
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A1: STEEP TEST-TIME SCALING LAW VIA
ENVIRONMENT AUGMENTED GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have made remarkable breakthroughs in reason-
ing, yet continue to struggle with hallucinations, logical errors, and inability to
self-correct during complex multi-step tasks. Current approaches like chain-of-
thought prompting offer limited reasoning capabilities that fail when precise step
validation is required. We propose Environment Augmented Generation (EAG),
a framework that enhances LLM reasoning through: (1) real-time environmental
feedback validating each reasoning step, (2) dynamic branch exploration for inves-
tigating alternative solution paths when faced with errors, and (3) experience-based
learning from successful reasoning trajectories. Unlike existing methods, EAG
enables deliberate backtracking and strategic replanning through tight integration
of execution feedback with branching exploration. Our a1-32B model achieves
state-of-the-art performance among similar-sized models across all benchmarks,
matching larger models like o1 on competition mathematics while outperforming
comparable models by up to 24.4 percentage points. Analysis reveals EAG’s
distinctive scaling pattern: initial token investment in environment interaction
yields substantial long-term performance dividends, with advantages amplifying
proportionally to task complexity.

…I'll first test my counting
approach with another
word - "Bookkeeper" - to
verify my method works
correctly…

I need to import the
Counter class first…
🤔

😊

I ignored case
sensitivity…
😢

Import Error…
Got 0. Not Match

word = "raspberry"
lower_word = word.lower()
r_count = lower_word.count('r')
r_count

How many r in raspberry?🤨

Figure 1: Illustration of the Environment Augmented Generation (EAG) framework solving a
character counting task. The model explores multiple solution paths with instant feedback.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable breakthroughs in various domains recently
(Brown et al., 2020; OpenAI, 2024; DeepSeek-AI et al., 2025b; Qwen et al., 2025), particularly in
reasoning capabilities where they can generate intermediate reasoning steps, substantially improving

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

performance on complex tasks(Kojima et al., 2022b; DeepSeek-AI et al., 2025a; Team, 2024; Team
et al., 2025). Despite these advances, reasoning in complex multi-step tasks remains a significant
challenge, with models continuing to suffer from hallucinations, logical errors, and an inability to
self-correct during extended reasoning chains (Yao et al., 2023a; Schick et al., 2023; Nakano et al.,
2021; Carrow et al., 2024; Shao et al., 2024a). However, such models still rely on the model to
plan out an entire solution in one forward pass, with no feedback until the final answer is produced.
This fundamental limitation means the model’s internal plan is unchecked: if an early reasoning
step is flawed, the model will continue down a wrong path, often leading to compounding errors
or hallucinations (Lightman et al., 2023; Wan et al., 2025; Li et al., 2025c). Fundamentally, static
one-pass generation leaves no mechanism to verify intermediate steps or reverse errors, making
complex multistep reasoning an open challenge in the field (Huang et al., 2022c;b).

32B models

14B models

1000 5000 17000 800000 N/A
75

80

85

90

95

100

Number of Examples

M
A
T
H
50
0
A
cc
ur
ac
y
(%
)

s1-32B

Bespoke-Stratos-32B

Sky-T1-32B

r1-distill-32B

QwQ-32B

o1-preview

AFlow

a1-14B

s1-14B

r1-distill-14B

a1-32B

START-32B

Figure 2: Model performance on MATH500 benchmark ver-
sus training data size. Dashed lines show scaling trends for
a1. Our a1-32B achieves superior performance with fewer
training examples compared to baseline models.

Recent research has explored several
promising directions to address these
reasoning limitations. External veri-
fication approaches leverage tool use
and feedback mechanisms (Nakano
et al., 2021; Karpas et al., 2022; Yao
et al., 2023a; Schick et al., 2023; Das
et al., 2024; Wang et al., 2024a; Four-
ney et al., 2024) to ground responses
in factual information. Planning-
oriented methods enable LLMs to gen-
erate code-form plans (Wen et al.,
2024) or explore multiple reasoning
paths (Yao et al., 2023b; Hao et al.,
2023; Zhang et al., 2025). Tool-
integrated reasoning systems (Parisi
et al., 2022; Gou et al., 2023; Li
et al., 2025a) combine natural lan-
guage reasoning with computational
tools, while self-improvement tech-
niques use refinement (Zelikman et al.,
2022; Huang et al., 2022a) and reflec-
tion (Shinn et al., 2023; Madaan et al.,
2023; Li et al., 2025a) to enhance reasoning quality. Despite these advances, key limitations persist:
tool-using agents typically follow linear reasoning paths (Qin et al., 2023; Li et al., 2025b), planning
methods lack real-time verification of steps, and exploratory approaches rarely integrate feedback
with dynamic replanning (Zhang et al., 2025). These gaps indicate the need for a framework that
unifies immediate verification, branching exploration, and adaptive learning.

In this work, we propose Environment Augmented Generation (EAG) to fill this gap. EAG is a new
paradigm for LLM reasoning that tightly couples the model with an external environment during the
generation process, transforming reasoning into an interactive, feedback-driven loop. EAG introduces
three key innovations: (1) Real-Time Environmental Feedback: At each step of reasoning, the model
queries an external environment (such as a computational engine, knowledge base, or simulator)
to validate the step or obtain new information before proceeding. This immediate feedback acts
as a guardrail, catching hallucinations or logical errors on the fly. Instead of only checking a final
answer, EAG constantly checks intermediate conclusions – much like a mathematician verifies each
line of a proof – greatly mitigating error propagation. (2) Dynamic Branch Exploration: Rather
than committing to a single chain-of-thought, EAG explores multiple branches of reasoning in a
goal-directed manner. The LLM can maintain several hypothetical solution paths simultaneously,
branching when uncertainty is high or multiple approaches seem promising (similar to how one
might try different problem-solving strategies). Branches that lead to dead-ends (as indicated by
environmental feedback or logical contradiction) can be pruned, and effort focused on fruitful
directions. This dynamic search enables strategic lookahead and backtracking, incorporating the
strengths of approaches like ToT but augmented with real feedback signals. (3) Trajectory-Based
Learning: EAG treats each reasoning attempt as a trajectory through a state space (defined by problem
states and reasoning steps). Successful trajectories – those that reach a correct solution with all steps
validated – are collected as valuable experiences. The model is then iteratively refined on these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

trajectories, via fine-tuning or reinforcement learning, so that it internalizes the effective reasoning
patterns. Over time, the LLM improves its policy of reasoning: it learns to avoid invalid steps and
favor actions that led to success in the past. This trajectory-based learning paradigm allows the model
to learn from its own reasoning experience, continuously closing the loop between planning and
feedback.

Method Environmental Interaction Learning Efficiency Expressiveness
Integrated Planning Data Parameters Structuring Versatility Interpretability

CoT (Wei et al., 2023) ✗ ✗ ✗ N/A ✗ ✓ ✓

AFLOW (Zhang et al., 2025) ✗ ✓ ✗ N/A ✗ ✓ ✗

o1-like foundation models ✗ ✗ ✗ ✗ ✗ ✗ ✓

CODEPLAN(Wen et al., 2024) ✓ ✓ ✗ ✓ ✓ ✓ ✓

S1 (Muennighoff et al., 2025) ✗ ✗ ✗ ✓ ✗ ✗ ✓

START (Li et al., 2025a) ✓ ✗ ✓— ✓ ✓ ✓ ✓

OURS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Performance metrics of different reasoning methods across tool use, learning capabilities,
and expressiveness dimensions.

By combining these three components, EAG offers a theoretically grounded and practically powerful
framework for LLM reasoning. It departs from prior single-pass or dual-pass methods, instead viewing
reasoning as an interactive decision-making process akin to an agent navigating a search problem
with guidance. In effect, EAG transforms the LLM into a planner that can observe consequences
(via the environment), explore alternatives, and learn from trials. This is a paradigm shift: the
classical view of prompting LLMs with a static prompt is replaced by a feedback-driven loop that
more closely resembles how humans solve problems (trying steps, checking results, revising plans).
We hypothesize and will demonstrate that EAG yields more reliable, accurate, and interpretable
reasoning. Theoretically, EAG aligns generation with an external verification signal, which can be
analyzed in terms of search algorithms and reinforcement learning, providing a new lens to study
LLM reasoning. Practically, EAG can solve multi-step tasks that were previously intractable for
LLMs alone, and it continually improves with more experience.

2 RELATED WORK

Reasoning via Prompting and Multi-path Exploration. Chain-of-thought prompting (Wei et al.,
2023) pioneered multi-step reasoning in LLMs, leading to advanced techniques (Press et al., 2023;
Imani et al., 2023; Hong et al., 2024). Recent work explores multi-path exploration (OpenAI, 2024)
and test-time scaling (Muennighoff et al., 2025). State-of-the-art models combine these approaches
with SFT or RL (Team, 2024; DeepSeek-AI et al., 2025a; InternLM Team, 2023; Team et al., 2025),
while distillation extends benefits to smaller models (Huggingface, 2025; Qin et al., 2024; Ye et al.,
2025). Tree-based exploration (Yao et al., 2023b) and iterative refinement (Shinn et al., 2023) provide
complementary capabilities.

Domain-Specific Reasoning and Tool Integration. Specialized training has enhanced LLM
capabilities in mathematics (Yu et al., 2023; Mitra et al., 2024; Shao et al., 2024a), code (Le
et al., 2022; Shen et al., 2023), and instruction-following (Cui et al., 2023). Tool integration
addresses limitations through calculators (Schick et al., 2023), retrievers (Asai et al., 2024), and code
interpreters (Gao et al., 2023). Code execution enhances reasoning via prompting (Gao et al., 2023;
Ye et al., 2023; Chen et al., 2023a) or fine-tuning (Gou et al., 2023; Liao et al., 2024; Li et al., 2024a),
while code pre-training improves mathematical abilities (Shao et al., 2024b).

