
Under review as a conference paper at ICLR 2024

COMPRESSION AND ACCELERATION OF DEEP NEURAL
NETWORKS: A VECTOR QUANTIZATION APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

In the advancing field of deep learning, we witness the emergence of models
that are getting larger, with an increasing number of parameters. However, this
progress carries a downside, as it requires more powerful hardware, thereby re-
stricting the utilization of deep learning models, particularly on edge devices.
Hence, a vital requirement arises for compressing and accelerating deep learn-
ing models to enable their widespread deployment. Majority of recent studies
proposed compression or acceleration based on pruning, low-precision quantiza-
tion, matrix factorization and knowledge distillation. In this paper, we present a
novel paradigm for compressing and accelerating deep learning models by har-
nessing vector quantization, a widely-recognized method in data compression.
Our technique directly applies vector quantization to the neural network weights.
More precisely, a VQ-DNN model divides weight parameters into equally sized
segments, with the values of these segments exclusively derived from a compact
codebook of values. During training, a VQ-DNN model learns both the codebook
values and the mapping to model weight parameters. Our work demonstrates that
vector quantization leads to more efficient implementations of matrix multipli-
cations and convolution operations, ultimately reducing the computational cost.
This efficiency enables us to accelerate and compress a wide range of models,
including both Convolutional Neural Networks (CNNs) and vision transformers.
We present experimental results on datasets such as CIFAR-10, ImageNet, and
EuroSat using popular architectures like VGG16, ResNet, and ViT models. In all
scenarios, VQ-DNN reduces model size by over 95%, surpassing state-of-the-art
methods. Furthermore, it achieves comparable or superior reductions in Float-
ing Point Operations (FLOPs) compared to existing methods, contingent on the
dataset and model configuration.

1 INTRODUCTION

In recent years, deep learning has transformed the AI field, capturing the public’s attention with
its impressive performance (Sarker, 2021). However, as the field progresses, models are growing
in size and complexity. These larger models require more advanced hardware, which hinders the
widespread adoption of deep learning, especially on edge devices (Wei et al., 2022; Fang et al.,
2023). In many practical scenarios, a modest reduction in accuracy is tolerable if it results in sub-
stantial compression and acceleration.

From the early days of DNNs, compression and acceleration has been an active research area (Le-
Cun et al., 1989; Whitley et al., 1990; Castellano et al., 1997). Low-rank decomposition have been
proposed to factorize a convolutional layer into several smaller layers (Rakhuba et al., 2014; Astrid
& Lee, 2017; Zhang et al., 2015). Network pruning has also been a very popular approach where
a large number of components of a pre-trained model is removed to achieve compression and ac-
celeration. These components can be weight parameters (Han et al., 2015) entire neurons (Srinivas
& Babu, 2015), convolution filters (Li et al., 2016), an entire layer (Chen & Zhao, 2018), interme-
diate activations (Georgiadis, 2019), etc. Some approaches designed a new model architecture that
are inherently more compact and efficient, such as MobileNet (Howard et al., 2017) and MSDNET
(Huang et al., 2017). Some approaches are proposed to quantize the network by storing and operat-
ing on a fewer bit parameters of 16 bits (Oh et al., 2018) or down to even 1-bits (i.e. binarization)
(Hubara et al., 2016).

1



Under review as a conference paper at ICLR 2024

N
in

Nout

B B
B B
B B
B B
B B
B B::
(a) Original weights

M

Index Codeword (size B)
1
2
3
4
.
.
.

(b) Codebook

N
in

Nout

::
(c) Quantized

Figure 1: a: The weight matrix of a standard linear layer, with dimensions Nin ×Nout, undergoes
segmentation into uniform-size blocks B row-wise. Within each block, values are substituted with
the nearest codeword from a shared global codebook, which is shared across all linear layers. b:
A codebook comprising M codewords, each having a size of B.c: After vector quantization (VQ),
values within each block in the weight matrix are replaced with an entry from the codebook. The
visualization uses distinct colors to represent entries within the codebook. The resulting weight
matrix functions similarly to a conventional linear layer in a neural network.

In this paper, we introduce a groundbreaking approach to compressing and accelerating deep learn-
ing models through the utilization of Vector Quantization (VQ). VQ, a data compression technique
commonly applied in signal processing and data compression, serves to represent a collection of data
points (vectors) with a limited set of representative vectors. Our research addresses a fundamental
question arising from prior work: Is it feasible to portray the model parameters using a limited set
of representative vectors? Drawing inspiration from the neural discrete representation learning ap-
proach by (Van Den Oord et al., 2017), we propose an innovative method in which a codebook is
learned alongside the model, forcing the model to exclusively rely on weight parameters derived
from this codebook.

In essence, our approach induces a model to use numerous repetitive blocks (segments) of parame-
ters obtained from a learned codebook (Fig. 1), due to the codebook size being considerably smaller
than the model parameters. This approach yields two key advantages:

• Reduced Storage Requirement: By representing model parameters using just a few bits
that indicate their index to the codebook, we significantly reduce the storage demands of
the model.

• Optimized Computational Efficiency: Since many parameters within each layer become
duplicates, their computation over the input data produces identical results. In Section 3.4,
we will illustrate how this redundancy can be leveraged to minimize the overall number of
Floating-Point Operations (FLOPs) required at inference.

In this work, we introduce vector quantized deep neural networks. We first demonstrate how ma-
trix multiplication and convolution process can be vector quantized. Hence, it allows us to vector
quantize most common architectures. We perform experiments on various models, including VGG,
ResNet, and ViT, and on several datasets, including CIFAR-10, ImageNet, and EuroSat. Our find-
ings demonstrate that these models can be effectively vector quantized using as few as 16 codebook
entries, incurring only a minor accuracy penalty. Furthermore, by holding the codebook fixed during
training, we delve into the adaptability of these models. In a notable experiment, we successfully
transfer a codebook trained for one task, ImageNet, to an entirely distinct task, EuroSat (see Ap-
pendix A.6). Furthermore, by using GradCAM++ (Chattopadhay et al., 2018), we show that a
vector quantized model learns similar features to a conventional model (see Appendix A.7)

2 RELATED WORK

Most previous works on model compression or acceleration can be divided into four categories:
pruning, low-precision weights, knowledge distillation, and matrix decomposition. Pruning can be
done on weight parameters (Han et al., 2015) entire neurons (Srinivas & Babu, 2015), convolution
filters (Li et al., 2016), an entire layer (Chen & Zhao, 2018), intermediate activations (Georgiadis,
2019), etc. However, some of these approaches, such as weight pruning and neuron pruning, lead
to an unstructured model which is hard to implement efficiently. Most pruning methods are post-
training and often remove unimportant parameters iteratively. There are approaches that utilize the

2



Under review as a conference paper at ICLR 2024

data to filter out unimportant filters (Lin et al., 2020b; Wang et al., 2018; Molchanov et al., 2019).
Data-free approaches often use lp-norms of a weight/filter as proxy for importance (He et al., 2018;
Ye et al., 2018; Zhuo et al., 2018). There are also some works that utilize regularization techniques
to induce sparsity (Yang et al., 2019a; Wang et al., 2020a; Zhuang et al., 2020).

