
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GE-PEFT: GATED EXPANDABLE PARAMETER-
EFFICIENT FINE-TUNING FOR CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) is a research field focused on continuously adapting foun-
dation models such as large language models (LMs) to newly emerging informa-
tion sources and tasks. While aspects such as parameter efficiency, knowledge
transfer, and managing model capacity have recently received attention, the main
research focus in CL remains on preventing catastrophic forgetting. Specifically,
there is a lack of solutions that address all these aspects simultaneously. We bridge
this gap by introducing Gated Expandable Parameter-Efficient Fine-Tuning (GE-
PEFT). Our approach shares knowledge of previous tasks through leveraging a
single, dynamically expanding PEFT module within LMs while selectively gating
irrelevant previous tasks. Our experiments across multiple task-incremental CL
benchmarks demonstrate that GE-PEFT outperforms existing state-of-the-art CL
approaches in both full CL and few-shot settings. Our ablation and parameter sen-
sitivity studies highlight the benefit of each proposed component, demonstrating
that GE-PEFT offers a more efficient and adaptive solution for CL in LMs.

1 INTRODUCTION

In recent years, pre-trained foundation language models (LMs) trained on vast amounts of textual
data have rapidly advanced state-of-the-art performance in a wide range of natural language process-
ing (NLP) tasks due to the knowledge inherent in them (Petroni et al., 2019). As the world continues
to evolve, the available knowledge changes with existing information becoming outdated or receiv-
ing updates, and new information becoming available. To keep up with continuous progress and al-
low LMs to face newly emerging problems, the research domain of continual learning (CL) focuses
on the continuous adaptation of LMs to new and updated information, as well as newly emerging
tasks. Within this growing field, recent works have identified several desirable properties of CL
approaches, including the prevention of catastrophic forgetting (Kirkpatrick et al., 2017), parame-
ter efficiency (Omeliyanenko et al., 2023; Wang et al.; Razdaibiedina et al., 2023), and knowledge
transfer (Razdaibiedina et al., 2023).

While research exists on each individual criterion for CL, to the best of our knowledge, only one
work partially addresses all criteria simultaneously. Wang et al. (2024) extend the work of Razdai-
biedina et al. (2023) who integrate a weak knowledge transfer mechanism into existing parameter-
efficient fine-tuning (PEFT) strategies for CL, which initializes new and entirely separate PEFT
modules for a new task and prepend it with PEFT weights from previous tasks. Wang et al. (2024)
further enhance this approach by providing a learned similarity function that identifies relevant prior
tasks and reuses PEFT modules only from these tasks for initialization of the current task, thus
gating irrelevant tasks through similarity. While this approach achieves state-of-the-art results in
CL it only achieves knowledge transfer during initialization of new tasks, leading to the transferred
knowledge being overwritten during training, leaving room for further improvements.

In this work, we provide an alternative strategy for obtaining all desirable CL criteria while providing
knowledge of previous tasks to the current task throughout the entire training and inference. We
propose the integration of a single Gated Expandable PEFT (GE-PEFT) module into the pre-trained
LM. Within this module, a gating mechanism is leveraged to prevent catastrophic forgetting of
previous tasks. By using one GE-PEFT module to train all tasks, knowledge transfer is seamlessly
integrated during training and inference. The gating mechanism tracks the weights already allocated
to previous tasks and ensures that only unused weights are available for updates by subsequent tasks,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Gating mechanism of GE-PEFT. Task colors indi-
cate neurons reserved for previous tasks. Note that the
current task can select both reserved and free neurons.
Reserved neurons are only used in the forward pass,
while free neurons are updated in the backward pass
and reserved for the current task after training.

(b) Expansion mechanism of GE-PEFT. Expanding on
LoRA increases the intermediate size through increas-
ing rank, providing more free neurons for future tasks
while preserving knowledge from existing tasks.

Figure 1: Visualization of Gated Expandable PEFT (GE-PEFT) on a LoRA PEFT module with
gating shown in Figure 1a and growing capabilities shown in Figure 1b.

as illustrated in Figure 1a for a LoRA PEFT module. However, the use of a single module introduces
the risk of saturation, i.e., a shortage of unused weights and thus capacity for new tasks. This
challenge is addressed by the growing capabilities of our method. We propose a dynamic growth
mechanism that allows the model to adjust its size, i.e., the total number of learnable parameters, to
meet the requirements of the current task without disrupting previously learned tasks. We illustrate
this expansion mechanism on a LoRA PEFT module in Figure 1b.

We demonstrate our GE-PEFT strategy by integrating it into two popular PEFT methods, Low Rank
Adapters (LoRA) (Hu et al., 2021), and prefix tuning (Li & Liang, 2021) employed in four popular
LMs, BERT (Devlin et al., 2019), AfroXLMR (Alabi et al., 2022), T5 (Raffel et al., 2020) and
LLaMA2-7B (GenAI, 2023). Experimental results across multiple task-incremental CL benchmarks
in both full CL and few-shot settings demonstrate that GE-PEFT consistently outperforms state-of-
the-art methods.

Our contributions are summarized as follows: (1) We propose GE-PEFT, a new model that covers
all four desired properties for CL, including knowledge transfer, catastrophic forgetting prevention,
parameter efficiency, and scalability. (2) We evaluate GE-PEFT on multiple datasets and small- and
large-scale language models. (3) We conduct ablation and parameter sensitivity studies, demonstrat-
ing the benefit of each proposed component and the adaptability of the model. (4) We make code
and data available to foster reproducibility and further research.1

2 RELATED WORK

Continual learning CL works can be broadly separated into replay-based, regularization-based,
and parameter isolation-based Wang et al. (2024) methods. Regularization-based approaches (Kirk-
patrick et al., 2017; Aljundi et al., 2018; de Masson D’Autume et al., 2019; Huang et al., 2021;
Sun et al.) incorporate regularization terms into the loss function to penalize changes to critical
parameters for previously learned tasks. Replay-based approaches (Rebuffi et al., 2017; Chaudhry
et al., 2018; 2021; Mirzadeh et al., 2020) retain a subset of training data from previous tasks and
use it in conjunction with new data when training on subsequent tasks. However, access to prior
task data may not always be feasible and storing it can lead to storage overhead. Additionally,
while regularization-based and replay-based methods significantly mitigate the issue of catastrophic
forgetting, they do not completely eliminate it. In contrast, our approach leverages gating to fully
prevent catastrophic forgetting and does not require additional data to be retained for future training.