Structured Planning and Decision-Making. Code structures formalize reasoning across various
domains (Madaan et al., 2022; Wang et al., 2022; 2024b). Planning research employs prompt-
ing (Wang et al., 2023; Khot et al., 2022) or fine-tuning (Yin et al., 2024; Guan et al., 2024) for
plan generation, while recent work explores implicit planning (Zelikman et al., 2024; Cornille et al.,
2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Context (Long CoT Reasoning) Environment

Vanilla Tool Integrated Reasoning

Evaluator LLM t-th state

Generate / Request Feedback

Feedback

′
′

Figure 3: EAG framework. Left: branched state transition graph showing model navigation through
states (s0, s1, . . .) with information gain-guided decisions (g > τ). Right: environmental interfaces
providing real-time feedback (E) for step validation. Green checkmarks and red crosses indicate
successful and failed paths respectively.

3 METHOD

EAG framework formalizes reasoning as a Markov Decision Process (MDP) (S,A,F , T ,R), where
S represents the state space of problem representations and validated reasoning steps, A denotes
the set of possible reasoning actions, F captures structured environmental feedback, T defines state
transitions, andR implicitly determines terminal states. The objective is to maximize the trajectory
success rate:

max
π

Eπ [I(sT ∈ Sterminal)] (1)

where policy π(a|s) is parameterized by the language model. Terminal states Sterminal are determined
implicitly by the language model generating reasoning termination tokens or through environment
feedback indicating problem resolution.

3.1 STRUCTURED FEEDBACK AND BRANCH EXPLORATION

We introduce a structured feedback representation f = (v, σ, δ) where v ∈ R ∪ {∅} represents
numerical values or error codes, σ ∈ Σ denotes semantic type information, and δ ∈ D captures
descriptive content. This enables rich information transfer between the environment and model.

3.2 DYNAMIC BRANCH EXPLORATION MECHANISM

We define a branch value function VB(s) that combines information gain, path progress, and cost
constraints:

VB(s) = λIDKL (P (f |a, s)∥Pprior(f))︸ ︷︷ ︸
information gain

+λP
t

T
· I[Success(f)]︸ ︷︷ ︸
path progress

+λCI[f contains errors]︸ ︷︷ ︸
cost constraint

(2)

where Pprior(f) represents a baseline distribution over expected feedback types estimated from
historical reasoning trajectories, serving as a reference point for measuring the information value

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of new feedback. For practical implementation, we decompose the information gain into weighted
components:

I(s, a, f) = wvV (f) + weE(f) + wpP (a, f) (3)

where V (f), E(f), and P (a, f) respectively evaluate value information, error information, and
progress.

3.3 FEEDBACK-GUIDED ACTION SELECTION

The model generates subsequent reasoning steps using a hybrid policy that combines language model
predictions with feedback guidance:

πhybrid(a|s) = α · πLM(a|s) + (1− α) · πfeedback(a|s, f<t) (4)

where πfeedback is implemented through an attention mechanism:

πfeedback = softmax (W · [hLM;hfeedback]) (5)

Here, hLM is the language model’s final layer hidden state. The feedback representation hfeedback is
derived via a feedback encoder processing the structured feedback components (v, σ, δ). This encoder
maps feedback to a continuous representation suitable for integration. The mechanism combining
hLM and hfeedback to influence action selection is optimized jointly with the LM through SFT. This
allows the model to learn an optimal weighting between its own predictions and feedback-guided
corrections. The state transition logic, elaborated in Algorithm 1, is defined by first generating an
exploration state (Eq 6) and then committing or replanning based on branch value (VB) and feedback
success (Eq 7):

s′t+1 = st ⊕ (at, ft) (6)

st+1 =

{
s′t+1 ⊕ (at+1, ft+1) if VB(st) > τ and Success(ft+1)

Replan(st, ft) otherwise
(7)

3.4 BRANCH EXPLORATION

Algorithm A.1 presents our Branch Exploration (BEx) procedure that formalizes the exploration
process as a heuristic graph search. BEx maintains a set of active branches B and iteratively expands
promising paths while pruning those that fail to yield progress:

1. Branch Set Initialization: B0 = {s0}
2. Depth-First Expansion: For each depth d ≤ Dmax:

Bd+1 =
⋃

s∈Bd

{T (s, a, f) | a ∼ π(·|s), f = E(a), VB(s
′) ≥ τ} (8)

3. Pruning Strategy: Remove branches where VB(s) < τ or C(s) > Cmax, where τ is a
configurable information gain threshold determining whether a branch is promising enough
to continue exploring

4. Terminal State Detection: If ∃s ∈ Bd satisfying s ∈ Sterminal, return the corresponding
solution

3.5 ALIGNMENT BETWEEN MDP FORMALISM AND SUPERVISED LEARNING

We adapt the MDP formalism for reasoning, diverging from standard reinforcement learning. Instead
of direct policy optimization, the MDP guides:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Token length distribution analysis between s1K and EAG2K datasets. The violin plots
(right) show the overall distribution shapes and ranges, with EAG2K exhibiting a higher median
length and wider spread. The density plots (left) highlight the shift towards longer sequences in
EAG2K, with peaks at approximately 6000 and 8000 tokens for s1K and EAG2K respectively.

1. Trajectory Collection: The datasets only contains successful reasoning trajectories:

DEAG = {(st, at, ft, st+1)
T
t=0|sT ∈ Sterminal} (9)

2. Supervised Learning Objective: We train the language model through supervised fine-
tuning (SFT) to maximize the conditional likelihood of actions given states:

LSFT = −E(st,at)∼DEAG [log πθ(at|st)] (10)

This bypasses RL’s exploration issues by directly learning from diverse, verified reasoning examples.
The resulting model efficiently aligns with MDP principles and implicitly internalizes feedback/ex-
ploration, exhibiting emergent reasoning without explicit value functions.

4 DATASET

The Environment Augmented Generation (EAG) framework requires reasoning trajectories that
integrate real-time environmental feedback. To enable this capability, we construct the EAG-2K
dataset, a curated collection of 2,000 interactive reasoning traces derived from the s1 dataset. Our
dataset transformation process emphasizes three critical objectives: (1) preserving the model’s
intrinsic reasoning ability, (2) simulating code-environment interactions with structured feedback,
and (3) balancing trajectory length and computational feasibility. Below, we detail the construction
methodology, data composition, and quality control mechanisms.

4.1 DATA TRANSFORMATION FRAMEWORK

We transform the s1 dataset (1,000 reasoning traces across mathematical, scientific, and cod-
ing domains) by converting natural language reasoning into executable Python code with
environmental feedback. Using few-shot prompting with claude-3.7-sonnet, we cre-
ate code blocks for computations, validations, and simulations, marked with <|execute|>
tags. Executions in a Python sandbox generate structured feedback (value, type, status) en-
closed in <|feedback|> tags. Our transformation targets the LongCoT portion between
<|im_start|>think and <|im_start|>answer tags—where step-by-step calculations and
logical deductions occur—making it ideal for validating each reasoning step with executable code
and feedback. To expand from the original 1,000 s1 traces to our 2,000-sample EAG-2K dataset,
we augment complex reasoning cases with multiple solution paths and error-correction trajectories,
effectively doubling the dataset size while enriching it with branch exploration examples.

4.2 DATA COMPOSITION

The dataset is partitioned into three subsets to balance capability retention and interactive learning:

Raw Subset (200 samples). To preserve the model’s inherent reasoning ability, 10% of the original s1
trajectories remain unmodified. These samples are selected based on two criteria: diversity (covering

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

mathematics, code debugging, and scientific QA) and difficulty (problems where Qwen2.5-32B
achieves <30% accuracy without environmental feedback). This subset ensures the model retains
baseline problem-solving strategies independent of external tools.

Metric Initial Retry@1 Retry@2 Retry@3
Avg. Tokens 6,244 7,881 9,900 15,000
Success Rate 62% 89% 95% 98%

Table 2: Trajectory statistics for Iterative-Refinement process,
showing token length and success rate changes across retry
attempts.

Iterative-Refinement Subset (800
samples). This subset captures dy-
namic error recovery patterns by pre-
serving trajectories where environ-
mental feedback triggers immediate
code regeneration. Samples are in-
cluded if they demonstrate: (1) failed
initial executions with recoverable er-
rors (e.g., type mismatches or miss-
ing dependencies), and (2) feedback-

driven code revisions within three attempts. Each revision cycle follows the pattern:

Error Correction with Environment Feedback

<|execute|>
x = 5 / 0 # Initial error
<|execute_end|>
<|feedback|>
ZeroDivisionError: division by zero
<|feedback_end|>
Oops! I’ve encountered a ZeroDivisionError. I’m trying to divide
5 by zero...

I should check if the denominator is zero before dividing... Let
me fix this by checking if y is zero before dividing by it.
<|execute|>
x = 5 / (y if y != 0 else 1) # Revised code using feedback
<|execute_end|>

Figure 5: Example of an iterative refinement cycle with execution, feedback, and correction.

Direct-Execution Subset (1,000 samples). Promotes efficient environment-coupled reasoning by
enforcing single-attempt code execution, effectively using only the successful version. Trajectories
over 16K tokens are shortened by isolating core computations and retaining only this final successful
code. This trains the model to prioritize correct implementations over error exploration, particularly
effective for formulaic problems where extensive debugging offers little value.