Knowledge distillation improves the performance of a student model by taking the soft-labels from
a teacher model (Hinton et al., 2015). If the student model is smaller, it can be construed as a com-
pression method, as suggested in (Wang et al., 2019; Li et al., 2020; Duong et al., 2019). Matrix
decomposition is another technique representing the weight matrix as a low-rank product of two
smaller matrices by using decomposition techniques, such as SVD (Denton et al., 2014; Alvarez
& Salzmann, 2017) or CP-decomposition (Lebedev et al., 2014). While matrix decomposition suc-
cessfully compress and accelerate DNNs, it often results in large accuracy penalty, particularly under
high compression settings (Lin et al., 2020a).

Leveraging low-precision parameters, including 16-bit floats, 8-bit integers, and even the binariza-
tion of parameters is another approach for the compression and acceleration of models (Jacob et al.,
2018; Lee & Nirjon, 2019; Hubara et al., 2016; Yang et al., 2019b; Umuroglu et al., 2017).

Several approaches share a conceptual similarity with our method, although they differ in their
underlying inspiration, specifications, and implementation. (Gong et al., 2014) demonstrated the
practicality of clustering layer parameters, both individually and within sub-matrices. Building upon
this, (Wu et al., 2016) and its subsequent extension (Cheng et al., 2017) further evolved the clustering
idea to achieve both network compression and computational acceleration. However, two primary
distinctions set their approach apart from ours: Firstly, training the codebook alongside the model
enables us to regulate the entire model to employ only a single codebook, enhancing compression.
Secondly, as the previous work is a post-training method, the replacement of weights with codebook
values incurs more significant accuracy degradation, particularly if no re-training is done. The most
related paper to our approach, as described in (Minsik et al., 2022), addresses the second drawback
of previous methods by suggesting a differentiable k-means clustering layer that incorporates an
attention mechanism during training. However, they continue to use separate clusters for each layer.
Additionally, their primary focus was on model compression, and they did not tackle computational
acceleration. For a more detailed comparison with this work, please refer to Appendix A.8.

3 VQ-DNN

Vector quantization (VQ) compresses data by representing it with a reduced set of representative
vectors known as codewords. Initially, a codebook is assigned by using either random values or,
more frequently, clustering algorithms. Then, each data point is replaced with its closest codeword.

In 2017, (Van Den Oord et al., 2017) introduced vector quantization to deep neural networks for
quantizing VAE’s latent representation. When presented with an activation value segment x, the
authors forwarded the nearest codeword z(x) to the decoder in the forward pass, instead. During
the backward pass, the gradient ∇zL remained unchanged and was applied to x. Using the same
method, we apply vector quantization to the network’s weights instead of activations. During the
forward pass, we quantize the weights of the layers and perform layer operations, and during the
backward pass, we simply apply the unaltered gradients to the weights.

Many modern deep learning architectures incorporate Fully Connected (i.e., Linear) layers and 2D
convolution layers, often employing 1x1 or 3x3 filters. These layers typically account for a signifi-
cant portion of the architecture’s parameters. In this paper, we focus exclusively on these two layer
types, although a similar approach could extend to other neural network layers. In this section, we
unveil the details of how we apply vector quantization to both linear and 2D convolutional layers.
Additionally, we introduce an efficient implementation method capable of significantly compressing
and accelerating Deep Neural Networks (DNNs).

3.1 VECTOR QUANTIZED LINEAR LAYER

A linear layer contains a weight matrix W ∈ RNin×Nout . Nin and Nout represent the dimensions
of the input and output for that layer, respectively. Here we break down this weight matrix W
into blocks of size B. Consequently, a VQ-linear layer requires two components: an index matrix

3



Under review as a conference paper at ICLR 2024

I ∈ ZNin/B×Nout and a codebook C ∈ RM×B . Here, M and B are hyper-parameters determining
the number of entries in the codebook and the size of each block, respectively. Note that each B
consecutive parameters is mapped to a single entry of the codebook. In our analysis, we assume
that the indices can be stored using just a single byte, although it’s worth noting that in the majority
of our experiments, even fewer bits have proven sufficient. It’s important to highlight that, in this
paper, we do not vector quantize the bias parameters since they are relatively small in comparison
with the weight parameters. Assuming a precision of 4 bytes, a linear layer requires 4×Nin×Nout

bytes of storage. In contrast, a vector-quantized linear layer demands 4×M ×B for the codebook
and (Nin/B) × Nout for the index matrix. We demonstrate that a single codebook can be shared
among different layers of the same type, and hence, all those layers only require a single, compact,
full-precision codebook. This results in a remarkably compressed model.

3.2 VECTOR QUANTIZED 2D CONVOLUTION LAYER

A 2D convolution layer consists of a weight matrix, denoted as W ∈ RCout×Cin×k×k, where Cin

and Cout represent the number of input and output channels, respectively, and k indicates the filter
size. In our experiments, we focus on quantizing 3x3 and 1x1 2D convolution layers. Unlike the
quantization approach used for linear layers, here we break down the weight matrix W into B
consecutive k × k 2D filters rather than individual parameters. In other words, each entry in the
convolution codebook has dimensions of B×k×k. Consequently, a VQ-Conv2D layer necessitates
an index matrix I ∈ ZCout×Cin/B and a codebook C ∈ RM×B×K2

, where M represents the
number of entries in the codebook. Assuming that one byte is sufficient to store each codebook
index, the total storage required is Cin/B × Cout + 4 × M × B × k2 bytes. As an example, for
a convolutional layer with input and output channel sizes of 64, and a codebook with 16 entries
of size 4 × 3 × 3, the total number of parameters is reduced from 64 × 64 × 3 × 3 = 36, 864 to
64× (64/4) + 16× 4× 3× 3 = 1, 600. This compression is especially significant considering that
the codebook can be shared among multiple layers, resulting in an exceptionally compact model.

3.3 TRAINING

To train a vector-quantized network, we maintain the original weight parameters W in place. During
the forward pass, we replace each block of B parameters (or filters) with the nearest codebook entry
and then perform the layer’s operation (i.e matrix multiplication or convolution) using the quantized
weights Wq . In the backward pass, we need to update both the weight parameters W and the
codebook entries. Updating W is straightforward; we simply use the gradients obtained for Wq .
However, updating the codebook entries can be approached in two ways: 1. Using a loss term to
minimize the distance between codebook entries and the parameter blocks that match them during
the forward pass. 2. Using a closed-form solution, which is equivalent to the average of the blocks
of parameters that match each codebook entry during the forward pass.

Following a similar approach to VQ-VAE (Van Den Oord et al., 2017), we also incorporate another
loss term to encourage weight parameters to stay close to the values in the codebook. This helps
prevent extreme values in weight parameters that could destabilize training. For the first approach,
the total loss is given by Eq. 1:

n∑
i=1

yi. log(ŷi) +
∑

j∈VQ-layers

∑
b

(||sg[Wjb]− e||22 + ||Wjb − sg[e]||22) (1)

Here, Wjb represents a block of parameters b in layer j, and e is an entry in the codebook that was
mapped to Wjb during the forward pass. In this equation, sg represents the stop gradient operator,
which enforces its operand to remain non-updated by the optimizer. The second term moves the
codebook entries to align with the mapped weight parameters, while the third term moves the weight
parameters to correspond to their associated codebook entries. For the second approach, the total
loss is as Eq. 2:

n∑
i=1

yi. log(ŷi) +
∑

j∈VQ-layers

∑
b

(||Wjb − e||22) (2)

4



Under review as a conference paper at ICLR 2024

In this case, the codebook entries are updated using exponential moving averages, and they are not
updated via the optimizer. Therefore, we omit the stop gradient operator here. For more detailed
implementation information regarding the second approach, please refer to Appendix A of the work
by (Van Den Oord et al., 2017). In our experiments, we observed that the second approach not only
converges more quickly but also yields slightly superior results.

