However, we observed that in continuous control tasks, a
finetuning procedure can further improve performance in more challenging scenarios.

Inspired by recent progress on prompt-tuning in natural language processing (Liu et al., 2021) and
computer vision (Jia et al., 2022), we propose a finetuning procedure called “freeze-trunk finetuning”
that freezes most of the model parameters during finetuning. The procedure involves finetuning the
drop-span encoder ψ and the action predictor πθ after the model has converged.

During this stage, the training procedure is the same as that of the entire model. We draw drop-masks
from D̂ to give the drop-span embeddings enough supervision, with the drop rate pd typically higher
than in the main stage. While the number of training steps during this stage can be one-fifth of the
main stage, the empirical results show that this procedure can improve the model’s performance in
higher dropping rates across multiple environments.

The whole training pipeline of our method could be found in Appendix A.

4 EXPERIMENTAL RESULTS

In this section, we describe our experiment setup and analyze the results. We compare our method
with state-of-the-art delay-aware reinforcement learning methods, as well as online and offline rein-
forcement learning methods in multiple frame dropping settings. We first evaluate whether DeFog
is able to maintain its performance as the drop rate pd increases. We then explore which key factors
and design choices helped DeFog to achieve its performance. Finally, we provide insights of why
DeFog can accomplish control tasks under severe frame dropping conditions.

5



Published as a conference paper at ICLR 2023

4.1 EXPERIMENT SETUP

To comprehensively evaluate the performance of DeFog and baselines, we conduct experiments on
three continuous control environments with proprioceptive state inputs in the gym MuJoCo environ-
ment (Todorov et al., 2012), as well as three discrete control environments with high-dimensional
image inputs in the Atari games.

In each of the three MuJoCo environments, we use D4RL (Fu et al., 2020) which contains offline
datasets of three different levels: expert, medium, and medium-replay. While in the three Atari
environments, we follow the Decision Transformer to train on an average sampled dataset from a
DQN agent’s replay buffer (Agarwal et al., 2020). We train on 3 seeds and average their results in
test time. We leave the detailed description of the settings to Appendix B.2.

During evaluation, we test the agents in an environment that has frame drop rates ranging from 0%
to 90%. Results are shown by plotting the average return under 10 trials against test-time drop rate
for different agents. The performance curve of our method is compared against various baselines:

• Reinforcement learning with random delays (RLRD; Bouteiller et al., 2020). RLRD is a
method proposed to train delay-robust agents by adding randomly sampled delay as well as an
action buffer to its observation space. RLRD has a maximum delay constraint and is not suited
for discrete action tasks like Atari. In our frame dropping setting, we modify RLRD by limiting
the delay value in the augmented observation to its maximum even if frames are still dropped.
We compare our method to RLRD in the gym MuJoCo environment.

• Twin-delayed DDPG (TD3; Fujimoto et al., 2018). We train an online expert RL agent under
regular non-frame-dropping settings using TD3 for continuous control tasks. We note that TD3
also has the privilege to interact with the environment.

• Decision transformer (DT; Chen et al., 2021). We train the vanilla DT using exactly the same
offline datasets without the proposed components in Section 3.2.

• Batch-constrained deep Q-learning (BCQ; Fujimoto et al., 2019). BCQ is an offline RL
method that aims to reduce the extrapolation error in offline RL by encouraging the policy to
visit states and actions similar to the dataset.

• TD3 + Behavioral cloning (TD3+BC; Fujimoto & Gu, 2021). TD3+BC is built on top of
TD3 to work offline by adding a behavior cloning term to the maximizing objective. Despite
the simplicity, it is able to match the state-of-the-art performance.

• Conservative Q-learning (CQL; Kumar et al., 2020). CQL is a state-of-the-art model-free
method which tries to address the issue of over-estimation in offline RL by learning a conser-
vative Q function that lower-bounds the real one.

We leverage the implementation of Takuma Seno (2021) to train an offline agent in BCQ, TD3+BC,
and CQL. We note that the online methods such as RLRD and TD3 are trained directly in the
environment. Hence, their performance are invariable to different dataset types, and their curves are
plotted repeatedly for comparison. We also include a DeFog without finetuning version to evaluate
the effectiveness of freeze-trunk finetuning. Since TD3 cannot handle frame-dropping scenarios, we
only plot it in the first row of the figures for better illustration. For a fair comparison, we assume the
delay for RLRD is created by re-sending the dropped observations, which again has a probability
pd of being lost. For baselines of the discrete control tasks, we train the offline RL agents until they
reach the performance of DeFog under non-frame-dropping conditions, as we aim to evaluate how
these methods preserve their performances under frame dropping settings.

