
UNDERSTANDING VIRTUAL NODES: OVERSQUASHING
AND NODE HETEROGENEITY

Joshua Southern1,*,†, Francesco Di Giovanni2,†,
Michael Bronstein2,3, and Johannes F. Lutzeyer4

1Imperial College London
2University of Oxford

3AITHYRA
4LIX, École Polytechnique, IP Paris

ABSTRACT

While message passing neural networks (MPNNs) have convincing success in a
range of applications, they exhibit limitations such as the oversquashing problem
and their inability to capture long-range interactions. Augmenting MPNNs with a
virtual node (VN) removes the locality constraint of the layer aggregation and has
been found to improve performance on a range of benchmarks. We provide a com-
prehensive theoretical analysis of the role of VNs and benefits thereof, through the
lenses of oversquashing and sensitivity analysis. First, we characterize, precisely,
how the improvement afforded by VNs on the mixing abilities of the network and
hence in mitigating oversquashing, depends on the underlying topology. We then
highlight that, unlike Graph-Transformers (GTs), classical instantiations of the
VN are often constrained to assign uniform importance to different nodes. Con-
sequently, we propose a variant of VN with the same computational complexity,
which can have different sensitivity to nodes based on the graph structure. We
show that this is an extremely effective and computationally efficient baseline for
graph-level tasks.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Gori et al., 2005; Micheli, 2009) are a popular
framework for learning on graphs. GNNs typically adopt a message passing paradigm (Gilmer et al.,
2017), in which node features are aggregated over their local neighborhood recursively, resulting in
architectures known as Message Passing Neural Networks (MPNNs). Whilst MPNNs have linear
complexity in the number of edges and an often beneficial locality bias, they have been shown to
have several limitations. In terms of expressivity, they are at most as powerful as the Weisfeiler-
Leman test (Weisfeiler & Leman, 1968; Morris et al., 2019; Xu et al., 2018) and cannot count
certain substructures (Chen et al., 2020; Bouritsas et al., 2023). Besides, the repeated aggregation
of local messages can either make node representations indistinguishable—a process known as
‘oversmoothing’ (Nt & Maehara, 2019; Oono & Suzuki, 2020)—or limit the models’ ability to capture
long-range dependencies—a phenomenon called ‘oversquashing’ (Alon & Yahav, 2021).

In particular, oversquashing strongly depends on the graph-topology, since it describes the inability
of MPNNs to reliably exchange information between pairs of nodes with large commute time
(Di Giovanni et al., 2024). To overcome this limitation, methods have moved away from only
performing aggregation over the local neighborhood and instead have altered the graph connectivity
to reduce its commute time. Common examples include variations of multi-hop message-passing
(Nikolentzos et al., 2020; Wang et al., 2020; Gutteridge et al., 2023), adding global descriptors (Horn
et al., 2022), or rewiring operations based on spatial or spectral quantities (Topping et al., 2022;
Arnaiz-Rodríguez et al., 2022). A notable case is given by Graph-Transformers (GTs) (Kreuzer et al.,
2021; Ying et al., 2021), where global attention is used to weight the messages of each node pair.

∗jks17@ic.ac.uk
†These authors contributed equally.

1

jks17@ic.ac.uk

Virtual Nodes. While GTs incur a large memory cost, a significantly more efficient method that
incorporates global information in each layer to combat oversquashing, is adding a virtual node (VN)
connected to all nodes in the graph (Pham et al., 2017). This is widely used in practice (Gilmer et al.,
2017; Battaglia et al., 2018) with empirical successes (Hu et al., 2020; Hwang et al., 2022). However,
besides recent work connecting VNs to GTs (Cai et al., 2023; Rosenbluth et al., 2024), few efforts
have been made to analyze in what way and to which extent VN improves the underlying model.

Contributions. We propose a theoretical study of VNs through the lenses of oversquashing and
sensitivity analysis and highlight how they differ from approaches based on Graph-Transformers. Our
analysis sheds light on the impact VNs have on reducing oversquashing by affecting the commute
time, and the gap between VNs and GTs in terms of the sensitivity to the features of other nodes.
Specifically, our main contributions are the following:

• In Section 3 we provide the first, systematic study of the impact of VNs on the oversquashing
phenomenon. We show that, differently from more general rewiring techniques such as GTs,
the improvement brought by VNs to the mixing abilities of the network, can be characterized
and bounded in terms of the spectrum of the input graph.

• Relying on sensitivity analysis of node features, in Section 4 we find a gap between VNs
and GTs in their ability to capture heterogeneous node importance. Our theory motivates
a new formulation of MPNN + VN, denoted by MPNN + VNG, that better leverages the
graph structure to learn a heterogeneous measure of node relevance, at no additional cost.

• Finally, in Section 5, we first validate our theoretical analysis through extensive ablations
and experiments. Next, we evaluate MPNN + VNG and show that it consistently surpasses
the baseline MPNN + VN, precisely on those tasks where node heterogeneity matters.

We moreover want to remark that in Appendix B we make a further contribution, where we compare
the expressivity of MPNN + VN and anti-smoothing techniques through polynomial filters. This
allows us to contest prior belief that a reason for the success of MPNN + VN is their ability to
simulate methods that prevent oversmoothing and to observe cases of ‘beneficial smoothing’ of node
representations towards the final pooled representation. Since, this study could be considered to be of
limited impact due to it being conducted in a linear setting, i.e., in absence of activation functions in
the MPNN, we have chosen to not focus on this aspect of our work in this paper and only provide it
in the appendix for especially interested readers.

2 PRELIMINARIES AND RELATED WORK

Message Passing Neural Networks. Let G = (V,E) be an unweighted, undirected and connected
graph with node set V and edge set E. The connectivity of the graph is encoded in the adjacency
matrix A ∈ Rn×n, where n = |V |, and the 1-hop neighborhood of a node is Ni = {j ∈ V : (j, i) ∈
E}. Furthermore, node features {hi : i ∈ V } ⊂ Rd are provided as input. Message passing layers
are defined using learnable update and aggregation functions up and agg as follows

h
(ℓ+1)
i = up(ℓ)(h

(ℓ)
i , agg(ℓ)({h(ℓ)j : j ∈ Ni})), (1)

where h(ℓ)i is the feature of node i at layer ℓ, up is a learnable update function (typically an MLP) and
agg is invariant to node permutations. Below, we refer to models described as in (1) as MPNNs.

Limitations of MPNNs. Aggregating information over the 1-hop of each node iteratively, leads to
systematic limitations. MPNNs without node identifiers (Loukas, 2019) are not universal (Maron
et al., 2018) and are at most as powerful as the 1-WL test in distinguishing graphs (Morris et al.,
2019; Xu et al., 2018). Additionally, when the task depends on features located at distant nodes
(i.e. long-range interactions), MPNNs suffer from oversquashing, defined as the compression of
information from exponentially growing receptive fields into fixed-size vectors (Alon & Yahav, 2021).
In fact, oversquashing limits the MPNN’s ability to solve tasks with strong interactions among nodes
at large commute time (Di Giovanni et al., 2023a; Black et al., 2023; Di Giovanni et al., 2024). Finally,
MPNNs may incur oversmoothing, whereby node features attain the same value as the number of
layers increases (Nt & Maehara, 2019; Oono & Suzuki, 2020; Cai & Wang, 2020).

Graph Transformers (GTs). An extension of the MPNN-class is given by Graph-Transformers
(GTs) (Kreuzer et al., 2021; Rampášek et al., 2022; Ying et al., 2021; Hussain et al., 2022; Wu et al.,

2

2021; Chen et al., 2022), where a global attention mechanism connecting all pairs of nodes augments
(or entirely replaces (Ma et al., 2023)) the 1-hop aggregation in MPNNs. GTs increase the expressive
power of MPNNs by heavily relying on structural and positional encodings (Dwivedi et al., 2021), and
entirely bypass the issue of oversquashing since the global attention breaks all potential bottlenecks
arising from the graph topology. This comes at a price though, with GTs incurring quadratic memory
cost and being sensitive to the choice of positional (structural) encodings. Furthermore, removing the
locality constraint of MPNNs can cause GTs to lack a strong inductive bias which can lead to poor
performance (Ma et al., 2023). To overcome this, Rampášek et al. (2022) combined a global attention
mechanism with local message passing which led to improvements across multiple benchmarks.
Their results suggest that maintaining the local inductive bias within message-passing is critical but
that self-attention can improve performance further by capturing long-range interactions.

MPNNs With Virtual Nodes. An alternative approach to enhancing MPNNs without leading to the
significant memory costs of GTs, consists in introducing a virtual node (VN) connected to all other
nodes in the graph (Gilmer et al., 2017; Battaglia et al., 2018). A standard formulation of message
passing with virtual nodes (Cai et al., 2023), referred to as MPNN + VN in the following, is:

h(ℓ+1)
vn = up(ℓ)(h(ℓ)vn , agg

(ℓ)
vn ({h

(ℓ)
j : j ∈ V })), (2)

h
(ℓ+1)
i = up(ℓ)(h

(ℓ)
i , agg(ℓ)({h(ℓ)j : j ∈ Ni}), h(ℓ)vn).

The class MPNN + VN extends MPNNs in (1) to a multi-relational graph Gvn obtained by adding a
VN connected to all i ∈ V , where any new edge is distinguished from the ones in the input graph.

Understanding VN: Open Questions and Challenges. Augmenting MPNNs with VNs has often
been shown to improve performance (Hwang et al., 2022; Sestak et al., 2023). Nonetheless, a
careful analysis of how and when VNs help is still lacking. Key related work was done by Cai et al.
(2023), which relied on the universal approximation property of DeepSets (Segol & Lipman, 2020) to
show that MPNN + VN with hidden state dimensions of O(nd) and O(1) layers can approximate a
self-attention layer. Their argument though discards the topology and holds in a non-uniform regime,
raising questions about its practical implications. Crucially, VNs are mainly added to networks so as
to model non-local interactions, as follows from (2) where any node pair is separated by at most 2
hops through the VN. Nonetheless, neither a formal analysis on the extent to which MPNN + VN
mitigates oversquashing, nor a fine-grained comparison between GTs and MPNN + VN in terms of a
sensitivity analysis (i.e. interactions among node features in a layer), have been conducted so far.

Outline of This Work. We provide a systematic study of MPNN + VN through the lenses of
oversquashing and sensitivity analysis. We show that: The improvement brought by VN in mitigating
oversquashing depends on the spectrum of the graph (Section 3); Differently from GTs, the sensitivity
of VN to distinct node features is often uniform, and hence we propose VNG, a new formulation of
VN that can learn heterogeneous node importance at no additional cost (Section 4); The framework
VNG consistently improves over VN, closing the empirical gap with GTs (Section 5).