3.4 ACCELERATION

After training a vector-quantized model, we can replace each block of weight parameters with the
closest codeword from the codebook and subsequently remove the original weights. The resulting
model is ready for direct use. However, due to the limited number of entries in the codebook,
typically around 16, each codebook entry repeatedly appears within each layer’s weight matrix. This
leads to a significant number of redundant multiplications and convolution operations. To optimize
computation efficiency, we perform these operations just once and reuse the results throughout,
thereby reducing the number of Floating Point Operations (FLOPs).

Let’s delve into the details of how this acceleration technique works: For a vector-quantized lin-
ear layer, we begin by dividing the input, denoted as Inp ∈ RNin , into Nin/B blocks, each of
size B. Subsequently, we perform a multiplication of each block with the entire codebook. The
outcome is referred to as the ”multiplication lookup matrix”, which encompasses all the necessary
multiplication operations for a given layer. Since the final results require summation along the input
dimension, we can sum each consecutive set of B values within the multiplication lookup matrix
to avoid redundant summations at a later stage. Consequently, the size of the multiplication lookup
matrix becomes Nin/B×M . To compute the output of the layer, we utilize the index matrix to look
up the multiplication results from the multiplication lookup matrix and perform the final summation
along the input dimension.

In a standard linear layer, the computational cost is proportional to Nin × Nout FLOPs, as docu-
mented in prior work (Wu et al., 2016; Cheng et al., 2017). In the case of a vector quantized linear
layer, we initially require (Nin/B) × M × B FLOPs to construct a multiplication lookup table.
Subsequently, an additional Nin/B × Nout FLOPs are needed to compute the output. It’s worth
noting that a larger value of B results in a reduction in the number of FLOPs required. To illus-
trate this, consider a layer with 1024 inputs and 1024 outputs, using a codebook with 16 entries,
each of size 8. This reduces the FLOPs from the standard 1, 024 × 1, 024 = 1, 048, 576 to just
1024× 16 + (1, 024/8)× 1, 024 = 147, 456.

It’s also important to highlight that we treat the matrix multiplication involving weight parameters
for the query, key, and value in the multihead attention layers as a linear layer. This treatment
results in a significant reduction in the overall number of multiplication operations. A conventional
convolution layer typically requires a substantial number of FLOPs, calculated as Hout × Wout ×
Cin × Cout × k2 (Wu et al., 2016; Li et al., 2016). In contrast, a vector quantized convolution
layer follows a two-step process akin to that of a vector quantized linear layer. In the first step, we
perform a convolution operation using each entry from the codebook across B consecutive input
channels, summing the results. This process generates a convolution lookup matrix with dimensions
Hout×Wout×Cin/L×Cout, requiring a total of Hin×Win×Cin×M×k2 FLOPs. In the second
step, we construct the final output by extracting values from the convolution lookup matrix using
layer’s indices. This step incurs an additional cost of Hout×Wout×Cin/L×Cout FLOPs. Notably,
the second operation does not include the k2 term. Consequently, for convolutions with k > 1, we
can reduce the number of FLOPs, even when we don’t reduce the number of input channels (i.e.,
when L = 1).

4 EXPERIMENTS

In this section, we perform a thorough evaluation of VQ-DNNs using various models and datasets.
We also compare their effectiveness against several state-of-the-art methods. It’s essential to high-
light that most methods in the literature are post-training techniques, intended for meticulously
trained models that achieve the highest accuracy. In contrast, VQ-DNN is designed to be integrated
into the training process. Training a deep learning architecture to reach its highest accuracy is a
significant challenge, often requiring an extensive process of adjusting settings and applying various

5



Under review as a conference paper at ICLR 2024

techniques to achieve good results. In some situations, especially when dealing with large models
like vision transformers and large datasets like ImageNet, limitations in computational power pre-
vent us from trying out many different experiments to get the best possible outcome. Therefore,
we chose a specific training recipe that gives us satisfactory results and used the same recipe with
minor changes for all our experiments. To make sure we’re comparing results fairly, we trained an
equivalent non-vector quantized (non-VQ) deep neural network (DNN) model using the same recipe
as a reference point. As a result, we report the accuracy drop compared to the non-VQ DNN model
we trained. For more details on the training recipe refer to Appendix A.1. The models we evalu-
ate encompass VGG16, ResNet18, ResNet50, and ViT b 16, and we evaluate them across datasets
including CIFAR-10, ImageNet (ILSVRC2012), and EuroSat.

Table 1: Training results for vector-quantized ResNet50 on CIFAR-10 using various codebook sizes

K1/K3 codebook (M, B) Acc. (%) △ Acc. (%) FLOPs FLOPs ↓ (%) Params Params ↓ (%)
Original ResNet 94.15% - 1304.69M - 23.52M -
(16,8)/(32,8) 93.08% ↓ 1.07 327.82M 74.87% 0.50M 97.89%
(16,8)/(32,4) 93.53% ↓ 0.62 336.20M 74.23% 0.56M 97.61%
(16,8)/(32,2) 93.30% ↓ 0.85 352.98M 72.95% 0.63M 97.33%
(16,8)/(32,1) 93.87% ↓ 0.28 386.54M 70.37% 0.77M 96.73%
(16,8)/(24,8) 93.10% ↓ 1.05 282.99M 78.31% 0.50M 97.89%
(16,8)/(24,4) 93.29% ↓ 0.86 291.38M 77.67% 0.53M 97.73%
(16,8)/(24,2) 93.23% ↓ 0.92 308.15M 76.38% 0.61M 97.40%
(16,8)/(24,1) 93.28% ↓ 0.87 341.71M 73.81% 0.77M 96.73%
(16,8)/(16,8) 92.48% ↓ 1.67 238.16M 81.75% 0.52M 97.78%
(16,8)/(16,4) 93.03% ↓ 1.12 246.55M 81.10% 0.53M 97.73%
(16,8)/(16,2) 93.17% ↓ 0.98 263.33M 79.82% 0.61M 97.40%
(16,8)/(16,1) 93.08% ↓ 1.07 296.88M 77.25% 0.78M 96.70%
(24,8)/(24,8) 92.73% ↓ 1.42 305.47M 76.59% 0.50M 97.89%
(24,8)/(24,4) 92.93% ↓ 1.22 313.86M 75.94% 0.53M 97.73%
(24,8)/(24,2) 93.12% ↓ 1.03 330.63M 74.66% 0.61M 97.40%
(24,8)/(24,1) 93.57% ↓ 0.58 364.19M 72.09% 0.77M 96.73%
(24,16)/(24,8) 92.47% ↓ 1.68 262.21M 79.90% 0.31M 98.70%
(24,16)/(24,4) 92.94% ↓ 1.21 270.60M 79.26% 0.34M 98.53%
(24,16)/(24,2) 92.90% ↓ 1.25 287.38M 77.97% 0.42M 98.20%
(24,16)/(24,1) 93.45% ↓ 0.70 320.93M 75.40% 0.58M 97.53%
(16,16)/(24,8) 92.02% ↓ 2.13 239.73M 81.63% 0.31M 98.70%
(16,16)/(24,4) 92.36% ↓ 1.79 248.12M 80.98% 0.34M 98.54%
(16,16)/(24,2) 92.77% ↓ 1.38 264.90M 79.70% 0.42M 98.20%
(16,16)/(24,1) 93.09% ↓ 1.06 298.46M 77.12% 0.58M 97.54%
(24,8)/(32,2) 93.58% ↓ 0.57 375.46M 71.22% 0.61M 97.40%
(24,8)/(32,1) 93.46% ↓ 0.69 409.01M 68.65% 0.77M 96.73%