4.2 EVALUATION IN THE CONTINUOUS CONTROL TASKS

We first evaluate our performance on three MuJoCo continuous control environments, namely
Hopper-v3, HalfCheetah-v3, and Walker2d-v3. The results on each dataset are given in Figure 3.

We find that DeFog is able to maintain performance under severe drop rates. For example, the
performance of the finetuned version on the Walker2d-Expert dataset barely decreases when the
drop rate is as high as 80%. Meanwhile, the performance of the vanilla DT and TD3 agents come
close to zero once the drop rate exceeds 67%.

6



Published as a conference paper at ICLR 2023

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog(Ours)
DeFog/f(Ours)
RLRD
TD3
BCQ
TD3PlusBC

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium
DT
DeFog(Ours)
DeFog/f(Ours)
RLRD
BCQ
TD3PlusBC

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium-Replay
DT
DeFog(Ours)
DeFog/f(Ours)
RLRD
BCQ
TD3PlusBC

Figure 3: Performance on continuous control tasks. There are five baselines: a) TD3: the online
TD3 agent, only included in the Expert datasets for a better scaling. b) DT: the offline Decision
Transformer agent trained on the same dataset as DeFog. c): RLRD: the online RLRD agent that
is optimized to deal with random frame delay. Since it’s an online method there’s no performance
distinction between three kinds of datasets. d) BCQ, TD3PlusBC: other offline methods trained on
the same dataset as DeFog. The full-fledged version of our method is indicated with DeFog/f (Ours),
while the result of a non-finetuned version is indicated with DeFog (Ours) for comparison.

By looking at the starting point of the performance curves, we note that DeFog can achieve the
same performance as the vanilla DT agent in non-frame-dropping scenarios. Despite a high train-
time drop rate of 80% applied to DeFog, none of them are negatively affected when tested with a
drop rate of 0%. As a comparison, the online RLRD method failed to achieve the same non-frame-
dropping performance as other online baselines.

In the HalfCheetah-Expert setting, our method significantly outperforms the RLRD baseline with
drop rates lower than 50%; however, in more extreme cases the RLRD takes over. RLRD, with its
advantage of accessibility to the environment, was able to keep the performance better possibly due
to HalfCheetah-Expert dataset’s narrow distribution. In the medium and medium-replay datasets,
DeFog is limited to data with less expertise, thus obtaining a reduced average return, but the overall
performance of DeFog is comparable to that of RLRD.

We can also find that freeze trunk finetuning effectively improves DeFog’s performance in various
settings. In all 9 settings, the finetuned agent obtains better or at least the same results with the
non-finetuned ones. The finetuning is especially helpful in high drop rate scenarios as shown in the
Hopper-Medium and Walker2d-Expert settings. We highlight that the finetuning is done over the
offline dataset without online interaction as well.

7



Published as a conference paper at ICLR 2023

4.3 EVALUATION IN THE DISCRETE CONTROL TASKS

In this section, we evaluate our performance on three discrete control environments of Atari (Belle-
mare et al., 2013): Qbert, Breakout, and Seaquest. Following the practice of the Decision Trans-
former, we use 1% of a fully trained DQN agent’s replay buffer for training. The results are shown
in Figure 4. We find that DeFog outperforms the DT, BCQ and CQL baselines. We also find that in
some environments, the performance of DeFog outperforms the Decision Transformer even under
non-frame-dropping conditions. We believe that in these environments, using masked out datasets
not only helps the agent to be more robust to frame dropping, but also makes the task more challeng-
ing in the sense that the agent needs to understand the environment dynamics better to give action
predictions, which helps the agent make better decisions even when the frame drop rate is zero.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
1000
2000
3000
4000
5000
6000
7000
8000

Av
er

ag
e 

Re
tu

rn

Qbert-Expert-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Breakout-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

200

400

600

800

1000

1200

Av
er

ag
e 

Re
tu

rn

Seaquest-Expert-Replay
DT
DeFog(Ours)
BCQ
CQL

Figure 4: The performance in the discrete Atari game environments. DT is the offline Decision
Transformer agent trained on the same dataset as DeFog. There are two other offline baselines:
BCQ and CQL. Our method is indicated with DeFog (Ours).

4.4 VISUALIZED RESULTS

To gain a better understanding of our method, we visualize the results in the MuJoCo environment.

Frame Received Frame Dropped

Figure 5: Visualization results of DeFog HalfCheetah agent under 90% frame drop rate. In each
frame, the orange cheetah is the observed state ŝt, while the purple cheetah is the actual state st.