5 EXPERIMENTS

5.1 SETUP

We perform supervised finetuning on Qwen2.5-32B-Instruct using our EAG-2K dataset to obtain the
a1-32B model with environment augmented reasoning capabilities. Finetuning took approximately 12
hours on 8 NVIDIA A100 GPUs with PyTorch FSDP. For more details, please refer to Appendix A.5.

5.2 RESULTS

Table 3 validates EAG’s effectiveness: our a1-32B model achieves state-of-the-art performance
among 32B models across all evaluated reasoning benchmarks. Its notable 74.4% on AIME24
matches the much larger o1 model and significantly outperforms peers like QwQ-32B-Preview
(+24.4%) and s1-32B (+17.7%). This strong, consistent performance extends to AIME25 (50.0%),
MATH500 (94.8%), and GPQA (63.4%), highlighting EAG’s general applicability, likely stemming
from its structured environmental feedback mechanism. Furthermore, matching large models like o1
(>100B parameters) demonstrates significant parameter efficiency, positioning EAG as an effective,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Performance comparison between our a1 model and baseline s1 across different thinking
time budgets. For MATH500, a1 shows stronger performance at higher token counts despite starting
lower. In more challenging domains like AIME24 and GPQA Diamond, the advantage of a1 becomes
more pronounced with increased thinking time, demonstrating superior scaling properties of our
environment augmented approach.

complementary approach to model scaling for reasoning, offering a potentially favorable reasoning-
computation trade-off.

Method GPQA MATH500 AIME24 AIME25

Qwen2.5-32B 46.4 75.8 23.3 13.3
Qwen2.5-Coder-32B 33.8 71.2 20.0 -
Llama3.3-70B 43.4 70.8 36.7 -
GPT-4o† 50.6 60.3 9.3 -

o1-preview† 75.2 85.5 44.6 37.5
o1† 77.3 94.8 74.4 -

DeepSeek-R1-Distill-Qwen-32B† 62.1 94.3 72.6 46.7
s1-32B† 59.6 93.0 50.0 33.3
Search-o1-32B† 63.6 86.4 56.7 -
QwQ-32B-Preview 58.1 90.6 50.0 36.7
START 63.6 94.4 66.7 47.1

a1-32B (Ours) 63.4 94.8 74.4 50.0

Table 3: Main results on reasoning tasks. We report Pass@1 metric. Best results for 32B models are
in bold. Larger/non-proprietary models shown in gray. Symbol “†“ indicates the results are from
their official releases.

Figure 6 illustrates the scaling advantages of our a1 model compared to baseline s1 when pro-
vided with increased token budgets across three benchmark domains. The analysis reveals EAG’s
characteristic steep scaling pattern. Initially, a1 may lag s1 at low token budgets (e.g., 512-
2K on MATH500). This is due to the token overhead required for environment interaction via
<|execute|>/<|feedback|> cycles. However, this initial investment yields significant long-
term dividends. A distinct inflection point typically emerges (around 4K-8K tokens), after which
a1’s performance rapidly surpasses the baseline and its advantage accelerates. This steep improve-
ment is particularly pronounced in complex domains like AIME24 (achieving a 15 pp advantage
at 32K tokens) and GPQA Diamond (dominating beyond 4K tokens). This behavior validates our
framework’s emphasis: the cost of incremental feedback is quickly outweighed by the benefit of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

empirically validated, higher-information-density reasoning paths, an advantage that amplifies with
task complexity.

5.3 ABLATION STUDY

Model Variant AIME24 MATH500 GPQA
s1-32B (baseline) 50.0 93.0 59.6
a1-32B w/o B.E. 53.3 90.0 61.6
a1-32B with num. 56.7 93.4 62.3
a1-32B (full) 74.4 94.8 63.4

Table 4: Ablation study. "w/o B.E." removes dynamic branch
exploration, while "with num. only" restricts the feedback
to numerical values only, removing error descriptions and
semantic type information.

Our ablation study reveals impor-
tant insights about the contribution of
each component in our EAG frame-
work. Removing dynamic branch ex-
ploration ("w/o B.E.") severely im-
pacts performance on complex rea-
soning tasks like AIME24, where ac-
curacy drops by 21.1% points. This
suggests that the ability to explore al-
ternative solution paths when faced
with errors is crucial for solving chal-
lenging mathematical problems that
require precise step validation. Simi-

larly, restricting the model to numerical feedback only without error descriptions or semantic type
information ("with num.") results in a substantial performance drop, particularly on AIME24 (17.7%).
This demonstrates the importance of rich, structured feedback in guiding the reasoning process.
The full EAG implementation consistently outperforms all ablated versions across all benchmarks,
confirming our hypothesis that the integration of both components—dynamic branch exploration and
rich structured feedback—is essential for maximizing reasoning capabilities in complex multi-step
tasks.

6 CONCLUSION

This paper introduces Environment Augmented Generation (EAG), a framework that transforms how
language models approach complex reasoning tasks through real-time environmental feedback and
dynamic branch exploration. Our empirical results demonstrate significant improvements: our a1-32B
model achieves state-of-the-art performance among similar-sized models across all benchmarks,
matching larger models like o1 on competition mathematics. The success of EAG reveals a distinctive
scaling pattern: initial token investment in environment interaction yields substantial long-term
performance dividends, with advantages amplifying proportionally to task complexity. EAG’s
theoretical framework demonstrates how environment interactivity and systematic branch exploration
together establish a new paradigm for reliable machine reasoning, particularly for problems requiring
precise multi-step calculation and logical verification. Beyond immediate performance gains, EAG’s
approach suggests a fundamental shift from static generation to interactive reasoning processes,
opening new avenues for developing more reliable and verifiable AI systems. The framework’s
ability to achieve comparable performance to much larger models while maintaining parameter
efficiency indicates promising directions for democratizing advanced reasoning capabilities across
resource-constrained environments.

ETHICS STATEMENT

This research enhances LLM reasoning capabilities through the Environment Augmented Generation
(EAG) framework, aiming to develop more verifiable and accurate AI reasoning systems. While
our EAG-2K dataset, derived from s1, simulates code execution in a controlled environment, we
acknowledge potential limitations from simulated feedback and model-generated data. Though
improving reasoning reliability advances trustworthy AI, we recognize the dual-use potential of
enhanced reasoning capabilities. The EAG framework’s computational demands during inference
raise considerations about energy consumption and resource accessibility. However, we believe this
trade-off between initial computational cost and improved performance is justified in pursuing more
robust and verifiable AI systems that prioritize safety and reliability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We took concrete steps to make our results easy to replicate. Dataset sources, preprocessing, model
variants, and training/evaluation protocols are specified in Sections 3–5, with full hyperparameters,
prompts, seeds, and environment versions in Appendices B–D. An anonymized repository in the sup-
plementary materials includes code, configs, and scripts to reproduce all reported tables/figures from
a clean checkout. Together, these materials enable reliable re-runs and straightforward extensions.

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Hubert Niewiadomski, Michal Podstawski, and Torsten Hoefler. Graph of
thoughts: Solving complex problems with large language models. arXiv preprint arXiv:2308.09687,
2023.

Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi Yang, Zihan Zhang, Haizhen Huang, Lingrui
Mei, Junfeng Fang, Zehao Li, Furu Wei, et al. Context-dpo: Aligning language models for
context-faithfulness. arXiv preprint arXiv:2412.15280, 2024a.

Baolong Bi, Shenghua Liu, Lingrui Mei, Yiwei Wang, Pengliang Ji, and Xueqi Cheng. Decod-
ing by contrasting knowledge: Enhancing llms’ confidence on edited facts. arXiv preprint
arXiv:2405.11613, 2024b.

Baolong Bi, Shenghua Liu, Yiwei Wang, Lingrui Mei, Junfeng Fang, Hongcheng Gao, Shiyu Ni, and
Xueqi Cheng. Is factuality enhancement a free lunch for llms? better factuality can lead to worse
context-faithfulness. arXiv preprint arXiv:2404.00216, 2024c.

Baolong Bi, Shenghua Liu, Yiwei Wang, Yilong Xu, Junfeng Fang, Lingrui Mei, and Xueqi Cheng.
Parameters vs. context: Fine-grained control of knowledge reliance in language models. arXiv
preprint arXiv:2503.15888, 2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Yiran Cai, Xinying Wang, Ye Tian, Haofei Xiao, Xiaolong Huang, Liangyu Chen, and Furu Wei. Start:
Self-taught reasoner with tools for advanced reasoning tasks. arXiv preprint arXiv:2307.07912,
2023. URL https://arxiv.org/abs/2307.07912.

Stephen Carrow, Kyle Harper Erwin, Olga Vilenskaia, Parikshit Ram, Tim Klinger, Naweed Agh-
mad Khan, Ndivhuwo Makondo, and Alexander Gray. Neural reasoning networks: Effi-
cient interpretable neural networks with automatic textual explanations, 2024. URL https:
//arxiv.org/abs/2410.07966.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn.
Res., 2023, 2023a.

Yujia Chen, Siqi Xie, Chengzu Zhou, Zhengxiao Chen, Chunqiu Steven Qi, Pengcheng He, Weizhu
Liu, Zhihong Huang, Tong Mu, Jianfeng Gao, et al. Toolllm: Facilitating large language models to
master 16000+ real-world apis. arXiv preprint arXiv:2307.16789, 2023b.