Among parameter isolation-based CL, certain architectures use low-rank factorization to separate
neural layers into task-specific and shared parameters Hyder et al. (2022). However, this approach
requires significant structural modifications to complex LMs. Early works on LMs update the entire

1Code and data will be openly released on github upon publication: https://shorturl.at/lxidM

2

https://shorturl.at/lxidM

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LM, e.g., with a growing strategy that enlarges the model for each new task and freezes the previous
parameters Rusu et al. (2016) or a gating mechanism that reserves neurons for a specific task Serra
et al. (2018). Alternatively, Wortsman et al. (2020) learns a binary gating mask for all model pa-
rameters, revealing a highly performing sub-network for each task. All these approaches, however,
are not parameter efficient as they require updates to an entire model. Wang et al. (2023) propose a
PEFT solution that integrates dedicated parameters into a backbone LM to learn new tasks. While
this enables parameter efficient CL, PEFT modules are separated which prevents knowledge transfer.
Razdaibiedina et al. (2023) introduce progressive prompts, which extends the prefix tuning PEFT
approach with a prepending strategy to share knowledge from previous tasks. Wang et al. (2024) fur-
ther add a learned similarity-based weighting scheme to this prepending strategy. This enables the
gating of irrelevant tasks, but enables knowledge sharing only at training start, as subsequent training
overrides the parameters shared at initialization. In contrast to these works, our GE-PEFT enables
gated expandable and parameter-efficient CL while providing previous knowledge throughout the
entire training and inference process.

PEFT Within PEFT, multiple different strategies have been proposed that integrate a new set of
trainable parameters into different parts of the LM while keeping the base parameters frozen to
prevent changes. Houlsby et al. (2019) introduce Adapters consisting of multiple layers that are
incorporated between intermediate layers of LMs. Hu et al. (2021) propose Low Rank Adapters
(LoRA) which provide additive changes to the LM. Li & Liang (2021) introduce prefix tuning where
additional weights are added through additional input tokens which are learned during training.
These approaches not only enable efficient adaptation of LMs to new knowledge and tasks but also
address the problem of catastrophic forgetting of initial model weights. By injecting a dedicated
set of new parameters for each new problem, PEFT methods can also prevent the degradation of
performance on previously learned tasks. However, this approach prevents any knowledge sharing
between tasks.

Growing networks Multiple growing strategies for neural networks have been proposed in related
work. Rusu et al. (2016) propose a lifelong learning strategy that enlarges the entire network and
copies previous parameters, which results in large numbers of used parameters. Further work focuses
on optimizing PEFT module sizes specifically (Zhang et al.; Valipour et al., 2023) but they do not
address CL and transfer learning simultaneously.

3 METHODOLOGY

3.1 PEFT FOUNDATIONS

PEFT modules, as introduced by Houlsby et al. (2019); Hu et al. (2021); Li & Liang (2021), consist
of a small set of additional trainable parameters inserted into a pre-trained backbone LM. During
training on new data or tasks, the backbone model remains frozen and only the parameters of the
inserted PEFT module are updated. This setup allows the model to learn new knowledge or tackle
new tasks while remaining parameter-efficient. In our work, we follow the experimental setup of
Wang et al. (2024) and thus apply our GE-PEFT architecture to the PEFT models of Hu et al. (2021);
Li & Liang (2021).

LoRA The Low Rank Adapter (LoRA) method (Hu et al., 2021) adjusts a pre-trained weight
matrix Wl ∈ Rd×k of the LM at layer l with input and output dimensions d and k. For such a
weight matrix, LoRA incorporates a low-rank adaptation PEFT module. For a given task (t), this
module consists of two task-specific trainable matrices, A(t)

l ∈ Rd×r and B
(t)
l ∈ Rr×k, with rank

r ≪ min(d, k). During training, the weight matrix Wl remains frozen, and only the matrices A(t)
l

and B
(t)
l are updated. For a given input xl to layer l, the input is passed through both Wl and the

matrices A
(t)
l and B

(t)
l and the outputs are combined via element-wise summation, producing the

final output h(t)
l as follows:

h
(t)
l = Wlx

(t)
l +B

(t)
l A

(t)
l x

(t)
l (1)

While this approach is applicable to all pre-trained layers within the LM, the authors only apply it
to all attention layers for additional parameter-efficiency (Hu et al., 2021).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Prefix tuning The prefix tuning method (Li & Liang, 2021) adds p task-specific, trainable, con-
tinuous vectors, called the prefix P

(t)
p ∈ Rd, to the input x(t) of task (t), which are new tokens

with same size as the model’s hidden dimensionality d. This is achieved using the concatenation
operation [·|·], resulting in the adjusted LM input

x′(t) = [P
(t)
1 | . . . |P (t)

p |x(t)]. (2)

3.2 GATED PEFT

In PEFT-based solutions, a new PEFT module is inserted into the backbone model to enable training
on new data. Each PEFT module operates independently within the model and does not share
weights with other modules. As a result, knowledge transfer between PEFT modules is not possible.
Inspired by Serra et al. (2018); Ke et al. (2021), we propose to facilitate knowledge transfer using a
single PEFT module that is shared across all tasks and datasets. Since only a single PEFT module
is inserted into the backbone model, a gating strategy with masking is used to prevent catastrophic
forgetting that could result from continuously training the PEFT module on new data.

For each new task or dataset (t), a trainable mask m(t) is computed with the same dimensionality as
the activated neurons within the PEFT modules. This binary mask is derived from task embeddings
e(t) that take as input a numerical task identifier and transformed into a pseudo-gating function using
a Sigmoid activation and a scaling hyperparameter s by

m(t) = σ(se(t)). (3)

The hyperparameter s is selected as a positive scalar that gradually increases in value to ≫ 1 during
training. This forces the learned mask m(t) to converge towards 0 or 1 during training. The resulting
pseudo-binary masks m(t) are multiplied element-wise with the respective active neurons within the
PEFT modules during training.