We first visualize the performance of an DeFog agent under a frame drop rate of 90% in Figure 5.
The HalfCheetah agent (blue) is able to act correctly even if the observation (semi-transparent yel-
low) is stuck at 8 steps ago. Once a new observation comes in, the agent immediately adapts to the
newest state and continues to perform a series of correct actions.

Building on top of the previous setting, we aim to exploit the capability of DeFog under extreme
conditions by increasing the frame drop rate to 100%. In this way, the agent is only able to look
at the initial observation and needs to make the rest of the decisions blindly. As shown in Fig-
ure 6, the HalfCheetah agent continues to run smoothly for more than 24 frames, demonstrating
the Transformer architecture’s ability to infer from the contextual history. We conjecture that such
phenomenon is analogous to how humans perform a skill such as swinging a tennis racket without
thinking about the observations.

4.5 ABLATION STUDY

We conduct ablation study on the drop-span embedding and freeze-trunk finetuning parts of DeFog.

8



Published as a conference paper at ICLR 2023

Frame Received Frame Dropped

Figure 6: Visualization results of DeFog HalfCheetah agent under 100% frame drop rate. Only
the very first observation is received. This scenario explores how far DeFog can go without any
observation.

For the drop-span embeddings, we implement an alternative method that implicitly embeds the drop
span information. Concretely, at each time step t, if the current frame is dropped, we change the
corresponding timestep embedding ω(t) to the received one ω(t − kt). Hence, for the implicit em-
bedding method, we have ust = ϕs(st)+ω(t−kt), ugt = ϕg(gt)+ω(t−kt), uat = ϕa(at)+ω(t)
. In this way, the agent can infer the drop-span from the timestep embedding. As shown in Figure 7,
we see that the proposed explicit drop-span embedding outperforms the implicit embedding, show-
ing the effectiveness and necessity of explicitly providing the drop-span information to DeFog.

Now we ablate the freeze-trunk finetuning method by comparing the the same model with and with-
out the finetuning stage. As shown in Figure 7, the finetuning outperforms the original model on
all the continuous tasks. We believe that the performance gain in complex continuous control tasks
is due to the crucial modules (i.e., action predictor and drop-span encoder) further adjusting them-
selves after the Decision Transformer backbone has converged. We provide more ablation studies in
Appendix C.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium
DT
w/o freeze
DeFog(Ours)
w/o drop

Figure 7: Ablation study of the drop-span embedding and the finetuning stage. “w/o freeze” means
without freeze-trunk finetuning, and “w/o drop” stands for without drop-span embedding. We find
that the proposed methods are effective in the continuous control tasks.

5 CONCLUSION

In this paper, we introduce DeFog, an algorithm based on Decision Transformer that addresses a
critical challenge in real-world remote control tasks: frame dropping. DeFog simulates frame drop-
ping by randomly masking out observations in offline datasets and embeds frame dropping timespan
information explicitly into the model. Furthermore, we propose a freeze-trunk finetuning stage to
improve robustness to high frame drop rates in continuous tasks. Empirical results demonstrate that
DeFog outperforms strong baselines on both continuous and discrete control benchmarks under se-
vere frame dropping settings, with frame drop rates as high as 90%. We also identify a promising
future direction for research to handle corrupted observations, such as blurred images or inaccurate
velocities, and to deploy the approach on a real robot.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENT

This work is supported by the Ministry of Science and Technology of the People´s Republic of
China, the 2030 Innovation Megaprojects ”Program on New Generation Artificial Intelligence”
(Grant No. 2021AAA0150000). This work is also supported by a grant from the Guoqiang In-
stitute, Tsinghua University.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

S Balemi and UA Brunner. Supervision of discrete event systems with communication delays. In
1992 American Control Conference, pp. 2794–2798. IEEE, 1992.

Oussama Bekkouche, Tarik Taleb, and Miloud Bagaa. Uavs traffic control based on multi-access
edge computing. In 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6.
IEEE, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, 110(9):2419–2468, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 20132–20145, 2021. URL https://proceedings.neurips.cc/paper/
2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/fujimoto19a.html.

J Funda and RP Paul. Efficient control of a robotic system for time-delayed environments. In
Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments, pp.
219–224. IEEE, 1991.

10

https://proceedings.neurips.cc/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a8166da05c5a094f7dc03724b41886e5-Abstract.html
https://proceedings.mlr.press/v97/fujimoto19a.html
https://proceedings.mlr.press/v97/fujimoto19a.html


Published as a conference paper at ICLR 2023

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Todd Hester and Peter Stone. Texplore: real-time sample-efficient reinforcement learning for robots.
Machine learning, 90(3):385–429, 2013.