10

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.07912
https://arxiv.org/abs/2410.07966
https://arxiv.org/abs/2410.07966

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chuanqi Cheng, Jian Guan, Wei Wu, and Rui Yan. From the least to the most: Building a plug-and-
play visual reasoner via data synthesis. arXiv preprint arXiv:2406.19934, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. 2022. URL
https://arxiv.org/abs/2204.02311.

Nathan Cornille, Marie-Francine Moens, and Florian Mai. Learning to plan for language modeling
from unlabeled data. arXiv preprint arXiv:2404.00614, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Debrup Das, Debopriyo Banerjee, Somak Aditya, and Ashish Kulkarni. Mathsensei: A tool-
augmented large language model for mathematical reasoning, 2024. URL https://arxiv.
org/abs/2402.17231.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025a.
URL https://arxiv.org/abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,

11

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2402.17231
https://arxiv.org/abs/2501.12948

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025b. URL https://arxiv.org/abs/2412.19437.

Chao Deng, Jiale Yuan, Pi Bu, Peijie Wang, Zhong-Zhi Li, Jian Xu, Xiao-Hui Li, Yuan Gao, Jun
Song, Bo Zheng, et al. Longdocurl: a comprehensive multimodal long document benchmark
integrating understanding, reasoning, and locating. arXiv preprint arXiv:2412.18424, 2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu,
Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang,
Ricky Loynd, Robert West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema
Amershi. Magentic-one: A generalist multi-agent system for solving complex tasks, 2024. URL
https://arxiv.org/abs/2411.04468.

Yao Fu, Hao Chen, Uri Alon, Ian F. Wang, Wendi Lyu, Wangchunshu Zhou, Qian Chen, and Sachin
Kamath. Complexity-based prompting for multi-step reasoning. arXiv preprint arXiv:2210.00720,
2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Yuyao Ge, Shenghua Liu, Yiwei Wang, Lingrui Mei, Lizhe Chen, Baolong Bi, and Xueqi Cheng.
Innate reasoning is not enough: In-context learning enhances reasoning large language models
with less overthinking. arXiv preprint arXiv:2503.19602, 2025.

Zhibin Gou, Zhihong Chen, Yizhe Wang, Tong Wang, Mingyu Liu, Shuai Shi, Shengjie Bi, Xinrun
Dong, Rundong Xu, Peiyi Zhang, Xin Liu, Chengqi Wang, Peng Liu, Weize Zhou, Wenhao Zhang,
Yufan Wang, Rongxiang Yao, Nuo Cheng, Haidong Zhang, Xingyu Luo, Chenghao Lin, Peng Li,
Jingkang Xie, Jian Liu, Jie Gu, Zhiyuan Shi, Qingxing Wang, Yue Yuan, Kunhao Peng, Li Chen,
Yingqiang Li, Xinrun Yan, Nuo Yang, Yankai Lan, Zhengjie Zhang, Xiubo Chang, Linjun Zhou,
and Zhilin Liu. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023. URL https://arxiv.org/abs/2309.17452.

Jian Guan, Wei Wu, Zujie Wen, Peng Xu, Hongning Wang, and Minlie Huang. Amor: A recipe
for building adaptable modular knowledge agents through process feedback. arXiv preprint
arXiv:2402.01469, 2024.

Shibo Hao, Yi Li, and Zhiting Tian. Reasoning with language model is planning with world model.
arXiv preprint arXiv:2305.14992, 2023.

12

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2411.04468
https://arxiv.org/abs/2309.17452

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for multi-agent
collaborative framework. CoRR, abs/2308.00352, 2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=VtmBAGCN7o.

Jiaxin Huang, Shixiang Shane Wang, Bingbin Hou, Liu Liu, Junyang Gu, Ruoxi Zhang, Zijun Wang,
Peng Zhao, Qi Wu, Ce Zhang, et al. Self-improvement of large language models. arXiv preprint
arXiv:2210.11610, 2022a.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents, 2022b. URL https:
//arxiv.org/abs/2201.07207.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models, 2022c. URL https://arxiv.org/abs/2207.
05608.

Huggingface. Open r1, 2025. URL https://github.com/huggingface/open-r1.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 5: Industry Track), pp. 37–42, 2023.

InternLM Team. InternLM: A multilingual language model with progressively enhanced capabilities,
2023. URL https://github.com/InternLM/InternLM.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham,
Hofit Bata, Yoav Levine, Kevin Leyton-Brown, Dor Muhlgay, Noam Rozen, Erez Schwartz, Gal
Shachaf, Shai Shalev-Shwartz, Amnon Shashua, and Moshe Tenenholtz. Mrkl systems: A modular,
neuro-symbolic architecture that combines large language models, external knowledge sources and
discrete reasoning, 2022. URL https://arxiv.org/abs/2205.00445.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In Advances in Neu-
ral Information Processing Systems, volume 35, pp. 22199–22213. Curran Associates,
Inc., 2022a. URL https://proceedings.neurips.cc/paper/2022/hash/
8bb0d291acd4acf5fa8d146b8eb13194-Abstract.html.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35:
22199–22213, 2022b.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Chengpeng Li, Guanting Dong, Mingfeng Xue, Ru Peng, Xiang Wang, and Dayiheng Liu. Dotamath:
Decomposition of thought with code assistance and self-correction for mathematical reasoning.
CoRR, abs/2407.04078, 2024a.

Chengpeng Li, Mingfeng Xue, Zhenru Zhang, Jiaxi Yang, Beichen Zhang, Xiang Wang, Bowen Yu,
Binyuan Hui, Junyang Lin, and Dayiheng Liu. Start: Self-taught reasoner with tools, 2025a. URL
https://arxiv.org/abs/2503.04625.

13

https://openreview.net/forum?id=VtmBAGCN7o
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://github.com/huggingface/open-r1
https://github.com/InternLM/InternLM
https://arxiv.org/abs/2205.00445
https://proceedings.neurips.cc/paper/2022/hash/8bb0d291acd4acf5fa8d146b8eb13194-Abstract.html
https://proceedings.neurips.cc/paper/2022/hash/8bb0d291acd4acf5fa8d146b8eb13194-Abstract.html
https://arxiv.org/abs/2503.04625

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models, 2025b. URL
https://arxiv.org/abs/2501.05366.

Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, and Cheng-Lin Liu. Lans: A layout-aware neural solver
for plane geometry problem. arXiv preprint arXiv:2311.16476, 2023.

Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, Zhi-Long Ji, Jin-Feng Bai, Zhen-Ru Pan, Fan-Hu Zeng,
Jian Xu, Jia-Xin Zhang, and Cheng-Lin Liu. Cmmath: A chinese multi-modal math skill evaluation
benchmark for foundation models. arXiv preprint arXiv:2407.12023, 2024b.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong, Zhijiang
Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning large
language models, 2025c. URL https://arxiv.org/abs/2502.17419.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025d.

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and Kai Fan. MARIO: math reasoning with code
interpreter output - A reproducible pipeline. In ACL (Findings), pp. 905–924. Association for
Computational Linguistics, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Jiaxin Long, Bohan Gu, Sheng Li, Shangmin Wang, Andy Yang, Yao Zhang, and Yue Chen. Large
language models can self-improve. arXiv preprint arXiv:2210.11610, 2023.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, and Xueqi Chen. Slang: New concept
comprehension of large language models. arXiv preprint arXiv:2401.12585, 2024a.

Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Jiayi Mao, and Xueqi Cheng. " not aligned" is
not" malicious": Being careful about hallucinations of large language models’ jailbreak. arXiv
preprint arXiv:2406.11668, 2024b.

Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Ruibin Yuan, and Xueqi Cheng. Hid-
denguard: Fine-grained safe generation with specialized representation router. arXiv preprint
arXiv:2410.02684, 2024c.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Anca D. Dragan, and Geoffrey Irving. Webgpt:
Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332,
2021. URL https://arxiv.org/abs/2112.09332.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

14

https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2502.17419
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2303.08774

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models, 2022. URL
https://arxiv.org/abs/2205.12255.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023a.

Yujia Peng, Weiying Yan, Xiaohan Yang, Shangqing He, Yi Zhang, Jiaqi Zhang, Baolin Liu, Xingxing
Yuan, Haoran Shen, Hongwei Chen, et al. Restgpt: Connecting large language models with real-
world restful apis. arXiv preprint arXiv:2306.06624, 2023b. URL https://arxiv.org/
abs/2306.06624.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Tang Qin, Xingyu Chen, Xu Zhao, Xiaopeng Wu, Songlin Xu, Dan Zhou, Zhihao Fu, Qingfeng
Li, Yansen Song, Kai-Wei Wong, Xiang Zhou, et al. Toolalpaca: Generalized tool learning for
language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301, 2023.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan,
Hector Liu, Yuanzhi Li, and Pengfei Liu. O1 replication journey: A strategic progress report – part
1, 2024. URL https://arxiv.org/abs/2410.18982.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023. URL https://arxiv.org/abs/2302.
04761.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024b.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023. URL https://arxiv.
org/abs/2303.11366.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze Li,
Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu,

15

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong,
Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu, Yangyang
Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping Bao, Yulun Du,
Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu
Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang. Kimi k1.5: Scaling
reinforcement learning with llms, 2025. URL https://arxiv.org/abs/2501.12599.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://qwenlm.github.io/blog/qwq-32b-preview/.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022. URL https://arxiv.org/abs/2211.14275.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ziyu Wan, Yunxiang Li, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun Wang, Weinan
Zhang, Shuyue Hu, and Ying Wen. Rema: Learning to meta-think for llms with multi-agent
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09501.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2609–2634, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.147. URL https://aclanthology.org/2023.acl-long.
147.