Gated LoRA For the LoRA-based solution, the gating mask is applied as

h
′(t)
l = Wlx

(t)
l + (Bl(Alx

(t)
l ⊗m

(t)
Al
)⊗m

(t)
Bl
) (4)

where m
(t)
Al

∈ Rr and m
(t)
Bl

∈ Rk are the learned gating masks of task (t) for the LoRA weight
matrices A and B, respectively. Note that A and B are not conditional to (t), as a single LoRA
adapter is shared across all tasks.

Gated prefix tuning For prefix tuning, the gating mask is applied by

x′′(t) = [P1 ⊗m
(t)
1 | . . . |Pp ⊗m(t)

p |x(t)], (5)

where m
(t)
i ∈ Rd is the learned gating mask of task (t) for the shared prefix Pi.

The following steps apply to both gated prefix tuning and gated LoRA. For the former, the steps
are applied to each prefix token mask m

(t)
1 , · · · ,m(t)

p , while for the latter, operations are conducted
on both masks, m(t)

Al
and m

(t)
Bl

per layer l, though for simplicity of notation, this distinction is not
explicitly made.

Since the pseudo-gating function often produces non-binary masks that can still lead to catastrophic
forgetting, we apply binarization of all masks for a task once that task has been fully trained, as
suggested by Ke et al. (2022).

m
(t)
eval =

{
1 if σ(se(t)) > 0.5

0 otherwise.
(6)

This enables tasks to directly access and exclude knowledge from previous tasks. However, weight
updates to neurons already used before could lead to catastrophic forgetting of previous tasks t(prev)
that have been learned prior to task (t). To prevent this, a mask that aggregates all neurons used in
previous tasks m(prev) is calculated through

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

m(prev) = MaxPool
({

m
(t′)
eval, t

′ ∈ {t(prev)}
})

. (7)

The mask m(prev) is applied to the gradients g(t) to restrict the updates on these neurons during
backpropagation while training task (t) through

g′(t) = g(t) ⊗ (1−m(prev)). (8)

To prevent early exhaustion of the shared PEFT module parameters, Serra et al. (2018) highlight
the need for sparsity of the mask m(t). To enforce sparsity, they propose a regularization term to
the loss function L for the currently trained task (t), that we adapt for our architecture. This term
regulates the mask values during training based on the number of neurons that are not yet occupied
by previously learned data through iterating over all masks with

L′ = L+ λ · ∥m
(t) ⊗ (1−m(prev))∥1
∥1−m(prev)∥1

(9)

where λ is a weighting hyperparameter. Note that this regularization, depending on the PEFT tech-
nique, is by summation also applied to all masks per prefix token or per layer and matrix, as men-
tioned earlier.

3.3 EXPANDABLE PEFT

Using a single gated PEFT module across all tasks enables the model to access the knowledge ob-
tained from previous tasks while preventing catastrophic forgetting. During training on a new task,
a portion of the available neurons is reserved and cannot be updated. Consequently, the capacity
to integrate new knowledge into the model with this PEFT solution is limited, as the available neu-
rons may become exhausted over time. To address these limitations, we propose an expandable
PEFT module that dynamically adjusts its size to meet current needs while still enabling knowledge
transfer and mitigating the catastrophic forgetting effect.

Expandable LoRA In our proposed solution, given a LoRA module with weights A ∈ Rd×r ,
B ∈ Rr×k, we dynamically introduce additional neurons with their parameters Aexp ∈ Rd×rexp ,
Bexp ∈ Rrexp×k by

A′ = [A⊤|A⊤
exp]

⊤, B′ = [B|Bexp], (10)
where [·|·] denotes the concatenation operation along the first dimension, r represents the current
LoRA rank, and rexp denotes the number of neurons added to expand the layer size. Note that
we only extend the intermediate dimension r, as both d and k are fixed by the frozen LM. When
using our proposed gating approach in conjunction with expandable LoRA, the dimensionality of
all masks m(t) is also adjusted by extending the dimensionality of the task embedding e(t) with
e
(t)
exp ∈ Rrexp through

e′
(t)

= [e(t)|e(t)exp]. (11)

Expandable prefix tuning For prefix tuning with prefix Pi ∈ Rd we dynamically introduce pexp
additional prefix vectors Pexp ∈ Rd to the model input with

x′(t) = [P
(t)
1 | . . . |P (t)

p+pexp
|x(t)], (12)

where p represents the current prefix length and pexp denotes the number of prefix vectors added
to expand the prefix size. When used in conjunction with gated PEFT, all added prefix vectors are
additionally multiplied by new masks m(t)

p+j ∈ Rd for all added shared prefixes j ∈ [1, . . . , pexp].

When to Expand PEFT While several strategies of varying complexity exist for determining
when to expand neural networks, such as predefined schedules (Evci et al., 2022), we adopt a simpler
approach, using an established strategy that expands the network when the loss reaches a plateau
(Wu et al., 2019; Kilcher et al., 2018). To be precise, once the validation loss reaches a plateau,
we perform a PEFT expansion step and resume training of the same task with additional trainable
parameters. This process is repeated until no further improvement in task validation performance is
observed, even after adding more parameters. The validation loss is calculated at the end of each
epoch and early stopping is applied with a patience of 5 epochs, following Wang et al. (2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP

4.1 DATASETS

Following Wang et al. (2023); Razdaibiedina et al. (2023), we utilize the near-domain benchmarks
AfriSenti and Web-of-Science (WOS) (Kowsari et al., 2016), as well as the far-domain benchmark
MTL5 (Zhang et al., 2015), for our experiments. The near-domain benchmark consists of closely
related tasks. WOS is a document classification dataset with a hierarchical structure, consisting of
7 parent classes (biochemistry, civil engineering, computer science, electrical engineering, medical
science, mechanical engineering and psychology), each with 5 closely related child subclasses. In
line with Wang et al. (2024), we structure our experiments into 7 CL tasks based on these high-
level parent classes. AfriSenti (Muhammad et al., 2023) is a multilingual sentiment analysis dataset
comprising 12 African low-resource languages (Algerian Arabic (dz), Amharic (am), Hausa (ha),
Igbo (ig), Kinyarwanda (kr), Moroccan Arabic (ma), Mozambican Portuguese (pt), Nigerian Pidgin
(pcm), Swahili (sw), Twi (twi), Xitsonga (ts), and Yoruba (yo)). Following Wang et al. (2024),
we conduct our experiments using three different task orders from the AfriSenti dataset. MTL5
is a widely used far-domain CL benchmark comprising five distinct text classification tasks. AG
News and DBpedia include 4 and 14 classes, respectively, for topic classification. Amazon and Yelp
both consist of 5 classes for sentiment classification, while Yahoo Answers contains 10 classes for
question-and-answer classification.