Chieko Sarah Imai, Minghao Zhang, Yuchen Zhang, Marcin Kierebinski, Ruihan Yang, Yuzhe Qin,
and Xiaolong Wang. Vision-guided quadrupedal locomotion in the wild with multi-modal delay
randomization. arXiv preprint arXiv:2109.14549, 2021.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022.

Yongfu Li, Chuancong Tang, Srinivas Peeta, and Yibing Wang. Nonlinear consensus-based con-
nected vehicle platoon control incorporating car-following interactions and heterogeneous time
delays. IEEE Transactions on Intelligent Transportation Systems, 20(6):2209–2219, 2018.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602, 2021.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model conquers all starcraftii tasks. arXiv preprint arXiv:2112.02845, 2021.

Somjit Nath, Mayank Baranwal, and Harshad Khadilkar. Revisiting state augmentation methods
for reinforcement learning with stochastic delays. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 1346–1355, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122, 2022.

Olimpiya Saha and Prithviraj Dasgupta. A comprehensive survey of recent trends in cloud
robotics architectures and applications. Robotics, 7(3), 2018. ISSN 2218-6581. doi: 10.3390/
robotics7030047. URL https://www.mdpi.com/2218-6581/7/3/47.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards–just map them
to actions. arXiv preprint arXiv:1912.02875, 2019.

Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. Control delay in reinforcement
learning for real-time dynamic systems: A memoryless approach. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3226–3231. IEEE, 2010.

11

https://proceedings.mlr.press/v80/haarnoja18b.html
https://www.mdpi.com/2218-6581/7/3/47


Published as a conference paper at ICLR 2023

Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021.

Yujin Tang and David Ha. The sensory neuron as a transformer: Permutation-invariant neural
networks for reinforcement learning. Advances in Neural Information Processing Systems, 34:
22574–22587, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Learning and planning in envi-
ronments with delayed feedback. Autonomous Agents and Multi-Agent Systems, 18(1):83–105,
2009.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International Con-
ference on Machine Learning, pp. 24631–24645. PMLR, 2022.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.),
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 27042–27059. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/zheng22c.html.

12

https://proceedings.mlr.press/v162/zheng22c.html


Published as a conference paper at ICLR 2023

A ALGORITHM DETAILS

The overall algorithm of DeFog could be summarized as in Algorithm 1; for the hyperparameters
we use, please refer to Appendix B.2.

Algorithm 1 Decision Transformer under Random Frame Dropping (DeFog)

Require: update interval {interval to update the drop-mask}
Require: n updates,n transitions {number of updates, number of transitions in the dataset}
Require: sample(S, n) {sample n elements uniformly from S}
Require: cumcount(flags) {count cumulative number of 0’s before current position (inclusive)}
Require: train(rtg, obs, act, timestep, dropspan, freeze trunk) {train the DT model}
Require: batch size, act buffer, obs buffer, rtg buffer, context length

for freeze trunk ∈ {true, false}, do
N ← n updates
while N ̸= 0 do
M ← update interval
if freeze trunk then
M ← ⌊M/5⌋

end if
drop mask← sample({true, false}, n transitions) {whether each frame is dropped}
dropspans← cumcount(drop mask) {duration of frames dropped}
while M ̸= 0 do
selected index← sample({0, 1, ...,n transitions}, batch size)
timestep← selected index
dropspan← dropspans[selected index]
dropped index← selected index− dropspan
rtgs← rtg buffer[dropped index: dropped index + context length]
observations← obs buffer[dropped index: dropped index + context length]
actions← act buffer[selected index: selected index + context length]
train(rtgs, observations, actions, timestep, dropspan, freeze trunk)
M ←M − 1

end while
N ← N − 1

end while
end for

B EXPERIMENT DETAILS

B.1 DATASETS AND SETUP

B.1.1 GYM MUJOCO

We use the D4RL dataset (Fu et al., 2020) that contains data collected by SAC agents. There are
three datasets for each environment – expert, medium, and medium-replay. The expert dataset is
collected by a fully-trained expert policy, while the medium dataset is collected by an agent about
half the performance of the expert. Medium-replay includes the trajectories in a medium agent’s
buffer, and is the most diverse dataset with the lowest average return. Details of the different datasets
are provided in Table 1.