Peijie Wang, Zhong-Zhi Li, Fei Yin, Xin Yang, Dekang Ran, and Cheng-Lin Liu. Mv-math:
Evaluating multimodal math reasoning in multi-visual contexts. arXiv preprint arXiv:2502.20808,
2025.

Renxi Wang, Xudong Han, Lei Ji, Shu Wang, Timothy Baldwin, and Haonan Li. Toolgen: Unified tool
retrieval and calling via generation, 2024a. URL https://arxiv.org/abs/2410.03439.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure
prediction. arXiv preprint arXiv:2210.12810, 2022.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Jiaxin Wen, Jian Guan, Hongning Wang, Wei Wu, and Minlie Huang. Unlocking reasoning potential
in large langauge models by scaling code-form planning, 2024. URL https://arxiv.org/
abs/2409.12452.

Yurong Wu, Fangwen Mu, Qiuhong Zhang, Jinjing Zhao, Xinrun Xu, Lingrui Mei, Yang Wu, Lin
Shi, Junjie Wang, Zhiming Ding, et al. Vulnerability of text-to-image models to prompt template
stealing: A differential evolution approach. arXiv preprint arXiv:2502.14285, 2025.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang,
Jiaming Ji, Yingying Zhang, et al. Redstar: Does scaling long-cot data unlock better slow-reasoning
systems? arXiv preprint arXiv:2501.11284, 2025.

16

https://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/2211.14275
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2503.09501
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://arxiv.org/abs/2410.03439
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2409.12452
https://arxiv.org/abs/2409.12452

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023a. URL https://arxiv.org/abs/2210.03629.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023b. URL https://arxiv.org/abs/2305.10601.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning, 2025. URL https://arxiv.org/abs/2502.03387.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decompose evidence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808, 2023.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 12380–12403, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models, 2023.

Eric Zelikman, Yuhuai Wu, Noah D. Brown, Jesse Abramowitz, Aman Fawzi, Markus Stangl, Mira
Glaese, David J. Carroll, Divyam Kaushik, Izhak Shafran, Russell Gens, Azalia Mirhoseini, Mark
Rowland, and Geoffrey Irving. Star: Self-taught reasoner: Bootstrapping reasoning with reasoning.
In Advances in Neural Information Processing Systems, volume 35, pp. 6355–6367. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/639a9a172c044fbbcd8d56b0ae8eda1d-Paper.pdf.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Jiaxin Zhang, Zhongzhi Li, Mingliang Zhang, Fei Yin, Chenglin Liu, and Yashar Moshfeghi. Geoeval:
benchmark for evaluating llms and multi-modal models on geometry problem-solving. arXiv
preprint arXiv:2402.10104, 2024a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation, 2025. URL https://arxiv.org/
abs/2410.10762.

Ming-Liang Zhang, Zhong-Zhi Li, Fei Yin, Liang Lin, and Cheng-Lin Liu. Fuse, reason and verify:
Geometry problem solving with parsed clauses from diagram. arXiv preprint arXiv:2407.07327,
2024b.

Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lingrui Mei, Wenjie Yin, Qingwei Lin,
Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Vem: Environment-free exploration for
training gui agent with value environment model. arXiv preprint arXiv:2502.18906, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Judging
llm-as-a-judge with mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023. URL
https://arxiv.org/abs/2306.05685.

17

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2502.03387
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbbcd8d56b0ae8eda1d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbbcd8d56b0ae8eda1d-Paper.pdf
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2306.05685

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 BRANCH EXPLORATION ALGORITHM

Algorithm 1 Branch Exploration

Require: Problem p, Language modelM, Environment E , Threshold τ
Ensure: Solution trajectory τ = (s0, a0, f0, ..., sT) where sT ∈ Sterminal

1: st ← (p, ∅, ∅) ▷ Initialize state with problem and empty histories
2: while st /∈ Sterminal do
3: at ←M(st), ft ← E(at) ▷ Generate action and get feedback
4: if Success(ft) then
5: st ← st ⊕ (at, ft) ▷ Extend current stable state
6: else
7: (g, p, c)← (I(st, at, ft), P (st), C(st)) ▷ Compute branch metrics
8: VB(st)← λIg + λP p+ λCc ▷ Calculate branch value
9: if VB(st) > τ then

10: s′t+1 ← st ⊕ (at, ft) ▷ Create exploration state
11: at+1 ←M(s′t+1), ft+1 ← E(at+1) ▷ Try repair
12: st ← Success(ft+1)?s

′
t+1 ⊕ (at+1, ft+1) : Replan(st, ft)

13: else
14: st ← Replan(st, ft) ▷ Abandon current branch
15: end if
16: end if
17: end while
18: return (s0, a0, f0, ..., sT)

A.2 DATASET EXAMPLE

Below is a sample from our EAG-2K dataset showing how environmental feedback guides mathemat-
ical reasoning:

Dataset Example: Mathematical Problem Solving with EAG

<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant

.<|im_end|>
<|im_start|>user
Given a rational number, write it as a fraction in lowest terms and

calculate the product of the resulting numerator and
denominator. For how many rational numbers between 0 and 1 will
$20_{}^{}!$ be the resulting product?<|im_end|>

<|im_start|>assistant
<|im_start|>think
Let the rational number be q. Since $0 < q < 1$, we can write $q

= \frac{a}{b}$ where a, b are positive integers and $a < b$.
The problem states that the fraction is written in lowest terms.

This means $\gcd(a, b) = 1$.
The problem also states that the product of the resulting numerator

and denominator is $20!$. So, $a \times b = 20!$.

We are looking for the number of pairs of positive integers $(a, b)
$ such that:

1. $a \times b = 20!$
2. $\gcd(a, b) = 1$
3. $a < b$

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Let the prime factorization of $20!$ be $20! = p_1^{e_1} p_2^{e_2}
\cdots p_k^{e_k}$, where p_1, p_2, \ldots, p_k are distinct
prime numbers and e_1, e_2, \ldots, e_k are their exponents.

Since $a \times b = 20!$ and $\gcd(a, b) = 1$, it means that for
each prime factor p_i of $20!$, the entire power $p_i^{e_i}$
must belong either to a or to b. It cannot be split between
them, otherwise p_i would divide both a and b,
contradicting $\gcd(a, b) = 1$.

So, to form a pair (a, b) satisfying conditions 1 and 2, we need
to decide for each distinct prime factor p_i whether its
corresponding prime power $p_i^{e_i}$ goes into the
factorization of a or b.

First, let's find the distinct prime factors of $20!$. These are
the prime numbers less than or equal to 20.

<|execute|>
def is_prime(n):

if n < 2:
return False

for i in range(2, int(n**0.5) + 1):
if n % i == 0:

return False
return True

distinct_primes_in_20_factorial = [p for p in range(2, 21) if
is_prime(p)]

print(distinct_primes_in_20_factorial)
k = len(distinct_primes_in_20_factorial)
print(f"Number of distinct prime factors (k): {k}")
<|execute_end|>
<|feedback|>
[2, 3, 5, 7, 11, 13, 17, 19]
Number of distinct prime factors (k): 8
<|feedback_end|>

There are $k=8$ distinct prime factors in $20!$. Let these primes
be $P={2,3,5,7,11,13,17,19}$.

For each prime $p \in P$, let p^e be the highest power of p
dividing $20!$.

A pair (a,b) such that $a \times b = 20!$ and $\gcd(a,b)=1$ is
formed by choosing a subset $S \subseteq P$.

Then $a = \prod_{p \in S} p^e$ and $b = \prod_{p \in P \setminus S}
p^e$.

The number of subsets S of P is $2^k = 2^8 = 256$.
Each subset S corresponds to a unique ordered pair (a,b)

satisfying conditions 1 and 2.

Now we need to consider the condition $a < b$.
Since $a \times b = 20!$, the condition $a < b$ is equivalent to $a

< \sqrt{20!}$.
Can $a = b$? This would imply $a^2 = 20!$, meaning $20!$ is a

perfect square.
A factorial $N!$ for $N > 1$ is never a perfect square. This is

because, by Bertrand's Postulate, there is always a prime p
such that $\lfloor N/2 \rfloor < p \leq N$. The exponent of this
prime p in the prime factorization of $N!$ is $\lfloor N/p \

rfloor + \lfloor N/p^2 \rfloor + \cdots = 1 + 0 + \cdots = 1$.
Since the exponent is odd, $N!$ cannot be a perfect square.

For $N = 20$, the largest prime is 19. $\lfloor 20/19 \rfloor = 1$.
So the exponent of 19 in $20!$ is 1. Thus $20!$ is not a

perfect square, and $a \neq b$.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since $a \neq b$, for every pair (a,b) satisfying conditions 1
and 2, either $a < b$ or $b < a$.

The total number of ordered pairs (a,b) satisfying conditions 1
and 2 is $2^k = 2^8 = 256$.

These pairs can be grouped into pairs of the form $\{(a,b), (b,a)\}
$. Since $a \neq b$, each group has exactly two distinct pairs.

One pair in the group satisfies $a < b$, and the other satisfies $b
< a$.

Therefore, exactly half of the pairs satisfy $a < b$.
The number of pairs (a,b) satisfying conditions 1, 2, and 3 is $\

frac{1}{2} \times 2^k = 2^{k-1}$.
With $k = 8$, the number of pairs is $2^{8-1} = 2^7$.
<|execute|>
k = 8
result = 2**(k - 1)
print(result)
<|execute_end|>
<|feedback|>
128
<|feedback_end|>

So, there are 128 pairs (a,b) that satisfy all three conditions.
Each such pair corresponds to a unique rational number $q = a/b$
between 0 and 1, in lowest terms, such that the product of the

numerator and denominator is $20!$.