Graph-Level Tasks. In this work, we focus on graph-level tasks; this way, we can compare the
mixing abilities of MPNN + VN with that of MPNN, as per the graph-level analysis in Di Giovanni
et al. (2024). Graph-level benchmarks (both classification and regression) offer a comprehensive
test bed to compare VN and GTs, which is aligned with similar evaluations (Gutteridge et al., 2023;
Barbero et al., 2024). Nonetheless, we emphasize that the statements in Section 4 hold layerwise, and
hence do not depend on whether the task is graph-level or not; additionally, we can extend the results
in Section 3 to node-level tasks following (Di Giovanni et al., 2024, Appendix E).

3 MPNN + VN AND OVERSQUASHING

VNs are often added to alleviate oversquashing, by reducing the diameter of the graph to 2. However,
no formal analysis on the improvement brought by VNs to oversquashing has been derived thus far.
In this section, we fill this gap in the literature and characterize how the spectrum of the input graph
affects the impact of VN to commute time and hence the mixing abilities of the network. To study

3

oversquashing, we analyze general realizations of (2), whose layer updates have the form:

h(ℓ+1)
vn = σ

(
Ω(ℓ)

vn h
(ℓ)
vn +

1

ñ

n∑
j=1

ϕ(ℓ)vn (h
(ℓ)
vn , h

(ℓ)
j)
)
,

h
(ℓ+1)
i = σ

(
Ω(ℓ)h

(ℓ)
i +

n∑
j=1

Aijψ
(ℓ)(h

(ℓ)
i , h

(ℓ)
j) + ψ(ℓ)

vn (h
(ℓ)
i , h(ℓ)vn)

)
, (3)

where σ is a pointwise nonlinear map, A is a (potentially) normalized adjacency matrix, Ω is a weight
matrix, ψ,ψvn, ϕvn are (learnable) message functions, and ñ depends on our normalization choice
(e.g. ñ = 1 for sum, or ñ = n for mean). A key observation is that (3) coincide with the MPNNs
analyzed in Di Giovanni et al. (2024), but operating on the multi-relational graph Gvn with adjacency

Avn =

(
A 1
1⊤ 1

)
, 1 = (1, . . . , 1)⊤ ∈ Rn, (4)

where edges connecting VN to nodes in G have different type. Di Giovanni et al. (2023a); Black
et al. (2023); Di Giovanni et al. (2024) have shown that oversquashing prevents the underlying model
from exchanging information between nodes at large commute time τ , where τ(i, j) measures the
expected number of steps for a random walk to commute between i and j. Accordingly, to assess
if and how a VN helps to mitigate oversquashing, we need to determine whether the commute time
τvn of Gvn is smaller than the commute time τ of the original graph G. Below, we let vℓ be an
orthonormal basis of eigenvectors for the graph Laplacian L = D−A, with associated eigenvalues
0 = λ0 < λ1 ≤ . . . ≤ λn−1. The proof of the following Theorem and all subsequent results, can be
found in Appendices E and F.
Theorem 3.1. The commute time between nodes i, j after adding a VN changes as

τvn(i, j)− τ(i, j) = 2|E|
n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
(vℓ(i)− vℓ(j))

2. (5)

In particular, the average change in commute time is:

1

n2

n∑
i,j=1

(τvn(i, j)− τ(i, j)) =
4|E|
n

n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
. (6)

The result in Theorem 3.1 highlights how the impact of adding a VN can be determined in terms of
the spectrum of the input graph. While there are cases, e.g. when the graph is complete, where (6) is
positive, for many real-world graphs adding a VN reduces the overall commute time: We empirically
validate this claim in Section 5.1. Note that we prove Theorem 3.1 by calculating the explicit
analytical form of the effective resistance between two nodes in Gvn. We then exploit the fact that the
commute time between nodes is proportional to their effective resistance. So, Theorem 3.1 can be
trivally extended to make equivalent statements about the effective resistance between nodes instead
of their commute time.

In our subsequent analysis we will make use of the notion of mixing, which was introduced by
Di Giovanni et al. (2024). We begin by recalling its formal definition in Defintion 3.2.
Definition 3.2 (Di Giovanni et al. (2024)). The quantity mixy(i, j) is the mixing induced by a
graph-level function among the features of nodes i and j, and is defined as

mixy(i, j) = max
H

max
1≤α,β≤d

∣∣∣∣∣ ∂2y(H)

∂hαi ∂h
β
j

∣∣∣∣∣ .
Di Giovanni et al. (2024) made use of the mixing notion to formally assess the amount of interactions
between i and j required by the underlying task, and compared it to the mixing induced by the
MPNN-prediction after m layers. In particular, they proved that oversquashing prevents MPNNs
of bounded depth from solving tasks with required strong mixing between nodes at large commute
time. Below, ‘bounded weights’ means that weight matrices and message functions derivatives have
bounded spectral norms—see Appendix E for details.

4

Theorem 3.3 (Adapted from Thm. 4.4 (Di Giovanni et al., 2024)). There are graph-functions with
mixing between nodes i ̸= j larger than some constant independent of i, j, such that for an MPNN of
bounded weights to learn these functions, the number of layers m must satisfy m ≥ τ(i, j)/8.

For real-world graphs like peptides, small molecules, or images, (5) is negative (see Section 5.1).
In light of Theorem 3.3, this means that adding a VN should reduce the minimal number of layers
required to learn functions with strong mixing between nodes.

According to Di Giovanni et al. (2024), when the mixing induced by the MPNN after m layers,
denoted here as mix(m)(i, j), is smaller than the one required by the downstream task, then we have
an instance of harmful oversquashing which prevents the network from learning the right interactions
necessary to solve the problem at hand. We make this connection explicit in Corollary 3.4, in which
we use Theorem 3.1 to characterize the improvement brought by a VN in terms of the spectrum of
the Laplacian.
Corollary 3.4. Given G and nodes i, j for which (5) is negative, there are graph-functions with
mixing between i ̸= j larger than some constant independent of i, j, such that for an MPNN + VN of
bounded weights to learn these functions, the minimal number of layers m becomes

m ≥ τvn(i, j)

8
− |E|

8
·
n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
(vℓ(i)− vℓ(j))

2. (7)

The result in Corollary 3.4 shows that for real-world graphs where adding a VN significantly reduces
the commute time—i.e., (5) is negative—the minimal number of layers required by MPNN + VN to
learn graph functions with strong mixing among i, j, is smaller than that of MPNN. This is the first
result showing the extent to which MPNN + VN alleviates oversquashing by increasing the mixing
abilities of the network. Crucially, MPNN + VN cannot do better than Corollary 3.4, meaning that their
efficacy is a function of the spectrum. While this implies that MPNN + VN may be sub-optimal, when
compared to graph rewiring techniques such as GTs which can modify the commute time arbitrarily,
the overall benefits of VN stem from their ability to reduce the commute time and hence mitigate
oversquashing at very limited memory cost. We discuss next how we can further refine the formulation
of VN to further close their gap with GTs, without increasing the computational complexity.

4 COMPARING MPNN + VN AND GTS THROUGH SENSITIVITY ANALYSIS

In Section 3 we showed that MPNN + VN can mitigate oversquashing and the extent to which this is
possible. Another successful approach for combating oversquashing is given by Graph Transformers
(GTs), that can entirely rewire the graph through the attention module. In fact, MPNN + VN are
often used as a more efficient alternative to GTs (Cai et al., 2023). In this section we further compare
MPNN + VN and GTs through sensitivity analysis and show that the single layer of a GT can learn
a heterogeneous node scoring, while MPNN + VN generally cannot. In light of this analysis, we
propose a simple variation of MPNN + VN, called MPNN + VNG, which better uses the graph to
learn a heterogeneous measure of node relevance while retaining the same efficiency as MPNN +
VN. In our sensitivity analysis we will show MPNN + VNG to fall inbetween the fully homogeneous
MPNN + VN and the potentially fully heterogeneous GTs.

MPNN + VN Layers Are Homogeneous. We start by reporting the layer update of the GPS
architecture (Rampášek et al., 2022), one instance of the GT class that encodes both local and global
information:

h
(ℓ+1)
i = f (ℓ)(h

(ℓ+1)
i,loc +Q(ℓ)

n∑
k=1

a(h
(ℓ)
i , h

(ℓ)
k)h

(ℓ)
k), (8)

where f is an MLP, hloc is the local update given by the choice of MPNN, and a is the attention
module. Depending on the available data and the chosen positional encoding scheme, GTs can
capture heterogeneous relations. We can quantify such heterogeneity in a sensitivity analysis by
deriving that the Jacobian ∂h(ℓ+1)

i /∂h
(ℓ)
k is, in general, a function that depends on k, meaning that

the state of node i at layer ℓ+1 is affected by the state of a node k at the previous layer, as a function
varying with k. Conversely, MPNN + VN depends on different nodes more uniformly. Explicitly,
consider an MPNN + VN as in (3), where the VN update is

h(ℓ+1)
vn = σ(Ω(ℓ)

vn h
(ℓ)
vn +W(ℓ)

vn Mean({h(ℓ)j })). (9)

5

To exemplify the standard definition of VNs, we now provide the model equations of a GCN + VN.

h(ℓ+1)
vn = σ(Ω(ℓ)

vn h
(ℓ)
vn +

1

n

n∑
j=1

W(ℓ)
vn h

(ℓ)
j),

h
(ℓ+1)
i = σ(Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

1√
didj

W(ℓ)h
(ℓ)
j + h(ℓ)vn), (10)

where di denotes the node degree of node i and Ω
(ℓ)
vn ,W

(ℓ)
vn ,W(ℓ) denote trainable weight matrices.

Given a node k at a distance larger than 2 from node i, any message from node k at layer ℓ− 1 is first
received by node i at layer ℓ+ 1 through the VN.

Proposition 4.1. For MPNN + VN whose VN update is (9), the Jacobian ∂h(ℓ+1)
i /∂h

(ℓ−1)
k is

independent of k whenever k and i are separated by more than 2 hops.

We see that node i receives a global yet homogeneous update from the VN, where the feature of each
node k at distance greater than 2 contribute the same to node i’s representation (after two layers).
This in stark contrast to the case of GTs.