B.1.2 ATARI

For Atari game environments, we use the DQN Replay Dataset (Agarwal et al., 2020), which is
collected from the replay buffer of a DQN agent during training of these Atari games. Following the
practice of the Decision Transformer, we only use a small portion of the dataset: 1% of the whole
dataset, which is 500 thousand of the 50 million transitions observed by an online DQN agent. We
define three kinds of datasets for each game as well – expert, medium, and expert-replay. The expert

13



Published as a conference paper at ICLR 2023

Dataset No. Trajectories No. Timesteps Average Returns Best Returns

Halfcheetah-Expert 1000 1000 000 10656.43 11252.04
Halfcheetah-Medium 1000 1000 000 4770.33 5309.38
Halfcheetah-Medium Replay 202 202 000 3093.29 4985.14
Hopper-Expert 1027 999 494 3511.36 3759.08
Hopper-Medium 2186 999 906 1422.06 3222.36
Hopper-Medium Replay 2041 402 000 467.3 3192.93
Walker2d-Expert 1000 999 214 4920.51 5011.69
Walker2d-Medium 1190 999 995 2852.09 4226.94
Walker2d-Medium Replay 1093 302 000 682.7 4132

Table 1: D4RL Gym MuJoCo Datasets Sizes and Returns

and the medium dataset are collected from the DQN agent’s buffer during the final and medium
training stages, while the expert-replay dataset is sampled evenly from the whole replay buffer.

B.2 HYPERPARAMETER SETTINGS

B.2.1 GYM MUJOCO

For the gym MuJoCo environment, we use the same model architecture as the Online Decision
Transformer (Zheng et al., 2022). While the Online Decision Transformer uses different training
parameters for each environment, we keep most of the training parameters the same among different
environments.

Hyperparameter Value

Number of layers 4
Number of attention heads 4
Embedding dimension 512
Training context length K 20
Dropout probability 0.1
Activation function ReLU
Gradient norm clip 0.25

(a) Architecture Parameters

Hyperparameter Value

Learning rate 1e-4
Weight decay 1e-3
Batch size 256
Total training steps 1e5
Finetune training steps 2e4
Learning rate warmup steps 1e4
Drop-mask update interval 100

(b) Training Parameters

Table 2: Common Parameters for Gym MuJoCo

For each dataset, we specify a target reward, and report the combination of train time drop-rate and
finetuning drop-rate. The environment and dataset related paramenters are as follows:

Environment Dataset Target Reward Training Drop Rate Finetuning Drop Rate

HalfCheetah Expert 12000 0.5 0.5
HalfCheetah Medium 12000 0.8 0.8
HalfCheetah Medium Replay 12000 0.8 0.8

Hopper Expert 4000 0.9 0.9
Hopper Medium 4000 0.5 0.8
Hopper Medium Replay 4000 0.8 0.8

Walker2d Expert 5000 0.9 0.9
Walker2d Medium 5000 0.8 0.8
Walker2d Medium Replay 5000 0.8 0.8

Table 3: Dataset Specific Parameters for Gym MuJoCo

B.2.2 ATARI

For the Atari environments, we use the same model architecture as the Decision Transformer since
the Online Decision Transformer doesn’t perform experiments on these environments. The hyper-
parameters are as follows:

14



Published as a conference paper at ICLR 2023

Hyperparameter Value

Number of layers 6
Number of attention heads 8
Embedding dimension 64
Training context length K 30
Dropout probability 0.1
Activation function ReLU
Gradient norm clip 1.0

(a) Architechture Parameters

Hyperparameter Value

Learning rate 6e-4
Weight decay 0.1
Batch size 128
Total training steps 1e5
Finetune training steps 2e4
Learning rate warm up steps 1e4
Drop-mask update interval 1000

(b) Training Parameters

Table 4: Common Parameters for Atari

The environment and dataset related parameters are given in Table 5. Linear increasing frame drop
rate means that the drop rate is linearly increased from the start to end values.

Environment Dataset Target Reward Training Drop Rate Finetuning Drop Rate

Qbert Expert Replay 14000 0.4 0.5
Seaquest Expert Replay 1150 0–0.8 Linear Increase 0.8
Breakout Expert Replay 90 0–0.8 Linear Increase 0.8

Table 5: Dataset Specific Parameters for Atari

C SUPPLEMENTARY RESULTS

In this section, we present further experimental results on the different components and settings of
the DeFog model. Since we want to show the change in the agent’s performance as the frame drop
rate increases, the results are presented by the performance curves of the average return against
the frame drop rate. To make the results more descriptive but not overwhelming, the three most
representative curves are selected for most of the settings, while the descriptions and analyses of the
results are based on all the settings.

C.1 DECISION TRANSFORMER BACKBONE

Training a non-Decision Transformer Model on Masked-out Datasets DeFog simulates the
frame dropping scenario by using a masked dataset with frames intentionally hidden from the agent.
This is tightly integrated with our drop-span embedding in the DeFog model, as the drop-span infor-
mation must be supervised and conveyed into the hidden representations. To determine the Decision
Transformer architecture’s contribution to DeFog’s strong results in frame dropping scenarios, we
conduct an experiment with the TD3+BC (Fujimoto & Gu, 2021) baseline to train on a masked
dataset. We use a masking rate of 50%, which is on par with or lower than that we use in DeFog.