4.1 CIFAR-10

ResNet18 and ResNet50: Majority of the parameters of resnet family architectures are in 3× 3 and
1×1 Conv2D layers. Hence, we use only two codebooks here, one for 2D convolutions of 1×1 size,
referred to as k1, and one for 3×3, referred to as k3. The final linear layer of the architecture remain
un-quantized as it contains a small number of parameters. M and B hyper-parameters are shown in
(M,B) tuples. Note that for k3 codebooks each entry actually has a size of B × 3 × 3. For that
reason, even if we set B = 1, we still replace 9 full precision parameters with a single byte index.
Results for resnet-50 is shown in Table 1. Our method can reduce 25.6M parameters to less than 800
thousand. Increasing M , the number of entries in the codebook, can slightly improve the accuracy
while it does not increase the number of parameters significantly. Decreasing M , on the other hand,
can improve both FLOPs and model parameters significantly at the cost of accuracy. For resnet-18,
results are presented in Table 2. It is noteworthy that the majority of our models demonstrate a
level of efficiency surpassing that of representing each full-precision parameter, typically requiring
4 bytes, with merely a single bit. To elaborate, this implies that, from a technical perspective, we
utilize less than a single bit for the storage of each parameter.

Comparison with the state of the art: In this section, we have performed the training of multiple
vector-quantized ResNet50 models and subsequently compared them with state-of-the-art compres-
sion and acceleration methods. In each model group, we select a codebook size for ResNet50 such
that the number of Floating-Point Operations (FLOPs) stays within a small range. The outcomes, as
detailed in Table 3, reveal a significant edge for VQ-DNNs in terms of compression when compared
to state-of-the-art methods. Concerning accuracy, VQ-DNNs maintain their competitiveness, with

6



Under review as a conference paper at ICLR 2024

Table 2: Training results for vector-quantized ResNet18 on CIFAR-10 using various codebook sizes.

K1/K3 codebook (M, B) Acc. (%) △ Acc. (%) FLOPs FLOPs ↓ (%) Params Params ↓ (%)
Original ResNet 93.68% - 556.65M - 11.17M -
(32,8)/(32,8) 89.07% ↓ 4.61 173.13M 68.90% 0.11M 99.03%
(32,8)/(32,4) 91.00% ↓ 2.68 180.74M 67.53% 0.12M 98.90%
(32,8)/(32,2) 92.33% ↓ 1.35 195.94M 64.80% 0.19M 98.32%
(32,8)/(32,1) 92.98% ↓ 0.70 226.35M 59.34% 0.33M 97.01%
(16,8)/(16,8) 87.72% ↓ 5.96 92.26M 83.43% 0.08M 99.25%
(16,8)/(16,4) 89.85% ↓ 3.83 99.87M 82.06% 0.11M 99.01%
(16,8)/(16,2) 90.73% ↓ 2.95 115.07M 79.33% 0.18M 98.38%
(16,8)/(16,1) 92.23% ↓ 1.45 145.48M 73.87% 0.33M 97.04%
(32,8)/(96,1) 93.28% ↓ 0.40 542.50M 2.54% 0.35M 96.90%
(16,8)/(96,1) 93.23% ↓ 0.45 540.66M 2.87% 0.35M 96.91%
(16,8)/(64,1) 93.29% ↓ 0.39 382.59M 31.27% 0.34M 96.96%
(16,8)/(32,1) 92.99% ↓ 0.69 224.52M 59.67% 0.33M 97.01%

accuracy degradation remaining below the 1% threshold, even though some alternative methods may
outperform us in terms of accuracy.

Table 3: Comparisons of different methods for compressing/accelerating ResNet-50 on CIFAR-10
with different pruning ratios. Baseline accuracy of our model is 94.15% while other approaches
used a well-trained model with baseline accuracy of 95.22%.

ID Acc. (%) △ Acc. (%) FLOPs FLOPs ↓ (%) Params ↓ (%)
FPGM (He et al., 2019) 94.73% ↓ 0.49 420M 67.8% 65.9%
SG-CNN (Guo et al., 2020) 95.12% ↓ 0.10 415M 68.2% 66.1%
KPGP (Zhang et al., 2022) 95.23% ↑ 0.01 420M 67.8% 65.9%
VQ k1(16,8)/k3(32,1) 93.87% ↓ 0.28 386.5M 70.3% 96.7%
FPGM (He et al., 2019) 93.59% ↓ 1.63 273M 79.0% 76.9%
SG-CNN (Guo et al., 2020) 94.24% ↓ 0.98 266M 79.6% 77.1%
KPGP (Zhang et al., 2022) 94.35% ↓ 0.87 273M 79.0% 76.9%
VQ k1(16,8)/k3(16,2) 93.17% ↓ 0.98 262.99M 79.8% 97.4%

VGG16 In the case of CIFAR-10, we adopted a variation of the VGG16 architecture as detailed by
(Li et al., 2016). Given that this architecture predominantly utilizes 2D convolutions with 3 × 3
kernel sizes, we excluded linear layers from the vector quantization process due to their minuscule
size. It should be noted that for VGG16, a single codebook with only 16 entries was found to be
inadequate. To further investigate this limitation, we conducted an analysis of codebook usage, as
depicted in Figure 2, and compared it between VGG16 and ResNet18. The heatmap analysis reveals
a significant disparity in codebook entry utilization between the two architectures. While ResNet18
exhibits a uniform pattern of codebook entry usage, VGG16 appears to struggle in efficiently utiliz-
ing many codebook entries, particularly in its later layers. This observation strongly suggests that
the distribution of codebook entries required for different layers of VGG16 is not consistent, which
could be attributed to the absence of skip connections in the VGG architecture.

To address these suboptimal results, two potential solutions were explored: increasing the number
of entries in the codebook or employing multiple codebooks tailored for different depths. Our ex-
perimentation involved training two sets of vector-quantized models: 1) A single, larger codebook
shared across the entire model. 2) Four separate, smaller codebooks, each dedicated to one of the
convolutional blocks. Notably, the last two blocks, both containing the same number of filters, share
a common codebook. The results, presented in Table 4, reveal an intriguing trade-off. A model
equipped with a single codebook containing 64 entries exhibits marginally improved accuracy com-
pared to a model featuring four codebooks, each with 16 entries. However, it is worth highlighting
that the latter option offers greater computational efficiency and slightly decreases memory footprint
by reducing the size of the multiplication lookup tables.

A comprehensive evaluation of vector quantized VGG16 on CIFAR-10, considering various code-
book sizes, is detailed in Appendix A.5. It is observed that employing a single large codebook,
despite yielding slightly better accuracy, is not efficient in terms of FLOPs. The impact of increas-
ing the number of entries (L) for the K3 codebook on accuracy is more pronounced in VGG16
compared to ResNet50, primarily due to VGG16’s predominant use of 3× 3 convolutions.