MPNN + VNG: A New Formulation Of VN. Inspired by frameworks such as (8), allowing for
more heterogeneous sensitivity through the VN, we propose MPNN + VNG, a simple variation to
MPNN + VN with the same computational complexity, O(|E|+ n), with layer updates of the form:

h
(ℓ+1)
i,loc = up(ℓ)(h

(ℓ)
i , agg(ℓ)({h(ℓ)j : j ∈ Ni})), (11)

h(ℓ+1)
vn = up(ℓ)vn (h

(ℓ)
vn , agg

(ℓ)
vn ({h

(ℓ+1)
j,loc : j ∈ V })), (12)

h
(ℓ+1)
i = ũp

(ℓ)
(h

(ℓ+1)
i,loc , h

(ℓ+1)
vn). (13)

Differently from MPNN + VN in (2), we first compute local updates based on the choice of aggrega-
tion (i.e. the underlying MPNN model) in (11), then we compute a global update through VN using
such local representations in (12) (as illustrated in Appendix J), and finally we combine the local and
non-local representations in (13). This asynchronous interleaving between a local and global update
was previously shown to have a practical performance improvement over combining these updates in
parallel (Rosenbluth et al., 2024; Yin & Zhong, 2023). To theoretically justify this improvement in
our setting, we show how MPNN+VNG can assign more heterogeneous values to the global updates
associated with the VN, by studying the sensitivity of node features. Similarly to (3) and (9), we
consider an instance of MPNN + VNG of the form:

h
(ℓ+1)
i,loc = σ(Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

ψ
(ℓ)
ij (h

(ℓ)
i , h

(ℓ)
j)),

h
(ℓ+1)
i = h

(ℓ+1)
i,loc +Mean({Q(ℓ+1)h

(ℓ+1)
j,loc }). (14)

To further exemplify our MPNN + VNG model, and in direct correspondonce to (10), we provide
the explicit model equations for the GCN+VNG model now. Please note that in our experiments in
Section 5 we mostly work with the GatedGCN+VN and GatedGCN+VNG models. We provide the
corresponding, slightly more complex, model equations in Appendix F.

h
(ℓ+1)
i,loc = σ(Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

1√
didj

W(ℓ)h
(ℓ)
j),

h
(ℓ+1)
i = h

(ℓ+1)
i,loc +Mean({Q(ℓ+1)h

(ℓ+1)
j,loc }).

Differently from (2), two nodes now can exchange information after a single layer. Below, we let z(ℓ)i
be the argument of σ in (14), for each i ∈ V , and ∇s be the Jacobian with respect to variable s.

Proposition 4.2. Given i ∈ V and k ∈ V \Ni, the Jacobian ∂h(ℓ+1)
i /∂h

(ℓ)
k computed using (14) is

∂h
(ℓ+1)
i

∂h
(ℓ)
k

=
1

n

(
diag(σ′(z

(ℓ)
k))(Ω(ℓ)+

∑
u∈Nk

∇1ψ
(ℓ)
ku (h

(ℓ)
k , h(ℓ)u))+

∑
u∈Nk

diag(σ′(z(ℓ)u))∇2ψ
(ℓ)
uk (h

(ℓ)
u , h

(ℓ)
k)
)
.

6

Figure 1: Effect of adding a virtual node on the average commute time of four graph datasets.

We see that the sensitivity of node i to the feature of k is a function of the graph-topology, i.e.,
the message functions evaluated over the neighbors of k. In particular, our proposed variation
MPNN + VNG uses the same message functions ψij to learn a heterogeneous global update. Related
to recent advances in graph pooling (Ranjan et al., 2020; Lee et al., 2019; Grattarola et al., 2022;
Bianchi & Lachi, 2023), we utilize the graph structure in the global aggregator; nodes that are more
relevant to each of their neighbors, are more likely to contribute more to the global update, instead of
weighting each node the same as for MPNN + VN. We note that advantages of this approach depend
on the choice of the underlying message function ψ in (14) (see Table 8 in Appendix I).

It is interesting to note that the derivative in Proposition 4.2 does not depend on the index i of
the central node. If such a dependence was present, we would be working with a model that was
essentially equivalent to a GT since the derivative of a given node i depended both on i and the
currently considered neighbor k (as shown in Proposition F.1 in Appendix F).

In light of our sensitivity analysis, we argue that for those tasks where an empirical gap between
MPNN + VN and GT can be found, this is due to the latter leveraging its ability to assign heteroge-
neous node scores in its global update. Conversely, when no significant gap arises, we claim this is
due to the task not requiring heterogeneous node scores. We validate these points in Section 5.1.

5 EXPERIMENTS

The purpose of this section is to first empirically verify the theoretical claims made in Sections 3 and
4. Then, we evaluate our proposed MPNN + VNG on a diverse set of benchmarks in Section 5.2.

5.1 ABLATIONS

Our ablations aim to validate the previous theoretical results, by answering the following questions:

(Q1) How does adding a VN affect the average commute time on real-world graphs? [§3]
(Q2) Which tasks show a gap between MPNN + VN and GT due to node heterogeneity? [§4]

To answer (Q1) we calculated (6) on 100 graphs from four commonly used real-world datasets
covering peptides, small molecules and images. The distribution of the change of commute time
across these four datasets is shown in Figure 1 and highlights the tendency for this change to be
negative. This result demonstrates that adding a VN is highly beneficial on real-world graphs
since it significantly reduces their commute time, thereby increasing their mixing abilities as per
Corollary 3.4.

7

Table 1: Effects of projecting the non-local part of GPS onto the mean and its comparison to using a
VN. Arrows indicate if the performance improves with higher (↑) or lower (↓) scores. We also report
the standard deviation of the column sums in the first attention layer.

Method Pept-Func (↑) Pept-Struct (↓) MNIST (↑) CIFAR10 (↑)

GPS 0.6534 ±.0091 0.2509 ±.0014 98.051 ±.126 72.298 ±.356

GPS + projection 0.6498 ±.0054 0.2487 ±.0011 98.176 ±.120 71.455 ±.513

GatedGCN+PE+VN 0.6712 ±.0066 0.2481 ±.0015 98.122 ±.102 70.280 ±.380

std attention layer 0.0011 0.0007 0.0006 0.0038

We next aim to provide an empirical justification for the similar performances of MPNN+VN and
GT (Cai et al., 2023) and answer (Q2). To measure the heterogeneity of node relevance in the global
update, we look at the similarity between the rows of the attention matrix in a GT. In fact, similar
rows in a(h(ℓ)i , h

(ℓ)
k) in (8) correspond to assigning similar weights to each node representation,

and hence less heterogeneity. To measure this, we calculate the mean standard deviation (std) of
each column in a(h(ℓ)i , h

(ℓ)
k). We calculate this std on the first layer attention matrix, after training

GPS with a GatedGCN as the base MPNN, on four real-world benchmarks from (Dwivedi et al.,
2022) and (Dwivedi et al., 2023). In Table 1, we can see that for datasets where the std is small
(Peptides-func, Peptides-struct, MNIST), using an MPNN + VN can match or even improve over the
GPS implementation. On the other hand, CIFAR10 has a larger std, and we see that GPS outperforms
the VN architecture. These results show that the performance gap between MPNN + VN and GTs
is related to whether node heterogeneity is used by the GT on the benchmark, considering that
MPNN + VN assigns equal sensitivity to different node features (Proposition 4.1). To further show
the differences in the attention matrices and the amount of homogeneity on these tasks, we have
visualized them in Appendix K. Additionally, we can measure the importance of heterogeneity for the
task by removing the heterogeneity in the GT and seeing if we lose performance. We can do this in
the GPS framework by setting all the rows of the attention matrix to be equal to their mean. We call
this GPS + projection, and it forces the GPS model to become completely homogeneous. Again, we
see that on datasets where the homogeneous GatedGCN+VN does well and the std of the attention
matrix columns is low, we do not lose much performance with this mean projection. Whereas on
CIFAR10, we find that the heterogeneity of nodes is important.

5.2 EVALUATING OUR PROPOSED MPNN + VNG

We first evaluate MPNN+VNG on a diverse set of 5 graph-level datasets, comparing against classical
MPNN benchmarks, Graph-Transformers (Ma et al., 2023; Shirzad et al., 2023; Rampášek et al.,
2022; Kreuzer et al., 2021; Hussain et al., 2022), graph rewiring (Gutteridge et al., 2023), a random-
walk based method (Tönshoff et al., 2023b), and a generalization of ViT/MLP-Mixer (He et al., 2023).
Crucially, we also compare VNG with the standard implementation of VN (Cai et al., 2023).

Experimental Details. We evaluated MPNN + VNG on the Long-Range Graph Benchmark
using a fixed 500k parameter budget and averaging over four runs. These molecular datasets
(Peptides-Func, Peptides-Struct) have been proposed to test a method’s ability to capture long-range
dependencies. Additionally, we used two graph-level image-based datasets from Benchmarking
GNNs (Dwivedi et al., 2023), where we run our model over 10 seeds. We also used a code dataset
MalNet-Tiny (Freitas et al., 2020) consisting of function call graphs with up to 5,000 nodes. These
graphs are considerably larger than previously considered graph-level benchmarks and showcase our
model’s ability to improve over MPNN baselines on a large dataset. We then evaluated our approach
on three graph-level tasks from the Open Graph Benchmark (Hu et al., 2020), namely molhiv,
molpcba and ppa. Details on datasets and training parameters used, can be found in Appendix G.

Discussion. We can see from Tables 2 and 3 that MPNN + VNG performs well across a variety of
datasets and achieves the highest performance on Peptides-Struct, MNIST, ogbg-molhiv and ogbg-ppa.
Furthermore, MPNN + VNG improves over MPNN + VN on all tasks, with the largest percentage
improvement being shown on CIFAR10 (8.25%). The latter is perfectly aligned with the discussion in
Sections 4 and 5.1, where we have described the importance of heterogeneity to the VN and observed
that heterogeneity is particularly required on CIFAR10. Additionally, on the peptides datasets, which
have small degrees but large diameters, we find that using MPNN + VNG can perform better than a

8

Table 2: Test performance on two LRGB datasets (Dwivedi et al., 2022) and three other benchmarks
from (Dwivedi et al., 2023). For Peptides-Func and Peptides-Struct, ± std is shown over 4 runs whilst
the remaining datasets are over 10 runs (missing values from literature are indicated by ‘-’). The first,
second and third best results for each task are color-coded.