For our experiments, we closely follow Wang et al. (2024). We use a train-test split of 115 000
and 7 600 samples, respectively, for all experiments involving BERT. We train the model using five
different task orders. For the T5 and Llama experiments, in line with prior research, we use 4 of the
5 tasks, excluding Yelp, with 16 samples for training while keeping the test set unchanged. These
experiments are conducted with three different task orders. Following previous work, we report
macro-F1 score on the AfriSenti dataset and macro-accuracy on WOS and MTL5 datasets (Wang
et al., 2024; Muhammad et al., 2023). We omit evaluations of backward transfer as all evaluated
methods fully prevent catastrophic forgetting through architectural design. Forward transfer is eval-
uated by comparing the final performance to a model only trained on one task, thus showcasing
knowledge sharing potential. Used task orders for all datasets are listed in Appendix A.3.

To evaluate whether the effectiveness of our method extends to a larger number of tasks, we conduct
an additional experiment on longer sequences. Following Razdaibiedina et al. (2023), we use the
MTL15 dataset, which consists of 15 classification tasks.

4.2 BACKBONE LMS AND PEFT TYPE

As our experiments follow Wang et al. (2024), we also use the encoder-based BERT-base (Devlin
et al., 2019) and AfroXLMR (Alabi et al., 2022) as pre-trained backbones for the WOS and AfriSenti
datasets, respectively. For experiments with the MTL5 dataset, we employ the encoder-based BERT-
base, the encoder-decoder-based T5 (Raffel et al., 2020), and the decoder-based LLaMA2-7B (non-
instruct) models (GenAI, 2023). In our experiments with BERT, AfroXLMR, and T5, we utilize
prefix tuning, while for LLaMA2, we apply LoRA.

4.3 BASELINES

Sequential Full-FT: The model parameters are fully trainable and the entire model is trained on
each task sequentially.

PerTask-PEFT: The backbone model parameters are frozen and a dedicated PEFT module is trained
for each task separately.

Sequential PEFT-FT: The backbone parameters are frozen and a single PEFT module is trained
sequentially on all tasks.

EPI (Wang et al., 2023): Trains a dedicated PEFT module and task representation vector for each
task. There is no knowledge transfer between previously learned tasks and the current task.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ProgPrompt (Razdaibiedina et al., 2023): A parameter isolation-based method that conducts task-
specific prefix tuning. To facilitate knowledge transfer, prefix modules from previous tasks are
concatenated with the prefix of the current task.

MoCL (Wang et al., 2024): Trains a dedicated PEFT module and task feature representation vec-
tor for each task. To facilitate knowledge transfer, similarity scores between the current task and
previously learned tasks are calculated based on the task feature vectors. The PEFT module for the
current task is then initialized as a weighted sum of the PEFT modules from similar previous tasks.

4.4 IMPLEMENTATION DETAILS

For our experiments, we use the same maximum sequence length, prefix length, and LoRA rank
as Wang et al. (2024). We employ the AdamW optimizer (Loshchilov, 2017) and a batch size of
8. In experiments with expandable PEFTs, the initial prefix length is set to 8 for AfriSenti, 10
for MTL15, 16 for WOS, 20, and 50 for MTL5 respectively. The LoRA rank is set to 4. Unless
otherwise specified, the PEFT module is expanded by 25% of its initial size during one expansion
step. We initialize LoRA’s A matrix and Aexp using Kaiming uniform distribution (He et al., 2015)
and LoRA’s B and Bexp with zeros following Hu et al. (2021). The prefix P and Pexp, are initialized
using U(0, 1). The task embeddings e(t) and e

(t)
exp, are initialized using N (0, 1). For LoRA we

extend the intermediate rank and for prefix-tuning we add entire prefix tokens. We use early stopping
with patience of 5 steps. Detailed hyperparameter information for each experiment can be found in
Appendix A.4.

5 RESULTS

Full Continual Learning In this experiment, we compare GE-PEFT integrated into AfroXLMR
and BERT on two near-domain datasets, AfriSenti and WOS, as well as the far-domain dataset
MTL5, against various baselines and state-of-the-art CL approaches, as summarized in Table 1. In
the near-domain experiments, non-CL solutions like sequential full finetuning (Seq Full-FT) show
a strong negative impact, which can be attributed to catastrophic forgetting. Using separate PEFT
modules for each task (PerTask-PEFT) mitigates catastrophic forgetting and outperforms sequential
PEFT finetuning (Seq PEFT-FT) across all datasets, as well as ProgPrompt and EPI on AfriSenti.
Notably, only MoCL and our GE-PEFT show improvements over this baseline, leveraging knowl-
edge sharing across closely related tasks. Overall, across all near-domain datasets, our proposed
architecture, GE-PEFT, outperforms MoCL, the current state-of-the-art, by a large margin. In the
far-domain experiment on MTL5, we observe similar behavior, though the differences compared to
the per-task baseline (PerTask-PEFT) are smaller than those observed on WOS. This is expected,
as less knowledge from previous tasks can be leveraged through knowledge sharing. Notably, GE-
PEFT still outperforms all baselines and state-of-the-art approaches, likely due to its ability to gate
irrelevant information as later analyzed in the ablation study.

Table 1: Near domain results on AfriSenti and WOS data with similar tasks and far domain results
on MTL5 with prefix tuning, using AfroXMLR on AfriSenti and BERT-base on WOS and MTL5.
Results averaged over 3 seeds. † indicates results taken from Wang et al. (2024).