7



Under review as a conference paper at ICLR 2024

Table 4: Effect of having a single large codebook versus multiple smaller codebook for different
layers on VGG16 (CIFAR-10)

K3 codebook (M, B) Acc. (%) △ Acc. (%) FLOPs FLOPs ↓ (%) Params Params ↓ (%)
Original VGG16 92.54% - 314.43M - 14.73M -
(64,1) 92.08% ↓ 0.46 142.39M 54.72% 0.42M 97.12%
4×(16,1) 90.86% ↓ 1.68 63.65M 79.76% 0.42M 97.12%
(128,1) 92.17% ↓ 0.37 247.38M 21.33% 0.43M 97.11%
4×(32,1) 91.95% ↓ 0.59 89.89M 71.41% 0.43M 97.11%

(a) VGG16 k3=(64, 1) (b) resnet18 k3=(64, 1)

Figure 2: Distribution of codebook usage across different layers (CIFAR-10)

Comparison with the state of the art: Table 5 presents a comparative analysis of VQ-VGG16
alongside state-of-the-art (SOTA) methods. The models are grouped according to their computa-
tional complexity, as measured by FLOPs. Similar to the performance achieved with ResNet mod-
els, our compression ratio outperforms all prior methods considerably. Furthermore, the reduction in
accuracy ranks favorably compared to all other approaches, with the exception of DSP (Park et al.,
2023).

Table 5: Comparisons of different methods for compressing/accelerating VGG-16 on CIFAR-10
with different pruning ratios. BA represent baseline accuracy.

ID BA Acc. (%) Acc. (%) △ Acc. (%) FLOPs ↓ (%) Params ↓ (%)
PFEC (Li et al., 2016) 94.27% 93.22% ↓ 1.07 43.3% 40.7%
FPGM (He et al., 2019) 94.27% 92.95% ↓ 1.32 50.4% 49.9%
KPGP (Zhang et al., 2022) 94.27% 93.66% ↓ 0.61 50.4% 49.9%
HRank (Lin et al., 2020a) 93.96% 93.43% ↓ 0.53 53.5% 82.9%
VQ (64,1)/(64,1)/(64,1)/(64,1) 92.54% 92.20% ↓ 0.34 54.7% 97.1%
PFEC (Li et al., 2016) 94.27% 92.03% ↓ 2.24 74.0% 70.9%
FPGM (He et al., 2019) 94.27% 88.22% ↓ 6.05 74.4% 74.9%
KPGP (Zhang et al., 2022) 94.27% 92.36% ↓ 1.91 74.4% 74.9%
HRank (Lin et al., 2020a) 93.96% 91.23% ↓ 2.73 76.5% 92.0%
DSP (g=2) (Park et al., 2023) 93.88% 93.88% 0.00 75.5% 74.5%
DSP (g=4) (Park et al., 2023) 93.88% 93.91% ↑ 0.03 77.8% 76.6%
VQ (32,1)/(16,1)/(16,1)/(16,1) 92.54% 91.86% ↓ 0.68 76.0% 97.1%

4.2 IMAGENET

Comparison with SOTA methods: We trained two vector-quantized ResNet50 models (M =
16,M = 32) on the ImageNet dataset each employing three codebooks tailored for 1 × 1 con-
volution (M, 8), 3 × 3 convolution (M, 1, 3, 3), and the linear classification head (M, 8). The
number of entries in the codebook, represented by M , is indicated in parentheses in Table 6. In the
case of vector quantized Vision Transformer (ViT) models, two codebooks of dimensions (M, 8)
were utilized. These codebooks were assigned to the in-projection matrices of the multihead atten-
tion layers and the MLP layers, respectively. The vector quantized ResNet50 model demonstrates
a substantial performance advantage over all existing state-of-the-art methods, excelling in terms of
both computational complexity (measured in FLOPs) and model parameters. Similarly, the vector
quantized ViT model exhibits remarkable efficiency and compactness, surpassing all other state-of-
the-art methods in these aspects as well. Our observations reveal that initializing from pretrained
model weights yields superior results. The results enclosed within parentheses for our models denote
those obtained through the utilization of pretrained model weights.

8



Under review as a conference paper at ICLR 2024

Table 6: Comparisons of different methods for compressing/accelerating ResNet50/ViT on Ima-
geNet with different pruning ratios. BA represent baseline accuracy. Numbers is parenthesis present
models initialized from a pretrained model.

ID BA Acc. (%) Acc. (%) △ Acc. (%) FLOPs ↓ (%) Params ↓ (%)
FPGM (He et al., 2019) 76.15% 74.83% ↓ 1.32 53.5% -
Rethink (Liu et al., 2018) 76.13% 73.90% ↓ 2.23 50.0% -
PScratch (Wang et al., 2020b) 77.20% 75.60% ↓ 1.60 51.2% 63.9%
SG-CNN (Guo et al., 2020) 76.13% 75.20% ↓ 0.93 53.3% 53.5%
GCP (Zhao & Luk, 2019) 76.15% 74.10% ↓ 2.05 54.1% 45.9%
KPGP (Zhang et al., 2022) 76.15% 75.58% ↓ 0.57 44.3% 44.0%
SCOP (Tang et al., 2020) 76.15% 75.26% ↓ 0.89 54.6% 51.8%
VQ ResNet50 (16) 76.82% 70.40% (74.61%) ↓ 6.42 (2.21) 74.8% 96.8%
VQ ResNet50 (32) 76.82% 71.85% (76.35%) ↓ 4.97 (0.54) 64.7% 96.8%
VTP (Zhu et al., 2021) 81.8% 80.7% ↓ 1.1 43.2% 45.2%
PatchSlimming (Tang et al., 2022) 81.8% 81.6% ↓ 0.2 46.6% -
WDPruning (Yu et al., 2022) 81.8% 80.76% ↓ 1.04 43.4% 35.0%
S2ViTE (Chen et al., 2021) 81.8% 82.22% ↑ 0.42 33.13% 34.41%
VQ ViT-B (16) 78.51% 75.30% (76.71%) ↓ 3.21 (1.79) 84.65% 97.79%

4.3 GAINING FURTHER EXPERIMENTAL INSIGHTS

This section is dedicated to a series of experiments designed to delve into the attributes and ca-
pabilities of vector quantized deep neural networks (VQ-DNNs). In our initial experiment, details
of which are provided in the Appendix A.2, we conducted an examination of the significance of
individual entries within the codebook, aiming to determine whether each entry holds equal impor-
tance. In the subsequent experiment, we sought to gain insights into how VQ networks employ
their codebooks across various layers. Additional information can be found in the Appendix A.3.
Another experiment we conducted investigating the transferability of learned codebooks between
distinct models and datasets, as elaborated upon in the Appendix A.6. Vector quantized deep neural
networks can be seamlessly integrated with various other methods for compressing and accelerating
deep neural networks. One prominent category among these methods is low-bit quantization tech-
niques. To validate the compatibility of our approach with low-bit precision methods, we applied
8-bit quantization to several of our trained models. Detailed results are available in the Appendix
A.4. Lastly, we conducted an analysis to discern the features learned by VQ-DNNs and compared
them with those acquired by standard networks in Appendix A.7.