The results are shown in Figure 8. The TD3+BC trained with a masked dataset is able to perform
slightly better than the normal TD3+BC agent under higher frame drop rates in the Walker2d and
Hopper environments. However, it collapses in the HalfCheetah environment. Although the average
return improves slightly using a masked dataset, it is still nowhere close to the performance of
DeFog. We believe this shows that the use of a masked dataset alone is not enough for DeFog’s
achievement.

Reconstruction of Frames During Training The Decision Transformer architecture can issue
three different types of tokens, corresponding to the next action, state, and reward-to-go respectively.
While the authors of Decision Transformer only let the model predict the actions, it may be helpful to
infer the actual state when the observation is dropped. With this motivation, we conduct experiments
to see if letting the model predict the actual state or reward-to-go has a positive impact on the model’s
performance. We evaluate the influence of predicting state, the reward-to-go, and both on all nine
settings of the MuJoCo tasks and report the results for three of them in Figure 9.

15



Published as a conference paper at ICLR 2023

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog/f(Ours)
TD3PlusBC
TD3PlusBCMasked

Figure 8: Ablation study on training a non-Decision Transformer based method with a
masked-out dataset. “TD3PlusBC” is TD3+BC trained on a perfect uncorrupted dataset, while
“TD3PlusBCMasked” denotes training a TD3+BC agent with a masked-out dataset.

We find it somewhat surprising that the performance of the model deteriorates significantly in four
of the nine environments (HalfCheetah-Expert, Walker2d-Medium-Replay, Walker2d-Expert, and
HalfCheetah-Medium-Replay) when only state prediction is applied. Only predicting the reward-to-
go apart from the actions doesn’t hinder the performance as much; predicting both of them doesn’t
affect the performance in general. We suspect this is due to the lack of supervision on the reward
signal, which is exacerbated when the model is forced to predict both the state and action signals.
In the original setting, where only the actions were predicted, and in the last setting, where all three
tokens were predicted, this type of imbalance isn’t as pronounced.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium-Replay
DT
DeFog(Ours)
Predict State
Predict Rtg
Predict Both

Figure 9: Ablation study on dropping the action together with the observation and reward-to-go.

C.2 TRAIN-TIME FRAME DROPPING

In this section, we examine more carefully on the train-time frame dropping scheme, specifically the
interval for resampling the drop-mask, the placeholder for dropped frames, the random process for
generating the drop-mask, and the content to drop from the observation.

Frame Dropping Mask DeFog periodically samples and updates a drop-mask that decides which
frames in the dataset are marked as dropped. By doing so, DeFog can take advantage of the full
dataset and avoid overfitting the current un-masked dataset. To further explore the learning ability
of DeFog, we conduct the experiment where the drop-mask never updates. In this way, the dropped
frames which take up 50% to 90% of the dataset are never seen by DeFog during training .

Results in Figure 10 show that the performance of DeFog without update is similar to the original
version using the full dataset and still outperforms other baselines, implying that DeFog is able
to learn even when the dropped frames are never seen. We note that the performance degrades
on the medium-replay datasets of Halfcheetah and Hopper environments. One potential reason is
the relatively small volume of these datasets. As shown in Table 1, while the expert and medium
datasets contain around 1M timesteps of data, the medium replay datasets have only 200k–400k.
In the case of Halfcheetah-Medium-Replay, the number of non-dropped steps is only 8% of the
Halfcheetah-Medium dataset.

16



Published as a conference paper at ICLR 2023

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog(Ours)
Fix Drop-Mask

Figure 10: Ablation study on fixing the frame drop-mask. “Fix Drop Mask” indicates fixing the
drop-mask throughout training.

Placeholder for Dropped Frames During train-time frame dropping, if a frame is marked as
dropped, DeFog follows a simple and intuitive approach to replace both the observation and the
reward-to-go of that frame to the most recent non-dropped ones. We explore the following substitu-
tions for the dropped frames:

• Adding noise to the dropped frames. This could be interpreted as stimulating the evolution of
the unknown real states. For each step, we sample from a Gaussian noise distribution which is
estimated from all the changes between consecutive observations in the dataset. When frames
are dropped successively, the Gaussian noises add up to form a new Gaussian distribution. We
use a scale factor of 0.1 and 0.5 to experiment the influence of the noise intensity.

• Simply replacing the dropped frames with zeros.
• Replacing the embedding of those dropped tokens to a specific learnable [MASK] token. We

trial on two settings, one where the dropped observation and dropped reward-to-go share the
same [MASK] token, and the other where the two tokens are separate.