Dataset AfriSenti - F1 WOS - Acc. MTL5 - Acc.
Model Avg Seq1 Seq2 Seq3 Avg Avg Seq1 Seq2 Seq3 Seq 4

Seq Full-FT† 6.2 5.6 6.5 6.3 47.2 14.8 27.8 26.7 4.5 18.4
Seq PEFT-FT† 49.1 50.1 49.7 47.5 53.9 66.5 66.4 65.7 65.4 68.5
PerTask-PEFT† 52.4 52.4 52.4 52.4 82.8 77.6 77.6 77.6 77.6 77.6
ProgPrompt† 49.1 50.2 46.7 50.3 89.9 77.9 78.0 77.9 77.9 77.9
EPI† 43.1 41.5 42.7 45.2 77.8 77.3 77.4 77.3 77.2 77.4
MoCL 58.0 58.5 56.3 59.0 90.3 78.4 78.6 78.5 78.0 78.3
GE-PEFT (ours) 62.1 62.7 62.3 61.3 91.5 79.4 79.5 79.4 79.4 79.3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Far domain results on dissimilar tasks in a few-shot setting with 16 training samples on the
MTL5 dataset, averaged over 3 seeds.

(a) Accuracy for prefix tuning on T5.

Model Avg Seq1 Seq2 Seq3

Seq Full-FT† 28.5 18.9 24.9 41.7
Seq PEFT-FT† 27.2 24.6 30.3 25.0
PerTask-PEFT† 75.1 75.1 75.1 75.1
ProgPrompt† 75.1 75.0 75.0 75.1
EPI† 56.4 49.7 54.1 65.3
MoCL† 75.9 75.6 75.4 76.7
GE-PEFT (ours) 77.3 77.3 77.3 77.2

(b) Accuracy for LoRA on Llama 2.

Model Avg Seq1 Seq2 Seq3

Seq PEFT-FT 23.5 24.7 20.8 25.0
PerTask-PEFT 73.2 73.2 73.2 73.2
EPI† 48.4 48.1 48.0 49.0
MoCL 73.8 74.1 73.6 73.8
GE-PEFT (ours) 74.2 74.8 74.4 73.3

Few-Shot Continual Learning The results in the few-shot CL setting, are shown in Table 2a for
the prefix-tuning based T5 and in Table 2b for LoRA based Llama 2. Our results with T5 align
with our previous findings. While sequential full finetuning (Seq Full-FT) and sequential PEFT
finetuning (Seq PEFT-FT) exhibit the lowest performance, GE-PEFT consistently outperforms all
baselines and state-of-the-art models. Among these, MoCL and ProgPrompt perform similarly to
PerTask-PEFT, whereas EPI shows mediocre results. Applying GE-PEFT to LoRA PEFT modules
of Llama 2 outperforms all baselines and EPI. We observe a slight performance boost compared
to MoCL for two of the three task sequences, while being more parameter-efficient, since we do
not incrementally introduce task-specific PEFT modules. Particularly, for this parameter setting and
dataset, we require only ≈ 34% of the trainable parameters of MoCL. To further highlight the perfor-
mance differences between GE-PEFT and MoCL, we include additional sequences in Appendix A.1.
Overall, our results indicate that knowledge sharing still provides benefits in few-shot settings, even
on far domain data where knowledge does not easily transfer across tasks.

Long Sequence Few-Shot Continual Learning We additionally evaluate performance on long
sequences with 15 tasks on the MTL15 dataset. Results in Table 3 show that GE-PEFT outperforms
all other approaches on all sequences while maintaining a considerably higher parameter efficiency
with fewer total prefixes used. Growing of GE-PEFT also provides small improvements over the
gated non-growing adapter variant G-PEFT, while still maintaining a higher parameter efficiency
then MoCL and ProgPrompt that must maintain individual prefixes for all previous tasks.

Ablation Study As we introduce two components in our GE-PEFT approach, the gating (G) and
the parameter expansion (E), we analyze the benefit of each individual component in this ablation
study. As G-PEFT uses gating to train multiple tasks into the same PEFT module, it avoids catas-
trophic forgetting, however is prone to parameter saturation. E-PEFT, on the other hand, can prevent
saturation by the expansion mechanism, although no mechanics actively prevent catastrophic forget-
ting in multi-task training. We also report the current state-of-the-art, MoCL for comparison. The
results are shown in Table 4 for full CL with prefix tuning on BERT and AfroXLMR. G-PEFT per-
forms mostly slightly behind the GE-PEFT strategy with the exception of one sequence in AfriSenti
and two sequences in MTL5 but consistently surpasses the MoCL method across all sequences and
datasets. Without gating, E-PEFT performs noticeably worse across multiple sequences, highlight-

Table 3: Accuracy and final prefix sizes for prefix tuning of T5 on MTL5 with 15 tasks using
20 training samples, macro-averaged over 3 seeds. Comparison with using only the gating (G)
component component of GE-PEFT, MoCL and ProgPrompt as SOTA.

Model Avg Seq1 Seq2 Seq3 Prefixes per Task Prefixes Total

MoCL 70.2 69.6 70.2 70.9 10 150
ProgPrompt 72.4 72.2 73.0 72.2 10 150
G-PEFT 73.0 73.1 72.8 73.2 10 10
GE-PEFT 73.3 73.2 73.1 73.7 27 27

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: BERT ablation study with prefix tuning. Results averaged over 3 seeds. Comparison with
using only the gating (G) component or the expansion (E) component of GE-PEFT. MoCL as SOTA
for comparison.

Dataset AfriSenti - F1 WOS - Acc. MTL5 - Acc.
Model Avg Seq1 Seq2 Seq3 Avg Avg Seq1 Seq2 Seq3 Seq4

MoCL 58.0 58.5 56.3 59.0 90.3 78.4 78.6 78.5 78.0 78.3
E-PEFT 58.6 56.2 59.3 60.2 75.4 65.6 62.4 65.6 65.6 68.8
G-PEFT 61.1 60.8 60.9 61.5 91.3 79.4 79.4 79.3 79.6 79.4
GE-PEFT 62.1 62.7 62.3 61.3 91.5 79.4 79.5 79.4 79.4 79.3

ing the risk of catastrophic forgetting when all tasks are repeatedly trained into a single PEFT module
and the importance of our gating component.