5 CONCLUSION

This research introduces Vector Quantized Deep Neural Networks (VQ-DNNs), which excel in
achieving state-of-the-art compression and acceleration rates. Unlike traditional quantization meth-
ods that reduce parameter precision, VQ-DNNs take a unique approach by learning a codebook
during training. This codebook consists of segments that exclusively form the network’s weights,
effectively replacing model parameters with indices referencing the codebook. Frequent repetition
of codebook values at each layer allows for an efficient VQ-DNN implementation where each layer’s
input is multiplied (or convolved) with the entire codebook, reducing subsequent operations into
lookup procedures. As a result, both the parameter count and Floating-Point Operations (FLOPs)
are reduced, surpassing current compression techniques significantly. Moreover, VQ-DNNs achieve
competitive FLOP efficiency compared to leading methods. Additionally, VQ-DNNs are compat-
ible with various other methods, such as lower-precision operations, enabling their integration to
enhance efficiency. This new paradigm introduces a promising direction in the existing literature,
potentially augmenting current approaches to deep learning model compression and acceleration.

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. Advances
in neural information processing systems, 30, 2017.

Marcella Astrid and Seung-Ik Lee. Cp-decomposition with tensor power method for convolutional
neural networks compression. In 2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 115–118. IEEE, 2017.

9



Under review as a conference paper at ICLR 2024

Giovanna Castellano, Anna Maria Fanelli, and Marcello Pelillo. An iterative pruning algorithm for
feedforward neural networks. IEEE transactions on Neural networks, 8(3):519–531, 1997.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE winter conference on applications of computer vision (WACV), pp. 839–847. IEEE, 2018.

Shi Chen and Qi Zhao. Shallowing deep networks: Layer-wise pruning based on feature repre-
sentations. IEEE transactions on pattern analysis and machine intelligence, 41(12):3048–3056,
2018.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity
in vision transformers: An end-to-end exploration. Advances in Neural Information Processing
Systems, 34:19974–19988, 2021.

Jian Cheng, Jiaxiang Wu, Cong Leng, Yuhang Wang, and Qinghao Hu. Quantized cnn: A uni-
fied approach to accelerate and compress convolutional networks. IEEE transactions on neural
networks and learning systems, 29(10):4730–4743, 2017.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Chi Nhan Duong, Khoa Luu, Kha Gia Quach, and Ngan Le. Shrinkteanet: Million-scale lightweight
face recognition via shrinking teacher-student networks. arXiv preprint arXiv:1905.10620, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Paul Gavrikov and Janis Keuper. Cnn filter db: An empirical investigation of trained convolutional
filters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 19066–19076, 2022.

Georgios Georgiadis. Accelerating convolutional neural networks via activation map compression.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7085–7095, 2019.

Jacob Gildenblat and contributors. Pytorch library for cam methods. https://github.com/
jacobgil/pytorch-grad-cam, 2021.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Qingbei Guo, Xiao-Jun Wu, Josef Kittler, and Zhiquan Feng. Self-grouping convolutional neural
networks. Neural networks, 132:491–505, 2020.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4340–4349, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

10

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam


Under review as a conference paper at ICLR 2024

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. Multi-scale dense convolutional networks for efficient prediction. arXiv preprint
arXiv:1703.09844, 2(2), 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Seulki Lee and Shahriar Nirjon. Neuro. zero: a zero-energy neural network accelerator for embedded
sensing and inference systems. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, pp. 138–152, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang. Few sample knowledge distillation for
efficient network compression. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14639–14647, 2020.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1529–1538, 2020a.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. arXiv preprint arXiv:2006.07253, 2020b.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Cho Minsik, Vahid Keivan, A., Adya Saurabh, and Rastegari Mohammad. Differentiable k-means
clustering layer for neural network compression. In ICLR, 2022. URL https://arxiv.org/
abs/2108.12659.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Young H Oh, Quan Quan, Daeyeon Kim, Seonghak Kim, Jun Heo, Sungjun Jung, Jaeyoung Jang,
and Jae W Lee. A portable, automatic data qantizer for deep neural networks. In Proceedings of
the 27th international conference on parallel architectures and compilation techniques, pp. 1–14,
2018.

Jun-Hyung Park, Yeachan Kim, Junho Kim, Joon-Young Choi, and SangKeun Lee. Dynamic struc-
ture pruning for compressing cnns. arXiv preprint arXiv:2303.09736, 2023.

11

https://arxiv.org/abs/2108.12659
https://arxiv.org/abs/2108.12659


Under review as a conference paper at ICLR 2024

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

M Rakhuba, I Oseledets, V Lempitsky, V Lebedev, and Y Ganin. Speeding-up convolutional neural
networks using fine-tuned cp-decomposition. Computer Science, 2014.

Iqbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy, applications
and research directions. SN Computer Science, 2(6):420, 2021.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, and Chang Xu. Scop:
Scientific control for reliable neural network pruning. Advances in Neural Information Processing
Systems, 33:10936–10947, 2020.

Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan Guo, Chao Xu, and Dacheng Tao. Patch
slimming for efficient vision transformers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 12165–12174, 2022.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus
Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate
arrays, pp. 65–74, 2017.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Dong Wang, Lei Zhou, Xueni Zhang, Xiao Bai, and Jun Zhou. Exploring linear relationship in
feature map subspace for convnets compression. arXiv preprint arXiv:1803.05729, 2018.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020a.

Ji Wang, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao, and S Yu Philip. Private model
compression via knowledge distillation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1190–1197, 2019.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning
from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
12273–12280, 2020b.

Hang Wei, Zulin Wang, Gengxin Hua, Jinjing Sun, and Yunfu Zhao. Automatic group-based struc-
tured pruning for deep convolutional networks. IEEE Access, 10:128824–128834, 2022.

Darrell Whitley, Timothy Starkweather, and Christopher Bogart. Genetic algorithms and neural
networks: Optimizing connections and connectivity. Parallel computing, 14(3):347–361, 1990.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4820–4828, 2016.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019a.

Kang Yang, Tianzhang Xing, Yang Liu, Zhenjiang Li, Xiaoqing Gong, Xiaojiang Chen, and Dingyi
Fang. cdeeparch: A compact deep neural network architecture for mobile sensing. IEEE/ACM
Transactions on Networking, 27(5):2043–2055, 2019b.

12



Under review as a conference paper at ICLR 2024

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 3143–3151, 2022.

Guanqun Zhang, Shuai Xu, Jing Li, and Alan JX Guo. Group-based network pruning via nonlinear
relationship between convolution filters. Applied Intelligence, 52(8):9274–9288, 2022.

Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun. Efficient and accurate
approximations of nonlinear convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and pattern Recognition, pp. 1984–1992, 2015.

Ruizhe Zhao and Wayne Luk. Efficient structured pruning and architecture searching for group
convolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, pp. 0–0, 2019.

Mingjian Zhu, Yehui Tang, and Kai Han. Vision transformer pruning. arXiv preprint
arXiv:2104.08500, 2021.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-
level structured pruning using polarization regularizer. Advances in neural information processing
systems, 33:9865–9877, 2020.

Huiyuan Zhuo, Xuelin Qian, Yanwei Fu, Heng Yang, and Xiangyang Xue. Scsp: Spectral clustering
filter pruning with soft self-adaption manners. arXiv preprint arXiv:1806.05320, 2018.

A APPENDIX

A.1 TRAINING RECIPE

In our experimentation with the CIFAR-10 dataset, we implemented models employing the stop
gradient operation and integrated three distinct loss terms, as comprehensively detailed in Section
3.3. For the ImageNet dataset, we employed an exponential moving average estimation approach,
as described in Section 3.3, primarily due to its faster convergence. However, when subjecting this
method to CIFAR-10, we observed no substantial variations in terms of accuracy in comparison to
the prior approach.