Method Pept-Func (↑) Pept-Struct (↓) MNIST (↑) CIFAR10 (↑) MalNet-Tiny (↑)

GCN 0.5930 ±0.0023 0.3496 ±0.0013 90.705 ±0.218 55.710 ±0.381 81.0
GINE 0.5498 ±0.0079 0.3547 ±0.0045 96.485 ±0.252 55.255 ±1.527 88.98 ±0.56

GatedGCN 0.5864 ±0.0077 0.3420 ±0.0013 97.340 ±0.143 67.312 ±0.311 92.23 ±0.65
GatedGCN+PE 0.6765 ±0.0047 0.2477 ±0.0009 - 69.948 ±0.499 -
GatedGCN+PE-ViT 0.6942 ±0.0075 0.2465 ±0.0015 98.460 ±0.090 71.580 ±0.090 -
GatedGCN+PE-Mixer 0.6932 ±0.0017 0.2508 ±0.0007 98.320 ±0.040 70.600 ±0.220 -

CRaWl 0.7074 ±0.0032 0.2506 ±0.0022 97.940 ±0.050 69.010 ±0.259 -
DRew 0.7150 ±0.0044 0.2536 ±0.0015 - - -

SAN+RWSE 0.6439 ±0.0075 0.2545 ±0.0012 - - -
EGT - - 98.173 ±0.087 68.702 ±0.409 -
GRIT 0.6988 ±0.0082 0.2460 ±0.0012 98.108 ±0.111 76.468 ±0.881 -
GPS 0.6534 ±0.0091 0.2509 ±0.0014 98.051 ±0.126 72.298 ±0.356 93.50 ±0.41
Exphormer 0.6527 ±0.0043 0.2481 ±0.0007 98.414 ±0.035 74.690 ±0.125 94.02 ±0.21

GatedGCN+PE+VN 0.6712 ±0.0066 0.2481 ±0.0015 98.122 ±0.102 70.280 ±0.380 92.62 ±0.57
GatedGCN+PE+VNG 0.6822 ±0.0052 0.2458 ±0.0006 98.626 ±0.100 76.080 ±0.330 93.67 ±0.37

Table 3: Test performance on graph-level OGB benchmarks (Hu et al., 2020). Shown is the mean %
± std of 10 runs (missing values from literature are indicated with ‘-’). The first, second and third
best results for each task are color-coded.

Method MolHIV (↑) MolPCBA (↑) PPA (↑)

GCN 76.06 ±0.97 20.20 ±0.24 68.39 ±0.84
GIN 75.58 ±1.40 22.66 ±0.28 68.92 ±1.00

DeeperGCN 78.58 ±1.17 27.81 ±0.38 77.12 ±0.71
CRaWL - 29.86 ±0.25 -

SAN 77.85 ±0.28 27.65 ±0.42 -
GPS 78.80 ±1.01 29.07 ±0.28 80.15 ±0.33

GCN+VN 75.99 ±1.19 24.24 ±0.34 68.57 ±0.61
GIN+VN 77.07 ±1.49 27.03 ±0.23 70.37 ±1.07

GatedGCN+PE+VN 76.87 ±1.36 28.48 ±0.26 80.27 ±0.26
GatedGCN+PE+VNG 79.10 ±0.86 29.17 ±0.27 81.17 ±0.30

variety of transformer-based approaches. Not only does this suggest that MPNN + VNG works well in
practice but that complex long-range dependencies might not play a primary role for these tasks. This
was also supported by Tönshoff et al. (2023a) where the lower performance of MPNNs compared to
GTs was found to be caused by insufficient hyperparameter tuning. We also show strong performance
on the larger MalNet-Tiny dataset. Previous work has shown that using a full transformer outperforms
linear attention-based methods (Rampášek et al., 2022) on this task. However, we show that we can
match the performance of the full transformer and still be more computationally efficient.

6 CONCLUSION

In Section 3, we characterize how the spectrum of the input graph affects the impact of VN on the
commute time and hence to oversquashing. We have also evaluated this on real-world benchmarks in
Section 5.1. In Section 4, we show that standard VN implementations cannot assign different scores
to nodes in the global update. Consequently, we propose MPNN + VNG, a variation of MPNN + VN
sharing the same computational complexity, that uses the graph to learn heterogeneous node impor-
tance. In Section 5, we show that this outperforms MPNN + VN on a range of benchmarks, precisely
corresponding to those where GTs outperform MPNN + VN by learning heterogenos node scores.

9

Limitations and Future Work. We have not empirically explored the change in commute time
afforded by GT and rewiring-based approaches. Future work can compare these approaches and VN,
to assess their mixing abilities. We furthermore relegate the comparison of different message passing
mechanisms in the VNG to future work since this would unduly extend the scope of our work.

ACKNOWLEDGMENTS

J.S. is supported by the UKRI CDT in AI for Healthcare http://ai4health.io (EP/S023283/1).
M.B. is supported by EPSRC Turing AI World-Leading Research Fellowship No. EP/X040062/1
and EPSRC AI Hub on Mathematical Foundations of Intelligence: An “Erlangen Programme" for
AI No. EP/Y028872/1. J.L. is supported by the French National Research Agency (ANR) via the
“GraspGNNs” JCJC grant (ANR-24-CE23-3888).

10

http://ai4health.io

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Adrián Arnaiz-Rodríguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In The First Learning on Graphs Conference, 2022.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael M Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in gnns. In The Twelfth International Conference on Learning
Representations, 2024.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Filippo Maria Bianchi and Veronica Lachi. The expressive power of pooling in graph neural networks.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, January 2023. ISSN 1939-3539. doi:
10.1109/tpami.2022.3154319.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning, pp. 3408–3430. PMLR, 2023.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. Advances in Neural Information Processing
Systems, 32, 2019.

F Di Giovanni, TK Rusch, MM Bronstein, A Deac, M Lackenby, S Mishra, and P Velickovic. How
does over-squashing affect the power of gnns? Transactions on Machine Learning Research, 2024.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pp. 7865–7885. PMLR, 2023a.

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, and
Michael M Bronstein. Understanding convolution on graphs via energies. Transactions on Machine
Learning Research, 2023b.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

11

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. arXiv preprint arXiv:2011.07682, 2020.

Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph. SIAM
review, 50(1):37–66, 2008.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp. 729–734 vol.
2, 2005. doi: 10.1109/IJCNN.2005.1555942.

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding
pooling in graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–11, 2022. ISSN 2162-2388. doi: 10.1109/tnnls.2022.3190922.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
Dynamically rewired message passing with delay. In International Conference on Machine
Learning, pp. 12252–12267. PMLR, 2023.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A
generalization of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp.
12724–12745. PMLR, 2023.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. In International Conference on Learning Representations,
2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’22. ACM, August 2022. doi: 10.1145/3534678.
3539296.

EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of virtual
nodes in graph neural networks for link prediction. In The First Learning on Graphs Conference,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pp. 3734–3743. PMLR, 2019.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2019.

László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4, 1993.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

12

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions
on Neural Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. K-hop graph neural networks.
Neural Networks, 130:195–205, 2020.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Trang Pham, Truyen Tran, Hoa Dam, and Svetha Venkatesh. Graph classification via deep learning
with virtual nodes. arXiv preprint arXiv:1708.04357, 2017.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5470–5477, 2020.

Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished in
uniform: Self-attention vs. virtual nodes. In The Twelfth International Conference on Learning
Representations, 2024.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:
10.1109/TNN.2008.2005605.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Conference
on Learning Representations, 2020.

Florian Sestak, Lisa Schneckenreiter, Sepp Hochreiter, Andreas Mayr, and Günter Klambauer.
Vn-egnn: Equivariant graph neural networks with virtual nodes enhance protein binding site
identification. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. In The Second Learning on Graphs Conference, 2023a.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing. Transactions on Machine Learning Research,
2023b.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Multi-hop attention graph neural network.
arXiv preprint arXiv:2009.14332, 2020.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In International
Conference on Machine Learning, pp. 23341–23362. PMLR, 2022.

13

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Shuo Yin and Guoqiang Zhong. Lgi-gt: Graph transformers with local and global operators interleav-
ing. In IJCAI, pp. 4504–4512, 2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

14

A OUTLINE OF THE APPENDIX

In Appendix B we study VNs in the context of the oversmoothing problem and for better readibility
we provide the proofs of the theoretical statements in Appendix C. Then Appendix D contains further
theoretical results connecting VN and the choice of global pooling. Next, we report the analysis
on commute time and oversquashing when adding a VN in Appendix E. Proofs for the sensitivity
analysis results in Section 4 are finally reported in Appendix F.

Regarding additional ablations and experimental details, we comment on training details, hyperparam-
eters, datasets, and hardware in Appendix G. Next, we describe additional experiments confirming
that VN introduces smoothing on graph-level tasks in Appendix H, focusing on the impact of the
final pooling. We further validate the role played by the underlying MPNN model in MPNN + VNG

in Appendix I, propose a visualization of the framework in Appendix J, and finally report attention
maps learned by Graph-Transformer on benchmarks—used as a proxy-measure for the heterogeneity
required by the task—in Appendix K.

B MPNN + VN AND SMOOTHING

Despite the empirical success of MPNN + VN, the reasons behind these improvements still lack a
thorough understanding. To this aim, Cai et al. (2023) postulated that MPNN + VN is also beneficial
due to its ability to replicate PairNorm (Zhao & Akoglu, 2020), a framework designed to mitigate
oversmoothing. In this appendix we provide theoretical arguments against this conjecture, proving
that MPNN + VN loses expressive power when it emulates PairNorm.

Comparison to PairNorm. Methods such as PairNorm (Zhao & Akoglu, 2020), aim at mitigating
oversmoothing, which occurs when the node representations converge to the same vector in the limit
of many layers, independent of the task (Nt & Maehara, 2019; Oono & Suzuki, 2020). To address the
claims in Cai et al. (2023) and compare MPNN + VN and PairNorm, in this section we adopt the
assumptions in Zhao & Akoglu (2020) and other theoretical works on oversmoothing (Di Giovanni
et al., 2023b), and consider networks whose layers are linear. In particular, to assess advantages
of MPNN + VN over PairNorm, we study their expressivity. Since aggregating m linear layers
yields a polynomial filter of the form p(A)H, where H are the input node features, we choose as
expressivity metric precisely the ability of a model to learn such polynomial filters. In fact, under mild
assumptions, polynomial filters are comparable to the 1-WL test (Wang & Zhang, 2022). Additionally,
when the input features H are constant, polynomial filters (17) coincide with graph moments, a
metric of expressivity studied in Dehmamy et al. (2019), further validating our approach.