Our ablation on T5 with prefix tuning, summarized in Table 5a, reveals that both, G-PEFT and GE-
PEFT consistently outperform MoCL. However, the expansion component (GE) does not provide
additional benefits over our gated shared PEFT approach (G). While GE-PEFT falls slightly behind
G-PEFT on one sequence, both models perform on a par in the others. E-PEFT performs even worse
compared to our previous experiments.

Table 5b shows, that for Llama, the impact of catastrophic forgetting for E-PEFT is even larger, as
indicated by the results falling even below the sequential PEFT finetuning baseline (cf. Table 2b).
GE-PEFT, G-PEFT, and MoCL each achieve the highest accuracy on one task sequence, indicating
that there is no clear winner in this comparison. Notably, while GE-PEFT, G-PEFT, and MoCL
deliver comparable performance, G-PEFT and GE-PEFT are more parameter-efficient. G-PEFT
requires a total of 3 146 752 trainable parameters (with a small additional fraction for expansion in
GE-PEFT, cf. Table 7), whereas MoCL requires 2 363 648 parameters for each of the four tasks.

Parameter Analysis Our method controls parameter efficiency in the growing PEFT module
through two mechanisms: λ, which promotes sparse neuron usage during task training, and the ex-
pansion size, a hyperparameter that controls the network’s growth rate. We vary the regularization
value λ, with high λ values indicating a high penalty for reserving many neurons. The expansion
size, which determines how many additional neurons are added to the PEFT module during the
growth step, is defined as a percentage of the initialization size of the module. All runs are con-
ducted using the first sequence order (Seq1) of the respective dataset. For all models, we report
the used-parameter quota, indicating the percentage of neurons reserved after training all tasks. For
prefix-based models, the final prefix size is shown in brackets (cf. Table 6). For LoRA, the expansion
size (cf. Table 7) indicates the total number of additional neurons added to the PEFT modules.

Table 6 shows the performance of BERT on AfriSenti as a near-domain dataset with very similar
tasks that can benefit from each other. As a result, the model does not require all parameters to
achieve good performances and only sparsely expands when necessary. Still, very high regular-
ization through λ results in poor performance as the model restricts itself to very few parameters,
independent of expansion sizes. Lower regularization values allows the model to reserve more pa-
rameters and improve performance. As the model blocks only a small number of neurons needed

Table 5: Far domain ablation study on dissimilar tasks in a few-shot setting with 16 training samples
on MTL5, averaged over 3 seeds. Comparison with using only the gating (G) component or the
expansion (E) component of GE-PEFT. MoCL as SOTA for comparison.

(a) Accuracy for prefix tuning on T5.

Model Avg Seq1 Seq2 Seq3

MoCL 75.9 75.6 75.4 76.7
E-PEFT 26.5 24.6 29.6 25.2
G-PEFT 77.4 77.6 77.3 77.2
GE-PEFT 77.3 77.3 77.3 77.2

(b) Accuracy for LoRA on Llama 2.

Model Avg Seq1 Seq2 Seq3

MoCL 73.8 74.1 73.6 73.8
E-PEFT 22.8 24.2 21.0 23.2
G-PEFT 74.4 74.6 74.8 73.7
GE-PEFT 74.2 74.8 74.4 73.3

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Parameter Analysis for BERT with prefix tuning on AfriSenti.

Avg. F1 Used-Parameter Quota (Prefix Size)
λ\Expansion 25% 50% 75% 100% 25% 50% 75% 100%

100 56.66 57.03 56.30 58.19 0.21 (13) 0.19 (12) 0.19 (12) 0.08 (19)
10 60.32 60.87 59.21 60.93 2.19 (15) 3.32 (20) 1.90 (20) 1.49 (11)
1 62.71 60.32 59.62 60.71 17.42 (13) 18.84 (20) 14.76 (24) 14.76 (11)
0 60.92 61.20 60.71 62.00 50.03 (12) 49.97 (20) 49.97 (24) 49.93 (13)
0.1 62.41 62.40 62.05 62.08 22.89 (14) 23.03 (19) 20.93 (18) 22.19 (16)

for similar tasks, the expansion size has minimal impact on performance. This demonstrates the
information transfer capabilities of GE-PEFT on highly related tasks.

Next we evaluate parameters in the far-domain setting, where tasks do not necessarily benefit from
each other. Here, the Llama 2 model on the low-resource MTL5 dataset in Table 7 requires a con-
siderably larger amount of parameters, reserving large amounts of neurons even on higher λ values.
Both the regularization and the expansion parameters influence the number of used parameters. In-
creasing regularization reduces the used-parameter quota as λ increases, while a larger expansion
size leads to a noticeable increase in LoRA size by the end of training.

Further experiments for BERT with prefix tuning on the WOS dataset and T5 with prefix tuning
on the MTL5 dataset can be found in Appendix A.2. Experiments in these configurations suggest
that the models generally have sufficient parameters to encode the information, though a balanced
regularization parameter λ is required to prevent arbitrary growth when unused neurons are still
available.

Overall, our results indicate that model parameters can be influenced by regularization and expansion
size, while the sensitivity to a specific hyperparameter appears to be model and data dependent.
Results also show that accuracy is not directly dependent on either parameter, indicating that small
amounts of expansion size and a medium size of regularization still result in high performance,
which further aids GE-PEFT’s parameter-efficiency.

6 CONCLUSION

In this work, we introduced Gated Expandable Parameter-Efficient Fine-Tuning (GE-PEFT), a novel
approach for CL in LMs that effectively addresses four key CL criteria: catastrophic forgetting pre-
vention, parameter efficiency, knowledge transfer, and managing model capacity. By integrating a
single, dynamically expanding PEFT module with a gating mechanism, GE-PEFT enables contin-
uous knowledge transfer throughout training and inference while maintaining task separation. Our
experimental results across multiple task-incremental CL benchmarks demonstrate that GE-PEFT
consistently outperforms existing state-of-the-art methods. Yet, although our GE-PEFT approach is
effective for task-incremental learning, it has not yet been evaluated for class-incremental learning
scenarios where the task of a given input is not known at inference time. Further, our current version
of GE-PEFT relies on simple heuristics for its expansion strategy. Here, more complex and effective
expansion strategies are a promising area of future work.