The results are presented in Figure 11 and 12.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog(Ours)
Add Noise 0.5x
Add Noise 0.1x

Figure 11: Ablation study on adding noise to those dropped frames. “Add Noise 0.1x” and “Add
Noise 0.5x” denote a noise scaling factor of 0.1 and 0.5, respectively.

The results show that for adding noises, neither the scaling factor of 0.1 nor 0.5 helps with DeFog’s
performance. We find that increasing the noise intensity simply makes performance worse. In
datasets such as Hopper-Medium and Walker-Expert, the deterioration is more noticeable.

In the case where we replace the dropped frames with learnable [MASK] tokens, both settings have
performance better than vanilla Decision Transformer but worse than DeFog. We do not find this
result surprising as a single learnable mask cannot carry enough information for all the dropped
frames, while the previous frame that DeFog uses would be similar to the current dropped frame.

Finally, replacing dropped frames with zeros does not result in a much better performance than the
vanilla Decision Transformer, as the zero token basically provides no information. Interestingly, the
zero-masked version performs better than the learnable-token version. When using zero tokens for
the dropped observation and reward-to-go, the transformer backbone receives nothing more than the
drop-span embedding, which turns out to better convey the information needed for control than that
when added with a learnable token.

17



Published as a conference paper at ICLR 2023

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog(Ours)
Separate Mask
Shared Mask
Zero Mask

Figure 12: Ablation study on replacing the dropped frames with different kinds of [MASK] tokens.
“Separate Mask” denotes that the observation and the reward-to-go do not share the same [MASK]
token, while “Shared Mask” indicates the opposite. The “Zero Mask” simply consists of all zeros.

Frame Dropping Process The binary sequence of whether each frame is dropped can be viewed
as a random process. In DeFog, we use a fixed drop rate pd as the probability for any single frame
to be dropped, which results in a Bernoulli process for dropping frames. To explore other kinds
of dropping processes, we conduct experiments on the setting of frame dropping being a Markov
process. The probability of the next frame being dropped is no longer a constant value pd, but instead
follows the transition matrix:

P =

[
1− p1 p1
1− p2 p2

]
The matrix could be interpreted in the follow manner: given the current frame is not dropped, the
probability for the next frame to be dropped is p1; if the current frame is dropped, then the probability
for the next frame being dropped is p2. The reason for choosing a Markov process is it resembles
the behavior in communication scenes where frames are dropped chunk by chunk rather than frame
by frame. If p1 = p2, then the situation degenerates to a Bernoulli process.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium-Replay
DT
0.5
0.9
8219:0.67
7319:0.75

Figure 13: Ablation study on using a Markov Process for frame dropping. “0.5” and “0.9” represent
using a Bernoulli Process of pd = 0.5 and pd = 0.9. “8219:0.67” denotes p1 = 0.2, p2 = 0.9,
with a steady distribution of frame dropping probability 0.67. Similarly, “7319:0.75” means p1 =
0.3, p2 = 0.9 with a steady distribution of frame dropping probability 0.75.

Our experimental results, given in Figure 13, show that when comparing the Markov dropping pro-
cess to the Bernoulli one, the agent trained under a Markov dropping process with drop probability
p2 performs similar to that with a Bernoulli dropping process under pd, and this pattern is somewhat
universal no matter what p1 is. We find this result to abide with the fact that in a frame dropping
setting, the moments where frames are dropped affect the overall performance more. If we fix p2 and
change p1, we find that in general the less p1 is, the better the performance. This is not surprising
as decreasing p1 would imply that there are more timesteps of consecutive undropped frames where
the agent can leverage and make better decision.

Dropping the Action In the training of DeFog, we drop the observation and the reward-to-go of
the frames marked by the drop-mask, while remaining the action of those frames untouched. We

18



Published as a conference paper at ICLR 2023

perform an extra experiment where the actions are masked out alongside the state and reward-to-go,
and results show that the performance is negatively affected as shown in Figure 14.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn
Walker2d-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

Av
er

ag
e 

Re
tu

rn

Hopper-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium
DT
DeFog(Ours)
DeFog(Drop Action)

Figure 14: Ablation study on dropping the action together with the observation and reward-to-go.

C.3 DROP-SPAN EMBEDDING AND FREEZE TRUNK FINETUNING

Explicit Drop-Span Encoder and Finetuning Figure 15 contains the full ablation results of Fig-
ure 7, showing the performance of the ablated models on all datasets.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
w/o freeze
DeFog(Ours)
w/o drop

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium
DT
w/o freeze
DeFog(Ours)
w/o drop

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e 

Re
tu

rn

Walker2d-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

500

1000

1500

2000

2500

3000

Av
er

ag
e 

Re
tu

rn

Hopper-Medium-Replay

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Medium-Replay
DT
w/o freeze
DeFog(Ours)
w/o drop

Figure 15: Ablation results on the explicit drop-span encoder and freeze-trunk finetuning in all
9 gym MuJoCo environments. The label “w/o freeze” stands for without freeze-trunk finetuning,
while “w/o drop” denotes using the implicit embedding method.