Measuring Expressivity With Polynomial Filters. Since in this section we restrict the analysis to
models that have linear layers, we introduce a simple MPNN baseline, which is obtained from (1) by
choosing a sum aggregation and a linear update with a residual connection:

H(ℓ+1) = H(ℓ) +AH(ℓ)W(ℓ), (15)

where W(ℓ) is a d× d weight matrix and H(ℓ) is the n× d feature matrix at layer ℓ. Note that the
choice of the sum aggregation in the MPNN, i.e., the occurence of A in (15) and the subsequent
analysis, is made without loss of generality and our analysis applies to any other message passing
operator used instead of A. Similarly, for MPNN + VN, we consider a layer update with mean
aggregation for VN, akin to Cai et al. (2023):

H(ℓ+1) = H(ℓ) +AH(ℓ)W(ℓ) +
1

n
11⊤H(ℓ−1)Q(ℓ), (16)

with Q(ℓ) a weight matrix and 1 ∈ Rn the vector of ones. For simplicity, we assume that the output
after m layers Ym also has dimension d and choose a mean pooling operation in the final layer, so
that given a weight matrix Θ we have Ym = ΘMean(H(m)), with H(m) computed by either (15) or
(16). We can express Ym as a graph-level polynomial filter in terms of d× d weight matrices {Θk}:

Ym = Mean
(m∑
k=0

AkHΘk

)⊤
. (17)

We note now that MPNN + VN (16) recovers PairNorm when Q(ℓ) = −I, with I the d× d-identity
matrix. We denote this special choice as MPNN - VN.

15

Theorem B.1. There are polynomial filters (17) that can be learned by MPNN but not by MPNN -
VN. Conversely, any polynomial filter learned by MPNN (15) can also be learned by MPNN + VN
(16). Furthermore, there exist polynomial filters that can be learned by MPNN + VN but not by
MPNN.

Theorem B.1 implies that the ability of an MPNN - VN to replicate PairNorm comes at the cost of
expressivity. Conversely, MPNN + VN (when they do not replicate PairNorm) are more expressive
than MPNN when learning polynomial filters. In light of Theorem B.1, we argue that, contrary to the
claim in Cai et al. (2023), MPNN + VN generally avoids replicating PairNorm to maintain its greater
expressivity. We empirically validate this statement in Appendix H.1 and report the smoothing effects
of VN on common benchmarks in Appendix H.2.

In summary, our analysis suggests that on graph-level tasks, benefits of MPNN + VN are independent
of their ability to replicate methods such as PairNorm. In fact, for a graph-level prediction, whose
output is computed using a global mean, some ‘smoothing’ is actually unavoidable. In particular, the
mean pooling in (17) corresponds to projecting the final features precisely onto the subspace spanned
by 1 ∈ Rn, i.e., the kernel of the (unnormalized) graph Laplacian associated with oversmoothing
(Cai & Wang, 2020; Di Giovanni et al., 2023b). This allows us to clarify a key difference when
studying oversmoothing for node-level and graph-level tasks. In the former case, if two node features
become indistinguishable, then they will be assigned the same label, which is often independent of
the task, thereby resulting in harmful oversmoothing. Conversely, in the latter case, even if the node
features converge to the same representation, this behavior may result in beneficial oversmoothing
if such common representation is controlled to match the desired, global output. We argue that for
this reason, oversmoothing has hardly been observed as an issue on graph-level tasks. We refer to
Proposition D.1 in Appendix C for results relating VN to the choice of pooling and to ablations in
Appendix H.2.

C PROOFS OF RESULTS IN APPENDIX B

Proof of Theorem B.1. First, we note that similarly to Cai et al. (2023), the VN state is initialized to
be zero, i.e., the first layer of Equation (16) is

H(1) = H+AHW(0) (18)

where H is matrix of input node features. It is trivial to check that any polynomial filter that can be
learned by an MPNN can also be learned by MPNN + VN, considering that if we set the additional
weight matrices {Qℓ} to be zero in (16), then we recover the MPNN case in (15). Accordingly, to
prove that MPNN + VN is strictly more expressive than MPNN when learning polynomial filters, we
only need to show that there exist m ∈ N and polynomial filters of degree m that can be learned by an
MPNN + VN of m layers, but not by MPNN. We show that such a polynomial can already be found
when m = 2. Namely, given a linear 2-layer MPNN + VN, we can write the 2-layer representation
H(2) explicitly as

H(2) = H+AH(W(0) +W(1)) +A2HW(0)W(1) +
1

n
11⊤HQ(1). (19)

Recall that given the choice of global mean pooling, the final output is

Y2 = Θ̃Mean(H(2)). (20)

Since Mean(H(2)) = (H(2))⊤1/n, we find

Y2 = Θ0Mean(H) +Θ1Mean(AH) +Θ2Mean(A2H),

where the weights characterizing the family of quadratic polynomial filters are defined by the system:

Θ0 = Θ̃
(
I+ (Q(1))⊤

)
, (21)

Θ1 = Θ̃
(
(W(0))⊤ + (W(1))⊤

)
, (22)

Θ2 = Θ̃
(
(W(1))⊤(W(0))⊤

)
. (23)

16

Assume now that the class of polynomial filters we wish to learn, have a vanishing zeroth-order term,
i.e., Θ0 = 0. For the MPNN not containing a VN, corresponding to Q(1) = 0 in (21), then we
must have Θ̃ = 0. Therefore, the only quadratic polynomial without a zeroth-order term that can be
learned by a linear MPNN as in (15) of degree 2 is the trivial polynomial. Conversely, an MPNN +
VN can, for example, learn the weights Q(1) = −I to ensure Θ0 = 0, and have non-trivial first and
second-order terms using the W-weight matrices. This proves that on any given graph there exist
polynomial filters that can be learned by MPNN + VN but not by MPNN.

To conclude the proof, we now need to show that MPNN + VN loses expressive power when it
emulates PairNorm. We observe that for the case of MPNN - VN, i.e., Q(ℓ) = −I for ℓ ∈ N, after
two layers, the term Θ0 is always zero. Since MPNN after two layers can learn quadratic polynomial
filters with non-trivial zero-th order terms, this completes the proof.

We want to remark that MPNN-VN is a slight simplification of PairNorm since it firstly, does not
include the scaling factor that is present in the originally proposed PairNorm method and secondly,
does not use the updated hidden representations in the substracted mean at every later. However, the
PairNorm scaling factor can be absorbed into Θ̃ in (20). We furthermore observe that when using the
original PairNorm normalisation, then every layer (by design) has zero mean, which in particular
implies that no graph moment of order m can be learned after m layers, i.e., the m-th coefficient
always vanishes. Hence, our statements also extend to the originally proposed PairNorm.

Note further that Theorem B.1 can be extended to apply to MPNNs with an linear embedding layer,
i.e., MPNNs where (15) becomes

H(1) = HW +AH(1)W(1),

H(ℓ+1) = H(ℓ) +AH(ℓ)W(ℓ) for ℓ > 1. (24)

Theorem C.1. There are polynomial filters (17) that can be learned by MPNN with embedding
layers as defined in (24) but not by MPNN - VN. Conversely, any polynomial filter learned by MPNN
(24) can also be learned by MPNN + VN with an analogous embedding layer on the initial node
features. Furthermore, there exist polynomial filters that can be learned by MPNN + VN but not by
MPNN when both models have a linear embedding layer on the initial node features.

Proof. The structure of this proof follows the Proof of Theorem B.1.

Again, it is trivial to check that any polynomial filter that can be learned by an MPNN can also be
learned by MPNN + VN, considering that if we set the additional weight matrices {Qℓ} to be zero,
then we recover the MPNN case in (24).

If we consider the MPNN in (24) then the system of equations in (21) becomes

Θ0 = Θ̃
(
(W)T + (Q(1))T (W)T

)
,

Θ1 = Θ̃
(
(W(0))T (W)T + (W(1))T (W)T

)
,

Θ2 = Θ̃
(
(W(1))T (W(0))T (W)T

)
.

If we now consider polynomial filters with a vanishing first-order term and an invertible second-order
term, we obtain (W(0))T = −(W(1))T . Consequently, for an MPNN without VN, we have

(Θ0)
−1Θ2 = −((W)T)−1(W(1))T (W(1))T (W)T .

Hence,
det((Θ0)

−1Θ2) = (−1)ddet(W(1))2. (25)

Therefore, the polynomial filters an MPNN can learn are constrained, since the sign of the determinant
in (25) is fully determined by the hyperparameter d. Without loss of generality, for an even d

an MPNN cannot learn the polynomial Θ̂0 = Θ̂2 = I and Θ̂1 = 0. On the other hand, this
polynomial can be learned by MPNN+VN by learning Θ̃ = I, (W(0))T = −(W(1))T , (W)T =
(−(W(1))T (W(1))T)−1 and (Q(1))T = (I−W)T)W)T .

17

D ADDITIONAL RESULTS ON THE ROLE OF POOLING

In this section we discuss how the choice of the global pooling affects the benefits of VN. Consider
an alternative global pooling, which instead of projecting the final features onto 1/n (i.e. computing
the mean), projects the final-layer features onto v ∈ Rn satisfying v⊤1 = 0,

Yv
m = Θ̃(H(m))⊤v =

m∑
k=0

Θk(A
kH)⊤v. (26)

We can then show that there exist polynomial filters that MPNN + VN is no longer able to express
when we replace mean pooling with v-pooling.
Proposition D.1. Given v orthogonal to 1, a linear MPNN + VN of m layers can generate weights
{Θk} in the output Ym in (17) that cannot be generated by a linear MPNN + VN using a global
pooling induced by v, as in (26).

Proof of Proposition D.1. Once again, we show that it suffices to consider the case of quadratic
polynomial filters, i.e., m = 2 given in the system of equations in (21). However, since 1 and v
are orthogonal, then there is no Q(1)-term in Equation (21). As such, we see that the quadratic
polynomial Yv

2 has zero-th order coefficient vanishing if and only if Θ̃ = 0, i.e., the quadratic
polynomial is trivial. Conversely, MPNN + VN can instead learn non-trivial quadratic polynomial
without zero-th order term by simply setting Q(1) = −I.