Table 7: Parameter Analysis for Llama with LoRA on MTL5.

Avg. Accuracy Used-Parameter Quota (LoRA Expansion Size)
λ\Expansion 25% 50% 75% 100% 25% 50% 75% 100%

1000 73.22 74.83 74.45 74.54 91.21 (128) 90.67 (213) 91.46 (192) 91.20 (512)
100 73.32 73.07 74.50 73.84 91.50 (192) 91.59 (85) 91.26 (320) 91.70 (341)
10 74.79 74.34 73.93 74.98 92.34 (21) 92.28 (171) 92.32 (256) 91.93 (341)
1 73.40 73.86 74.04 73.73 92.83 (85) 92.64 (192) 92.91 (192) 93.03 (384)
0 73.74 73.90 74.41 73.37 93.77 (85) 93.77 (85) 93.75 (384) 93.75 (341)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All datasets used throughout this study are publicly available. To facilitate direct comparisons to
existing and future works, we use the fixed data splits established in literature. The evaluated se-
quences of tasks are taken directly from previous work for comparability (Wang et al., 2024) and are
listed again in the appendix for completeness. Further, the hyperparameters used within this study
such as PEFT and optimizer parameters are listed in the appendix. Lastly, to facilitate open research
and reproducibility, we provide the code and data of our experiments for review and make it publicly
available https://shorturl.at/lxidM.

REFERENCES

Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius Mosbach, and Dietrich Klakow. Adapting pre-
trained language models to African languages via multilingual adaptive fine-tuning. In Nicoletta
Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-
Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen
Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis
Bond, and Seung-Hoon Na (eds.), Proceedings of the 29th International Conference on Computa-
tional Linguistics, Gyeongju, Republic of Korea, October 2022. International Committee on Com-
putational Linguistics. URL https://aclanthology.org/2022.coling-1.382.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European confer-
ence on computer vision (ECCV), pp. 139–154, 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hind-
sight to anchor past knowledge in continual learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 6993–7001, 2021.

Cyprien de Masson D’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic
memory in lifelong language learning. Advances in Neural Information Processing Systems, 32,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pe-
dregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

Meta GenAI. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning
for text classification with information disentanglement based regularization. arXiv preprint
arXiv:2104.05489, 2021.

11

https://shorturl.at/lxidM
https://aclanthology.org/2022.coling-1.382

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rakib Hyder, Ken Shao, Boyu Hou, Panos Markopoulos, Ashley Prater-Bennette, and M Salman
Asif. Incremental task learning with incremental rank updates. In European Conference on
Computer Vision, pp. 566–582. Springer, 2022.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neural Information Processing Systems, 34:
22443–22456, 2021.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, and Bing Liu. Continual training of language
models for few-shot learning. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 10205–10216, 2022.

Yannic Kilcher, Gary Bécigneul, and Thomas Hofmann. Escaping flat areas via function-preserving
structural network modifications. 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

K Kowsari, E Brown, M Heidarysafa, KJ Meimandi, MS Gerber, and LE’Hdltex Barnes. Hierarchi-
cal deep learning for text classification. IEEE, 2016.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning. arXiv preprint
arXiv:2010.04495, 2020.

Shamsuddeen Muhammad, Idris Abdulmumin, Abinew Ayele, Nedjma Ousidhoum, David Adelani,
Seid Yimam, Ibrahim Ahmad, Meriem Beloucif, Saif Mohammad, Sebastian Ruder, Oumaima
Hourrane, Alipio Jorge, Pavel Brazdil, Felermino Ali, Davis David, Salomey Osei, Bello Shehu-
Bello, Falalu Lawan, Tajuddeen Gwadabe, Samuel Rutunda, Tadesse Destaw Belay, Wendimu
Messelle, Hailu Balcha, Sisay Chala, Hagos Gebremichael, Bernard Opoku, and Stephen Arthur.
AfriSenti: A Twitter sentiment analysis benchmark for African languages. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13968–13981, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.862. URL https:
//aclanthology.org/2023.emnlp-main.862.

Janna Omeliyanenko, Albin Zehe, Andreas Hotho, and Daniel Schlör. Capskg: Enabling contin-
ual knowledge integration in language models for automatic knowledge graph completion. In
International Semantic Web Conference, pp. 618–636. Springer, 2023.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad
Almahairi. Progressive prompts: Continual learning for language models. arXiv preprint
arXiv:2301.12314, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5533–5542. IEEE, 2017.

12

https://aclanthology.org/2023.emnlp-main.862
https://aclanthology.org/2023.emnlp-main.862

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. 2016.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548–4557. PMLR, 2018.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling for lifelong language
learning. In International Conference on Learning Representations.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik Strötgen, and Hinrich Schütze. Rehearsal-free
modular and compositional continual learning for language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 2: Short Papers), pp. 469–480, 2024.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In The
2023 Conference on Empirical Methods in Natural Language Processing.

Zhicheng Wang, Yufang Liu, Tao Ji, Xiaoling Wang, Yuanbin Wu, Congcong Jiang, Ye Chao,
Zhencong Han, Ling Wang, Xu Shao, and Wenqiu Zeng. Rehearsal-free continual language
learning via efficient parameter isolation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 10933–10946, Toronto, Canada, July 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.612. URL https:
//aclanthology.org/2023.acl-long.612.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. Advances in Neural Information
Processing Systems, 33:15173–15184, 2020.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
Advances in neural information processing systems, 32, 2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

A APPENDIX

A.1 ADDITIONAL TASK SEQUENCES FOR FAR DOMAIN EXPERIMENTS

To better highlight the differences between GE-PEFT and the closest baseline, MoCL, on MTL5
with Llama 2, we provide results for additional task sequences. Results in Table 8 show that GE-
PEFT consistently outperforms MoCL in all but one sequence.

13

https://aclanthology.org/2023.acl-long.612
https://aclanthology.org/2023.acl-long.612

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: Accuracy for additional task sequences for the far domain experiments in Table 2b, using
16 training samples on MTL5 with LoRA on Llama 2 and averaging over 3 seeds. MoCL as SOTA
for comparison.