Let's double check with a smaller example, say 6!.

$6! = 720 = 2^4 \times 3^2 \times 5^1$.
The distinct prime factors are $P = \{2,3,5\}$, so $k = 3$.
The number of pairs (a,b) with $a \times b = 720$, $\gcd(a,b) = 1

$, and $a < b$ should be 2^{k-1}.
<|execute|>
k_check = 3
result_check = 2**(k_check - 1)
print(result_check)
<|execute_end|>
<|feedback|>
4
<|feedback_end|>
Let's list the pairs (a,b) satisfying $a \times b = 720$ and $\

gcd(a,b) = 1$.
The subsets of P are $\emptyset, \{2\}, \{3\}, \{5\}, \{2,3\},

\{2,5\}, \{3,5\}, \{2,3,5\}$.
Corresponding pairs (a,b):

$S = \emptyset$: $a = 1$, $b = 2^4 \times 3^2 \times 5^1 = 720$.
Pair (1, 720). $a < b$.

$S = \{2\}$: $a = 2^4 = 16$, $b = 3^2 \times 5^1 = 45$. Pair (16,
45). $a < b$.

$S = \{3\}$: $a = 3^2 = 9$, $b = 2^4 \times 5^1 = 80$. Pair (9, 80)
. $a < b$.

$S = \{5\}$: $a = 5^1 = 5$, $b = 2^4 \times 3^2 = 144$. Pair (5,
144). $a < b$.

$S = \{2,3\}$: $a = 2^4 \times 3^2 = 144$, $b = 5^1 = 5$. Pair
(144, 5). $a > b$.

$S = \{2,5\}$: $a = 2^4 \times 5^1 = 80$, $b = 3^2 = 9$. Pair (80,
9). $a > b$.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

$S = \{3,5\}$: $a = 3^2 \times 5^1 = 45$, $b = 2^4 = 16$. Pair (45,
16). $a > b$.

$S = \{2,3,5\}$: $a = 2^4 \times 3^2 \times 5^1 = 720$, $b = 1$.
Pair (720, 1). $a > b$.

There are $2^3 = 8$ pairs in total.
The pairs satisfying $a < b$ are (1, 720), (16, 45), (9, 80), (5,

144). There are 4 such pairs.
This matches the formula calculation $2^{k-1} = 4$.

The logic seems correct. For $20!$, $k = 8$, so the number of
rational numbers is 128.<|im_start|>answer

Let the rational number be q. We are given that $0 < q < 1$.
When q is written as a fraction in lowest terms, let it be $q = \

frac{a}{b}$.
Being in lowest terms means that a and b are positive integers

with $\gcd(a,b) = 1$.
The condition $0 < q < 1$ means $0 < \frac{a}{b} < 1$, which

implies $a < b$ (since a, b are positive).
We are given that the product of the numerator and denominator is

$20!$. So, $a \times b = 20!$.

We need to find the number of pairs of positive integers (a,b)
such that:

$a \times b = 20!$

$\gcd(a,b) = 1$

$a < b$

Let the prime factorization of $20!$ be $20! = p_1^{e_1} p_2^{e_2}
\cdots p_k^{e_k}$, where p_1, \ldots, p_k are distinct prime
numbers and $e_i \geq 1$ are their exponents.

The condition $\gcd(a,b) = 1$ means that a and b share no
common prime factors.

Since $a \times b = 20!$, this implies that for each prime factor
p_i of $20!$, the entire prime power $p_i^{e_i}$ must be a
factor of either a or b, but not both.

First, identify the distinct prime factors of $20!$. These are the
prime numbers less than or equal to 20.

<|execute|>
def is_prime(n):

if n < 2:
return False

for i in range(2, int(n**0.5) + 1):
if n % i == 0:

return False
return True

distinct_primes_in_20_factorial = [p for p in range(2, 21) if
is_prime(p)]

#print(distinct_primes_in_20_factorial)
k = len(distinct_primes_in_20_factorial)
#print(f"Number of distinct prime factors (k): {k}")
<|execute_end|>
<|feedback|>
[2, 3, 5, 7, 11, 13, 17, 19]
Number of distinct prime factors (k): 8
<|feedback_end|>

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

There are $k = 8$ distinct prime factors. Let $P = \{2, 3, 5, 7,
11, 13, 17, 19\}$ be the set of these k distinct prime factors
.

To form a pair (a,b) satisfying $a \times b = 20!$ and $\gcd(a,b)
= 1$, we must partition the set of prime powers corresponding

to primes in P into two sets, one whose product forms a, and
the other whose product forms b. This is equivalent to

choosing a subset $S \subseteq P$.
Let $a = \prod_{p_i \in S} p_i^{e_i}$ and $b = \prod_{p_j \in P \

setminus S} p_j^{e_j}$ (where $p_i^{e_i}$ is the highest power
of p_i dividing $20!$).

The number of possible subsets S of P is 2^k. Since $k = 8$,
there are $2^8 = 256$ ways to partition the prime powers,
resulting in 256 ordered pairs (a,b) such that $a \times b =
20!$ and $\gcd(a,b) = 1$.

Now we must impose the condition $a < b$.
Consider a pair (a,b) formed this way. Since $a \times b = 20!$,

a and b cannot be equal, because $20!$ is not a perfect
square (for example, the prime 19 appears with exponent 1 in the
factorization of $20!$).

Therefore, for any pair (a,b) satisfying conditions 1 and 2, we
must have either $a < b$ or $b < a$.

The assignment process generates pairs (a,b). If a subset S
generates (a,b), then its complement $P \setminus S$ generates
the pair (b,a).

Since $a \neq b$, the pairs (a,b) and (b,a) are distinct.
The 256 pairs can be grouped into $256/2 = 128$ sets of the form $

\{(a,b), (b,a)\}$.
In each set, exactly one pair satisfies the condition $a < b$.
Therefore, the number of pairs (a,b) satisfying all three

conditions is exactly half of the total number of pairs
satisfying conditions 1 and 2.

Number of pairs = $\frac{2^k}{2} = 2^{k-1}$.
<|execute|>
k = 8
result = 2**(k - 1)
#print(result)
<|execute_end|>
<|feedback|>
128
<|feedback_end|>
Since $k = 8$, the number of pairs is $2^{8-1} = 2^7 = 128$.

Each such pair (a,b) corresponds to a unique rational number $q =
a/b$ satisfying the given conditions.

Thus, there are 128 such rational numbers.

Final Answer: The final answer is 128
<|im_start|>answer
...

This example demonstrates how EAG integrates code execution with mathematical reasoning. The
model leverages Python to verify prime factorization, calculate exponents using Legendre’s formula,
and determine the number of valid rational number representations. Each execution step provides
immediate feedback that guides subsequent reasoning, enabling accurate step-by-step verification
throughout the solution process.

A.3 ADDITIONAL DATASET EXAMPLE: MODULAR ARITHMETIC

Here is another example showing how EAG aids in solving complex modular arithmetic problems:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Dataset Example: Modular Arithmetic with EAG

<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful assistant

.<|im_end|>
<|im_start|>user
I need to find the remainder when $9 \times 99 \times 999 \times \

cdots \times \underbrace{99\cdots9}_{\text{999 9's}}$ is divided
by 1000.<|im_end|>

<|im_start|>assistant
<|im_start|>think
Let P be the product $9 \times 99 \times 999 \times \cdots \times

\underbrace{99\cdots9}_{\text{999 9's}}$. We want to find $P \
pmod{1000}$.

The terms in the product are of the form $a_n = \underbrace{99\
cdots9}_{n \text{ 9's}}$. We can write $a_n = 10^n - 1$.

The product is $P = a_1 \times a_2 \times a_3 \times \cdots \times
a_{999}$.

Let's examine the first few terms modulo 1000.
<|execute|>
a1 = 10**1 - 1
a2 = 10**2 - 1
a3 = 10**3 - 1
mod = 1000

rem_a1 = a1 % mod
rem_a2 = a2 % mod
rem_a3 = a3 % mod

print(f"a1 = {a1}, a1 % {mod} = {rem_a1}")
print(f"a2 = {a2}, a2 % {mod} = {rem_a2}")
print(f"a3 = {a3}, a3 % {mod} = {rem_a3}")
Verify alternate calculation for a3 mod 1000
print(f"a3 % {mod} using -1: {-1 % mod}")
<|execute_end|>
<|feedback|>
a1 = 9, a1 % 1000 = 9
a2 = 99, a2 % 1000 = 99
a3 = 999, a3 % 1000 = 999
a3 % 1000 using -1: 999
<|feedback_end|>

Now let's check the terms for $n \geq 3$. We need to check $a_n =
10^n - 1 \pmod{1000}$.

<|execute|>
mod = 1000
n = 4
a4 = 10**n - 1
rem_a4 = a4 % mod
print(f"n=4: 10**{n} % {mod} = {10**n % mod}")
print(f"a4 = {a4}, a4 % {mod} = {rem_a4}")

n = 5
a5 = 10**n - 1
rem_a5 = a5 % mod
print(f"n=5: 10**{n} % {mod} = {10**n % mod}")
print(f"a5 = {a5}, a5 % {mod} = {rem_a5}")

Check congruence to -1
print(f"For n=4, a4 % {mod} == -1 % {mod}: {rem_a4 == (-1 % mod)}")
print(f"For n=5, a5 % {mod} == -1 % {mod}: {rem_a5 == (-1 % mod)}")

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

<|execute_end|>
<|feedback|>
n=4: 10**4 % 1000 = 0
a4 = 9999, a4 % 1000 = 999
n=5: 10**5 % 1000 = 0
a5 = 99999, a5 % 1000 = 999
For n=4, a4 % 1000 == -1 % 1000: True
For n=5, a5 % 1000 == -1 % 1000: True
<|feedback_end|>

As observed, for any $n \geq 3$, 10^n is divisible by 1000, so
$10^n \equiv 0 \pmod{1000}$.