A Fourier Perspective on Pooling. Proposition D.1 highlights that MPNN + VN may lose the ability
to express polynomial filters when we no longer have alignment between VN and the global pooling.
This result raises a an important question: What is the bias resulting from a certain choice of global
pooling? Consider linear MPNNs as above where the global pooling is obtained by projecting onto
some v ∈ Rn, with the case v = 1 recovering the mean (sum) pooling. Given {ψi} ⊂ Rn, a basis of
orthonormal eigenvectors of A, with eigenvalues {λi}, we write v =

∑
i ciψi, where {ci} are the

graph Fourier coefficients of v. Given 1 ≤ r ≤ d, the channel r of the final output as per (26) takes
on the following form in the Fourier domain

yr =

m∑
k=0

d∑
p=1

(Θk)rp

n−1∑
i=0

ciλ
k
i ⟨hp, ψi⟩, (27)

where hp ∈ Rn is the channel p of the input features. Accordingly, the Fourier coefficients {ci} of v
and the associated frequencies {λi}, determine which projection ⟨hp, ψi⟩ affects the output the most.
The fact that on many datasets mean (sum) pooling is beneficial, and hence adding VN is mostly
advantageous as per Proposition D.1, highlights that the underlying tasks depend on the projection of
the features onto those eigenvectors {ψi} aligned with the vector 1.

E PROOFS OF RESULTS IN SECTION 3

In this section, we report the proofs of the theoretical results in Section 3 along with additional details.
We start by proving Theorem 3.1.

Proof of Theorem 3.1. We start by recalling that the effective resistance between two nodes i and j,
denoted by R(i, j), can be computed as (Ghosh et al., 2008):

R(i, j) = L†
ii + L†

jj − 2L†
ij , (28)

where L† is the pseudo-inverse of the graph Laplacian, i.e.,

L† =

n−1∑
ℓ=1

1

λℓ
vℓv

⊤
ℓ . (29)

Accordingly, we can write the effective resistance between two nodes i and j explicitly as

R(i, j) =

n−1∑
ℓ=1

1

λℓ
(vℓ(i)− vℓ(j))

2. (30)

18

Naturally, for the graph Gvn we obtain from adding VN, the formula changes as

Rvn(i, j) =

n∑
ℓ=1

1

λvnℓ
(vvnℓ (i)− vvnℓ (j))2, (31)

where Lvnv
vn
ℓ = λvnℓ v

vn
ℓ . When we add the virtual node though, the adjacency matrix changes as in

Equation (4), meaning that the graph Laplacian can be written as

Lvn = Dvn −Avn =

(
D+ I 0
0⊤ n+ 1

)
−
(
A 1
1⊤ 1

)
=

(
L+ I −1
−1⊤ n

)
. (32)

We recall now that v0 = 1√
n
1, i.e., L1 = 0. Accordingly, we find that vvn0 = 1√

n+1

(
1
1

)
, i.e.,

Lvnv
vn
0 = 0. Similarly, from the block decomposition of Lvn we derive that

Lvn

(
vℓ
0

)
=

(
(L+ I)vℓ
−1⊤vℓ

)
= (λℓ + 1)

(
vℓ
0

)
, (33)

where we have used that vℓ are orthogonal to v0 = 1√
n
1 for all ℓ ≥ 1. Accordingly

(
vℓ
0

)
are

eigenvectors of Lvn for all 1 ≤ ℓ ≤ n− 1 with eigenvalue λℓ + 1. Finally we note that

Lvn
1√

n2 + n

(
1
−n

)
=

1√
n2 + n

(
(L+ I)1+ n1
−1⊤1− n2

)
= (1 + n)

1√
n2 + n

(
1
−n

)
, (34)

which means that 1√
n2+n

(
1
−n

)
is the final eigenvector of Lvn with eigenvalue n+ 1. We can then

use the spectral decomposition of Lvn to write the effective resistance between nodes i and j after
adding VN as

Rvn(i, j) =

n∑
ℓ=1

1

λvnℓ
(vvnℓ (i)− vvnℓ (j))2 =

n−1∑
ℓ=1

1

λℓ + 1
(vℓ(i)− vℓ(j))

2 +
1

n+ 1

1

n2 + n
(1− 1)2

=

n−1∑
ℓ=1

1

λℓ + 1
(vℓ(i)− vℓ(j))

2.

Finally, we recall that on a graph, the commute time τ is proportional to the effective resistance
(Lovász, 1993), i.e.,

τ(i, j) = 2|E|R(i, j).
Accordingly, we can use that on Gvn the number of edges is equal to |E| + n and compare the
commute time after adding VN with the baseline case:

τvn(i, j)− τ(i, j) =

n−1∑
ℓ=1

(2(|E|+ n)

λℓ + 1
− 2|E|

λℓ

)
(vℓ(i)− vℓ(j))

2

= 2|E|
n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
(vℓ(i)− vℓ(j))

2,

which is precisely Equation (5). We can the sum over all pairs of nodes to obtain

n∑
i,j=1

(τvn(i, j)− τ(i, j)) = 2|E|
n∑

i,j=1

n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
(vℓ(i)− vℓ(j))

2

= 2|E|
n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

) n∑
i,j=1

(vℓ(i)− vℓ(j))
2

= 2|E|
n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

) n∑
i,j=1

(
v2ℓ (i) + v2ℓ (j)− 2vℓ(i)vℓ(j)

)
.

19

We now use that vℓ form an orthonormal basis, accordingly:
∑n

i=1 vℓ(i)
2 = 1. Similarly, since vℓ is

orthogonal to v0 and hence to 1, we get v⊤ℓ 1 =
∑n

i=1 vℓ(i) = 0. Therefore,
n∑

i,j=1

(
v2ℓ (i) + v2ℓ (j)− 2vℓ(i)vℓ(j)

)
= 2n− 2

n∑
i=1

vℓ(i)

n∑
j=1

vℓ(j) = 2n.

We finally obtain:

1

n2

n∑
i,j=1

(τvn(i, j)− τ(i, j)) =
4|E|
n

n−1∑
ℓ=1

1

λℓ(λℓ + 1)

(n

|E|
λℓ − 1

)
,

which completes the proof.

Remark: We note that according to Equation (5), we expect τvn(i, j) < τ(i, j) whenever the two
nodes have large commute time on the input graph, i.e. due to the graph having a bottleneck where
λ1 is small and the Fiedler eigenvector is such that v1(i) · vi(j) < 0 since i, j belong to different
communities. As such, adding a VN should indeed beneficial for graphs with bottlenecks, while
it may slightly increase the commute time between nodes that were well connected in the graph
due to the addition of a VN spreading information out from the pair. This intuition is validated in
Section 5.1, where we show that on real-world graphs adding a VN decreases the average commute
time significantly.

Corollary E.1. If we let α := 1 + n/|E|, then

− 4|E|α
λ1(λ1 + 1)

≤ τvn(i, j)− ατ(i, j) ≤ − 4|E|α
λn−1(λn−1 + 1)

. (35)

Proof. From (5) and the proof above, we derive

τvn(i, j)− ατ(i, j) =

n−1∑
ℓ=1

(2(|E|+ n)

λℓ + 1
− 2(|E|+ n)

λℓ

)
(vℓ(i)− vℓ(j))

2

= −2(|E|+ n)

n−1∑
ℓ=1

1

λℓ(λℓ + 1)
(vℓ(i)− vℓ(j))

2

≥ − 2|E|α
λ1(λ1 + 1)

n−1∑
ℓ=1

(vℓ(i)− vℓ(j))
2 = − 4|E|α

λ1(λ1 + 1)

where the last equality follows from

n−1∑
ℓ=1

(vℓ(i)− vℓ(j))
2 =

n−1∑
ℓ=1

(v2ℓ (i) + v2ℓ (j)− 2vℓ(i)vℓ(j))

= 2
(
1− 1

n

)
− 2

n−1∑
ℓ=0

vℓ(i)vℓ(j) + 2v0(i)v0(j) = 2
(
1− 1

n

)
+

2

n
= 2,

where we have used the orthonormality of the eigenvectors for i ̸= j. The upper bound can be proved
in the same way using that λℓ ≤ λn−1 for each ℓ.

Proof of Corollary 3.4. Consider an MPNN + VN. We recall that mixy(i, j) is the mixing induced
by a graph-level function among the features of nodes i and j, and is defined as (Di Giovanni et al.,
2024)

mixy(i, j) = max
H

max
1≤α,β≤d

∣∣∣∣∣ ∂2y(H)

∂hαi ∂h
β
j

∣∣∣∣∣ .
According to Di Giovanni et al. (2024), when the mixing induced by the MPNN after m layers,
denoted here as mix(m)(i, j), is smaller than the one required by the downstream task, then we have
an instance of harmful oversquashing which prevents the network from learning the right interactions

20

necessary to solve the problem at hand. Since we can write the system in (3) as the system of MPNN
analyzed in Di Giovanni et al. (2024), operating on the graph Gvn, we can extend their conclusions in
Theorem 4.4. Namely, using their notations, we find that given bounded weights and derivatives for
their network, the minimal number of layers required to learn a graph-level function y with mixing
mixy(i, j) is

m ≥ τvn(i, j)

8
+ αvnmixy(i, j) + βvn,

where the constants αvn and βvn are independent of nodes i, j, and without loss of generality we
have taken c2 = 1/2 in Theorem 4.4 of Di Giovanni et al. (2024)— clearly, the result generalize to
any c2 ≤ 1. As such, we see that a necessary condition for the family of graph-level functions with
mixing mixy(i, j) > −βvn/αvn to be learned by MPNN + VN is that

m ≥ τ(i, j)

8
≥
(
1 +

n

|E|

)(τ(i, j)
8

− |E|
2λ1(λ1 + 1)

)
,

where we have used Equation (5) in the last inequality. This completes the proof.

Accordingly, MPNN + VN can improve upon the minimal number of layers required to learn
functions with strong mixing between nodes (i, j), when compared to the baseline MPNN. In
fact, such improvement can be characterized precisely in terms of spectral properties of the graph
Laplacian, and in light of Corollary E.1 of λ1.

F PROOFS OF RESULTS IN SECTION 4

We begin by providing the analytical model equations for the GatedGCN+VN model that we experi-
ment with in Section 5.

h(ℓ+1)
vn = σ

(
Ω(ℓ)

vn h
(ℓ)
vn +

1

n

n∑
j=1

W(ℓ)
vn h

(ℓ)
j

)
,

h
(ℓ+1)
i = σ

(
Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

η(l)(h
(ℓ)
i , h

(ℓ)
j)⊙W

(ℓ)
1 h

(ℓ)
j + h(ℓ)vn

)
,

where ⊙ denotes the element-wise product and η(l)(h(ℓ)i , h
(ℓ)
j) = sigmoid(W(ℓ)

2 h
(ℓ)
i +W

(ℓ)
3 h

(ℓ)
j).