Notably, we discerned suboptimal performance when employing the SGD optimizer with the vector
quantized model. Conversely, our experimental results demonstrated that the AdamW optimizer
(Loshchilov & Hutter, 2017) exhibits a satisfactory performance. Consequently, we have adopted
the AdamW optimizer as the preferred choice for all our experiments, regardless of whether we are
training a vector quantized model or a baseline model. Moreover, we incorporated RandAugment
as our chosen data augmentation technique, as detailed in (Cubuk et al., 2020). Our training process
included the implementation of a one-cycle learning rate schedule following the approach outlined
in (Smith & Topin, 2019), with PyTorch’s (Paszke et al., 2017) default settings. The remaining
hyperparameters employed in our experiments are provided in Table A.1 for reference.

Table A.1: Hyperparameters used in our experiments

Dataset Architecture Epochs Batch size Max learning rate Weight decay
CIFAR-10 ResNet50/18, VGG16 200 128 0.005 0.0005
ImageNet ResNet50 90 256 0.003 0.0001
ImageNet ViT b 16 90 1024 0.003 0.0001
EuroSat ResNet50 90 256 0.003 0.0001

13



Under review as a conference paper at ICLR 2024

A.2 EFFECT OF REMOVING FILTERS

In this experimental investigation, we systematically execute a codebook removal procedure and
subsequently assess its influence on the model’s accuracy. For every weight index initially associated
with the target codeword, we conduct a search within the remaining codebook entries to identify and
replace it with the nearest available codeword. The outcomes, depicted graphically in Figure A.1,
yield notable insights.

Notably, when employing a codebook with a mere 16 entries, the elimination of each codebook
entry results in a substantial deterioration in accuracy. However, with the utilization of a 64-entry
codebook, the decline in accuracy is significantly less pronounced. This phenomenon hints at the
existence of redundancy within the codebooks, with many codewords possessing close counterparts.

Of particular interest is the absence of a discernible correlation between the frequency of codebook
usage and its subsequent impact on accuracy. This observation holds true for the K1 codebook as
well. Due to limitations in presentation space, we exclusively present the findings related to the K3
codebook in this context.

(a) resnet18 k3=(16, 1) (b) resnet18 k3=(64, 1)

Figure A.1: The effect of removing each codebook on the accuracy of ResNet18 trained on CIFAR-
10

A.3 DISTRIBUTION OF FILTER USAGE

To investigate the utilization pattern of codebooks across various layers in VQ-DNNs, we present
a visualization illustrating the distribution of unique filters applied at each layer, as presented in
Figure A.2. Notably, a substantial proportion of codebook entries are employed consistently across
all layers. This observation stands in contrast to conventional deep neural networks (DNNs), where
prior research has underscored distinctions between filters in initial layers and those in deeper layers
(Gavrikov & Keuper, 2022).

The implication of this finding is indicative of the model’s ability, particularly in cases where skip
connections are incorporated, to exhibit a high degree of adaptability. It efficiently accomplishes
tasks by recurrently utilizing a relatively compact subset of filters.

(a) resnet18 k3=(16, 1) (b) resnet18 k3=(64, 1)

Figure A.2: How many unique codebooks are used at each layer for a ResNet18 trained on CIFAR-
10

A.4 8-BIT QUANTIZATION

Table A.2 presents the outcomes obtained from the application of 8-bit quantization to a vector quan-
tized model. This quantization process encompasses both weight parameters (e.g., codebook entries)

14



Under review as a conference paper at ICLR 2024

and intermediate activation values. Across the majority of instances, the reduction in accuracy from
the initial vector quantized model remains less than one percent. This observation underscores the
potential for leveraging vector quantization in conjunction with low-bit quantization as a notably
effective strategy to enhance computational speed and reduce memory usage.

Table A.2: 8-bit quantization of vector quantized models trained on CIFAR-10

ID Codebook △ 8-bit Acc. (%)
ResNet18 - ↓ 0.56%
VQ ResNet18 k1(16,8)/k3(16,8) ↓ 1.54%
VQ ResNet18 k1(16,8)/k3(16,4) ↓ 0.80%
VQ ResNet18 k1(16,8)/k3(16,2) ↓ 0.07%
VQ ResNet18 k1(16,8)/k3(16,1) ↓ 0.39%
VQ ResNet18 k1(32,8)/k3(32,8) ↓ 1.17%
VQ ResNet18 k1(32,8)/k3(32,4) ↓ 0.67%
VQ ResNet18 k1(32,8)/k3(32,2) ↓ 0.55%
VQ ResNet18 k1(32,8)/k3(32,1) ↓ 0.90%
VGG16 - ↓ 0.72%
VQ VGG16 k3(64,1) ↓ 0.39%
VQ VGG16 k3(16,1)/(16,1)/(16,1)/(16,1) ↓ 0.47%
VQ VGG16 k3(128,1) ↓ 0.77%
VQ VGG16 k3(32,1)/(32,1)/(32,1)/(32,1) ↓ 0.47%

15



Under review as a conference paper at ICLR 2024

A.5 VGG16 ON CIFAR-10

A thorough assessment of vector quantized VGG16 model performance on the CIFAR-10 dataset,
considering diverse codebook sizes, is presented in Table A.3. Notably, the adoption of a single,
extensive codebook, despite yielding a marginally superior accuracy, is found to be inefficient in
terms of Floating-Point Operations (FLOPs).

Furthermore, it is observed that the impact of increasing the codebook size parameter (M ) for the K3
codebook is more pronounced in the VGG16 model as compared to the ResNet50 model. This dif-
ference is primarily attributed to the architectural distinction between the two models, with VGG16
predominantly employing 3× 3 convolutions.

Table A.3: Effect of having a single large codebook versus multiple smaller codebook for different
layers on VGG16 (CIFAR-10)