Therefore, for $n \geq 3$, $a_n = 10^n - 1 \equiv 0 - 1 = -1 \pmod
{1000}$.

The product P is $a_1 \times a_2 \times a_3 \times \cdots \times
a_{999}$.

Modulo 1000, this becomes:

$P \equiv rem_a1 \times rem_a2 \times (rem_a3) \times (rem_a4)
\times \cdots \times (rem_a_{999}) \pmod{1000}$

$P \equiv 9 \times 99 \times (-1) \times (-1) \times \cdots \times
(-1) \pmod{1000}$.

We need to count how many terms are congruent to -1. These are
the terms from a_3 to a_{999}.

<|execute|>
num_neg_one_terms = 999 - 3 + 1
print(f"Number of terms congruent to -1: {num_neg_one_terms}")
<|execute_end|>
<|feedback|>
Number of terms congruent to -1: 997
<|feedback_end|>

So, $P \equiv 9 \times 99 \times (-1)^{997} \pmod{1000}$.

Now we calculate $(-1)^{997}$.
<|execute|>
exponent = 997
base = -1
result_power = base ** exponent
print(f"(-1)**{exponent} = {result_power}")

Parity check
is_odd = exponent % 2 != 0
print(f"{exponent} is odd: {is_odd}")
print(f"Result should be -1: {result_power == -1}")
<|execute_end|>
<|feedback|>
(-1)**997 = -1
997 is odd: True
Result should be -1: True
<|feedback_end|>

Since 997 is odd, $(-1)^{997} = -1$.
Substituting this back:

$P \equiv 9 \times 99 \times (-1) \pmod{1000}$.

Now, we perform the final calculation.
<|execute|>
mod = 1000

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

term1 = 9
term2 = 99
term3 = -1

intermediate_product = (term1 * term2) % mod
print(f"({term1} * {term2}) % {mod} = {intermediate_product}")

final_product_mod = (intermediate_product * term3) % mod
print(f"({intermediate_product} * {term3}) % {mod} = {

final_product_mod}")

Adjust if the result is negative to be in [0, mod-1]
final_remainder = final_product_mod if final_product_mod >= 0 else

final_product_mod + mod
print(f"Final remainder: {final_remainder}")

Direct calculation verification
direct_calc = (9 * 99 * (-1)) % 1000
print(f"Direct calculation: {(9 * 99 * (-1))} % {mod} = {

direct_calc}")
final_remainder_direct = direct_calc if direct_calc >= 0 else

direct_calc + mod
print(f"Final remainder from direct calc: {final_remainder_direct

}")
<|execute_end|>
<|feedback|>
(9 * 99) % 1000 = 891
(891 * -1) % 1000 = -891
Final remainder: 109
Direct calculation: -891 % 1000 = 109
Final remainder from direct calc: 109
<|feedback_end|>

The calculation shows that $P \equiv 891 \times (-1) \equiv -891 \
pmod{1000}$.

The remainder must be non-negative, so we add 1000: $-891 + 1000 =
109$.

The remainder is 109.
<|im_start|>answer
Let the given product be P.

$P = 9 \times 99 \times 999 \times \cdots \times \underbrace{99\
cdots9}_{\text{999 9's}}$

We want to find the remainder when P is divided by 1000, which
is $P \pmod{1000}$.

Let $a_n = \underbrace{99\cdots9}_{n \text{ 9's}}$. We can write
$a_n = 10^n - 1$.

The product is $P = a_1 \times a_2 \times a_3 \times \cdots \times
a_{999}$.

We examine the terms modulo 1000.
<|execute|>
mod = 1000
a1 = 10**1 - 1
a2 = 10**2 - 1
rem_a1 = a1 % mod
rem_a2 = a2 % mod
print(f"a1 mod {mod} = {rem_a1}")
print(f"a2 mod {mod} = {rem_a2}")

Check terms for n >= 3

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

a3 = 10**3 - 1
rem_a3 = a3 % mod
print(f"a3 mod {mod} = {rem_a3}")

a4 = 10**4 - 1
rem_a4 = a4 % mod
print(f"a4 mod {mod} = {rem_a4}")

Verify congruence to -1 for n >= 3
print(f"a3 congruent to -1 mod {mod}: {rem_a3 == (-1 % mod)}")
print(f"a4 congruent to -1 mod {mod}: {rem_a4 == (-1 % mod)}")
<|execute_end|>
<|feedback|>
a1 mod 1000 = 9
a2 mod 1000 = 99
a3 mod 1000 = 999
a4 mod 1000 = 999
a3 congruent to -1 mod 1000: True
a4 congruent to -1 mod 1000: True
<|feedback_end|>

For $n \geq 3$, 10^n is divisible by 1000, so $10^n \equiv 0 \
pmod{1000}$.

Thus, $a_n = 10^n - 1 \equiv 0 - 1 = -1 \pmod{1000}$ for $n \geq 3$
.

The product P modulo 1000 is:

$P \equiv a_1 \times a_2 \times a_3 \times \cdots \times a_{999} \
pmod{1000}$

$P \equiv 9 \times 99 \times (-1) \times (-1) \times \cdots \times
(-1) \pmod{1000}$.

We count the number of terms congruent to -1. These are $a_3, a_4
, \ldots, a_{999}$.

<|execute|>
num_neg_one_terms = 999 - 3 + 1
print(f"Number of terms congruent to -1: {num_neg_one_terms}")
<|execute_end|>
<|feedback|>
Number of terms congruent to -1: 997
<|feedback_end|>

So, $P \equiv 9 \times 99 \times (-1)^{997} \pmod{1000}$.

We evaluate $(-1)^{997}$.
<|execute|>
exponent = 997
base = -1
result_power = base ** exponent
print(f"(-1)**{exponent} = {result_power}")
<|execute_end|>
<|feedback|>
(-1)**997 = -1
<|feedback_end|>

Since 997 is odd, $(-1)^{997} = -1$.
Substituting back:

$P \equiv 9 \times 99 \times (-1) \pmod{1000}$.

Finally, we calculate the remainder.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

<|execute|>
mod = 1000
remainder = (9 * 99 * (-1)) % mod
Adjust to ensure the remainder is in the range [0, 999]
if remainder < 0:

remainder += mod
print(f"The final remainder is: {remainder}")
<|execute_end|>
<|feedback|>
The final remainder is: 109
<|feedback_end|>

The calculation shows $P \equiv 891 \times (-1) \equiv -891 \pmod
{1000}$. The standard remainder is $-891 + 1000 = 109$.

The remainder when $9 \times 99 \times 999 \times \cdots \times \
underbrace{99\cdots9}_{\text{999 9's}}$ is divided by 1000 is
109.

<|im_start|>answer
...

This example illustrates how EAG enables systematic modular arithmetic calculations. The model
breaks down the problem into manageable steps, recognizing patterns in how the terms behave under
modular congruence and verifying calculations at each stage. The interactive execution environment
allows for direct verification of intermediate conjectures, providing a rigorous approach to this
challenging remainder problem.

A.4 PRACTICAL IMPLEMENTATION

For computational efficiency, our implementation adopts a streamlined approach where we explore
one branch at a time (|B| = 1) rather than concurrent exploration. This strategy prioritizes the
most promising branch at each depth, proceeding sequentially and only exploring alternatives when
necessary. Under optimal conditions, where a path consistently receives positive feedback, this
approach converges to a single successful trajectory, effectively specializing BVS with a threshold
function τ(f) = I[HasError(f)] and maximum branch depth D corresponding to retry limit. While
reducing computational overhead, this implementation preserves the core theoretical advantages by
leveraging structured feedback for error correction and path exploration.

The implementation uses a special token scheme to interface between the language model and
environment. Token pairs <|execute|>/<|execute_end|> delineate reasoning actions at,
while <|feedback|>/<|feedback_end|> encapsulate environment feedback ft. This scheme
enables the model to recognize state transitions and incorporate feedback signals during both training
and inference phases.

Our approach differs fundamentally from previous methods in three key aspects:

1. Unlike chain-of-thought approaches that generate reasoning in a single forward pass, EAG
validates each step with environmental feedback.

2. In contrast to tools like ReAct that use environmental feedback primarily for fact-checking,
EAG employs feedback to guide the reasoning process itself.

3. Compared to exploration methods like Tree of Thoughts that lack systematic integration of
verification signals, EAG’s branch exploration is directly guided by structured feedback.

Through this formalization, EAG establishes a principled approach to reasoning that tightly integrates
environmental feedback with action generation, enabling robust handling of complex multi-step
reasoning tasks without requiring the computational complexity of full tree search algorithms.

Our approach differs fundamentally from previous methods in three key aspects. First, unlike chain-
of-thought approaches that generate reasoning in a single forward pass, EAG validates each step with
environmental feedback. Second, in contrast to tools like ReAct that use environmental feedback

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

primarily for fact-checking, EAG employs feedback to guide the reasoning process itself. Third,
compared to exploration methods like Tree of Thoughts that lack systematic integration of verification
signals, EAG’s branch exploration is directly guided by structured feedback.