Model Total Avg Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7

MoCL 73.3 74.1 73.6 73.8 72.6 73.2 72.4 73.5
GE-PEFT 74.1 74.8 74.4 73.3 74.7 73.4 74.0 74.1

A.2 ADDITIONAL PARAMETER ANALYSIS EXPERIMENTS

Here we provide further parameter analysis experiments to complement the presented results in
Section 5.

For the BERT-base model in Table 9, results show slight fluctuations of accuracy independent of the
choices of λ and expansion. The model also appears to be insensitive to regularization as increasing
the λ parameter shows only a slight trend of decreasing parameter usage with multiple outliers with
high λ, e.g., with 25% expansion rate. Despite high λ values, the model maintains a high used-
parameter quota, suggesting that the small BERT-base model needs parameters for task-solving,
limiting the effect of regularization. Increases in expansion size on the other hand result in more
taken parameters, indicated by increased prefix size. However, as high accuracy is also achievable
with low expansion sizes, this indicates that fast growth is not necessary to reach high performance.

In contrast to the BERT-base results, the larger T5 model on the low-resource MTL5 dataset in Ta-
ble 10 shows a more pronounced effect of regularization that reduces the used-parameter quota with
higher λ values. Expansion rate does, however, only show small impacts on this model and dataset
combination, as only few expansion steps are made by the model in all configurations. Especially
in combination with the regularization, this suggests a behavior where the available parameters are
sufficient to encode all information. Low regularization appears to result in faster saturation of all
available neurons which does not require growing steps, while high regularization with small expan-
sion size causes multiple growing steps as the regularization prevents the direct use of the available
neurons.

Table 9: Parameter Analysis for BERT with prefix tuning on WOS.

Avg. Accuracy Used-Parameter Quota (Prefix Size)
λ\Expansion 25% 50% 75% 100% 25% 50% 75% 100%

100 91.20 91.22 91.37 91.50 94.45 (21) 84.01 (53) 90.68 (64) 86.40 (80)
10 91.54 91.31 91.45 91.14 91.40 (26) 96.53 (29) 94.79 (32) 93.55 (59)
1 91.62 91.22 91.50 91.53 91.56 (25) 88.63 (48) 87.40 (44) 93.82 (69)
0.1 90.87 91.35 91.18 91.33 96.79 (20) 87.89 (48) 87.60 (64) 93.77 (59)
0.01 91.17 91.21 91.27 91.03 96.46 (24) 85.90 (32) 93.00 (52) 90.94 (59)
0 91.56 91.36 91.30 91.40 96.72 (27) 87.29 (37) 92.70 (52) 91.33 (48)

Table 10: Parameter Analysis for T5 with prefix tuning on MTL5.

Avg. Accuracy Used-Parameter Quota (LoRA Expansion Size)
λ\Expansion 25% 50% 75% 100% 25% 50% 75% 100%

100 76.52 75.78 76.70 75.86 16.29 (58) 17.01 (50) 8.90 (50) 19.77 (50)
10 77.34 77.57 77.32 77.06 42.37 (66) 47.91 (75) 45.38 (50) 45.89 (50)
1 77.59 77.69 77.44 76.87 71.83 (90) 66.98 (83) 74.67 (50) 76.16 (50)
0 77.12 77.07 77.43 76.84 82.69 (74) 76.03 (67) 77.74 (62) 88.54 (67)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 DATASET DETAILS

The task orders used for all datasets in our experiments are detailed in Table 11 for reproducibility
and chosen after Wang et al. (2024) where applicable.

Table 11: The different orders of task sequences used for incremental task learning experiments
following Wang et al. (2024).

Dataset Model Task Sequence

MTL5

BERT ag → yelp → amazon → yahoo → db
BERT yelp → yahoo → amazon → db → agnews
BERT db → yahoo → ag → amazon → yelp
BERT yelp → ag → db → amazon → yahoo

T5, Llama 2 db → amazon → yahoo → ag
T5, Llama 2 db → amazon → ag → yahoo
T5, Llama 2 yahoo → amazon → ag → db

Llama 2 ag → yahoo → amazon → db
Llama 2 amazon → ag → yahoo → db
Llama 2 ag → db → yahoo → amazon
Llama 2 amazon → yahoo → db → ag

MTL15 T5 mnli → cb → wic → copa → qqp → boolqa → rte → imdb → yelp →
→ amazon → sst2 → db → ag →multirc → yahoo

T5 multirc → boolqa → wic → mnli → cb →
copa→ qqp → rte → imdb → sst2 → db → ag → yelp → amazon → yahoo

T5 yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst2 → db → ag → yahoo → multirc → boolqa → wic

AfriSenti
AfroXLMR am → dz → ha → ig → kr → ma → pcm → pt → sw → ts → twi → yo
AfroXLMR ma → pcm → kr → pt → ig → sw → ha → ts → dz → twi → am → yo
AfroXLMR am → dz → ha → ma → ig → kr → sw → ts → twi → yo → pcm → pt

WOS BERT 1 → 2 → 3 → 4 → 5 → 6 → 7

A.4 DETAILED HYPERPARAMETERS

Detailed hyperparameters for all experiments can be found in Table 12.

Table 12: Hyperparameter settings for WOS-BERT, AfriSenti-AfroXLMR, and MTL5-BERT mod-
els following Wang et al. (2024).

Hyperparameters WOS
BERT

AfriSenti
AfroXLMR

MTL5
BERT

MTL5
T5

MTL5
Llama2

Epochs 40 40 40 40 40
Early stop patience 5 5 5 5 5

Learning rate 1e-5 2e-4 1e-5 2e-2 (yahoo, db)
5e-2 (others) 1e-3

Max. sequence len. 256 128 256 512 512
Prefix len., rank 16 8 20 50 4
Batch size 8 8 8 8 8

15

	Introduction
	Related Work
	Methodology
	PEFT Foundations
	Gated PEFT
	Expandable PEFT

	Experimental Setup
	Datasets
	Backbone LMs and PEFT Type
	Baselines
	Implementation Details

	Results
	Conclusion
	Appendix
	Additional Task Sequences for Far Domain Experiments
	Additional Parameter Analysis Experiments
	Dataset Details
	Detailed Hyperparameters