K3 codebook (M, B) Acc. (%) △ Acc. (%) FLOPs FLOPs ↓ (%) Params Params ↓ (%)
Baseline 92.54% - 314.43M - 14.73M -
(64,1)/(64,1)/(64,1)/(64,1) 92.20% ↓ 0.34 142.39M 54.72% 0.43M 97.11%
(48,2)/(48,2)/(48,2)/(48,2) 91.06% ↓ 1.48 98.84M 68.57% 0.22M 98.49%
(48,1)/(48,1)/(48,1)/(48,1) 91.81% ↓ 0.73 116.14M 63.06% 0.43M 97.11%
(32,8)/(32,8)/(32,8)/(32,8) 84.74% ↓ 7.80 59.61M 81.04% 0.08M 99.49%
(32,4)/(32,4)/(32,4)/(32,4) 89.10% ↓ 3.44 63.94M 79.66% 0.12M 99.17%
(32,2)/(32,2)/(32,2)/(32,2) 91.21% ↓ 1.33 72.59M 76.91% 0.22M 98.49%
(32,1)/(32,1)/(32,1)/(32,1) 91.95% ↓ 0.59 89.89M 71.41% 0.43M 97.11%
(16,8)/(16,8)/(16,8)/(16,8) 82.20% ↓ 10.34 33.37M 89.39% 0.07M 99.52%
(16,4)/(16,4)/(16,4)/(16,4) 87.64% ↓ 4.90 37.69M 88.01% 0.12M 99.19%
(16,2)/(16,2)/(16,2)/(16,2) 89.25% ↓ 3.29 46.34M 85.26% 0.22M 98.50%
(16,1)/(16,1)/(16,1)/(16,1) 90.86% ↓ 1.68 63.65M 79.76% 0.42M 97.12%
(32,1)/(16,1)/(16,1)/(16,1) 91.86% ↓ 0.68 75.44M 76.01% 0.42M 97.12%
(16,1)/(32,1)/(16,1)/(16,1) 91.24% ↓ 1.30 69.54M 77.88% 0.42M 97.12%
(16,1)/(16,1)/(32,1)/(16,1) 91.23% ↓ 1.31 68.95M 78.07% 0.42M 97.12%
(16,1)/(16,1)/(16,1)/(32,1) 91.34% ↓ 1.20 66.89M 78.73% 0.42M 97.12%
(128,8) 88.50% ↓ 4.04 217.10M 30.96% 0.08M 99.49%
(128,4) 90.26% ↓ 2.28 221.42M 29.58% 0.12M 99.17%
(128,2) 91.60% ↓ 0.94 230.07M 26.83% 0.22M 98.49%
(128,1) 92.17% ↓ 0.37 247.38M 21.33% 0.43M 97.11%
(96,8) 88.07% ↓ 4.47 164.60M 47.65% 0.07M 99.50%
(96,4) 89.83% ↓ 2.71 168.93M 46.28% 0.12M 99.18%
(96,2) 91.15% ↓ 1.39 177.58M 43.52% 0.22M 98.50%
(96,1) 91.59% ↓ 0.95 194.88M 38.02% 0.42M 97.12%
(64,8) 87.08% ↓ 5.46 112.11M 64.35% 0.07M 99.52%
(64,4) 89.47% ↓ 3.07 116.43M 62.97% 0.12M 99.19%
(64,2) 90.95% ↓ 1.59 125.09M 60.22% 0.22M 98.50%
(64,1) 92.08% ↓ 0.46 142.39M 54.72% 0.42M 97.12%
(16,8) 81.41% ↓ 11.13 33.37M 89.39% 0.07M 99.54%
(16,4) 86.69% ↓ 5.85 37.69M 88.01% 0.12M 99.20%
(16,2) 89.47% ↓ 3.07 46.34M 85.26% 0.22M 98.51%
(16,1) 91.09% ↓ 1.45 63.65M 79.76% 0.42M 97.12%

A.6 ARE CODEBOOKS TRANSFERABLE?

In this section, our objective is to investigate the transferability of codebooks initially trained for one
task to another task. Our approach involved initially training a ResNet50 model on the ImageNet
dataset. Subsequently, we transposed the codebook entries, while excluding the model parameters
and indexes, into a new model. We maintained the original codebook’s entries by fixing them during
training on the EuroSat dataset, a deliberate choice owing to its notably distinct image distribution
in comparison to ImageNet.

It is essential to highlight that the effectiveness of this approach hinged on codebook rescaling. Due
to the significantly larger range of the trained codebook values in contrast to randomly initialized
model weights, the training process exhibited convergence issues and considerable instability. Con-
sequently, we undertook a rescaling of the codebook weights to confine them within the range of -1
to 1.

Notably, a non-vector-quantized (non-VQ) ResNet50 model, when directly trained on the EuroSat
dataset, achieves an accuracy of 96.71%. Remarkably, a model incorporating the fixed, transferred
filters from an ImageNet task attains an accuracy of 95.85%, demonstrating a negligible difference
of less than one percentage point. This compelling result strongly implies the generalizability of
trained codebooks across distinct tasks.

16



Under review as a conference paper at ICLR 2024

A.7 WHAT FEATURES DO VECTOR QUANTIZED MODELS LEARN?

A potential concern arises from the deployment of a single codebook throughout the entirety of
ResNet models, encompassing those incorporating skip connections. This concern is related to the
possibility that the vector quantized model may predominantly acquire and propagate localized fea-
tures and patterns across the model via these skip connections. To gain deeper insights into the
nature of features acquired by the vector quantized ResNet50, we applied GradCAM++ (Chattopad-
hay et al., 2018) to generate saliency maps for input images. This analysis was conducted utilizing
the implementation provided by (Gildenblat & contributors, 2021).

As illustrated in Figure A.3, the saliency maps derived from various samples representing different
classes exhibit noteworthy similarities when comparing ResNet50 (second row) with vector quan-
tized ResNet50 (third row). Intriguingly, the VQ ResNet50 demonstrates a slightly heightened em-
phasis on the target object in comparison to ResNet50. This observation distinctly underscores that,
even with a relatively compact codebook, VQ models exhibit learning capabilities on par with those
of conventional models.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure A.3: GradCam++ on five different images. The first row is the original image. The second
and third rows are the results of ResNet50 and VQ ResNet50, respectively. Although both ResNet50
and VQ-ResNet50 capture almost entire area of the objects, VQ-ResNet50 is slightly more localized.

17



Under review as a conference paper at ICLR 2024

A.8 COMPARISON WITH DKM

In this section, we conduct a comparative analysis between our results and those presented in the
DKM study (Minsik et al., 2022). Throughout the main body of the paper, to be consistent with
standard practice in the literature, we report model size in terms of parameter count. We assume a
standard parameter size of 32 bits, with each index accounting for 1 Byte, equivalent to one-fourth
of a parameter. However, it’s worth noting that in (Minsik et al., 2022), model size is reported in
megabytes (MB). In this section, we adhere to this convention and report results in MB for fair
comparison. Furthermore, we compute the exact number of bits required for each index, which
consistently falls below 1 Byte. As illustrated in Table A.4, our methodology demonstrates superior
performance in terms of network size compared to DKM. This discrepancy primarily arises from our
utilization of a single codebook across the entire model, whereas DKM employs separate codebooks
for each layers. It is important to mention that the DKM approach starts its training process using
a pre-trained model. Consequently, the results we present in this context are based on training that
initiated from a pre-trained weights and the baseline accuracy is the accuracy of the pre-trained
model. To have a fair comparison, we employed an identical set of pretrained weights as utilized in
the DKM method. This particular set of weights yielded an accuracy rate of 76.1%. It is noteworthy
that in the primary content of the paper, we had utilized an alternative version of pretrained model
weights, which achieved an accuracy rate of 80.86%. Additionally, it should be acknowledged that
we have achieved marginally improved results while employing a training duration of 90 epochs, as
opposed to the 200 epochs utilized in the DKM method.

Table A.4: Comparison with DKM (Minsik et al., 2022)

ID BA Acc. (%) Acc. (%) △ Acc. (%) FLOPs ↓ (%) Params (MB) Params ↓ (%)
DKM (cv:6/6, fc:6/4) 76.10% 74.50% ↓ 1.60 - 3.32 96.59%
VQ ResNet50 (M:32, B:8) 76.10% 75.31% ↓ 0.79 64.7% 0.92 99.05%

18


	Introduction
	Related Work
	VQ-DNN
	Vector Quantized Linear Layer
	Vector Quantized 2D Convolution Layer
	Training
	Acceleration

	Experiments
	CIFAR-10
	ImageNet
	Gaining Further Experimental Insights

	Conclusion
	Appendix
	Training recipe
	Effect of removing filters
	Distribution of filter usage
	8-bit Quantization
	VGG16 on CIFAR-10
	Are codebooks transferable?
	What features do vector quantized models learn?
	Comparison with DKM