A.5 TRAINING DETAILS

We take a model that has already been pretrained and instruction tuned and further finetune it for
environment augmented reasoning. Specifically, we use Qwen2.5-32B-Instruct (Qwen et al., 2024),
which on math tasks generally matches or outperforms the larger Qwen2.5-72B-Instruct (Qwen et al.,
2024) or other open models (Dubey et al., 2024; Groeneveld et al., 2024; Muennighoff et al., 2024).

We use specialized token delimiters to separate code execution from feedback. We enclose the execu-
tion blocks with <|execute|> and <|execute_end|>, and feedback with <|feedback|>
and <|feedback_end|>. These token pairs enable the model to recognize state transitions and
incorporate environmental signals during both training and inference. Representative samples from
our EAG-2K dataset are provided in §D.2.

We use optimized fine-tuning hyperparameters: we train for 8 epochs with a batch size of 8 for a total
of 670 gradient steps. We train in bfloat16 precision with a learning rate of 8e-6 warmed up linearly
for 5% (34 steps) and then decayed to 0 over the rest of training (636 steps) following a cosine
schedule. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with β1 = 0.9, β2 = 0.95 and
weight decay of 1e-4. We compute loss on both reasoning traces and execution feedback signals. We
ensure the sequence length is large enough (12K tokens) to accommodate the longer EAG trajectories
with environmental feedback. The training takes approximately 12 hours on 8 NVIDIA A100 GPUs
using PyTorch FSDP with activation checkpointing.

A.6 THEORETICAL FRAMEWORK ENHANCEMENT

A.6.1 STATE SPACE FORMALIZATION WITH MANIFOLD LEARNING

We enhance the state representation using differential geometry concepts. Define the reasoning
manifoldM ⊂ Rd where each state s resides. The environment feedback induces a Riemannian
metric tensor Gf that shapes the manifold:

Gf (s) = diag(exp(−γ∥∇sI(s, a, f)∥2)) (11)

This metric captures the information geometry of the reasoning process, where directions of high
information gain correspond to lower curvature regions. The state transition becomes a geodesic
flow:

st+1 = expst(−η∇sI(st, a, f)) (12)

where exp denotes the exponential map onM, and η is the learning rate.

A.6.2 CONVERGENCE ANALYSIS

Theorem 1 (EAG Convergence). Under Lipschitz continuity of information gain I and proper metric
learning rate η, the EAG process converges to an ϵ-optimal solution within O(1

ε2 log
1
δ) steps with

probability 1− δ.

Proof. 1. Construct a supermartingale Xt = I(st)− tηC
2. Apply Doob’s stopping time theorem to the first hitting time of ϵ-neighborhood
3. Bound the quadratic variation using the manifold metric properties

A.6.3 DATA GENERATION THEORY

Define the data augmentation operator Aθ parameterized by perturbation strength θ:

Aθ(p, s) = Eϵ∼pθ
[ℓ(fθ(s+ ϵ), f∗(s))] (13)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where fθ is the learned model and f∗ is the oracle. The curriculum learning dynamics follow:

dθ

dt
= α

∂

∂θ
E[Difficulty(p)]− βθ (14)

This ensures gradual exposure to complex problems while preventing catastrophic forgetting.

A.6.4 IMPLEMENTATION SIMPLIFICATION THEOREM

Theorem 2 (Linear Retry Approximation). The linear retry strategy with maximum depth D achieves
approximation ratio 1 − O(logD

D) compared to full branch exploration, under submodularity of
information gain.

Proof. 1. Prove the information gain function is adaptive submodular
2. Apply greedy algorithm approximation guarantees
3. Bound the depth requirement via adaptive complexity analysis

A.6.5 ERROR PROPAGATION ANALYSIS

The error dynamics satisfy the recurrence relation:

εt+1 ≤ ρεt + δt (15)

where ρ = 1− Imin
Imax

is the contraction factor, and δt is the local approximation error. This leads to
exponential error decay:

∥εT ∥ ≤ ρT ∥ε0∥+
δ

1− ρ
(16)

A.6.6 COMPLEXITY COMPARISON FRAMEWORK

Define the computational complexity measure:

C(EAG) = O

(
T · [CM + CE] · exp

(
−I
τ

))
(17)

where T is time steps, CM model cost, CE environment cost. This shows superlinear complexity
reduction compared to brute-force search.

A.6.7 IMPLEMENTATION-ALIGNED FORMALISM

The special token processing is modeled as boundary conditions in the state manifold:

Mtoken = {s ∈M|ϕtoken(s) ≥ κ} (18)

where ϕtoken is a token detector function. The training objective becomes:

min
θ

Es [CrossEntropy(s) + λdM(s,Mtoken)] (19)

This ensures both task performance and implementation constraint satisfaction.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

A.6.8 OPTIMIZATION FOR PRACTICAL IMPLEMENTATION

While the theoretical framework supports complex multi-branch exploration, practical implementa-
tions often employ a simplified linear-plus-retry strategy. This can be viewed as a special case of
BVS where:

|B| = 1 (only retain the current best branch) (20)

τ(f) = I[f indicates error] (threshold function becomes error detection) (21)

D = maximum retry count (maximum branch depth) (22)

This simplification maintains the core advantages of the theoretical framework while significantly
reducing computational complexity. The effectiveness of this approach lies in its ability to leverage
structured feedback for error correction and alternative path exploration, even within a constrained
search space.

Through this formalization, EAG provides a principled approach to reasoning that integrates environ-
mental feedback directly into the generation process, enabling robust handling of complex multi-step
reasoning tasks across various domains.

A.6.9 STATE SPACE FORMALIZATION WITH MANIFOLD LEARNING

We enhance the state representation using differential geometry concepts. Define the reasoning
manifoldM ⊂ Rd where each state s resides. The environment feedback induces a Riemannian
metric tensor Gf that shapes the manifold:

Gf (s) = diag(exp(−γ∥∇sI(s, a, f)∥2)) (23)

This metric captures the information geometry of the reasoning process, where directions of high
information gain correspond to lower curvature regions. The state transition becomes a geodesic
flow:

st+1 = expst(−η∇sI(st, a, f)) (24)

where exp denotes the exponential map onM, and η is the learning rate.

A.6.10 CONVERGENCE ANALYSIS

Theorem 3 (EAG Convergence). Under Lipschitz continuity of information gain I and proper metric
learning rate η, the EAG process converges to an ϵ-optimal solution within O(1

ε2 log
1
δ) steps with

probability 1− δ.

Proof. 1. Construct a supermartingale Xt = I(st)− tηC
2. Apply Doob’s stopping time theorem to the first hitting time of ϵ-neighborhood
3. Bound the quadratic variation using the manifold metric properties

A.6.11 DATA GENERATION THEORY

Define the data augmentation operator Aθ parameterized by perturbation strength θ:

Aθ(p, s) = Eϵ∼pθ
[ℓ(fθ(s+ ϵ), f∗(s))] (25)

where fθ is the learned model and f∗ is the oracle. The curriculum learning dynamics follow:

dθ

dt
= α

∂

∂θ
E[Difficulty(p)]− βθ (26)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

This ensures gradual exposure to complex problems while preventing catastrophic forgetting.

A.6.12 IMPLEMENTATION SIMPLIFICATION THEOREM

Theorem 4 (Linear Retry Approximation). The linear retry strategy with maximum depth D achieves
approximation ratio 1 − O(logD

D) compared to full branch exploration, under submodularity of
information gain.

Proof. 1. Prove the information gain function is adaptive submodular
2. Apply greedy algorithm approximation guarantees
3. Bound the depth requirement via adaptive complexity analysis

A.6.13 ERROR PROPAGATION ANALYSIS

The error dynamics satisfy the recurrence relation:

εt+1 ≤ ρεt + δt (27)

where ρ = 1− Imin
Imax

is the contraction factor, and δt is the local approximation error. This leads to
exponential error decay:

∥εT ∥ ≤ ρT ∥ε0∥+
δ

1− ρ
(28)

A.6.14 COMPLEXITY COMPARISON FRAMEWORK

Define the computational complexity measure:

C(EAG) = O

(
T · [CM + CE] · exp

(
−I
τ

))
(29)

where T is time steps, CM model cost, CE environment cost. This shows superlinear complexity
reduction compared to brute-force search.

A.6.15 IMPLEMENTATION-ALIGNED FORMALISM

The special token processing is modeled as boundary conditions in the state manifold:

Mtoken = {s ∈M|ϕtoken(s) ≥ κ} (30)

where ϕtoken is a token detector function. The training objective becomes:

min
θ

Es [CrossEntropy(s) + λdM(s,Mtoken)] (31)

This ensures both task performance and implementation constraint satisfaction.

31

	Introduction
	Related Work
	Method
	Structured Feedback and Branch Exploration
	Dynamic Branch Exploration Mechanism
	Feedback-Guided Action Selection
	Branch Exploration
	Alignment Between MDP Formalism and Supervised Learning

	Dataset
	Data Transformation Framework
	Data Composition

	Experiments
	Setup
	Results
	Ablation Study

	Conclusion
	Appendix
	Branch Exploration Algorithm
	Dataset Example
	Additional Dataset Example: Modular Arithmetic
	Practical Implementation
	Training Details
	Theoretical Framework Enhancement
	State Space Formalization with Manifold Learning
	Convergence Analysis
	Data Generation Theory
	Implementation Simplification Theorem
	Error Propagation Analysis
	Complexity Comparison Framework
	Implementation-Aligned Formalism
	Optimization for Practical Implementation
	State Space Formalization with Manifold Learning
	Convergence Analysis
	Data Generation Theory
	Implementation Simplification Theorem
	Error Propagation Analysis
	Complexity Comparison Framework
	Implementation-Aligned Formalism