The use of explicit drop-span embedding was able to improve performance over implicit embedding
by a huge margin in 4 datasets. For the other 5 datasets, using implicit embedding all led to deterio-
ration in performance as well, though not so significant. We believe this shows that the information
leveraged by a DeFog agent is the relative rather than the absolute timestep of when the last frame
was observed. The longer the drop-span of the current frame, the less it should be considered in ac-
tion prediction, and the action history could be a better reference for decision-making. We conclude

19



Published as a conference paper at ICLR 2023

that critical information like the drop-span needs to be explicitly given, and performance would be
hindered even if the agent can work out the number by simple arithmetic.

Removing Drop-Span and Timestep Embeddings Both the explicit drop-span encoder and the
implicit embedding try to convey the drop-span information to the agent. We also conduct experi-
ments on totally removing this piece of information, by using a normal timestep embedding without
any other kind of drop-span embedding. The agent no longer receives information on how many
frames are dropped. Finally, we perform the experiment of removing the timestep embedding but
keeping the drop-span embedding. As mentioned above, the explicit drop-span encoder only gives
information on the relative time span of dropped frames, not the actual timestep.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
DeFog(Ours)
Remove Drop
Remove Time

Figure 16: Ablation study on removing the drop-span information. “Remove Drop” denotes remov-
ing the drop-span embedding without using implicit method, while keeping the timestep embedding;
“Remove Time” indicates removing the timestep embedding, while keeping the explicit drop-span
embedding.

The results are given in Figure 16, and the performance is degraded upon both of the embeddings’
removal. We find drop-span embedding to be the key factor in DeFog. Meanwhile, the removal of
the timestep embedding does not cause a severe drop in performance. Under non-frame-dropping
conditions, the Online Decision Transformer also conducted the experiments of removing timestep
embeddings and found that performance was not heavily affected. As suggested by Zheng et al.
(2022), this could be due to the timestep information deduced from the reward-to-go signal, making
the lack of timestep embedding no longer fatal.

Finetuning Individual Components DeFog currently finetunes the action predictor and the drop-
span encoder. For a better understanding of the finetuning stage, as well as the functions of specific
elements in the model, we conduct experiments on finetuning these components separately. The
results are given in Figure 17.

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Re
tu

rn

Walker2d-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e 

Re
tu

rn

Hopper-Expert

0.0
0

0.1
0

0.2
5

0.3
3

0.5
0

0.6
7

0.7
5

0.8
0

0.8
5

0.9
0

Frame Drop Rate

0

2000

4000

6000

8000

10000

Av
er

ag
e 

Re
tu

rn

Halfcheetah-Expert
DT
Defog
f/skipstep
f/action
f/both

Figure 17: Ablation study on separately finetuning the components of DeFog. “DeFog” denotes not
finetuning anything. “f/skipstep”, “f/action”, “f/both” stand for finetuning the drop-span encoder,
the action predictor, and both, respectively.

We find that only finetuning the drop-span encoder gives slightly better performance on the
Walker2d-Medium-Replay, Walker2d-Expert, and HalfCheetah-Medium-Replay datasets. While on
the other datasets, for example the Hopper-Medium-Replay, finetuning both the drop-span encoder
and the action predictor led to better results. In general, none of the finetuning methods significantly
outperform their counterparts. We believe this is understandable as the action predictor and the
drop-span encoder are both key components of the DeFog model.

20


	Introduction
	Related Works
	Control under Frame Dropping and Delay
	Transformers in Reinforcement Learning

	Method
	Problem Statement
	Decision Transformer under Random Frame Dropping
	Decision Transformer Backbone
	Train-Time Frame Dropping
	Drop-Span Embedding
	Freeze-Trunk Finetuning


	Experimental Results
	Experiment Setup
	Evaluation in the Continuous Control Tasks
	Evaluation in the Discrete Control Tasks
	Visualized Results
	Ablation Study

	Conclusion
	Algorithm Details
	Experiment Details
	Datasets and Setup
	Gym MuJoCo
	Atari

	Hyperparameter Settings
	Gym MuJoCo
	Atari


	Supplementary Results
	Decision Transformer Backbone
	Train-Time Frame Dropping
	Drop-Span Embedding and Freeze Trunk Finetuning