And correspondingly we now write out the analytical model equations for the GatedGCN+VNG

model.

h
(ℓ+1)
j,loc = σ(Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

η(l)(h
(ℓ)
i , h

(ℓ)
j)⊙W

(ℓ)
1 h

(ℓ)
j),

h
(ℓ+1)
i = h

(ℓ+1)
i,loc +Mean({Q(ℓ+1)h

(ℓ+1)
j,loc }),

where η(l)(h(ℓ)i , h
(ℓ)
j) = sigmoid(W(ℓ)

2 h
(ℓ)
i +W

(ℓ)
3 h

(ℓ)
j).

We now continue with the proof of the theoretical statements made in Section 4.

Proof of Proposition 4.1. Recall that we consider an MPNN + VN whose layer update is of the form

h(ℓ+1)
vn = σ

(
Ωvnh

(ℓ)
vn +W(ℓ)

vn

1

n

n∑
j=1

h
(ℓ)
j

)
h
(ℓ+1)
i = σ

(
Ω(ℓ)h

(ℓ)
i +

n∑
j=1

Aijψ
(ℓ)(h

(ℓ)
i , h

(ℓ)
j) + ψ(ℓ)

vn (h
(ℓ)
i , h(ℓ)vn)

)
.

21

If i, k ∈ V with k outside the 2-hop neighborhood of i, then any message sent from k to i will arrive
after 2 layers through the VN. Since the VN update is homogeneous though, node i cannot distinguish
which node k sent the message. Explicitly, we can compute the derivatives and obtain

∂h
(ℓ+1)
i

∂h
(ℓ−1)
k

=
1

n
σ′(z

(ℓ)
i)∇2ψ

(ℓ)
vn (h

(ℓ)
i , h(ℓ)vn)σ

′(z(ℓ−1)
vn)W(ℓ)

vn ,

where z(ℓ)i is the argument of the nonlinear activation σ, σ′(z) is the diagonal derivative matrix
computed at z and ∇2 denotes the Jacobian w.r.t. the second variable. As we can see, the derivative is
independent of k and is the same for each node k outside the 2-hop neighborhood of i, which shows
that the layer of MPNN + VN is typically homogeneous and hence fails to assign different relevance
(sensitivity) to nodes. This completes the proof.

Proof of Proposition 4.2. Consider an instance of MPNN+VNG whose layer updates have the form

h
(ℓ+1)
i,loc = σ(Ω(ℓ)h

(ℓ)
i +

∑
j∈Ni

ψ
(ℓ)
ij (h

(ℓ)
i , h

(ℓ)
j)),

h
(ℓ+1)
i = h

(ℓ+1)
i,loc +Mean({h(ℓ+1)

j,loc }).
Given i, k ∈ V where node k is outside the 1-hop neighborhood of i, any message sent from k to i
will arrive after 1 layer through the VN—in other words, ∂h(ℓ+1)

i,loc /∂h
(ℓ)
k = 0. We can compute the

derivatives and obtain

∂h
(ℓ+1)
i

∂h
(ℓ)
k

=
1

n

n∑
j=1

∂h
(ℓ+1)
j,loc

∂h
(ℓ)
k

=
1

n

n∑
j=1

σ′(z
(ℓ)
j)
(
Ω(ℓ)δjk +

∑
u∈Nj

∇1ψju(h
(ℓ)
j , h(ℓ)u)δjk +∇2ψju(h

(ℓ)
j , h(ℓ)u)δuk

)
=

1

n

(
σ′(z

(ℓ)
k)
(
Ω(ℓ) +

∑
u∈Nk

∇1ψ
(ℓ)
ku (h

(ℓ)
k , h(ℓ)u)

)
+
∑
u∈Nk

σ′(z(ℓ)u)∇2ψ
(ℓ)
uk (h

(ℓ)
u , h

(ℓ)
k)
)
,

where δpq is the Kronecker delta with indices p, q and in the last sum we have replaced the dumb
index j with u. This completes the proof.

For completeness, we also provide a corresponding sensitivity analysis of the global attention
mechanism now, that is at the heart of the different GT variants. In particular, we will be analysing
the following global attention mechanism,

H
(ℓ+1)
att = softmax

(
1√
dℓ+1

H(ℓ)W
(ℓ)
Q (H(ℓ)W

(ℓ)
K)⊤

)
H(ℓ)W

(ℓ)
V , (36)

where W
(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V denote trainable weight matrices and dℓ+1 denotes the number of columns

of W(ℓ)
Q .

Proposition F.1. Given i, k ∈ V the Jacobian ∂h(ℓ+1)
i /∂h

(ℓ)
k computed using (36) is

∂h
(ℓ+1)
i

∂h
(ℓ)
k

= softmax

(
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤h

(ℓ)
k

)
W

(ℓ)
V

+ softmax′

(
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤h

(ℓ)
k

)
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤W

(ℓ)
V h

(ℓ)
k ,

Proof. We begin by reformulating the global attention mechanism equation in (36) to reflect the
update of the hidden representation h(ℓ+1)

att,i of node i,

h
(ℓ+1)
att,i =

n∑
j=1

softmax

(
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤h

(ℓ)
j

)
W

(ℓ)
V h

(ℓ)
j .

22

Now the Jacobian can be relatively simply derived using the product rule as follows,

∂h
(ℓ+1)
i

∂h
(ℓ)
k

= softmax

(
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤h

(ℓ)
k

)
W

(ℓ)
V

+ softmax′

(
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤h

(ℓ)
k

)
1√
dℓ+1

(h
(ℓ)
i)⊤W

(ℓ)
Q (W

(ℓ)
K)⊤W

(ℓ)
V h

(ℓ)
k ,

where softmax′ denotes the derivative of the softmax(·) function.

We can hence conclude that hidden states obtained in the global attention mechanism, that is used
in most GTs without modification, depend on both the hidden state of the central node h(ℓ)i and the
hidden state of any other given node h(ℓ)k . This dependence arises rather trivally as a result of the
fully connected attention scheme, in which any two nodes can exchange information.

G EXPERIMENTAL DETAILS

In this section, we provide further details about our experiments.

G.1 HARDWARE

All experiments were run on a single V100 GPU.

G.2 DESCRIPTION OF DATASETS

Below, we provide descriptions of the datasets on which we conduct experiments.

MNIST and CIFAR10 (CC BY-SA 3.0 and MIT License) (Dwivedi et al., 2023). These datasets test
graph classification on the popular image classification datasets. The original images are converted
to graphs using super-pixels which represent small regions of homogeneous intensity in the images.
They are both 10-class classification tasks and follow the original standard (train/validation/test)
splits; 55K/5K/10K for MNIST and 45K/5K/10K for CIFAR10.

ogbg-molhiv and ogbg-molpcba (MIT License) (Hu et al., 2020). These are molecular property
prediction datasets which use a common node and edge featurization that represents chemophysical
properties. Ogbg-molhiv is a binary classification task, predicting the molecule’s ability to inhibit
HIV replication and ogbg-molpcba is a multi-task binary classification where 128 bioassays are
predicted.

ogbg-ppa (CC-0 License) (Hu et al., 2020). This dataset consists of protein-protein interaction
networks derived from 1581 species and categorized into 37 taxonomic groups. Nodes represent
proteins and edges encode the normalized level of 7 different associations between proteins. The task
is to classify which of the 37 groups the network belongs to.

MalNet-Tiny (CC-BY License) (Freitas et al., 2020). This is a subset of MalNet which contains
function call graphs (FCGs) derived from Android APKs. There are 5,000 graphs with up to 5,000
nodes with each graph coming from a benign software. The goal is to predict the type of software
from the structure of the FCG. The benchmarking version of this dataset typically uses Local Degree
Profile as the set of node features.

Peptides-func and Peptides (CC-BY-NC 4.0) (Dwivedi et al., 2022). These datasets are composed
of atomic peptides. Ppetides-func is a multi-label graph classification task where there are 10
nonexclusive peptide functional classes. Peptides-struct is a regression task involving 11 3D structural
properties of the peptides.

Sparsity of Graphs and Complexity of VN. The real-world benchmarks used in this paper are
generally very sparse. For instance, ogbg-molhiv (mean number of nodes: 25.5 , mean number of
edges: 27.5), Peptides (mean number of nodes: 150.9 , mean number of edges: 307.3), MNIST
(mean number of nodes: 70.6 , mean number of edges: 564.5), CIFAR10 (mean number of nodes:
117.6 , mean number of edges: 941.1), MalNet-Tiny (mean number of nodes: 1,410.3 , mean number

23

of edges: 2,859.9). The computational complexity of an MPNN is O(|E|) and of an MPNN+VN
is O(|E| + n). Given that, on these datasets, the order of magnitude of n is similar to |E|, the
complexity of MPNN+VN can be written as O(cn) where c is a small constant. This is significantly
better than the computational complexity of a Graph Transformer which is O(n2) on these datasets.

G.3 DATASET SPLITS AND RANDOM SEEDS

All the benchmarks follow the standard train/validation/test splits. The test performance at the epoch
with the best validation performance is reported and is averaged over multiple runs with different
random seeds. All the benchmarking results, including the extra ablations, are based on 10 executed
runs, except for Peptides-func and Peptides-struct which are based on the output of four runs.

G.4 HYPERPARAMETERS

Considering the large number of hyperparameters and datasets, it was not possible to do an exhaustive
grid search and to find the optimal parameters. Here we describe how the final hyperparameters
shown in Tables 4 and 5 were obtained.

Hyperparameters in Table 1. For the GPS model and its projection, we used the hyperparameters
as described in the original work Rampášek et al. (2022). For GatedGCN+PE+VN and other trained
models, we outline our hyperparameter optimization process for different datasets in the following
subsections.

OGB datasets. For both ogbg-molpcba and ogbg-ppa we used the same hyperparameters as used in
Rampášek et al. (2022) but the hidden dimension of the MPNN was adjusted so that we had a similar
parameter budget. For ogbg-molhiv, we found it to be beneficial to reduce the number of layers to 4
to align with the number of layers used in Bouritsas et al. (2023) but kept the same parameters for the
positional encoding and the optimization process.

Peptides-Func and Peptides-Struct. For these datasets we optimized the hyperparameters over the
following ranges:

• Dropout [0, 0.1, 0.2],
• FeedForward Block [True, False],
• Depth [4, 6, 8, 10],
• Positional Encoding [none, LapPE, RWSE],
• Layers Post Message-Passing [1, 2, 3],

and we used the optimization parameters recently proposed by (Tönshoff et al., 2023a) where they
train for 250 epochs with an AdamW optimizer (Kingma & Ba, 2014), and a cosine annealing learning
rate scheduler with a base learning rate of 0.001. When optimizing over the number of layers of
message-passing, we changed the hidden dimension to ensure that the parameter budget was around
500K.

MNIST, CIFAR10, MalNet-Tiny. On these benchmarks, we used the same dropout, positional
encondings and optimization parameters as used by Shirzad et al. (2023). The only parameter we
optimised for was the number of layers in the range [3, 5, 7]. Additionally, we changed the hidden
dimension in accordance with the number of layers to match the number of parameters that were used
in Shirzad et al. (2023).

24

Table 4: Best performing hyperparameters for GatedGCN+PE+VNG in Table 2.

Hyperparameter Peptides-Func Peptides-Struct MNIST CIFAR10 MalNet-Tiny

#Layers 4 4 5 7 5
Hidden dim 136 136 46 40 72
Dropout 0.0 0.2 0.1 0.1 0.0
Graph pooling mean mean mean mean mean
FeedForward Block False False True True True

Positional Encoding RWSE-20 LapPE-16 LapPE-8 LapPE-8 None
PE dim 16 16 8 8 -
PE encoder Linear Linear Linear DeepSet -

Batch size 200 200 16 16 16
Learning Rate 0.001 0.001 0.001 0.001 0.0005
#Epochs 250 250 100 100 150
#Parameters 492,217 492,217 110,148 117,066 281,453

Table 5: Best performing hyperparameters for GatedGCN+PE+VNG in Table 3.

Hyperparameter ogbg-molhiv ogbg-molpcba ogbg-ppa

#Layers 4 5 3
Hidden dim 90 384 284
Dropout 0.0 0.2 0.1
Graph pooling mean mean mean
FeedForward Block True True True

Positional Encoding RWSE-16 RWSE-16 None
PE dim 16 20 -
PE encoder Linear Linear -

Batch size 32 512 32
Learning Rate 0.0001 0.0005 0.0003
#Epochs 100 100 200
#Parameters 360,221 7,519,580 2,526,501

H SMOOTHING AND THE IMPORTANCE OF GRAPH STRUCTURE

In this section, we explore the performance on various benchmarks of adding or removing the current
pooled representation at each layer. We take the pooling function to be the mean and at each layer we
either subtract or add this from the output of the message passing layer. Adding the mean increases
the smoothness of the representations and we see that this leads to performance improvements on the
LRGB tasks in Table 6. Again, this highlights the benefits of smoothing on some graph-level tasks.
On the other hand, we see that subtracting the mean is beneficial for ogbg-molpcba. Subtracting
the mean at each layer before using the mean pooling function in the final layer, means that we are
ignoring the output of the message-passing layer which is aligned with the final representation. We
can see this as a good measure of the importance of the graph structure as we are removing any locally
aggregated updates. This suggests that it is beneficial to ignore the graph topology for ogbg-molpcba.

Table 6: Analyzing the performance of GatedGCN where we subtract or add the mean of the message-
passing output at each layer.

Method Peptides-Func (↑) Peptides-Struct (↓) ogbg-molhiv (↑) ogbg-molpcba (↑)

GatedGCN 0.5864 ±0.0077 0.3420 ±0.0013 0.7827 ±0.0111 0.2714 ±0.0014
GatedGCN + mean 0.6692 ±0.0042 0.2522 ±0.0012 0.7677 ±0.0138 0.2569 ±0.0034
GatedGCN - mean 0.4675 ±0.0040 0.3566 ±0.0007 0.7594 ±0.0096 0.2866 ±0.0016

H.1 EMPIRICAL COMPARISON OF MPNN + VN AND PAIRNORM

We now study the question to what extent MPNN + VN replicates PairNorm on graph-level tasks. To
answer this question and assess whether MPNN + VN behaves differently to PairNorm in practice, we
evaluate both on two graph-level tasks from the Long-Range Benchmarks (Dwivedi et al., 2022) using
three different MPNN architectures. It is clear from Table 7 that whilst PairNorm has a damaging
impact on the results as hypothesized in Theorem B.1, MPNN + VN achieves significant gains over
the standard MPNN architecture. Further datasets and results using a GatedGCN can be found in

25

Table 9. One explanation for the observed phenomenon is that, on these datasets, MPNN + VN favors
alignment between the layerwise representations and the final output representation (a smoothing
process). This phenomenon can be observed when comparing the cosine similarity of the pooled
representations at each layer to the final pooled representation. Plots of this cosine similarity over
the layers can be seen in Appendix H.2 and clearly show that the VN causes a smoothing effect in
contrast to PairNorm.

Table 7: The effect of PairNorm and MPNN + VN on LRGB tasks.

Method Peptides-Func (↑) Peptides-Struct (↓)

GCN 0.5930 ±0.0023 0.3496 ±0.0013
GCN + PairNorm 0.4980 ±0.0031 0.3471 ±0.0016
GCN + VN 0.6623 ±0.0038 0.2488 ±0.0021

GINE 0.5498 ±0.0079 0.3547 ±0.0045
GINE + PairNorm 0.4698 ±0.0053 0.3562 ±0.0007
GINE + VN 0.6346 ±0.0071 0.2584 ±0.0011

GatedGCN 0.5864 ±0.0077 0.3420 ±0.0013
GatedGCN + PairNorm 0.4674 ±0.0040 0.3551 ±0.0008
GatedGCN + VN 0.6477 ±0.0039 0.2523 ±0.0016

As argued before, this further supports that on these tasks, the alignment between the VN and the
choice of global pooling means that the task depends on feature information associated with the
frequency components of the subspace spanned by 1.

H.2 COSINE DISTANCE PLOTS

We analyzed the layerwise smoothing on the graph-level LRGB datasets (Dwivedi et al., 2022) using
a GatedGCN with and without a VN/attention layer. To do this, we measured the cosine distance
between the representations at each layer and the final pooled graph representation. We found that
using a VN or an attention layer reduced the distance between the earlier layer representations and
the final pooled representation and that this lead to an improvement in performance. This suggests
that these approaches can cause a beneficial smoothing towards the final representation.

26

Figure 2: The cosine distance between the embedding at each layer and the final graph representation
after training a GatedGCN, as well as with a VN and a transformer layer on Peptides-func.

(a)

Figure 3: The cosine distance between the embedding at each layer and the final graph representation
after training a GatedGCN, as well as with a VN and a transformer layer on Peptides-struct.

27

I ADDITIONAL ABLATION STUDIES

In this section, we explore additional ablations to improve our understanding of virtual nodes and our
heterogeneous extension. In Table 8, we look at the performance improvement of our heterogeneous
VNG when the base MPNN is a GCN or a GatedGCN. Whilst we generally see an improvement
with our implementation, this improvement is much larger when we use a GatedGCN. As previously
argued, this is due to the fact that in a GatedGCN, the aggregation weights each neighbor through a
learnable gate and we can thus have a learnable node importance based on the graph topology. This
is in contrast to a GCN where we have a homogeneous node update.

Table 8: Performance of MPNN + VNG in comparison to virtual node with positional encodings.

Method ogbg-molhiv (↑) ogbg-molpcba (↑) peptides-func (↑) peptides-struct (↓) CIFAR10 (↑)

GCN+PE+VN 0.7599 ±0.0119 0.2456 ±0.0034 0.6732 ±0.0068 0.2475 ±0.0009 68.957 ±0.381
GCN+PE+VNG 0.7678 ±0.0111 0.2481 ±0.0032 0.6862 ±0.0023 0.2456 ±0.0010 68.756 ±0.172

GatedGCN+PE+VN 0.7687 ±0.0136 0.2848 ±0.0026 0.6712 ±0.0066 0.2481 ±0.0015 70.280 ±0.380
GatedGCN+PE+VNG 0.7884 ±0.0099 0.2917 ±0.0027 0.6822 ±0.0052 0.2458 ±0.0006 76.080 ±0.301

GCN % Increase +1.04 +1.02 + 1.93 +0.77 -0.29
GatedGCN % Increase +2.56 +2.42 +1.64 +0.89 +8.25

As an extension to Section B, we compared the performance of GatedGCN with augmentations
which involve adding a VN in Table 9. Additionally, we look at the effect of applying PairNorm
on the datasets. We see that applying PairNorm to the GatedGCN, a common technique to mitigate
oversmoothing, actually reduces performance on all of these datasets. Moreover, using a virtual node
always outperforms using PairNorm. This further implies that a VN is not recreating PairNorm and
suggests that, on these graph-level tasks, smoothing may be beneficial.

Table 9: Performance of GatedGCN and its extensions on four benchmark tasks.

Method Peptides-Func (↑) Peptides-Struct (↓) ogbg-molhiv (↑) ogbg-molpcba (↑)

GatedGCN 0.5864 ±0.0077 0.3420 ±0.0013 0.7827 ±0.0111 0.2714 ±0.0014
GatedGCN with PairNorm 0.4674 ±0.0040 0.3551 ±0.0008 0.7645 ±0.0128 0.2621 ±0.0026
GatedGCN + VN 0.6477 ±0.0039 0.2523 ±0.0016 0.7676 ±0.0172 0.2823 ±0.0026

J VISUALIZATION OF MPNN + VNG

Here we visualize the differences between our implementation of MPNN + VNG and a standard
MPNN+VN. Our model uses the local MPNN acting on the original graph to weight the nodes based
on their importance. This means that the VN can perform a heterogeneous global update.

Figure 4: Comparing MPNN+VN with our proposed MPNN + VNG.

28

K ATTENTION MAPS

In order to get a better understanding of the homogeneity of the attention layer in the GPS framework,
we visualized the first layer attention matrices for various datasets. This complements our analysis in
Section 4 where we relate the gap in performance between a MPNN + VN and GPS to the level of
homogeneity of these attention patterns. The attention pattern for CIFAR10 is less homogeneous, as
measured by the standard deviation of the columns sums.

Figure 5: First layer attention maps of the self-attention matrix in the GPS framework for different
datasets.

29

	Introduction
	Preliminaries and Related Work
	MPNN + VN and Oversquashing
	Comparing MPNN + VN and GTs Through Sensitivity Analysis
	Experiments
	Ablations
	Evaluating Our Proposed MPNN + VNG

	Conclusion
	Outline of the Appendix
	MPNN + VN and Smoothing
	Proofs of Results in Appendix B
	Additional Results on the Role of Pooling
	Proofs of Results in Section 3
	Proofs of Results in Section 4
	Experimental Details
	Hardware
	Description of Datasets
	Dataset Splits and Random Seeds
	Hyperparameters

	Smoothing and the Importance of Graph Structure
	Empirical Comparison of MPNN + VN and PairNorm
	Cosine Distance Plots

	Additional Ablation Studies
	Visualization of MPNN + VNG
	Attention Maps

